1
0
Fork 0
mirror of https://github.com/deepfakes/faceswap synced 2025-06-08 03:26:47 -04:00
faceswap/lib/cli.py
Tim van den Essen 6d0d2f061f Add timelapse functionality (#512)
* add new cli options

* add timelapse script

* add batch size on image generation

* fix circular dependency

* add attribute check

* refactor to 3 parameters

* fix some typos

* do not shuffle the set

* default to models folder when no timelapse output supplied

* almost forgot this
2018-10-25 17:46:24 +01:00

722 lines
35 KiB
Python

#!/usr/bin/env python3
""" Command Line Arguments """
import argparse
from importlib import import_module
import os
import platform
import sys
from plugins.PluginLoader import PluginLoader
class ScriptExecutor():
""" Loads the relevant script modules and executes the script.
This class is initialised in each of the argparsers for the relevant
command, then execute script is called within their set_default
function. """
def __init__(self, command, subparsers=None):
self.command = command.lower()
self.subparsers = subparsers
def import_script(self):
""" Only import a script's modules when running that script."""
self.test_for_gui()
cmd = os.path.basename(sys.argv[0])
src = "tools" if cmd == "tools.py" else "scripts"
mod = ".".join((src, self.command.lower()))
module = import_module(mod)
script = getattr(module, self.command.title())
return script
def test_for_gui(self):
""" If running the gui, check the prerequisites """
if self.command != "gui":
return
self.test_tkinter()
self.check_display()
@staticmethod
def test_tkinter():
""" If the user is running the GUI, test whether the
tkinter app is available on their machine. If not
exit gracefully.
This avoids having to import every tk function
within the GUI in a wrapper and potentially spamming
traceback errors to console """
try:
import tkinter
except ImportError:
print(
"It looks like TkInter isn't installed for your OS, so "
"the GUI has been disabled. To enable the GUI please "
"install the TkInter application.\n\n"
"You can try:\n"
" Windows/macOS: Install ActiveTcl Community "
"Edition from "
"www.activestate.com\n"
" Ubuntu/Mint/Debian: sudo apt install python3-tk\n"
" Arch: sudo pacman -S tk\n"
" CentOS/Redhat: sudo yum install tkinter\n"
" Fedora: sudo dnf install python3-tkinter\n")
exit(1)
@staticmethod
def check_display():
""" Check whether there is a display to output the GUI. If running on
Windows then assume not running in headless mode """
if not os.environ.get("DISPLAY", None) and os.name != "nt":
print("No display detected. GUI mode has been disabled.")
if platform.system() == "Darwin":
print("macOS users need to install XQuartz. "
"See https://support.apple.com/en-gb/HT201341")
exit(1)
def execute_script(self, arguments):
""" Run the script for called command """
script = self.import_script()
process = script(arguments)
process.process()
class FullPaths(argparse.Action):
""" Expand user- and relative-paths """
def __call__(self, parser, namespace, values, option_string=None):
setattr(namespace, self.dest, os.path.abspath(
os.path.expanduser(values)))
class DirFullPaths(FullPaths):
""" Class that gui uses to determine if you need to open a directory """
pass
class FileFullPaths(FullPaths):
"""
Class that gui uses to determine if you need to open a file.
see lib/gui/utils.py FileHandler for current GUI filetypes
"""
def __init__(self, option_strings, dest, nargs=None, filetypes=None,
**kwargs):
super(FileFullPaths, self).__init__(option_strings, dest, **kwargs)
if nargs is not None:
raise ValueError("nargs not allowed")
self.filetypes = filetypes
def _get_kwargs(self):
names = [
"option_strings",
"dest",
"nargs",
"const",
"default",
"type",
"choices",
"help",
"metavar",
"filetypes"
]
return [(name, getattr(self, name)) for name in names]
class SaveFileFullPaths(FileFullPaths):
"""
Class that gui uses to determine if you need to save a file.
see lib/gui/utils.py FileHandler for current GUI filetypes
"""
pass
class ContextFullPaths(FileFullPaths):
"""
Class that gui uses to determine if you need to open a file or a
directory based on which action you are choosing
To use ContextFullPaths the action_option item should indicate which
cli option dictates the context of the filesystem dialogue
Bespoke actions are then set in lib/gui/utils.py FileHandler
"""
def __init__(self, option_strings, dest, nargs=None, filetypes=None,
action_option=None, **kwargs):
if nargs is not None:
raise ValueError("nargs not allowed")
super(ContextFullPaths, self).__init__(option_strings, dest,
filetypes=None, **kwargs)
self.action_option = action_option
self.filetypes = filetypes
def _get_kwargs(self):
names = [
"option_strings",
"dest",
"nargs",
"const",
"default",
"type",
"choices",
"help",
"metavar",
"filetypes",
"action_option"
]
return [(name, getattr(self, name)) for name in names]
class FullHelpArgumentParser(argparse.ArgumentParser):
""" Identical to the built-in argument parser, but on error it
prints full help message instead of just usage information """
def error(self, message):
self.print_help(sys.stderr)
args = {"prog": self.prog, "message": message}
self.exit(2, "%(prog)s: error: %(message)s\n" % args)
class SmartFormatter(argparse.HelpFormatter):
""" Smart formatter for allowing raw formatting in help
text.
To use prefix the help item with "R|" to overide
default formatting
from: https://stackoverflow.com/questions/3853722 """
def _split_lines(self, text, width):
if text.startswith("R|"):
return text[2:].splitlines()
# this is the RawTextHelpFormatter._split_lines
return argparse.HelpFormatter._split_lines(self, text, width)
class FaceSwapArgs():
""" Faceswap argument parser functions that are universal
to all commands. Should be the parent function of all
subsequent argparsers """
def __init__(self, subparser, command,
description="default", subparsers=None):
self.argument_list = self.get_argument_list()
self.optional_arguments = self.get_optional_arguments()
if not subparser:
return
self.parser = self.create_parser(subparser, command, description)
self.add_arguments()
script = ScriptExecutor(command, subparsers)
self.parser.set_defaults(func=script.execute_script)
@staticmethod
def get_argument_list():
""" Put the arguments in a list so that they are accessible from both
argparse and gui override for command specific arguments """
argument_list = []
return argument_list
@staticmethod
def get_optional_arguments():
""" Put the arguments in a list so that they are accessible from both
argparse and gui. This is used for when there are sub-children
(e.g. convert and extract) Override this for custom arguments """
argument_list = []
return argument_list
@staticmethod
def create_parser(subparser, command, description):
""" Create the parser for the selected command """
parser = subparser.add_parser(
command,
help=description,
description=description,
epilog="Questions and feedback: \
https://github.com/deepfakes/faceswap-playground",
formatter_class=SmartFormatter)
return parser
def add_arguments(self):
""" Parse the arguments passed in from argparse """
for option in self.argument_list + self.optional_arguments:
args = option["opts"]
kwargs = {key: option[key]
for key in option.keys() if key != "opts"}
self.parser.add_argument(*args, **kwargs)
class ExtractConvertArgs(FaceSwapArgs):
""" This class is used as a parent class to capture arguments that
will be used in both the extract and convert process.
Arguments that can be used in both of these processes should be
placed here, but no further processing should be done. This class
just captures arguments """
@staticmethod
def get_argument_list():
""" Put the arguments in a list so that they are accessible from both
argparse and gui """
argument_list = list()
argument_list.append({"opts": ("-i", "--input-dir"),
"action": DirFullPaths,
"dest": "input_dir",
"default": "input",
"help": "Input directory. A directory "
"containing the files you wish to "
"process. Defaults to 'input'"})
argument_list.append({"opts": ("-o", "--output-dir"),
"action": DirFullPaths,
"dest": "output_dir",
"default": "output",
"help": "Output directory. This is where the "
"converted files will be stored. "
"Defaults to 'output'"})
argument_list.append({"opts": ("--alignments", ),
"action": FileFullPaths,
"filetypes": 'alignments',
"type": str,
"dest": "alignments_path",
"help": "Optional path to an alignments file."})
argument_list.append({"opts": ("--serializer", ),
"type": str.lower,
"dest": "serializer",
"default": "json",
"choices": ("json", "pickle", "yaml"),
"help": "Serializer for alignments file. If "
"yaml is chosen and not available, then "
"json will be used as the default "
"fallback."})
argument_list.append({"opts": ("-D", "--detector"),
"type": str,
# case sensitive because this is used to load a
# plugin.
"choices": ("dlib-hog", "dlib-cnn",
"dlib-all", "mtcnn"),
"default": "mtcnn",
"help": "R|Detector to use.\n'dlib-hog': uses "
"least resources, but is the least\n\t"
"reliable.\n'dlib-cnn': faster than "
"mtcnn but detects fewer faces\n\tand "
"fewer false positives.\n'dlib-all': "
"attempts to find faces using "
"dlib-cnn,\n\tif none are found, "
"attempts to find faces\n\tusing "
"dlib-hog.\n'mtcnn': slower than dlib, "
"but uses fewer resources\n\twhilst "
"detecting more faces and more false\n\t"
"positives. Has superior alignment to "
"dlib"})
argument_list.append({"opts": ("-mtms", "--mtcnn-minsize"),
"type": int,
"dest": "mtcnn_minsize",
"default": 20,
"help": "The minimum size of a face to be "
"accepted. Lower values use "
"significantly more VRAM. Minimum "
"value is 10. Default is 20 "
"(MTCNN detector only)"})
argument_list.append({"opts": ("-mtth", "--mtcnn-threshold"),
"nargs": "+",
"type": str,
"dest": "mtcnn_threshold",
"default": ["0.6", "0.7", "0.7"],
"help": "R|Three step threshold for face "
"detection. Should be\nthree decimal "
"numbers each less than 1. Eg:\n"
"'--mtcnn-threshold 0.6 0.7 0.7'.\n"
"1st stage: obtains face candidates.\n"
"2nd stage: refinement of face "
"candidates.\n3rd stage: further "
"refinement of face candidates.\n"
"Default is 0.6 0.7 0.7 "
"(MTCNN detector only)"})
argument_list.append({"opts": ("-mtsc", "--mtcnn-scalefactor"),
"type": float,
"dest": "mtcnn_scalefactor",
"default": 0.709,
"help": "The scale factor for the image "
"pyramid. Should be a decimal number "
"less than one. Default is 0.709 "
"(MTCNN detector only)"})
argument_list.append({"opts": ("-dbf", "--dlib-buffer"),
"type": int,
"dest": "dlib_buffer",
"default": 64,
"help": "This should only be increased if you "
"are having issues extracting with "
"DLib-cnn. The calculation of RAM "
"required is approximate, so some RAM "
" is held back in reserve (64MB by "
"default). If this is not enough "
"increase this figure by providing an "
"integer representing the amount of "
"megabytes to reserve. (DLIB-CNN "
"Only)"})
argument_list.append({"opts": ("-l", "--ref_threshold"),
"type": float,
"dest": "ref_threshold",
"default": 0.6,
"help": "Threshold for positive face "
"recognition"})
argument_list.append({"opts": ("-n", "--nfilter"),
"type": str,
"dest": "nfilter",
"nargs": "+",
"default": None,
"help": "Reference image for the persons you do "
"not want to process. Should be a front "
"portrait. Multiple images can be added "
"space separated"})
argument_list.append({"opts": ("-f", "--filter"),
"type": str,
"dest": "filter",
"nargs": "+",
"default": None,
"help": "Reference images for the person you "
"want to process. Should be a front "
"portrait. Multiple images can be added "
"space separated"})
argument_list.append({"opts": ("-v", "--verbose"),
"action": "store_true",
"dest": "verbose",
"default": False,
"help": "Show verbose output"})
return argument_list
class ExtractArgs(ExtractConvertArgs):
""" Class to parse the command line arguments for extraction.
Inherits base options from ExtractConvertArgs where arguments
that are used for both extract and convert should be placed """
@staticmethod
def get_optional_arguments():
""" Put the arguments in a list so that they are accessible from both
argparse and gui """
argument_list = []
argument_list.append({"opts": ("-r", "--rotate-images"),
"type": str,
"dest": "rotate_images",
"default": None,
"help": "If a face isn't found, rotate the "
"images to try to find a face. Can find "
"more faces at the cost of extraction "
"speed. Pass in a single number to use "
"increments of that size up to 360, or "
"pass in a list of numbers to enumerate "
"exactly what angles to check"})
argument_list.append({"opts": ("-bt", "--blur-threshold"),
"type": int,
"dest": "blur_thresh",
"default": None,
"help": "Automatically discard images blurrier "
"than the specified threshold. "
"Discarded images are moved into a "
"\"blurry\" sub-folder. Lower values "
"allow more blur"})
argument_list.append({"opts": ("-mp", "--multiprocess"),
"action": "store_true",
"default": False,
"help": "Run extraction on all available "
"cores. (CPU only)"})
argument_list.append({"opts": ("-s", "--skip-existing"),
"action": "store_true",
"dest": "skip_existing",
"default": False,
"help": "Skips frames that have already been "
"extracted"})
argument_list.append({"opts": ("-dl", "--debug-landmarks"),
"action": "store_true",
"dest": "debug_landmarks",
"default": False,
"help": "Draw landmarks on the ouput faces for "
"debug"})
argument_list.append({"opts": ("-ae", "--align-eyes"),
"action": "store_true",
"dest": "align_eyes",
"default": False,
"help": "Perform extra alignment to ensure "
"left/right eyes are at the same "
"height"})
argument_list.append({"opts": ("-si", "--save-interval"),
"dest": "save_interval",
"type": int,
"default": None,
"help": "Automatically save the alignments file "
"after a set amount of frames. Will "
"only save at the end of extracting by "
"default. WARNING: Don't interrupt the "
"script when writing the file because "
"it might get corrupted."})
return argument_list
class ConvertArgs(ExtractConvertArgs):
""" Class to parse the command line arguments for conversion.
Inherits base options from ExtractConvertArgs where arguments
that are used for both extract and convert should be placed """
@staticmethod
def get_optional_arguments():
""" Put the arguments in a list so that they are accessible from both
argparse and gui """
argument_list = []
argument_list.append({"opts": ("-m", "--model-dir"),
"action": DirFullPaths,
"dest": "model_dir",
"default": "models",
"help": "Model directory. A directory "
"containing the trained model you wish "
"to process. Defaults to 'models'"})
argument_list.append({"opts": ("-a", "--input-aligned-dir"),
"action": DirFullPaths,
"dest": "input_aligned_dir",
"default": None,
"help": "Input \"aligned directory\". A "
"directory that should contain the "
"aligned faces extracted from the input "
"files. If you delete faces from this "
"folder, they'll be skipped during "
"conversion. If no aligned dir is "
"specified, all faces will be "
"converted"})
argument_list.append({"opts": ("-t", "--trainer"),
"type": str,
# case sensitive because this is used to
# load a plug-in.
"choices": PluginLoader.get_available_models(),
"default": PluginLoader.get_default_model(),
"help": "Select the trainer that was used to "
"create the model"})
argument_list.append({"opts": ("-c", "--converter"),
"type": str,
# case sensitive because this is used
# to load a plugin.
"choices": ("Masked", "Adjust"),
"default": "Masked",
"help": "Converter to use"})
argument_list.append({"opts": ("-b", "--blur-size"),
"type": int,
"default": 2,
"help": "Blur size. (Masked converter only)"})
argument_list.append({"opts": ("-e", "--erosion-kernel-size"),
"dest": "erosion_kernel_size",
"type": int,
"default": None,
"help": "Erosion kernel size. Positive values "
"apply erosion which reduces the edge "
"of the swapped face. Negative values "
"apply dilation which allows the "
"swapped face to cover more space. "
"(Masked converter only)"})
argument_list.append({"opts": ("-M", "--mask-type"),
# lowercase this, because it's just a
# string later on.
"type": str.lower,
"dest": "mask_type",
"choices": ["rect",
"facehull",
"facehullandrect"],
"default": "facehullandrect",
"help": "Mask to use to replace faces. "
"(Masked converter only)"})
argument_list.append({"opts": ("-sh", "--sharpen"),
"type": str.lower,
"dest": "sharpen_image",
"choices": ["bsharpen", "gsharpen"],
"default": None,
"help": "Use Sharpen Image. bsharpen for Box "
"Blur, gsharpen for Gaussian Blur "
"(Masked converter only)"})
argument_list.append({"opts": ("-g", "--gpus"),
"type": int,
"default": 1,
"help": "Number of GPUs to use for conversion"})
argument_list.append({"opts": ("-fr", "--frame-ranges"),
"nargs": "+",
"type": str,
"help": "frame ranges to apply transfer to e.g. "
"For frames 10 to 50 and 90 to 100 use "
"--frame-ranges 10-50 90-100. Files "
"must have the frame-number as the last "
"number in the name!"})
argument_list.append({"opts": ("-d", "--discard-frames"),
"action": "store_true",
"dest": "discard_frames",
"default": False,
"help": "When used with --frame-ranges discards "
"frames that are not processed instead "
"of writing them out unchanged"})
argument_list.append({"opts": ("-s", "--swap-model"),
"action": "store_true",
"dest": "swap_model",
"default": False,
"help": "Swap the model. Instead of A -> B, "
"swap B -> A"})
argument_list.append({"opts": ("-S", "--seamless"),
"action": "store_true",
"dest": "seamless_clone",
"default": False,
"help": "Use cv2's seamless clone. "
"(Masked converter only)"})
argument_list.append({"opts": ("-mh", "--match-histogram"),
"action": "store_true",
"dest": "match_histogram",
"default": False,
"help": "Use histogram matching. "
"(Masked converter only)"})
argument_list.append({"opts": ("-sm", "--smooth-mask"),
"action": "store_true",
"dest": "smooth_mask",
"default": True,
"help": "Smooth mask (Adjust converter only)"})
argument_list.append({"opts": ("-aca", "--avg-color-adjust"),
"action": "store_true",
"dest": "avg_color_adjust",
"default": True,
"help": "Average color adjust. "
"(Adjust converter only)"})
return argument_list
class TrainArgs(FaceSwapArgs):
""" Class to parse the command line arguments for training """
@staticmethod
def get_argument_list():
""" Put the arguments in a list so that they are accessible from both
argparse and gui """
argument_list = list()
argument_list.append({"opts": ("-A", "--input-A"),
"action": DirFullPaths,
"dest": "input_A",
"default": "input_A",
"help": "Input directory. A directory "
"containing training images for face A. "
"Defaults to 'input'"})
argument_list.append({"opts": ("-B", "--input-B"),
"action": DirFullPaths,
"dest": "input_B",
"default": "input_B",
"help": "Input directory. A directory "
"containing training images for face B. "
"Defaults to 'input'"})
argument_list.append({"opts": ("-m", "--model-dir"),
"action": DirFullPaths,
"dest": "model_dir",
"default": "models",
"help": "Model directory. This is where the "
"training data will be stored. "
"Defaults to 'model'"})
argument_list.append({"opts": ("-s", "--save-interval"),
"type": int,
"dest": "save_interval",
"default": 100,
"help": "Sets the number of iterations before "
"saving the model"})
argument_list.append({"opts": ("-t", "--trainer"),
"type": str,
"choices": PluginLoader.get_available_models(),
"default": PluginLoader.get_default_model(),
"help": "Select which trainer to use, Use "
"LowMem for cards with less than 2GB of "
"VRAM"})
argument_list.append({"opts": ("-bs", "--batch-size"),
"type": int,
"default": 64,
"help": "Batch size, as a power of 2 "
"(64, 128, 256, etc)"})
argument_list.append({"opts": ("-it", "--iterations"),
"type": int,
"default": 1000000,
"help": "Length of training in iterations"})
argument_list.append({"opts": ("-g", "--gpus"),
"type": int,
"default": 1,
"help": "Number of GPUs to use for training"})
argument_list.append({"opts": ("-p", "--preview"),
"action": "store_true",
"dest": "preview",
"default": False,
"help": "Show preview output. If not specified, "
"write progress to file"})
argument_list.append({"opts": ("-w", "--write-image"),
"action": "store_true",
"dest": "write_image",
"default": False,
"help": "Writes the training result to a file "
"even on preview mode"})
argument_list.append({"opts": ("-pl", "--use-perceptual-loss"),
"action": "store_true",
"dest": "perceptual_loss",
"default": False,
"help": "Use perceptual loss while training"})
argument_list.append({"opts": ("-ag", "--allow-growth"),
"action": "store_true",
"dest": "allow_growth",
"default": False,
"help": "Sets allow_growth option of Tensorflow "
"to spare memory on some configs"})
argument_list.append({"opts": ("-v", "--verbose"),
"action": "store_true",
"dest": "verbose",
"default": False,
"help": "Show verbose output"})
# This is a hidden argument to indicate that the GUI is being used,
# so the preview window should be redirected Accordingly
argument_list.append({"opts": ("-gui", "--gui"),
"action": "store_true",
"dest": "redirect_gui",
"default": False,
"help": argparse.SUPPRESS})
argument_list.append({"opts": ("-tia", "--timelapse-input-A"),
"action": DirFullPaths,
"dest": "timelapse_input_A",
"default": None,
"help": "For if you want a timelapse: "
"The input folder for the timelapse. "
"This folder should contain faces of A "
"which will be converted for the "
"timelapse. You must supply a "
"--timelapse-output and a "
"--timelapse-input-B parameter."})
argument_list.append({"opts": ("-tib", "--timelapse-input-B"),
"action": DirFullPaths,
"dest": "timelapse_input_B",
"default": None,
"help": "For if you want a timelapse: "
"The input folder for the timelapse. "
"This folder should contain faces of B "
"which will be converted for the "
"timelapse. You must supply a "
"--timelapse-output and a "
"--timelapse-input-A parameter."})
argument_list.append({"opts": ("-to", "--timelapse-output"),
"action": DirFullPaths,
"dest": "timelapse_output",
"default": None,
"help": "The output folder for the timelapse. "
"If the input folders are supplied but "
"no output folder, it will default to "
"your model folder /timelapse/"})
return argument_list
class GuiArgs(FaceSwapArgs):
""" Class to parse the command line arguments for training """
@staticmethod
def get_argument_list():
""" Put the arguments in a list so that they are accessible from both
argparse and gui """
argument_list = []
argument_list.append({"opts": ("-d", "--debug"),
"action": "store_true",
"dest": "debug",
"default": False,
"help": "Output to Shell console instead of "
"GUI console"})
return argument_list