1
0
Fork 0
mirror of https://github.com/deepfakes/faceswap synced 2025-06-07 10:43:27 -04:00
faceswap/plugins/extract/detect/_base.py
torzdf 6a3b674bef
Rebase code (#1326)
* Remove tensorflow_probability requirement

* setup.py - fix progress bars

* requirements.txt: Remove pre python 3.9 packages

* update apple requirements.txt

* update INSTALL.md

* Remove python<3.9 code

* setup.py - fix Windows Installer

* typing: python3.9 compliant

* Update pytest and readthedocs python versions

* typing fixes

* Python Version updates
  - Reduce max version to 3.10
  - Default to 3.10 in installers
  - Remove incompatible 3.11 tests

* Update dependencies

* Downgrade imageio dep for Windows

* typing: merge optional unions and fixes

* Updates
  - min python version 3.10
  - typing to python 3.10 spec
  - remove pre-tf2.10 code
  - Add conda tests

* train: re-enable optimizer saving

* Update dockerfiles

* Update setup.py
  - Apple Conda deps to setup.py
  - Better Cuda + dependency handling

* bugfix: Patch logging to prevent Autograph errors

* Update dockerfiles

* Setup.py - Setup.py - stdout to utf-8

* Add more OSes to github Actions

* suppress mac-os end to end test
2023-06-27 11:27:47 +01:00

650 lines
25 KiB
Python

#!/usr/bin/env python3
""" Base class for Face Detector plugins
All Detector Plugins should inherit from this class.
See the override methods for which methods are required.
The plugin will receive a :class:`~plugins.extract.pipeline.ExtractMedia` object.
For each source frame, the plugin must pass a dict to finalize containing:
>>> {'filename': <filename of source frame>,
>>> 'detected_faces': <list of DetectedFace objects containing bounding box points}}
To get a :class:`~lib.align.DetectedFace` object use the function:
>>> face = self._to_detected_face(<face left>, <face top>, <face right>, <face bottom>)
"""
from __future__ import annotations
import logging
import typing as T
from dataclasses import dataclass, field
import cv2
import numpy as np
from tensorflow.python.framework import errors_impl as tf_errors # pylint:disable=no-name-in-module # noqa
from lib.align import DetectedFace
from lib.utils import FaceswapError
from plugins.extract._base import BatchType, Extractor, ExtractorBatch
from plugins.extract.pipeline import ExtractMedia
if T.TYPE_CHECKING:
from collections.abc import Generator
from queue import Queue
logger = logging.getLogger(__name__)
@dataclass
class DetectorBatch(ExtractorBatch):
""" Dataclass for holding items flowing through the aligner.
Inherits from :class:`~plugins.extract._base.ExtractorBatch`
Parameters
----------
rotation_matrix: :class:`numpy.ndarray`
The rotation matrix for any requested rotations
scale: float
The scaling factor to take the input image back to original size
pad: tuple
The amount of padding to apply to the image to feed the network
initial_feed: :class:`numpy.ndarray`
Used to hold the initial :attr:`feed` when rotate images is enabled
"""
detected_faces: list[list["DetectedFace"]] = field(default_factory=list)
rotation_matrix: list[np.ndarray] = field(default_factory=list)
scale: list[float] = field(default_factory=list)
pad: list[tuple[int, int]] = field(default_factory=list)
initial_feed: np.ndarray = np.array([])
class Detector(Extractor): # pylint:disable=abstract-method
""" Detector Object
Parent class for all Detector plugins
Parameters
----------
git_model_id: int
The second digit in the github tag that identifies this model. See
https://github.com/deepfakes-models/faceswap-models for more information
model_filename: str
The name of the model file to be loaded
rotation: str, optional
Pass in a single number to use increments of that size up to 360, or pass in a ``list`` of
``ints`` to enumerate exactly what angles to check. Can also pass in ``'on'`` to increment
at 90 degree intervals. Default: ``None``
min_size: int, optional
Filters out faces detected below this size. Length, in pixels across the diagonal of the
bounding box. Set to ``0`` for off. Default: ``0``
Other Parameters
----------------
configfile: str, optional
Path to a custom configuration ``ini`` file. Default: Use system configfile
See Also
--------
plugins.extract.pipeline : The extraction pipeline for calling plugins
plugins.extract.detect : Detector plugins
plugins.extract._base : Parent class for all extraction plugins
plugins.extract.align._base : Aligner parent class for extraction plugins.
plugins.extract.mask._base : Masker parent class for extraction plugins.
"""
def __init__(self,
git_model_id: int | None = None,
model_filename: str | list[str] | None = None,
configfile: str | None = None,
instance: int = 0,
rotation: str | None = None,
min_size: int = 0,
**kwargs) -> None:
logger.debug("Initializing %s: (rotation: %s, min_size: %s)", self.__class__.__name__,
rotation, min_size)
super().__init__(git_model_id,
model_filename,
configfile=configfile,
instance=instance,
**kwargs)
self.rotation = self._get_rotation_angles(rotation)
self.min_size = min_size
self._plugin_type = "detect"
logger.debug("Initialized _base %s", self.__class__.__name__)
# <<< QUEUE METHODS >>> #
def get_batch(self, queue: Queue) -> tuple[bool, DetectorBatch]:
""" Get items for inputting to the detector plugin in batches
Items are received as :class:`~plugins.extract.pipeline.ExtractMedia` objects and converted
to ``dict`` for internal processing.
Items are returned from the ``queue`` in batches of
:attr:`~plugins.extract._base.Extractor.batchsize`
Remember to put ``'EOF'`` to the out queue after processing
the final batch
Outputs items in the following format. All lists are of length
:attr:`~plugins.extract._base.Extractor.batchsize`:
>>> {'filename': [<filenames of source frames>],
>>> 'image': <numpy.ndarray of images standardized for prediction>,
>>> 'scale': [<scaling factors for each image>],
>>> 'pad': [<padding for each image>],
>>> 'detected_faces': [[<lib.align.DetectedFace objects]]}
Parameters
----------
queue : queue.Queue()
The ``queue`` that the batch will be fed from. This will be a queue that loads
images.
Returns
-------
exhausted, bool
``True`` if queue is exhausted, ``False`` if not.
batch, :class:`~plugins.extract._base.ExtractorBatch`
The batch object for the current batch
"""
exhausted = False
batch = DetectorBatch()
for _ in range(self.batchsize):
item = self._get_item(queue)
if item == "EOF":
exhausted = True
break
assert isinstance(item, ExtractMedia)
# Put items that are already aligned into the out queue
if item.is_aligned:
self._queues["out"].put(item)
continue
batch.filename.append(item.filename)
image, scale, pad = self._compile_detection_image(item)
batch.image.append(image)
batch.scale.append(scale)
batch.pad.append(pad)
if batch.filename:
logger.trace("Returning batch: %s", # type: ignore
{k: len(v) if isinstance(v, (list, np.ndarray)) else v
for k, v in batch.__dict__.items()})
else:
logger.trace(item) # type:ignore[attr-defined]
if not exhausted and not batch.filename:
# This occurs when face filter is fed aligned faces.
# Need to re-run until EOF is hit
return self.get_batch(queue)
return exhausted, batch
# <<< FINALIZE METHODS>>> #
def finalize(self, batch: BatchType) -> Generator[ExtractMedia, None, None]:
""" Finalize the output from Detector
This should be called as the final task of each ``plugin``.
Parameters
----------
batch : :class:`~plugins.extract._base.ExtractorBatch`
The batch object for the current batch
Yields
------
:class:`~plugins.extract.pipeline.ExtractMedia`
The :attr:`DetectedFaces` list will be populated for this class with the bounding boxes
for the detected faces found in the frame.
"""
assert isinstance(batch, DetectorBatch)
logger.trace("Item out: %s", # type:ignore[attr-defined]
{k: len(v) if isinstance(v, (list, np.ndarray)) else v
for k, v in batch.__dict__.items()})
batch_faces = [[self._to_detected_face(face[0], face[1], face[2], face[3])
for face in faces]
for faces in batch.prediction]
# Rotations
if any(m.any() for m in batch.rotation_matrix) and any(batch_faces):
batch_faces = [[self._rotate_face(face, rotmat) if rotmat.any() else face
for face in faces]
for faces, rotmat in zip(batch_faces, batch.rotation_matrix)]
# Remove zero sized faces
batch_faces = self._remove_zero_sized_faces(batch_faces)
# Scale back out to original frame
batch.detected_faces = [[self._to_detected_face((face.left - pad[0]) / scale,
(face.top - pad[1]) / scale,
(face.right - pad[0]) / scale,
(face.bottom - pad[1]) / scale)
for face in faces
if face.left is not None and face.top is not None]
for scale, pad, faces in zip(batch.scale,
batch.pad,
batch_faces)]
if self.min_size > 0 and batch.detected_faces:
batch.detected_faces = self._filter_small_faces(batch.detected_faces)
for idx, filename in enumerate(batch.filename):
output = self._extract_media.pop(filename)
output.add_detected_faces(batch.detected_faces[idx])
logger.trace("final output: (filename: '%s', " # type:ignore[attr-defined]
"image shape: %s, detected_faces: %s, item: %s",
output.filename, output.image_shape, output.detected_faces, output)
yield output
@staticmethod
def _to_detected_face(left: float, top: float, right: float, bottom: float) -> DetectedFace:
""" Convert a bounding box to a detected face object
Parameters
----------
left: float
The left point of the detection bounding box
top: float
The top point of the detection bounding box
right: float
The right point of the detection bounding box
bottom: float
The bottom point of the detection bounding box
Returns
-------
class:`~lib.align.DetectedFace`
The detected face object for the given bounding box
"""
return DetectedFace(left=int(round(left)),
width=int(round(right - left)),
top=int(round(top)),
height=int(round(bottom - top)))
# <<< PROTECTED ACCESS METHODS >>> #
# <<< PREDICT WRAPPER >>> #
def _predict(self, batch: BatchType) -> DetectorBatch:
""" Wrap models predict function in rotations """
assert isinstance(batch, DetectorBatch)
batch.rotation_matrix = [np.array([]) for _ in range(len(batch.feed))]
found_faces: list[np.ndarray] = [np.array([]) for _ in range(len(batch.feed))]
for angle in self.rotation:
# Rotate the batch and insert placeholders for already found faces
self._rotate_batch(batch, angle)
try:
pred = self.predict(batch.feed)
if angle == 0:
batch.prediction = pred
else:
batch.prediction = np.array([b if b.any() else p
for b, p in zip(batch.prediction, pred)])
logger.trace("angle: %s, filenames: %s, " # type:ignore[attr-defined]
"prediction: %s",
angle, batch.filename, pred)
except tf_errors.ResourceExhaustedError as err:
msg = ("You do not have enough GPU memory available to run detection at the "
"selected batch size. You can try a number of things:"
"\n1) Close any other application that is using your GPU (web browsers are "
"particularly bad for this)."
"\n2) Lower the batchsize (the amount of images fed into the model) by "
"editing the plugin settings (GUI: Settings > Configure extract settings, "
"CLI: Edit the file faceswap/config/extract.ini)."
"\n3) Enable 'Single Process' mode.")
raise FaceswapError(msg) from err
if angle != 0 and any(face.any() for face in batch.prediction):
logger.verbose("found face(s) by rotating image %s " # type:ignore[attr-defined]
"degrees",
angle)
found_faces = T.cast(list[np.ndarray], ([face if not found.any() else found
for face, found in zip(batch.prediction,
found_faces)]))
if all(face.any() for face in found_faces):
logger.trace("Faces found for all images") # type:ignore[attr-defined]
break
batch.prediction = np.array(found_faces, dtype="object")
logger.trace("detect_prediction output: (filenames: %s, " # type:ignore[attr-defined]
"prediction: %s, rotmat: %s)",
batch.filename, batch.prediction, batch.rotation_matrix)
return batch
# <<< DETECTION IMAGE COMPILATION METHODS >>> #
def _compile_detection_image(self, item: ExtractMedia
) -> tuple[np.ndarray, float, tuple[int, int]]:
""" Compile the detection image for feeding into the model
Parameters
----------
item: :class:`plugins.extract.pipeline.ExtractMedia`
The input item from the pipeline
Returns
-------
image: :class:`numpy.ndarray`
The original image formatted for detection
scale: float
The scaling factor for the image
pad: int
The amount of padding applied to the image
"""
image = item.get_image_copy(self.color_format)
scale = self._set_scale(item.image_size)
pad = self._set_padding(item.image_size, scale)
image = self._scale_image(image, item.image_size, scale)
image = self._pad_image(image)
logger.trace("compiled: (images shape: %s, " # type:ignore[attr-defined]
"scale: %s, pad: %s)",
image.shape, scale, pad)
return image, scale, pad
def _set_scale(self, image_size: tuple[int, int]) -> float:
""" Set the scale factor for incoming image
Parameters
----------
image_size: tuple
The (height, width) of the original image
Returns
-------
float
The scaling factor from original image size to model input size
"""
scale = self.input_size / max(image_size)
logger.trace("Detector scale: %s", scale) # type:ignore[attr-defined]
return scale
def _set_padding(self, image_size: tuple[int, int], scale: float) -> tuple[int, int]:
""" Set the image padding for non-square images
Parameters
----------
image_size: tuple
The (height, width) of the original image
scale: float
The scaling factor from original image size to model input size
Returns
-------
tuple
The amount of padding to apply to the x and y axes
"""
pad_left = int(self.input_size - int(image_size[1] * scale)) // 2
pad_top = int(self.input_size - int(image_size[0] * scale)) // 2
return pad_left, pad_top
@staticmethod
def _scale_image(image: np.ndarray, image_size: tuple[int, int], scale: float) -> np.ndarray:
""" Scale the image and optional pad to given size
Parameters
----------
image: :class:`numpy.ndarray`
The image to be scalued
image_size: tuple
The image (height, width)
scale: float
The scaling factor to apply to the image
Returns
-------
:class:`numpy.ndarray`
The scaled image
"""
interpln = cv2.INTER_CUBIC if scale > 1.0 else cv2.INTER_AREA
if scale != 1.0:
dims = (int(image_size[1] * scale), int(image_size[0] * scale))
logger.trace("Resizing detection image from %s to %s. " # type:ignore[attr-defined]
"Scale=%s",
"x".join(str(i) for i in reversed(image_size)),
"x".join(str(i) for i in dims), scale)
image = cv2.resize(image, dims, interpolation=interpln)
logger.trace("Resized image shape: %s", image.shape) # type:ignore[attr-defined]
return image
def _pad_image(self, image: np.ndarray) -> np.ndarray:
""" Pad a resized image to input size
Parameters
----------
image: :class:`numpy.ndarray`
The image to have padding applied
Returns
-------
:class:`numpy.ndarray`
The image with padding applied
"""
height, width = image.shape[:2]
if width < self.input_size or height < self.input_size:
pad_l = (self.input_size - width) // 2
pad_r = (self.input_size - width) - pad_l
pad_t = (self.input_size - height) // 2
pad_b = (self.input_size - height) - pad_t
image = cv2.copyMakeBorder(image,
pad_t,
pad_b,
pad_l,
pad_r,
cv2.BORDER_CONSTANT)
logger.trace("Padded image shape: %s", image.shape) # type:ignore[attr-defined]
return image
# <<< FINALIZE METHODS >>> #
def _remove_zero_sized_faces(self, batch_faces: list[list[DetectedFace]]
) -> list[list[DetectedFace]]:
""" Remove items from batch_faces where detected face is of zero size or face falls
entirely outside of image
Parameters
----------
batch_faces: list
List of detected face objects
Returns
-------
list
List of detected face objects with filtered out faces removed
"""
logger.trace("Input sizes: %s", [len(face) for face in batch_faces]) # type: ignore
retval = [[face
for face in faces
if face.right > 0 and face.left is not None and face.left < self.input_size
and face.bottom > 0 and face.top is not None and face.top < self.input_size]
for faces in batch_faces]
logger.trace("Output sizes: %s", [len(face) for face in retval]) # type: ignore
return retval
def _filter_small_faces(self, detected_faces: list[list[DetectedFace]]
) -> list[list[DetectedFace]]:
""" Filter out any faces smaller than the min size threshold
Parameters
----------
detected_faces: list
List of detected face objects
Returns
-------
list
List of detected face objects with filtered out faces removed
"""
retval = []
for faces in detected_faces:
this_image = []
for face in faces:
assert face.width is not None and face.height is not None
face_size = (face.width ** 2 + face.height ** 2) ** 0.5
if face_size < self.min_size:
logger.debug("Removing detected face: (face_size: %s, min_size: %s",
face_size, self.min_size)
continue
this_image.append(face)
retval.append(this_image)
return retval
# <<< IMAGE ROTATION METHODS >>> #
@staticmethod
def _get_rotation_angles(rotation: str | None) -> list[int]:
""" Set the rotation angles.
Parameters
----------
str
List of requested rotation angles
Returns
-------
list
The complete list of rotation angles to apply
"""
rotation_angles = [0]
if not rotation:
logger.debug("Not setting rotation angles")
return rotation_angles
passed_angles = [int(angle)
for angle in rotation.split(",")
if int(angle) != 0]
if len(passed_angles) == 1:
rotation_step_size = passed_angles[0]
rotation_angles.extend(range(rotation_step_size,
360,
rotation_step_size))
elif len(passed_angles) > 1:
rotation_angles.extend(passed_angles)
logger.debug("Rotation Angles: %s", rotation_angles)
return rotation_angles
def _rotate_batch(self, batch: DetectorBatch, angle: int) -> None:
""" Rotate images in a batch by given angle
if any faces have already been detected for a batch, store the existing rotation
matrix and replace the feed image with a placeholder
Parameters
----------
batch: :class:`DetectorBatch`
The batch to apply rotation to
angle: int
The amount of degrees to rotate the image by
"""
if angle == 0:
# Set the initial batch so we always rotate from zero
batch.initial_feed = batch.feed.copy()
return
feeds: list[np.ndarray] = []
rotmats: list[np.ndarray] = []
for img, faces, rotmat in zip(batch.initial_feed,
batch.prediction,
batch.rotation_matrix):
if faces.any():
image = np.zeros_like(img)
matrix = rotmat
else:
image, matrix = self._rotate_image_by_angle(img, angle)
feeds.append(image)
rotmats.append(matrix)
batch.feed = np.array(feeds, dtype="float32")
batch.rotation_matrix = rotmats
@staticmethod
def _rotate_face(face: DetectedFace, rotation_matrix: np.ndarray) -> DetectedFace:
""" Rotates the detection bounding box around the given rotation matrix.
Parameters
----------
face: :class:`DetectedFace`
A :class:`DetectedFace` containing the `x`, `w`, `y`, `h` detection bounding box
points.
rotation_matrix: numpy.ndarray
The rotation matrix to rotate the given object by.
Returns
-------
:class:`DetectedFace`
The same class with the detection bounding box points rotated by the given matrix.
"""
logger.trace("Rotating face: (face: %s, rotation_matrix: %s)", # type: ignore
face, rotation_matrix)
bounding_box = [[face.left, face.top],
[face.right, face.top],
[face.right, face.bottom],
[face.left, face.bottom]]
rotation_matrix = cv2.invertAffineTransform(rotation_matrix)
points = np.array(bounding_box, "int32")
points = np.expand_dims(points, axis=0)
transformed = cv2.transform(points, rotation_matrix).astype("int32")
rotated = transformed.squeeze()
# Bounding box should follow x, y planes, so get min/max for non-90 degree rotations
pt_x = min(pnt[0] for pnt in rotated)
pt_y = min(pnt[1] for pnt in rotated)
pt_x1 = max(pnt[0] for pnt in rotated)
pt_y1 = max(pnt[1] for pnt in rotated)
width = pt_x1 - pt_x
height = pt_y1 - pt_y
face.left = int(pt_x)
face.top = int(pt_y)
face.width = int(width)
face.height = int(height)
return face
def _rotate_image_by_angle(self,
image: np.ndarray,
angle: int) -> tuple[np.ndarray, np.ndarray]:
""" Rotate an image by a given angle.
Parameters
----------
image: :class:`numpy.ndarray`
The image to be rotated
angle: int
The angle, in degrees, to rotate the image by
Returns
-------
image: :class:`numpy.ndarray`
The rotated image
rotation_matrix: :class:`numpy.ndarray`
The rotation matrix used to rotate the image
Reference
---------
https://stackoverflow.com/questions/22041699
"""
logger.trace("Rotating image: (image: %s, angle: %s)", # type:ignore[attr-defined]
image.shape, angle)
channels_first = image.shape[0] <= 4
if channels_first:
image = np.moveaxis(image, 0, 2)
height, width = image.shape[:2]
image_center = (width/2, height/2)
rotation_matrix = cv2.getRotationMatrix2D(image_center, -1.*angle, 1.)
rotation_matrix[0, 2] += self.input_size / 2 - image_center[0]
rotation_matrix[1, 2] += self.input_size / 2 - image_center[1]
logger.trace("Rotated image: (rotation_matrix: %s", # type:ignore[attr-defined]
rotation_matrix)
image = cv2.warpAffine(image, rotation_matrix, (self.input_size, self.input_size))
if channels_first:
image = np.moveaxis(image, 2, 0)
return image, rotation_matrix