1
0
Fork 0
mirror of https://github.com/deepfakes/faceswap synced 2025-06-08 20:13:52 -04:00
faceswap/lib/faces_detect.py
torzdf 7f53911453
Logging (#541)
* Convert prints to logger. Further logging improvements. Tidy  up

* Fix system verbosity. Allow SystemExit

* Fix reload extract bug

* Child Traceback handling

* Safer shutdown procedure

* Add shutdown event to queue manager

* landmarks_as_xy > property. GUI notes + linting. Aligner bugfix

* fix FaceFilter. Enable nFilter when no Filter is supplied

* Fix blurry face filter

* Continue on IO error. Better error handling

* Explicitly print stack trace tocrash log

* Windows Multiprocessing bugfix

* Add git info and conda version to crash log

* Windows/Anaconda mp bugfix

* Logging fixes for training
2018-12-04 13:31:49 +00:00

144 lines
5.7 KiB
Python

#!/usr/bin python3
""" Face and landmarks detection for faceswap.py """
import logging
from dlib import rectangle as d_rectangle # pylint: disable=no-name-in-module
from lib.aligner import Extract as AlignerExtract, get_align_mat
logger = logging.getLogger(__name__) # pylint: disable=invalid-name
class DetectedFace():
""" Detected face and landmark information """
def __init__( # pylint: disable=invalid-name
self, image=None, x=None, w=None, y=None, h=None,
frame_dims=None, landmarksXY=None):
logger.trace("Initializing %s", self.__class__.__name__)
self.image = image
self.x = x
self.w = w
self.y = y
self.h = h
self.frame_dims = frame_dims
self.landmarksXY = landmarksXY
self.aligned = dict()
logger.trace("Initialized %s", self.__class__.__name__)
@property
def landmarks_as_xy(self):
""" Landmarks as XY """
return self.landmarksXY
def to_dlib_rect(self):
""" Return Bounding Box as Dlib Rectangle """
left = self.x
top = self.y
right = self.x + self.w
bottom = self.y + self.h
retval = d_rectangle(left, top, right, bottom)
logger.trace("Returning: %s", retval)
return retval
def from_dlib_rect(self, d_rect, image=None):
""" Set Bounding Box from a Dlib Rectangle """
logger.trace("Creating from dlib_rectangle: %s", d_rect)
if not isinstance(d_rect, d_rectangle):
raise ValueError("Supplied Bounding Box is not a dlib.rectangle.")
self.x = d_rect.left()
self.w = d_rect.right() - d_rect.left()
self.y = d_rect.top()
self.h = d_rect.bottom() - d_rect.top()
if image.any():
self.image_to_face(image)
logger.trace("Created from dlib_rectangle: (x: %s, w: %s, y: %s. h: %s)",
self.x, self.w, self.y, self.h)
def image_to_face(self, image):
""" Crop an image around bounding box to the face
and capture it's dimensions """
logger.trace("Cropping face from image")
self.image = image[self.y: self.y + self.h,
self.x: self.x + self.w]
def to_alignment(self):
""" Convert a detected face to alignment dict """
alignment = dict()
alignment["x"] = self.x
alignment["w"] = self.w
alignment["y"] = self.y
alignment["h"] = self.h
alignment["frame_dims"] = self.frame_dims
alignment["landmarksXY"] = self.landmarksXY
logger.trace("Returning: %s", alignment)
return alignment
def from_alignment(self, alignment, image=None):
""" Convert a face alignment to detected face object """
logger.trace("Creating from alignment: (alignment: %s, has_image: %s)",
alignment, bool(image is not None))
self.x = alignment["x"]
self.w = alignment["w"]
self.y = alignment["y"]
self.h = alignment["h"]
self.frame_dims = alignment["frame_dims"]
self.landmarksXY = alignment["landmarksXY"]
if image.any():
self.image_to_face(image)
logger.trace("Created from alignment: (x: %s, w: %s, y: %s. h: %s, "
"frame_dims: %s, landmarks: %s)",
self.x, self.w, self.y, self.h, self.frame_dims, self.landmarksXY)
# <<< Aligned Face methods and properties >>> #
def load_aligned(self, image, size=256, padding=48, align_eyes=False):
""" No need to load aligned information for all uses of this
class, so only call this to load the information for easy
reference to aligned properties for this face """
logger.trace("Loading aligned face: (size: %s, padding: %s, align_eyes: %s)",
size, padding, align_eyes)
self.aligned["size"] = size
self.aligned["padding"] = padding
self.aligned["align_eyes"] = align_eyes
self.aligned["matrix"] = get_align_mat(self, size, align_eyes)
self.aligned["face"] = AlignerExtract().transform(
image,
self.aligned["matrix"],
size,
padding)
logger.trace("Loaded aligned face: %s", {key: val
for key, val in self.aligned.items()
if key != "face"})
@property
def original_roi(self):
""" Return the square aligned box location on the original
image """
roi = AlignerExtract().get_original_roi(self.aligned["matrix"],
self.aligned["size"],
self.aligned["padding"])
logger.trace("Returning: %s", roi)
return roi
@property
def aligned_landmarks(self):
""" Return the landmarks location transposed to extracted face """
landmarks = AlignerExtract().transform_points(self.landmarksXY,
self.aligned["matrix"],
self.aligned["size"],
self.aligned["padding"])
logger.trace("Returning: %s", landmarks)
return landmarks
@property
def aligned_face(self):
""" Return aligned detected face """
return self.aligned["face"]
@property
def adjusted_matrix(self):
""" Return adjusted matrix for size/padding combination """
mat = AlignerExtract().transform_matrix(self.aligned["matrix"],
self.aligned["size"],
self.aligned["padding"])
logger.trace("Returning: %s", mat)
return mat