1
0
Fork 0
mirror of https://github.com/deepfakes/faceswap synced 2025-06-07 10:43:27 -04:00
faceswap/lib/align/alignments.py
torzdf 6a3b674bef
Rebase code (#1326)
* Remove tensorflow_probability requirement

* setup.py - fix progress bars

* requirements.txt: Remove pre python 3.9 packages

* update apple requirements.txt

* update INSTALL.md

* Remove python<3.9 code

* setup.py - fix Windows Installer

* typing: python3.9 compliant

* Update pytest and readthedocs python versions

* typing fixes

* Python Version updates
  - Reduce max version to 3.10
  - Default to 3.10 in installers
  - Remove incompatible 3.11 tests

* Update dependencies

* Downgrade imageio dep for Windows

* typing: merge optional unions and fixes

* Updates
  - min python version 3.10
  - typing to python 3.10 spec
  - remove pre-tf2.10 code
  - Add conda tests

* train: re-enable optimizer saving

* Update dockerfiles

* Update setup.py
  - Apple Conda deps to setup.py
  - Better Cuda + dependency handling

* bugfix: Patch logging to prevent Autograph errors

* Update dockerfiles

* Setup.py - Setup.py - stdout to utf-8

* Add more OSes to github Actions

* suppress mac-os end to end test
2023-06-27 11:27:47 +01:00

1119 lines
43 KiB
Python

#!/usr/bin/env python3
""" Alignments file functions for reading, writing and manipulating the data stored in a
serialized alignments file. """
from __future__ import annotations
import logging
import os
import typing as T
from datetime import datetime
import numpy as np
from lib.serializer import get_serializer, get_serializer_from_filename
from lib.utils import FaceswapError
if T.TYPE_CHECKING:
from collections.abc import Generator
from .aligned_face import CenteringType
logger = logging.getLogger(__name__) # pylint: disable=invalid-name
_VERSION = 2.3
# VERSION TRACKING
# 1.0 - Never really existed. Basically any alignments file prior to version 2.0
# 2.0 - Implementation of full head extract. Any alignments version below this will have used
# legacy extract
# 2.1 - Alignments data to extracted face PNG header. SHA1 hashes of faces no longer calculated
# or stored in alignments file
# 2.2 - Add support for differently centered masks (i.e. not all masks stored as face centering)
# 2.3 - Add 'identity' key to alignments file. May or may not be populated, to contain vggface2
# embeddings. Make 'video_meta' key a standard key. Can be unpopulated
# TODO Convert these to Dataclasses
class MaskAlignmentsFileDict(T.TypedDict):
""" Typed Dictionary for storing Masks. """
mask: bytes
affine_matrix: list[float] | np.ndarray
interpolator: int
stored_size: int
stored_centering: CenteringType
class PNGHeaderAlignmentsDict(T.TypedDict):
""" Base Dictionary for storing a single faces' Alignment Information in Alignments files and
PNG Headers. """
x: int
y: int
w: int
h: int
landmarks_xy: list[float] | np.ndarray
mask: dict[str, MaskAlignmentsFileDict]
identity: dict[str, list[float]]
class AlignmentFileDict(PNGHeaderAlignmentsDict):
""" Typed Dictionary for storing a single faces' Alignment Information in alignments files. """
thumb: np.ndarray | None
class PNGHeaderSourceDict(T.TypedDict):
""" Dictionary for storing additional meta information in PNG headers """
alignments_version: float
original_filename: str
face_index: int
source_filename: str
source_is_video: bool
source_frame_dims: tuple[int, int] | None
class AlignmentDict(T.TypedDict):
""" Dictionary for holding all of the alignment information within a single alignment file """
faces: list[AlignmentFileDict]
video_meta: dict[str, float | int]
class PNGHeaderDict(T.TypedDict):
""" Dictionary for storing all alignment and meta information in PNG Headers """
alignments: PNGHeaderAlignmentsDict
source: PNGHeaderSourceDict
class Alignments():
""" The alignments file is a custom serialized ``.fsa`` file that holds information for each
frame for a video or series of images.
Specifically, it holds a list of faces that appear in each frame. Each face contains
information detailing their detected bounding box location within the frame, the 68 point
facial landmarks and any masks that have been extracted.
Additionally it can also hold video meta information (timestamp and whether a frame is a
key frame.)
Parameters
----------
folder: str
The folder that contains the alignments ``.fsa`` file
filename: str, optional
The filename of the ``.fsa`` alignments file. If not provided then the given folder will be
checked for a default alignments file filename. Default: "alignments"
"""
def __init__(self, folder: str, filename: str = "alignments") -> None:
logger.debug("Initializing %s: (folder: '%s', filename: '%s')",
self.__class__.__name__, folder, filename)
self._io = _IO(self, folder, filename)
self._data = self._load()
self._io.update_legacy()
self._legacy = _Legacy(self)
self._thumbnails = Thumbnails(self)
logger.debug("Initialized %s", self.__class__.__name__)
# << PROPERTIES >> #
@property
def frames_count(self) -> int:
""" int: The number of frames that appear in the alignments :attr:`data`. """
retval = len(self._data)
logger.trace(retval) # type:ignore
return retval
@property
def faces_count(self) -> int:
""" int: The total number of faces that appear in the alignments :attr:`data`. """
retval = sum(len(val["faces"]) for val in self._data.values())
logger.trace(retval) # type:ignore
return retval
@property
def file(self) -> str:
""" str: The full path to the currently loaded alignments file. """
return self._io.file
@property
def data(self) -> dict[str, AlignmentDict]:
""" dict: The loaded alignments :attr:`file` in dictionary form. """
return self._data
@property
def have_alignments_file(self) -> bool:
""" bool: ``True`` if an alignments file exists at location :attr:`file` otherwise
``False``. """
return self._io.have_alignments_file
@property
def hashes_to_frame(self) -> dict[str, dict[str, int]]:
""" dict: The SHA1 hash of the face mapped to the frame(s) and face index within the frame
that the hash corresponds to.
Notes
-----
This method is depractated and exists purely for updating legacy hash based alignments
to new png header storage in :class:`lib.align.update_legacy_png_header`.
"""
return self._legacy.hashes_to_frame
@property
def hashes_to_alignment(self) -> dict[str, AlignmentFileDict]:
""" dict: The SHA1 hash of the face mapped to the alignment for the face that the hash
corresponds to. The structure of the dictionary is:
Notes
-----
This method is depractated and exists purely for updating legacy hash based alignments
to new png header storage in :class:`lib.align.update_legacy_png_header`.
"""
return self._legacy.hashes_to_alignment
@property
def mask_summary(self) -> dict[str, int]:
""" dict: The mask type names stored in the alignments :attr:`data` as key with the number
of faces which possess the mask type as value. """
masks: dict[str, int] = {}
for val in self._data.values():
for face in val["faces"]:
if face.get("mask", None) is None:
masks["none"] = masks.get("none", 0) + 1
for key in face.get("mask", {}):
masks[key] = masks.get(key, 0) + 1
return masks
@property
def video_meta_data(self) -> dict[str, list[int] | list[float] | None]:
""" dict: The frame meta data stored in the alignments file. If data does not exist in the
alignments file then ``None`` is returned for each Key """
retval: dict[str, list[int] | list[float] | None] = {"pts_time": None, "keyframes": None}
pts_time: list[float] = []
keyframes: list[int] = []
for idx, key in enumerate(sorted(self.data)):
if not self.data[key].get("video_meta", {}):
return retval
meta = self.data[key]["video_meta"]
pts_time.append(T.cast(float, meta["pts_time"]))
if meta["keyframe"]:
keyframes.append(idx)
retval = {"pts_time": pts_time, "keyframes": keyframes}
return retval
@property
def thumbnails(self) -> "Thumbnails":
""" :class:`~lib.align.Thumbnails`: The low resolution thumbnail images that exist
within the alignments file """
return self._thumbnails
@property
def version(self) -> float:
""" float: The alignments file version number. """
return self._io.version
def _load(self) -> dict[str, AlignmentDict]:
""" Load the alignments data from the serialized alignments :attr:`file`.
Populates :attr:`_version` with the alignment file's loaded version as well as returning
the serialized data.
Returns
-------
dict:
The loaded alignments data
"""
return self._io.load()
def save(self) -> None:
""" Write the contents of :attr:`data` and :attr:`_meta` to a serialized ``.fsa`` file at
the location :attr:`file`. """
return self._io.save()
def backup(self) -> None:
""" Create a backup copy of the alignments :attr:`file`.
Creates a copy of the serialized alignments :attr:`file` appending a
timestamp onto the end of the file name and storing in the same folder as
the original :attr:`file`.
"""
return self._io.backup()
def save_video_meta_data(self, pts_time: list[float], keyframes: list[int]) -> None:
""" Save video meta data to the alignments file.
If the alignments file does not have an entry for every frame (e.g. if Extract Every N
was used) then the frame is added to the alignments file with no faces, so that they video
meta data can be stored.
Parameters
----------
pts_time: list
A list of presentation timestamps (`float`) in frame index order for every frame in
the input video
keyframes: list
A list of frame indices corresponding to the key frames in the input video
"""
if pts_time[0] != 0:
pts_time, keyframes = self._pad_leading_frames(pts_time, keyframes)
sample_filename = next(fname for fname in self.data)
basename = sample_filename[:sample_filename.rfind("_")]
logger.debug("sample filename: %s, base filename: %s", sample_filename, basename)
logger.info("Saving video meta information to Alignments file")
for idx, pts in enumerate(pts_time):
meta: dict[str, float | int] = {"pts_time": pts, "keyframe": idx in keyframes}
key = f"{basename}_{idx + 1:06d}.png"
if key not in self.data:
self.data[key] = {"video_meta": meta, "faces": []}
else:
self.data[key]["video_meta"] = meta
logger.debug("Alignments count: %s, timestamp count: %s", len(self.data), len(pts_time))
if len(self.data) != len(pts_time):
raise FaceswapError(
"There is a mismatch between the number of frames found in the video file "
f"({len(pts_time)}) and the number of frames found in the alignments file "
f"({len(self.data)}).\nThis can be caused by a number of issues:"
"\n - The video has a Variable Frame Rate and FFMPEG is having a hard time "
"calculating the correct number of frames."
"\n - You are working with a Merged Alignments file. This is not supported for "
"your current use case."
"\nYou should either extract the video to individual frames, re-encode the "
"video at a constant frame rate and re-run extraction or work with a dedicated "
"alignments file for your requested video.")
self._io.save()
@classmethod
def _pad_leading_frames(cls, pts_time: list[float], keyframes: list[int]) -> tuple[list[float],
list[int]]:
""" Calculate the number of frames to pad the video by when the first frame is not
a key frame.
A somewhat crude method by obtaining the gaps between existing frames and calculating
how many frames should be inserted at the beginning based on the first presentation
timestamp.
Parameters
----------
pts_time: list
A list of presentation timestamps (`float`) in frame index order for every frame in
the input video
keyframes: list
A list of keyframes (`int`) for the input video
Returns
-------
tuple
The presentation time stamps with extra frames padded to the beginning and the
keyframes adjusted to include the new frames
"""
start_pts = pts_time[0]
logger.debug("Video not cut on keyframe. Start pts: %s", start_pts)
gaps: list[float] = []
prev_time = None
for item in pts_time:
if prev_time is not None:
gaps.append(item - prev_time)
prev_time = item
data_points = len(gaps)
avg_gap = sum(gaps) / data_points
frame_count = int(round(start_pts / avg_gap))
pad_pts = [avg_gap * i for i in range(frame_count)]
logger.debug("data_points: %s, avg_gap: %s, frame_count: %s, pad_pts: %s",
data_points, avg_gap, frame_count, pad_pts)
pts_time = pad_pts + pts_time
keyframes = [i + frame_count for i in keyframes]
return pts_time, keyframes
# << VALIDATION >> #
def frame_exists(self, frame_name: str) -> bool:
""" Check whether a given frame_name exists within the alignments :attr:`data`.
Parameters
----------
frame_name: str
The frame name to check. This should be the base name of the frame, not the full path
Returns
-------
bool
``True`` if the given frame_name exists within the alignments :attr:`data`
otherwise ``False``
"""
retval = frame_name in self._data.keys()
logger.trace("'%s': %s", frame_name, retval) # type:ignore
return retval
def frame_has_faces(self, frame_name: str) -> bool:
""" Check whether a given frame_name exists within the alignments :attr:`data` and contains
at least 1 face.
Parameters
----------
frame_name: str
The frame name to check. This should be the base name of the frame, not the full path
Returns
-------
bool
``True`` if the given frame_name exists within the alignments :attr:`data` and has at
least 1 face associated with it, otherwise ``False``
"""
frame_data = self._data.get(frame_name, T.cast(AlignmentDict, {}))
retval = bool(frame_data.get("faces", []))
logger.trace("'%s': %s", frame_name, retval) # type:ignore
return retval
def frame_has_multiple_faces(self, frame_name: str) -> bool:
""" Check whether a given frame_name exists within the alignments :attr:`data` and contains
more than 1 face.
Parameters
----------
frame_name: str
The frame_name name to check. This should be the base name of the frame, not the full
path
Returns
-------
bool
``True`` if the given frame_name exists within the alignments :attr:`data` and has more
than 1 face associated with it, otherwise ``False``
"""
if not frame_name:
retval = False
else:
frame_data = self._data.get(frame_name, T.cast(AlignmentDict, {}))
retval = bool(len(frame_data.get("faces", [])) > 1)
logger.trace("'%s': %s", frame_name, retval) # type:ignore
return retval
def mask_is_valid(self, mask_type: str) -> bool:
""" Ensure the given ``mask_type`` is valid for the alignments :attr:`data`.
Every face in the alignments :attr:`data` must have the given mask type to successfully
pass the test.
Parameters
----------
mask_type: str
The mask type to check against the current alignments :attr:`data`
Returns
-------
bool:
``True`` if all faces in the current alignments possess the given ``mask_type``
otherwise ``False``
"""
retval = any((face.get("mask", None) is not None and
face["mask"].get(mask_type, None) is not None)
for val in self._data.values()
for face in val["faces"])
logger.debug(retval)
return retval
# << DATA >> #
def get_faces_in_frame(self, frame_name: str) -> list[AlignmentFileDict]:
""" Obtain the faces from :attr:`data` associated with a given frame_name.
Parameters
----------
frame_name: str
The frame name to return faces for. This should be the base name of the frame, not the
full path
Returns
-------
list
The list of face dictionaries that appear within the requested frame_name
"""
logger.trace("Getting faces for frame_name: '%s'", frame_name) # type:ignore
frame_data = self._data.get(frame_name, T.cast(AlignmentDict, {}))
return frame_data.get("faces", T.cast(list[AlignmentFileDict], []))
def _count_faces_in_frame(self, frame_name: str) -> int:
""" Return number of faces that appear within :attr:`data` for the given frame_name.
Parameters
----------
frame_name: str
The frame name to return the count for. This should be the base name of the frame, not
the full path
Returns
-------
int
The number of faces that appear in the given frame_name
"""
frame_data = self._data.get(frame_name, T.cast(AlignmentDict, {}))
retval = len(frame_data.get("faces", []))
logger.trace(retval) # type:ignore
return retval
# << MANIPULATION >> #
def delete_face_at_index(self, frame_name: str, face_index: int) -> bool:
""" Delete the face for the given frame_name at the given face index from :attr:`data`.
Parameters
----------
frame_name: str
The frame name to remove the face from. This should be the base name of the frame, not
the full path
face_index: int
The index number of the face within the given frame_name to remove
Returns
-------
bool
``True`` if a face was successfully deleted otherwise ``False``
"""
logger.debug("Deleting face %s for frame_name '%s'", face_index, frame_name)
face_index = int(face_index)
if face_index + 1 > self._count_faces_in_frame(frame_name):
logger.debug("No face to delete: (frame_name: '%s', face_index %s)",
frame_name, face_index)
return False
del self._data[frame_name]["faces"][face_index]
logger.debug("Deleted face: (frame_name: '%s', face_index %s)", frame_name, face_index)
return True
def add_face(self, frame_name: str, face: AlignmentFileDict) -> int:
""" Add a new face for the given frame_name in :attr:`data` and return it's index.
Parameters
----------
frame_name: str
The frame name to add the face to. This should be the base name of the frame, not the
full path
face: dict
The face information to add to the given frame_name, correctly formatted for storing in
:attr:`data`
Returns
-------
int
The index of the newly added face within :attr:`data` for the given frame_name
"""
logger.debug("Adding face to frame_name: '%s'", frame_name)
if frame_name not in self._data:
self._data[frame_name] = {"faces": [], "video_meta": {}}
self._data[frame_name]["faces"].append(face)
retval = self._count_faces_in_frame(frame_name) - 1
logger.debug("Returning new face index: %s", retval)
return retval
def update_face(self, frame_name: str, face_index: int, face: AlignmentFileDict) -> None:
""" Update the face for the given frame_name at the given face index in :attr:`data`.
Parameters
----------
frame_name: str
The frame name to update the face for. This should be the base name of the frame, not
the full path
face_index: int
The index number of the face within the given frame_name to update
face: dict
The face information to update to the given frame_name at the given face_index,
correctly formatted for storing in :attr:`data`
"""
logger.debug("Updating face %s for frame_name '%s'", face_index, frame_name)
self._data[frame_name]["faces"][face_index] = face
def filter_faces(self, filter_dict: dict[str, list[int]], filter_out: bool = False) -> None:
""" Remove faces from :attr:`data` based on a given filter list.
Parameters
----------
filter_dict: dict
Dictionary of source filenames as key with a list of face indices to filter as value.
filter_out: bool, optional
``True`` if faces should be removed from :attr:`data` when there is a corresponding
match in the given filter_dict. ``False`` if faces should be kept in :attr:`data` when
there is a corresponding match in the given filter_dict, but removed if there is no
match. Default: ``False``
"""
logger.debug("filter_dict: %s, filter_out: %s", filter_dict, filter_out)
for source_frame, frame_data in self._data.items():
face_indices = filter_dict.get(source_frame, [])
if filter_out:
filter_list = face_indices
else:
filter_list = [idx for idx in range(len(frame_data["faces"]))
if idx not in face_indices]
logger.trace("frame: '%s', filter_list: %s", source_frame, filter_list) # type:ignore
for face_idx in reversed(sorted(filter_list)):
logger.verbose("Filtering out face: (filename: %s, index: %s)", # type:ignore
source_frame, face_idx)
del frame_data["faces"][face_idx]
# << GENERATORS >> #
def yield_faces(self) -> Generator[tuple[str, list[AlignmentFileDict], int, str], None, None]:
""" Generator to obtain all faces with meta information from :attr:`data`. The results
are yielded by frame.
Notes
-----
The yielded order is non-deterministic.
Yields
------
frame_name: str
The frame name that the face belongs to. This is the base name of the frame, as it
appears in :attr:`data`, not the full path
faces: list
The list of face `dict` objects that exist for this frame
face_count: int
The number of faces that exist within :attr:`data` for this frame
frame_fullname: str
The full path (folder and filename) for the yielded frame
"""
for frame_fullname, val in self._data.items():
frame_name = os.path.splitext(frame_fullname)[0]
face_count = len(val["faces"])
logger.trace("Yielding: (frame: '%s', faces: %s, frame_fullname: '%s')", # type:ignore
frame_name, face_count, frame_fullname)
yield frame_name, val["faces"], face_count, frame_fullname
class _IO():
""" Class to handle the saving/loading of an alignments file.
Parameters
----------
alignments: :class:'~Alignments`
The parent alignments class that these IO operations belong to
folder: str
The folder that contains the alignments ``.fsa`` file
filename: str
The filename of the ``.fsa`` alignments file.
"""
def __init__(self, alignments: Alignments, folder: str, filename: str) -> None:
logger.debug("Initializing %s: (alignments: %s)", self.__class__.__name__, alignments)
self._alignments = alignments
self._serializer = get_serializer("compressed")
self._file = self._get_location(folder, filename)
self._version: float = _VERSION
@property
def file(self) -> str:
""" str: The full path to the currently loaded alignments file. """
return self._file
@property
def version(self) -> float:
""" float: The alignments file version number. """
return self._version
@property
def have_alignments_file(self) -> bool:
""" bool: ``True`` if an alignments file exists at location :attr:`file` otherwise
``False``. """
retval = os.path.exists(self._file)
logger.trace(retval) # type:ignore
return retval
def _update_file_format(self, folder: str, filename: str) -> str:
""" Convert old style serialized alignments to new ``.fsa`` format.
Parameters
----------
folder: str
The folder that the legacy alignments exist in
filename: str
The file name of the legacy alignments
Returns
-------
str
The full path to the newly created ``.fsa`` alignments file
"""
logger.info("Reformatting legacy alignments file...")
old_location = os.path.join(str(folder), filename)
new_location = f"{os.path.splitext(old_location)[0]}.{self._serializer.file_extension}"
if os.path.exists(old_location):
if os.path.exists(new_location):
logger.info("Using existing updated alignments file found at '%s'. If you do not "
"wish to use this existing file then you should delete or rename it.",
new_location)
else:
logger.info("Old location: '%s', New location: '%s'", old_location, new_location)
load_serializer = get_serializer_from_filename(old_location)
data = load_serializer.load(old_location)
self._serializer.save(new_location, data)
return os.path.basename(new_location)
def _test_for_legacy(self, location: str) -> None:
""" For alignments filenames passed in without an extension, test for legacy
serialization formats and update to current ``.fsa`` format if any are found.
Parameters
----------
location: str
The folder location to check for legacy alignments
"""
logger.debug("Checking for legacy alignments file formats: '%s'", location)
filename = os.path.splitext(location)[0]
for ext in (".json", ".p", ".pickle", ".yaml"):
legacy_filename = f"{filename}{ext}"
if os.path.exists(legacy_filename):
logger.debug("Legacy alignments file exists: '%s'", legacy_filename)
_ = self._update_file_format(*os.path.split(legacy_filename))
break
logger.debug("Legacy alignments file does not exist: '%s'", legacy_filename)
def _get_location(self, folder: str, filename: str) -> str:
""" Obtains the location of an alignments file.
If a legacy alignments file is provided/discovered, then the alignments file will be
updated to the custom ``.fsa`` format and saved.
Parameters
----------
folder: str
The folder that the alignments file is located in
filename: str
The filename of the alignments file
Returns
-------
str
The full path to the alignments file
"""
logger.debug("Getting location: (folder: '%s', filename: '%s')", folder, filename)
noext_name, extension = os.path.splitext(filename)
if extension in (".json", ".p", ".pickle", ".yaml", ".yml"):
# Reformat legacy alignments file
filename = self._update_file_format(folder, filename)
logger.debug("Updated legacy alignments. New filename: '%s'", filename)
if extension[1:] == self._serializer.file_extension:
logger.debug("Valid Alignments filename provided: '%s'", filename)
else:
filename = f"{noext_name}.{self._serializer.file_extension}"
logger.debug("File extension set from serializer: '%s'",
self._serializer.file_extension)
location = os.path.join(str(folder), filename)
if not os.path.exists(location):
# Test for old format alignments files and reformat if they exist. This will be
# executed if an alignments file has not been explicitly provided therefore it will not
# have been picked up in the extension test
self._test_for_legacy(location)
logger.verbose("Alignments filepath: '%s'", location) # type:ignore
return location
def update_legacy(self) -> None:
""" Check whether the alignments are legacy, and if so update them to current alignments
format. """
updates = [updater.is_updated for updater in (_FileStructure(self._alignments),
_LandmarkRename(self._alignments),
_ListToNumpy(self._alignments),
_MaskCentering(self._alignments),
_IdentityAndVideoMeta(self._alignments))]
if any(updates):
self._version = _VERSION
logger.info("Updating alignments file to version %s", self._version)
self.save()
def load(self) -> dict[str, AlignmentDict]:
""" Load the alignments data from the serialized alignments :attr:`file`.
Populates :attr:`_version` with the alignment file's loaded version as well as returning
the serialized data.
Returns
-------
dict:
The loaded alignments data
"""
logger.debug("Loading alignments")
if not self.have_alignments_file:
raise FaceswapError(f"Error: Alignments file not found at {self._file}")
logger.info("Reading alignments from: '%s'", self._file)
data = self._serializer.load(self._file)
meta = data.get("__meta__", {"version": 1.0})
self._version = meta["version"]
data = data.get("__data__", data)
logger.debug("Loaded alignments")
return data
def save(self) -> None:
""" Write the contents of :attr:`data` and :attr:`_meta` to a serialized ``.fsa`` file at
the location :attr:`file`. """
logger.debug("Saving alignments")
logger.info("Writing alignments to: '%s'", self._file)
data = {"__meta__": {"version": self._version},
"__data__": self._alignments.data}
self._serializer.save(self._file, data)
logger.debug("Saved alignments")
def backup(self) -> None:
""" Create a backup copy of the alignments :attr:`file`.
Creates a copy of the serialized alignments :attr:`file` appending a
timestamp onto the end of the file name and storing in the same folder as
the original :attr:`file`.
"""
logger.debug("Backing up alignments")
if not os.path.isfile(self._file):
logger.debug("No alignments to back up")
return
now = datetime.now().strftime("%Y%m%d_%H%M%S")
src = self._file
split = os.path.splitext(src)
dst = split[0] + "_" + now + split[1]
logger.info("Backing up original alignments to '%s'", dst)
os.rename(src, dst)
logger.debug("Backed up alignments")
class Thumbnails():
""" Thumbnail images stored in the alignments file.
The thumbnails are stored as low resolution (64px), low quality jpg in the alignments file
and are used for the Manual Alignments tool.
Parameters
----------
alignments: :class:'~lib.align.Alignments`
The parent alignments class that these thumbs belong to
"""
def __init__(self, alignments: Alignments) -> None:
logger.debug("Initializing %s: (alignments: %s)", self.__class__.__name__, alignments)
self._alignments_dict = alignments.data
self._frame_list = list(sorted(self._alignments_dict))
logger.debug("Initialized %s", self.__class__.__name__)
@property
def has_thumbnails(self) -> bool:
""" bool: ``True`` if all faces in the alignments file contain thumbnail images
otherwise ``False``. """
retval = all(np.any(face.get("thumb")) # type:ignore # numpy complaining about ``None``
for frame in self._alignments_dict.values()
for face in frame["faces"])
logger.trace(retval) # type:ignore
return retval
def get_thumbnail_by_index(self, frame_index: int, face_index: int) -> np.ndarray:
""" Obtain a jpg thumbnail from the given frame index for the given face index
Parameters
----------
frame_index: int
The frame index that contains the thumbnail
face_index: int
The face index within the frame to retrieve the thumbnail for
Returns
-------
:class:`numpy.ndarray`
The encoded jpg thumbnail
"""
retval = self._alignments_dict[self._frame_list[frame_index]]["faces"][face_index]["thumb"]
assert retval is not None
logger.trace("frame index: %s, face_index: %s, thumb shape: %s", # type:ignore
frame_index, face_index, retval.shape)
return retval
def add_thumbnail(self, frame: str, face_index: int, thumb: np.ndarray) -> None:
""" Add a thumbnail for the given face index for the given frame.
Parameters
----------
frame: str
The name of the frame to add the thumbnail for
face_index: int
The face index within the given frame to add the thumbnail for
thumb: :class:`numpy.ndarray`
The encoded jpg thumbnail at 64px to add to the alignments file
"""
logger.debug("frame: %s, face_index: %s, thumb shape: %s thumb dtype: %s",
frame, face_index, thumb.shape, thumb.dtype)
self._alignments_dict[frame]["faces"][face_index]["thumb"] = thumb
class _Updater():
""" Base class for inheriting to test for and update of an alignments file property
Parameters
----------
alignments: :class:`~Alignments`
The alignments object that is being tested and updated
"""
def __init__(self, alignments: Alignments) -> None:
self._alignments = alignments
self._needs_update = self._test()
if self._needs_update:
self._update()
@property
def is_updated(self) -> bool:
""" bool. ``True`` if this updater has been run otherwise ``False`` """
return self._needs_update
def _test(self) -> bool:
""" Calls the child's :func:`test` method and logs output
Returns
-------
bool
``True`` if the test condition is met otherwise ``False``
"""
logger.debug("checking %s", self.__class__.__name__)
retval = self.test()
logger.debug("legacy %s: %s", self.__class__.__name__, retval)
return retval
def test(self) -> bool:
""" Override to set the condition to test for.
Returns
-------
bool
``True`` if the test condition is met otherwise ``False``
"""
raise NotImplementedError()
def _update(self) -> int:
""" Calls the child's :func:`update` method, logs output and sets the
:attr:`is_updated` flag
Returns
-------
int
The number of items that were updated
"""
retval = self.update()
logger.debug("Updated %s: %s", self.__class__.__name__, retval)
return retval
def update(self) -> int:
""" Override to set the action to perform on the alignments object if the test has
passed
Returns
-------
int
The number of items that were updated
"""
raise NotImplementedError()
class _FileStructure(_Updater):
""" Alignments were structured: {frame_name: <list of faces>}. We need to be able to store
information at the frame level, so new structure is: {frame_name: {faces: <list of faces>}}
"""
def test(self) -> bool:
""" Test whether the alignments file is laid out in the old structure of
`{frame_name: [faces]}`
Returns
-------
bool
``True`` if the file has legacy structure otherwise ``False``
"""
return any(isinstance(val, list) for val in self._alignments.data.values())
def update(self) -> int:
""" Update legacy alignments files from the format `{frame_name: [faces}` to the
format `{frame_name: {faces: [faces]}`.
Returns
-------
int
The number of items that were updated
"""
updated = 0
for key, val in self._alignments.data.items():
if not isinstance(val, list):
continue
self._alignments.data[key] = {"faces": val}
updated += 1
return updated
class _LandmarkRename(_Updater):
""" Landmarks renamed from landmarksXY to landmarks_xy for PEP compliance """
def test(self) -> bool:
""" check for legacy landmarksXY keys.
Returns
-------
bool
``True`` if the alignments file contains legacy `landmarksXY` keys otherwise ``False``
"""
return (any(key == "landmarksXY"
for val in self._alignments.data.values()
for alignment in val["faces"]
for key in alignment))
def update(self) -> int:
""" Update legacy `landmarksXY` keys to PEP compliant `landmarks_xy` keys.
Returns
-------
int
The number of landmarks keys that were changed
"""
update_count = 0
for val in self._alignments.data.values():
for alignment in val["faces"]:
if "landmarksXY" in alignment:
alignment["landmarks_xy"] = alignment.pop("landmarksXY") # type:ignore
update_count += 1
return update_count
class _ListToNumpy(_Updater):
""" Landmarks stored as list instead of numpy array """
def test(self) -> bool:
""" check for legacy landmarks stored as `list` rather than :class:`numpy.ndarray`.
Returns
-------
bool
``True`` if not all landmarks are :class:`numpy.ndarray` otherwise ``False``
"""
return not all(isinstance(face["landmarks_xy"], np.ndarray)
for val in self._alignments.data.values()
for face in val["faces"])
def update(self) -> int:
""" Update landmarks stored as `list` to :class:`numpy.ndarray`.
Returns
-------
int
The number of landmarks keys that were changed
"""
update_count = 0
for val in self._alignments.data.values():
for alignment in val["faces"]:
test = alignment["landmarks_xy"]
if not isinstance(test, np.ndarray):
alignment["landmarks_xy"] = np.array(test, dtype="float32")
update_count += 1
return update_count
class _MaskCentering(_Updater):
""" Masks not containing the stored_centering parameters. Prior to this implementation all
masks were stored with face centering """
def test(self) -> bool:
""" Mask centering was introduced in alignments version 2.2
Returns
-------
bool
``True`` mask centering requires updating otherwise ``False``
"""
return self._alignments.version < 2.2
def update(self) -> int:
""" Add the mask key to the alignment file and update the centering of existing masks
Returns
-------
int
The number of masks that were updated
"""
update_count = 0
for val in self._alignments.data.values():
for alignment in val["faces"]:
if "mask" not in alignment:
alignment["mask"] = {}
for mask in alignment["mask"].values():
mask["stored_centering"] = "face"
update_count += 1
return update_count
class _IdentityAndVideoMeta(_Updater):
""" Prior to version 2.3 the identity key did not exist and the video_meta key was not
compulsory. These should now both always appear, but do not need to be populated. """
def test(self) -> bool:
""" Identity Key was introduced in alignments version 2.3
Returns
-------
bool
``True`` identity key needs inserting otherwise ``False``
"""
return self._alignments.version < 2.3
# Identity information was not previously stored in the alignments file.
def update(self) -> int:
""" Add the video_meta and identity keys to the alignment file and leave empty
Returns
-------
int
The number of keys inserted
"""
update_count = 0
for val in self._alignments.data.values():
this_update = 0
if "video_meta" not in val:
val["video_meta"] = {}
this_update = 1
for alignment in val["faces"]:
if "identity" not in alignment:
alignment["identity"] = {}
this_update = 1
update_count += this_update
return update_count
class _Legacy():
""" Legacy alignments properties that are no longer used, but are still required for backwards
compatibility/upgrading reasons.
Parameters
----------
alignments: :class:`~Alignments`
The alignments object that requires these legacy properties
"""
def __init__(self, alignments: Alignments) -> None:
self._alignments = alignments
self._hashes_to_frame: dict[str, dict[str, int]] = {}
self._hashes_to_alignment: dict[str, AlignmentFileDict] = {}
@property
def hashes_to_frame(self) -> dict[str, dict[str, int]]:
""" dict: The SHA1 hash of the face mapped to the frame(s) and face index within the frame
that the hash corresponds to. The structure of the dictionary is:
{**SHA1_hash** (`str`): {**filename** (`str`): **face_index** (`int`)}}.
Notes
-----
This method is deprecated and exists purely for updating legacy hash based alignments
to new png header storage in :class:`lib.align.update_legacy_png_header`.
The first time this property is referenced, the dictionary will be created and cached.
Subsequent references will be made to this cached dictionary.
"""
if not self._hashes_to_frame:
logger.debug("Generating hashes to frame")
for frame_name, val in self._alignments.data.items():
for idx, face in enumerate(val["faces"]):
self._hashes_to_frame.setdefault(
face["hash"], {})[frame_name] = idx # type:ignore
return self._hashes_to_frame
@property
def hashes_to_alignment(self) -> dict[str, AlignmentFileDict]:
""" dict: The SHA1 hash of the face mapped to the alignment for the face that the hash
corresponds to. The structure of the dictionary is:
Notes
-----
This method is deprecated and exists purely for updating legacy hash based alignments
to new png header storage in :class:`lib.align.update_legacy_png_header`.
The first time this property is referenced, the dictionary will be created and cached.
Subsequent references will be made to this cached dictionary.
"""
if not self._hashes_to_alignment:
logger.debug("Generating hashes to alignment")
self._hashes_to_alignment = {face["hash"]: face # type:ignore
for val in self._alignments.data.values()
for face in val["faces"]}
return self._hashes_to_alignment