1
0
Fork 0
mirror of https://github.com/deepfakes/faceswap synced 2025-06-07 19:05:02 -04:00
faceswap/lib/utils.py
Othniel Cundangan 810bd0bce7
Update GAN64 to v2 (#217)
* Clearer requirements for each platform

* Refactoring of old plugins (Model_Original + Extract_Align) + Cleanups

* Adding GAN128

* Update GAN to v2

* Create instance_normalization.py

* Fix decoder output

* Revert "Fix decoder output"

This reverts commit 3a8ecb8957.

* Fix convert

* Enable all options except perceptual_loss by default

* Disable instance norm

* Update Model.py

* Update Trainer.py

* Match GAN128 to shaoanlu's latest v2

* Add first_order to GAN128

* Disable `use_perceptual_loss`

* Fix call to `self.first_order`

* Switch to average loss in output

* Constrain average to last 100 iterations

* Fix math, constrain average to intervals of 100

* Fix math averaging again

* Remove math and simplify this damn averagin

* Add gan128 conversion

* Update convert.py

* Use non-warped images in masked preview

* Add K.set_learning_phase(1) to gan64

* Add K.set_learning_phase(1) to gan128

* Add missing keras import

* Use non-warped images in masked preview for gan128

* Exclude deleted faces from conversion

* --input-aligned-dir defaults to "{input_dir}/aligned"

* Simplify map operation

* port 'face_alignment' from PyTorch to Keras. It works x2 faster, but initialization takes 20secs.

2DFAN-4.h5 and mmod_human_face_detector.dat included in lib\FaceLandmarksExtractor

fixed dlib vs tensorflow conflict: dlib must do op first, then load keras model, otherwise CUDA OOM error

if face location not found by CNN, its try to find by HOG.

removed this:
-        if face.landmarks == None:
-            print("Warning! landmarks not found. Switching to crop!")
-            return cv2.resize(face.image, (size, size))
because DetectedFace always has landmarks

* Enabled masked converter for GAN models

* Histogram matching, cli option for perceptual loss

* Fix init() positional args error

* Add backwards compatibility for aligned filenames

* Fix masked converter

* Remove GAN converters
2018-03-09 19:43:24 -05:00

56 lines
1.8 KiB
Python

import sys
from os.path import basename, exists
from pathlib import Path
from scandir import scandir
image_extensions = [".jpg", ".jpeg", ".png", ".tif", ".tiff"]
def get_folder(path):
output_dir = Path(path)
output_dir.mkdir(parents=True, exist_ok=True)
return output_dir
def get_image_paths(directory, exclude=[], debug=False):
exclude_names = [basename(Path(x).stem[:-1] + Path(x).suffix) for x in exclude]
dir_contents = []
if not exists(directory):
directory = get_folder(directory).path
dir_scanned = list(scandir(directory))
for x in dir_scanned:
if any([x.name.lower().endswith(ext) for ext in image_extensions]):
if x.name in exclude_names:
if debug:
print("Already processed %s" % x.name)
continue
else:
dir_contents.append(x.path)
return dir_contents
# From: https://stackoverflow.com/questions/7323664/python-generator-pre-fetch
import threading
import queue as Queue
class BackgroundGenerator(threading.Thread):
def __init__(self, generator, prefetch=1): #See below why prefetch count is flawed
threading.Thread.__init__(self)
self.queue = Queue.Queue(prefetch)
self.generator = generator
self.daemon = True
self.start()
def run(self):
# Put until queue size is reached. Note: put blocks only if put is called while queue has already reached max size
# => this makes 2 prefetched items! One in the queue, one waiting for insertion!
for item in self.generator:
self.queue.put(item)
self.queue.put(None)
def iterator(self):
while True:
next_item = self.queue.get()
if next_item is None:
break
yield next_item