1
0
Fork 0
mirror of https://github.com/deepfakes/faceswap synced 2025-06-07 10:43:27 -04:00
faceswap/lib/model/nets.py
torzdf 6a3b674bef
Rebase code (#1326)
* Remove tensorflow_probability requirement

* setup.py - fix progress bars

* requirements.txt: Remove pre python 3.9 packages

* update apple requirements.txt

* update INSTALL.md

* Remove python<3.9 code

* setup.py - fix Windows Installer

* typing: python3.9 compliant

* Update pytest and readthedocs python versions

* typing fixes

* Python Version updates
  - Reduce max version to 3.10
  - Default to 3.10 in installers
  - Remove incompatible 3.11 tests

* Update dependencies

* Downgrade imageio dep for Windows

* typing: merge optional unions and fixes

* Updates
  - min python version 3.10
  - typing to python 3.10 spec
  - remove pre-tf2.10 code
  - Add conda tests

* train: re-enable optimizer saving

* Update dockerfiles

* Update setup.py
  - Apple Conda deps to setup.py
  - Better Cuda + dependency handling

* bugfix: Patch logging to prevent Autograph errors

* Update dockerfiles

* Setup.py - Setup.py - stdout to utf-8

* Add more OSes to github Actions

* suppress mac-os end to end test
2023-06-27 11:27:47 +01:00

216 lines
7.2 KiB
Python

#!/usr/bin/env python3
""" Ports of existing NN Architecture for use in faceswap.py """
from __future__ import annotations
import logging
import typing as T
import tensorflow as tf
# Fix intellisense/linting for tf.keras' thoroughly broken import system
keras = tf.keras
layers = keras.layers
Model = keras.models.Model
if T.TYPE_CHECKING:
from tensorflow import Tensor
logger = logging.getLogger(__name__)
class _net(): # pylint:disable=too-few-public-methods
""" Base class for existing NeuralNet architecture
Notes
-----
All architectures assume channels_last format
Parameters
----------
input_shape, Tuple, optional
The input shape for the model. Default: ``None``
"""
def __init__(self,
input_shape: tuple[int, int, int] | None = None) -> None:
logger.debug("Initializing: %s (input_shape: %s)", self.__class__.__name__, input_shape)
self._input_shape = (None, None, 3) if input_shape is None else input_shape
assert len(self._input_shape) == 3 and self._input_shape[-1] == 3, (
"Input shape must be in the format (height, width, channels) and the number of "
f"channels must equal 3. Received: {self._input_shape}")
logger.debug("Initialized: %s", self.__class__.__name__)
class AlexNet(_net): # pylint:disable=too-few-public-methods
""" AlexNet ported from torchvision version.
Notes
-----
This port only contains the features portion of the model.
References
----------
https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
Parameters
----------
input_shape, Tuple, optional
The input shape for the model. Default: ``None``
"""
def __init__(self, input_shape: tuple[int, int, int] | None = None) -> None:
super().__init__(input_shape)
self._feature_indices = [0, 3, 6, 8, 10] # For naming equivalent to PyTorch
self._filters = [64, 192, 384, 256, 256] # Filters at each block
@classmethod
def _conv_block(cls,
inputs: Tensor,
padding: int,
filters: int,
kernel_size: int,
strides: int,
block_idx: int,
max_pool: bool) -> Tensor:
"""
The Convolutional block for AlexNet
Parameters
----------
inputs: :class:`tf.Tensor`
The input tensor to the block
padding: int
The amount of zero paddin to apply prior to convolution
filters: int
The number of filters to apply during convolution
kernel_size: int
The kernel size of the convolution
strides: int
The number of strides for the convolution
block_idx: int
The index of the current block (for standardized naming convention)
max_pool: bool
``True`` to apply a max pooling layer at the beginning of the block otherwise ``False``
Returns
-------
:class:`tf.Tensor`
The output of the Convolutional block
"""
name = f"features.{block_idx}"
var_x = inputs
if max_pool:
var_x = layers.MaxPool2D(pool_size=3, strides=2, name=f"{name}.pool")(var_x)
var_x = layers.ZeroPadding2D(padding=padding, name=f"{name}.pad")(var_x)
var_x = layers.Conv2D(filters,
kernel_size=kernel_size,
strides=strides,
padding="valid",
activation="relu",
name=name)(var_x)
return var_x
def __call__(self) -> tf.keras.models.Model:
""" Create the AlexNet Model
Returns
-------
:class:`keras.models.Model`
The compiled AlexNet model
"""
inputs = layers.Input(self._input_shape)
var_x = inputs
kernel_size = 11
strides = 4
for idx, (filters, block_idx) in enumerate(zip(self._filters, self._feature_indices)):
padding = 2 if idx < 2 else 1
do_max_pool = 0 < idx < 3
var_x = self._conv_block(var_x,
padding,
filters,
kernel_size,
strides,
block_idx,
do_max_pool)
kernel_size = max(3, kernel_size // 2)
strides = 1
return Model(inputs=inputs, outputs=[var_x])
class SqueezeNet(_net): # pylint:disable=too-few-public-methods
""" SqueezeNet ported from torchvision version.
Notes
-----
This port only contains the features portion of the model.
References
----------
https://arxiv.org/abs/1602.07360
Parameters
----------
input_shape, Tuple, optional
The input shape for the model. Default: ``None``
"""
@classmethod
def _fire(cls,
inputs: Tensor,
squeeze_planes: int,
expand_planes: int,
block_idx: int) -> Tensor:
""" The fire block for SqueezeNet.
Parameters
----------
inputs: :class:`tf.Tensor`
The input to the fire block
squeeze_planes: int
The number of filters for the squeeze convolution
expand_planes: int
The number of filters for the expand convolutions
block_idx: int
The index of the current block (for standardized naming convention)
Returns
-------
:class:`tf.Tensor`
The output of the SqueezeNet fire block
"""
name = f"features.{block_idx}"
squeezed = layers.Conv2D(squeeze_planes, 1,
activation="relu", name=f"{name}.squeeze")(inputs)
expand1 = layers.Conv2D(expand_planes, 1,
activation="relu", name=f"{name}.expand1x1")(squeezed)
expand3 = layers.Conv2D(expand_planes,
3,
activation="relu",
padding="same",
name=f"{name}.expand3x3")(squeezed)
return layers.Concatenate(axis=-1, name=name)([expand1, expand3])
def __call__(self) -> tf.keras.models.Model:
""" Create the SqueezeNet Model
Returns
-------
:class:`keras.models.Model`
The compiled SqueezeNet model
"""
inputs = layers.Input(self._input_shape)
var_x = layers.Conv2D(64, 3, strides=2, activation="relu", name="features.0")(inputs)
block_idx = 2
squeeze = 16
expand = 64
for idx in range(4):
if idx < 3:
var_x = layers.MaxPool2D(pool_size=3, strides=2)(var_x)
block_idx += 1
var_x = self._fire(var_x, squeeze, expand, block_idx)
block_idx += 1
var_x = self._fire(var_x, squeeze, expand, block_idx)
block_idx += 1
squeeze += 16
expand += 64
return Model(inputs=inputs, outputs=[var_x])