1
0
Fork 0
mirror of https://github.com/deepfakes/faceswap synced 2025-06-07 10:43:27 -04:00
faceswap/plugins/extract/align/_base/aligner.py
torzdf 6a3b674bef
Rebase code (#1326)
* Remove tensorflow_probability requirement

* setup.py - fix progress bars

* requirements.txt: Remove pre python 3.9 packages

* update apple requirements.txt

* update INSTALL.md

* Remove python<3.9 code

* setup.py - fix Windows Installer

* typing: python3.9 compliant

* Update pytest and readthedocs python versions

* typing fixes

* Python Version updates
  - Reduce max version to 3.10
  - Default to 3.10 in installers
  - Remove incompatible 3.11 tests

* Update dependencies

* Downgrade imageio dep for Windows

* typing: merge optional unions and fixes

* Updates
  - min python version 3.10
  - typing to python 3.10 spec
  - remove pre-tf2.10 code
  - Add conda tests

* train: re-enable optimizer saving

* Update dockerfiles

* Update setup.py
  - Apple Conda deps to setup.py
  - Better Cuda + dependency handling

* bugfix: Patch logging to prevent Autograph errors

* Update dockerfiles

* Setup.py - Setup.py - stdout to utf-8

* Add more OSes to github Actions

* suppress mac-os end to end test
2023-06-27 11:27:47 +01:00

817 lines
32 KiB
Python

#!/usr/bin/env python3
""" Base class for Face Aligner plugins
All Aligner Plugins should inherit from this class.
See the override methods for which methods are required.
The plugin will receive a :class:`~plugins.extract.pipeline.ExtractMedia` object.
For each source item, the plugin must pass a dict to finalize containing:
>>> {"filename": [<filename of source frame>],
>>> "landmarks": [list of 68 point face landmarks]
>>> "detected_faces": [<list of DetectedFace objects>]}
"""
from __future__ import annotations
import logging
import typing as T
from dataclasses import dataclass, field
from time import sleep
import cv2
import numpy as np
from tensorflow.python.framework import errors_impl as tf_errors # pylint:disable=no-name-in-module # noqa
from lib.utils import FaceswapError
from plugins.extract._base import BatchType, Extractor, ExtractMedia, ExtractorBatch
from .processing import AlignedFilter, ReAlign
if T.TYPE_CHECKING:
from collections.abc import Generator
from queue import Queue
from lib.align import DetectedFace
from lib.align.aligned_face import CenteringType
logger = logging.getLogger(__name__)
_BATCH_IDX: int = 0
def _get_new_batch_id() -> int:
""" Obtain the next available batch index
Returns
-------
int
The next available unique batch id
"""
global _BATCH_IDX # pylint:disable=global-statement
_BATCH_IDX += 1
return _BATCH_IDX
@dataclass
class AlignerBatch(ExtractorBatch):
""" Dataclass for holding items flowing through the aligner.
Inherits from :class:`~plugins.extract._base.ExtractorBatch`
Parameters
----------
batch_id: int
A unique integer for tracking this batch
landmarks: list
List of 68 point :class:`numpy.ndarray` landmark points returned from the aligner
refeeds: list
List of :class:`numpy.ndarrays` for holding each of the feeds that will be put through the
model for each refeed
second_pass: bool, optional
``True`` if this batch is passing through the aligner for a second time as re-align has
been selected otherwise ``False``. Default: ``False``
second_pass_masks: :class:`numpy.ndarray`, optional
The masks used to filter out re-feed values for passing to the re-aligner.
"""
batch_id: int = 0
detected_faces: list[DetectedFace] = field(default_factory=list)
landmarks: np.ndarray = np.array([])
refeeds: list[np.ndarray] = field(default_factory=list)
second_pass: bool = False
second_pass_masks: np.ndarray = np.array([])
def __repr__(self):
""" Prettier repr for debug printing """
data = [{k: v.shape if isinstance(v, np.ndarray) else v for k, v in dat.items()}
for dat in self.data]
return ("AlignerBatch("
f"batch_id={self.batch_id}, "
f"image={[img.shape for img in self.image]}, "
f"detected_faces={self.detected_faces}, "
f"filename={self.filename}, "
f"feed={self.feed.shape}, "
f"prediction={self.prediction.shape}, "
f"data={data}, "
f"landmarks={self.landmarks.shape}, "
f"refeeds={[feed.shape for feed in self.refeeds]}, "
f"second_pass={self.second_pass}, "
f"second_pass_masks={self.second_pass_masks})")
def __post_init__(self):
""" Make sure that we have been given a non-zero ID """
assert self.batch_id != 0, ("A batch ID must be specified for Aligner Batches")
class Aligner(Extractor): # pylint:disable=abstract-method
""" Aligner plugin _base Object
All Aligner plugins must inherit from this class
Parameters
----------
git_model_id: int
The second digit in the github tag that identifies this model. See
https://github.com/deepfakes-models/faceswap-models for more information
model_filename: str
The name of the model file to be loaded
normalize_method: {`None`, 'clahe', 'hist', 'mean'}, optional
Normalize the images fed to the aligner. Default: ``None``
re_feed: int, optional
The number of times to re-feed a slightly adjusted bounding box into the aligner.
Default: `0`
re_align: bool, optional
``True`` to obtain landmarks by passing the initially aligned face back through the
aligner. Default ``False``
disable_filter: bool, optional
Disable all aligner filters regardless of config option. Default: ``False``
Other Parameters
----------------
configfile: str, optional
Path to a custom configuration ``ini`` file. Default: Use system configfile
See Also
--------
plugins.extract.pipeline : The extraction pipeline for calling plugins
plugins.extract.align : Aligner plugins
plugins.extract._base : Parent class for all extraction plugins
plugins.extract.detect._base : Detector parent class for extraction plugins.
plugins.extract.mask._base : Masker parent class for extraction plugins.
"""
def __init__(self,
git_model_id: int | None = None,
model_filename: str | None = None,
configfile: str | None = None,
instance: int = 0,
normalize_method: T.Literal["none", "clahe", "hist", "mean"] | None = None,
re_feed: int = 0,
re_align: bool = False,
disable_filter: bool = False,
**kwargs) -> None:
logger.debug("Initializing %s: (normalize_method: %s, re_feed: %s, re_align: %s, "
"disable_filter: %s)", self.__class__.__name__, normalize_method, re_feed,
re_align, disable_filter)
super().__init__(git_model_id,
model_filename,
configfile=configfile,
instance=instance,
**kwargs)
self._plugin_type = "align"
self.realign_centering: CenteringType = "face" # overide for plugin specific centering
self._eof_seen = False
self._normalize_method: T.Literal["clahe", "hist", "mean"] | None = None
self._re_feed = re_feed
self._filter = AlignedFilter(feature_filter=self.config["aligner_features"],
min_scale=self.config["aligner_min_scale"],
max_scale=self.config["aligner_max_scale"],
distance=self.config["aligner_distance"],
roll=self.config["aligner_roll"],
save_output=self.config["save_filtered"],
disable=disable_filter)
self._re_align = ReAlign(re_align,
self.config["realign_refeeds"],
self.config["filter_realign"])
self._needs_refeed_masks: bool = self._re_feed > 0 and (
self.config["filter_refeed"] or (self._re_align.do_refeeds and
self._re_align.do_filter))
self.set_normalize_method(normalize_method)
logger.debug("Initialized %s", self.__class__.__name__)
def set_normalize_method(self, method: T.Literal["none", "clahe", "hist", "mean"] | None
) -> None:
""" Set the normalization method for feeding faces into the aligner.
Parameters
----------
method: {"none", "clahe", "hist", "mean"}
The normalization method to apply to faces prior to feeding into the model
"""
method = None if method is None or method.lower() == "none" else method
self._normalize_method = T.cast(T.Literal["clahe", "hist", "mean"] | None, method)
def initialize(self, *args, **kwargs) -> None:
""" Add a call to add model input size to the re-aligner """
self._re_align.set_input_size_and_centering(self.input_size, self.realign_centering)
super().initialize(*args, **kwargs)
def _handle_realigns(self, queue: Queue) -> tuple[bool, AlignerBatch] | None:
""" Handle any items waiting for a second pass through the aligner.
If EOF has been recieved and items are still being processed through the first pass
then wait for a short time and try again to collect them.
On EOF return exhausted flag with an empty batch
Parameters
----------
queue : queue.Queue()
The ``queue`` that the plugin will be fed from.
Returns
-------
``None`` or tuple
If items are processed then returns (`bool`, :class:`AlignerBatch`) containing the
exhausted flag and the batch to be processed. If no items are processed returns
``None``
"""
if not self._re_align.active:
return None
exhausted = False
if self._re_align.items_queued:
batch = self._re_align.get_batch()
logger.trace("Re-align batch: %s", batch) # type: ignore[attr-defined]
return exhausted, batch
if self._eof_seen and self._re_align.items_tracked:
# EOF seen and items still being processed on first pass
logger.debug("Tracked re-align items waiting to be flushed, retrying...")
sleep(0.25)
return self.get_batch(queue)
if self._eof_seen:
exhausted = True
logger.debug("All items processed. Returning empty batch")
self._filter.output_counts()
self._eof_seen = False # Reset for plugin re-use
return exhausted, AlignerBatch(batch_id=-1)
return None
def get_batch(self, queue: Queue) -> tuple[bool, AlignerBatch]:
""" Get items for inputting into the aligner from the queue in batches
Items are returned from the ``queue`` in batches of
:attr:`~plugins.extract._base.Extractor.batchsize`
Items are received as :class:`~plugins.extract.pipeline.ExtractMedia` objects and converted
to ``dict`` for internal processing.
To ensure consistent batch sizes for aligner the items are split into separate items for
each :class:`~lib.align.DetectedFace` object.
Remember to put ``'EOF'`` to the out queue after processing
the final batch
Outputs items in the following format. All lists are of length
:attr:`~plugins.extract._base.Extractor.batchsize`:
>>> {'filename': [<filenames of source frames>],
>>> 'image': [<source images>],
>>> 'detected_faces': [[<lib.align.DetectedFace objects]]}
Parameters
----------
queue : queue.Queue()
The ``queue`` that the plugin will be fed from.
Returns
-------
exhausted, bool
``True`` if queue is exhausted, ``False`` if not
batch, :class:`~plugins.extract._base.ExtractorBatch`
The batch object for the current batch
"""
exhausted = False
realign_batch = self._handle_realigns(queue)
if realign_batch is not None:
return realign_batch
batch = AlignerBatch(batch_id=_get_new_batch_id())
idx = 0
while idx < self.batchsize:
item = self.rollover_collector(queue)
if item == "EOF":
logger.debug("EOF received")
self._eof_seen = True
exhausted = not self._re_align.active
break
# Put frames with no faces or are already aligned into the out queue
if not item.detected_faces or item.is_aligned:
self._queues["out"].put(item)
continue
converted_image = item.get_image_copy(self.color_format)
for f_idx, face in enumerate(item.detected_faces):
batch.image.append(converted_image)
batch.detected_faces.append(face)
batch.filename.append(item.filename)
idx += 1
if idx == self.batchsize:
frame_faces = len(item.detected_faces)
if f_idx + 1 != frame_faces:
self._rollover = ExtractMedia(
item.filename,
item.image,
detected_faces=item.detected_faces[f_idx + 1:],
is_aligned=item.is_aligned)
logger.trace("Rolled over %s faces of %s to " # type: ignore[attr-defined]
"next batch for '%s'", len(self._rollover.detected_faces),
frame_faces, item.filename)
break
if batch.filename:
logger.trace("Returning batch: %s", batch) # type: ignore[attr-defined]
self._re_align.track_batch(batch.batch_id)
else:
logger.debug(item)
# TODO Move to end of process not beginning
if exhausted:
self._filter.output_counts()
return exhausted, batch
def faces_to_feed(self, faces: np.ndarray) -> np.ndarray:
""" Overide for specific plugin processing to convert a batch of face images from UINT8
(0-255) into the correct format for the plugin's inference
Parameters
----------
faces: :class:`numpy.ndarray`
The batch of faces in UINT8 format
Returns
-------
class: `numpy.ndarray`
The batch of faces in the format to feed through the plugin
"""
raise NotImplementedError()
# <<< FINALIZE METHODS >>> #
def finalize(self, batch: BatchType) -> Generator[ExtractMedia, None, None]:
""" Finalize the output from Aligner
This should be called as the final task of each `plugin`.
Pairs the detected faces back up with their original frame before yielding each frame.
Parameters
----------
batch : :class:`AlignerBatch`
The final batch item from the `plugin` process.
Yields
------
:class:`~plugins.extract.pipeline.ExtractMedia`
The :attr:`DetectedFaces` list will be populated for this class with the bounding boxes
and landmarks for the detected faces found in the frame.
"""
assert isinstance(batch, AlignerBatch)
if not batch.second_pass and self._re_align.active:
# Add the batch for second pass re-alignment and return
self._re_align.add_batch(batch)
return
for face, landmarks in zip(batch.detected_faces, batch.landmarks):
if not isinstance(landmarks, np.ndarray):
landmarks = np.array(landmarks)
face.add_landmarks_xy(landmarks)
logger.trace("Item out: %s", batch) # type: ignore[attr-defined]
for frame, filename, face in zip(batch.image, batch.filename, batch.detected_faces):
self._output_faces.append(face)
if len(self._output_faces) != self._faces_per_filename[filename]:
continue
self._output_faces, folders = self._filter(self._output_faces, min(frame.shape[:2]))
output = self._extract_media.pop(filename)
output.add_detected_faces(self._output_faces)
output.add_sub_folders(folders)
self._output_faces = []
logger.trace("Final Output: (filename: '%s', image " # type: ignore[attr-defined]
"shape: %s, detected_faces: %s, item: %s)", output.filename,
output.image_shape, output.detected_faces, output)
yield output
self._re_align.untrack_batch(batch.batch_id)
# <<< PROTECTED METHODS >>> #
# << PROCESS_INPUT WRAPPER >>
def _get_adjusted_boxes(self, original_boxes: np.ndarray) -> np.ndarray:
""" Obtain an array of adjusted bounding boxes based on the number of re-feed iterations
that have been selected and the minimum dimension of the original bounding box.
Parameters
----------
original_boxes: :class:`numpy.ndarray`
The original ('x', 'y', 'w', 'h') detected face boxes corresponding to the incoming
detected face objects
Returns
-------
:class:`numpy.ndarray`
The original boxes (in position 0) and the randomly adjusted bounding boxes
"""
if self._re_feed == 0:
return original_boxes[None, ...]
beta = 0.05
max_shift = np.min(original_boxes[..., 2:], axis=1) * beta
rands = np.random.rand(self._re_feed, *original_boxes.shape) * 2 - 1
new_boxes = np.rint(original_boxes + (rands * max_shift[None, :, None])).astype("int32")
retval = np.concatenate((original_boxes[None, ...], new_boxes))
logger.trace(retval) # type: ignore[attr-defined]
return retval
def _process_input_first_pass(self, batch: AlignerBatch) -> None:
""" Standard pre-processing for aligners for first pass (if re-align selected) or the
only pass.
Process the input to the aligner model multiple times based on the user selected
`re-feed` command line option. This adjusts the bounding box for the face to be fed
into the model by a random amount within 0.05 pixels of the detected face's shortest axis.
References
----------
https://studios.disneyresearch.com/2020/06/29/high-resolution-neural-face-swapping-for-visual-effects/
Parameters
----------
batch: :class:`AlignerBatch`
Contains the batch that is currently being passed through the plugin process
"""
original_boxes = np.array([(face.left, face.top, face.width, face.height)
for face in batch.detected_faces])
adjusted_boxes = self._get_adjusted_boxes(original_boxes)
# Put in random re-feed data to the bounding boxes
for bounding_boxes in adjusted_boxes:
for face, box in zip(batch.detected_faces, bounding_boxes):
face.left, face.top, face.width, face.height = box
self.process_input(batch)
batch.feed = self.faces_to_feed(self._normalize_faces(batch.feed))
# Move the populated feed into the batch refeed list. It will be overwritten at next
# iteration
batch.refeeds.append(batch.feed)
# Place the original bounding box back to detected face objects
for face, box in zip(batch.detected_faces, original_boxes):
face.left, face.top, face.width, face.height = box
def _get_realign_masks(self, batch: AlignerBatch) -> np.ndarray:
""" Obtain the masks required for processing re-aligns
Parameters
----------
batch: :class:`AlignerBatch`
Contains the batch that is currently being passed through the plugin process
Returns
-------
:class:`numpy.ndarray`
The filter masks required for masking the re-aligns
"""
if self._re_align.do_refeeds:
retval = batch.second_pass_masks # Masks already calculated during re-feed
elif self._re_align.do_filter:
retval = self._filter.filtered_mask(batch)[None, ...]
else:
retval = np.zeros((batch.landmarks.shape[0], ), dtype="bool")[None, ...]
return retval
def _process_input_second_pass(self, batch: AlignerBatch) -> None:
""" Process the input for 2nd-pass re-alignment
Parameters
----------
batch: :class:`AlignerBatch`
Contains the batch that is currently being passed through the plugin process
"""
batch.second_pass_masks = self._get_realign_masks(batch)
if not self._re_align.do_refeeds:
# Expand the dimensions for re-aligns for consistent handling of code
batch.landmarks = batch.landmarks[None, ...]
refeeds = self._re_align.process_batch(batch)
batch.refeeds = [self.faces_to_feed(self._normalize_faces(faces)) for faces in refeeds]
def _process_input(self, batch: BatchType) -> AlignerBatch:
""" Perform pre-processing depending on whether this is the first/only pass through the
aligner or the 2nd pass when re-align has been selected
Parameters
----------
batch: :class:`AlignerBatch`
Contains the batch that is currently being passed through the plugin process
Returns
-------
:class:`AlignerBatch`
The batch with input processed
"""
assert isinstance(batch, AlignerBatch)
if batch.second_pass:
self._process_input_second_pass(batch)
else:
self._process_input_first_pass(batch)
return batch
# <<< PREDICT WRAPPER >>> #
def _predict(self, batch: BatchType) -> AlignerBatch:
""" Just return the aligner's predict function
Parameters
----------
batch: :class:`AlignerBatch`
The current batch to find alignments for
Returns
-------
:class:`AlignerBatch`
The batch item with the :attr:`prediction` populated
Raises
------
FaceswapError
If GPU resources are exhausted
"""
assert isinstance(batch, AlignerBatch)
try:
batch.prediction = np.array([self.predict(feed) for feed in batch.refeeds])
return batch
except tf_errors.ResourceExhaustedError as err:
msg = ("You do not have enough GPU memory available to run detection at the "
"selected batch size. You can try a number of things:"
"\n1) Close any other application that is using your GPU (web browsers are "
"particularly bad for this)."
"\n2) Lower the batchsize (the amount of images fed into the model) by "
"editing the plugin settings (GUI: Settings > Configure extract settings, "
"CLI: Edit the file faceswap/config/extract.ini)."
"\n3) Enable 'Single Process' mode.")
raise FaceswapError(msg) from err
def _process_refeeds(self, batch: AlignerBatch) -> list[AlignerBatch]:
""" Process the output for each selected re-feed
Parameters
----------
batch: :class:`AlignerBatch`
The batch object passing through the aligner
Returns
-------
list
List of :class:`AlignerBatch` objects. Each object in the list contains the
results for each selected re-feed
"""
retval: list[AlignerBatch] = []
if batch.second_pass:
# Re-insert empty sub-patches for re-population in ReAlign for filtered out batches
selected_idx = 0
for mask in batch.second_pass_masks:
all_filtered = np.all(mask)
if not all_filtered:
feed = batch.refeeds[selected_idx]
pred = batch.prediction[selected_idx]
data = batch.data[selected_idx]
selected_idx += 1
else: # All resuts have been filtered out
feed = pred = np.array([])
data = {}
subbatch = AlignerBatch(batch_id=batch.batch_id,
image=batch.image,
detected_faces=batch.detected_faces,
filename=batch.filename,
feed=feed,
prediction=pred,
data=[data],
second_pass=batch.second_pass)
if not all_filtered:
self.process_output(subbatch)
retval.append(subbatch)
else:
for feed, pred, data in zip(batch.refeeds, batch.prediction, batch.data):
subbatch = AlignerBatch(batch_id=batch.batch_id,
image=batch.image,
detected_faces=batch.detected_faces,
filename=batch.filename,
feed=feed,
prediction=pred,
data=[data],
second_pass=batch.second_pass)
self.process_output(subbatch)
retval.append(subbatch)
return retval
def _get_refeed_filter_masks(self,
subbatches: list[AlignerBatch],
original_masks: np.ndarray | None = None) -> np.ndarray:
""" Obtain the boolean mask array for masking out failed re-feed results if filter refeed
has been selected
Parameters
----------
subbatches: list
List of sub-batch results for each re-feed performed
original_masks: :class:`numpy.ndarray`, Optional
If passing in the second pass landmarks, these should be the original filter masks so
that we don't calculate the mask again for already filtered faces. Default: ``None``
Returns
-------
:class:`numpy.ndarray`
boolean values for every detected face indicating whether the interim landmarks have
passed the filter test
"""
retval = np.zeros((len(subbatches), subbatches[0].landmarks.shape[0]), dtype="bool")
if not self._needs_refeed_masks:
return retval
retval = retval if original_masks is None else original_masks
for subbatch, masks in zip(subbatches, retval):
masks[:] = self._filter.filtered_mask(subbatch, np.flatnonzero(masks))
return retval
def _get_mean_landmarks(self, landmarks: np.ndarray, masks: np.ndarray) -> np.ndarray:
""" Obtain the averaged landmarks from the re-fed alignments. If config option
'filter_refeed' is enabled, then average those results which have not been filtered out
otherwise average all results
Parameters
----------
landmarks: :class:`numpy.ndarray`
The batch of re-fed alignments
masks: :class:`numpy.ndarray`
List of boolean values indicating whether each re-fed alignments passed or failed
the filter test
Returns
-------
:class:`numpy.ndarray`
The final averaged landmarks
"""
if any(np.all(masked) for masked in masks.T):
# hacky fix for faces which entirely failed the filter
# We just unmask one value as it is junk anyway and will be discarded on output
for idx, masked in enumerate(masks.T):
if np.all(masked):
masks[0, idx] = False
masks = np.broadcast_to(np.reshape(masks, (*landmarks.shape[:2], 1, 1)),
landmarks.shape)
return np.ma.array(landmarks, mask=masks).mean(axis=0).data.astype("float32")
def _process_output_first_pass(self, subbatches: list[AlignerBatch]) -> tuple[np.ndarray,
np.ndarray]:
""" Process the output from the aligner if this is the first or only pass.
Parameters
----------
subbatches: list
List of sub-batch results for each re-feed performed
Returns
-------
landmarks: :class:`numpy.ndarray`
If re-align is not selected or if re-align has been selected but only on the final
output (ie: realign_reefeeds is ``False``) then the averaged batch of landmarks for all
re-feeds is returned.
If re-align_refeeds has been selected, then this will output each batch of re-feed
landmarks.
masks: :class:`numpy.ndarray`
Boolean mask corresponding to the re-fed landmarks output indicating any values which
should be filtered out prior to further processing
"""
masks = self._get_refeed_filter_masks(subbatches)
all_landmarks = np.array([sub.landmarks for sub in subbatches])
# re-align not selected or not filtering the re-feeds
if not self._re_align.do_refeeds:
retval = self._get_mean_landmarks(all_landmarks, masks)
return retval, masks
# Re-align selected with filter re-feeds
return all_landmarks, masks
def _process_output_second_pass(self,
subbatches: list[AlignerBatch],
masks: np.ndarray) -> np.ndarray:
""" Process the output from the aligner if this is the first or only pass.
Parameters
----------
subbatches: list
List of sub-batch results for each re-aligned re-feed performed
masks: :class:`numpy.ndarray`
The original re-feed filter masks from the first pass
"""
self._re_align.process_output(subbatches, masks)
masks = self._get_refeed_filter_masks(subbatches, original_masks=masks)
all_landmarks = np.array([sub.landmarks for sub in subbatches])
return self._get_mean_landmarks(all_landmarks, masks)
def _process_output(self, batch: BatchType) -> AlignerBatch:
""" Process the output from the aligner model multiple times based on the user selected
`re-feed amount` configuration option, then average the results for final prediction.
If the config option 'filter_refeed' is enabled, then mask out any returned alignments
that fail a filter test
Parameters
----------
batch : :class:`AlignerBatch`
Contains the batch that is currently being passed through the plugin process
Returns
-------
:class:`AlignerBatch`
The batch item with :attr:`landmarks` populated
"""
assert isinstance(batch, AlignerBatch)
subbatches = self._process_refeeds(batch)
if batch.second_pass:
batch.landmarks = self._process_output_second_pass(subbatches, batch.second_pass_masks)
else:
landmarks, masks = self._process_output_first_pass(subbatches)
batch.landmarks = landmarks
batch.second_pass_masks = masks
return batch
# <<< FACE NORMALIZATION METHODS >>> #
def _normalize_faces(self, faces: np.ndarray) -> np.ndarray:
""" Normalizes the face for feeding into model
The normalization method is dictated by the normalization command line argument
Parameters
----------
faces: :class:`numpy.ndarray`
The batch of faces to normalize
Returns
-------
:class:`numpy.ndarray`
The normalized faces
"""
if self._normalize_method is None:
return faces
logger.trace("Normalizing faces") # type: ignore[attr-defined]
meth = getattr(self, f"_normalize_{self._normalize_method.lower()}")
faces = np.array([meth(face) for face in faces])
logger.trace("Normalized faces") # type: ignore[attr-defined]
return faces
@classmethod
def _normalize_mean(cls, face: np.ndarray) -> np.ndarray:
""" Normalize Face to the Mean
Parameters
----------
face: :class:`numpy.ndarray`
The face to normalize
Returns
-------
:class:`numpy.ndarray`
The normalized face
"""
face = face / 255.0
for chan in range(3):
layer = face[:, :, chan]
layer = (layer - layer.min()) / (layer.max() - layer.min())
face[:, :, chan] = layer
return face * 255.0
@classmethod
def _normalize_hist(cls, face: np.ndarray) -> np.ndarray:
""" Equalize the RGB histogram channels
Parameters
----------
face: :class:`numpy.ndarray`
The face to normalize
Returns
-------
:class:`numpy.ndarray`
The normalized face
"""
for chan in range(3):
face[:, :, chan] = cv2.equalizeHist(face[:, :, chan])
return face
@classmethod
def _normalize_clahe(cls, face: np.ndarray) -> np.ndarray:
""" Perform Contrast Limited Adaptive Histogram Equalization
Parameters
----------
face: :class:`numpy.ndarray`
The face to normalize
Returns
-------
:class:`numpy.ndarray`
The normalized face
"""
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(4, 4))
for chan in range(3):
face[:, :, chan] = clahe.apply(face[:, :, chan])
return face