mirror of
https://github.com/deepfakes/faceswap
synced 2025-06-07 10:43:27 -04:00
* Move image utils to lib.image * Add .pylintrc file * Remove some cv2 pylint ignores * TrainingData: Load images from disk in batches * TrainingData: get_landmarks to batch * TrainingData: transform and flip to batches * TrainingData: Optimize color augmentation * TrainingData: Optimize target and random_warp * TrainingData - Convert _get_closest_match for batching * TrainingData: Warp To Landmarks optimized * Save models to threadpoolexecutor * Move stack_images, Rename ImageManipulation. ImageAugmentation Docstrings * Masks: Set dtype and threshold for lib.masks based on input face * Docstrings and Documentation
345 lines
14 KiB
Python
345 lines
14 KiB
Python
#!/usr/bin python3
|
|
""" The script to run the training process of faceswap """
|
|
|
|
import logging
|
|
import os
|
|
import sys
|
|
|
|
from threading import Lock
|
|
from time import sleep
|
|
|
|
import cv2
|
|
import tensorflow as tf
|
|
from keras.backend.tensorflow_backend import set_session
|
|
|
|
from lib.image import read_image
|
|
from lib.keypress import KBHit
|
|
from lib.multithreading import MultiThread
|
|
from lib.queue_manager import queue_manager # noqa pylint:disable=unused-import
|
|
from lib.utils import get_folder, get_image_paths, set_system_verbosity
|
|
from plugins.plugin_loader import PluginLoader
|
|
|
|
logger = logging.getLogger(__name__) # pylint: disable=invalid-name
|
|
|
|
|
|
class Train():
|
|
""" The training process. """
|
|
def __init__(self, arguments):
|
|
logger.debug("Initializing %s: (args: %s", self.__class__.__name__, arguments)
|
|
self.args = arguments
|
|
self.timelapse = self.set_timelapse()
|
|
self.images = self.get_images()
|
|
self.stop = False
|
|
self.save_now = False
|
|
self.preview_buffer = dict()
|
|
self.lock = Lock()
|
|
|
|
self.trainer_name = self.args.trainer
|
|
logger.debug("Initialized %s", self.__class__.__name__)
|
|
|
|
def set_timelapse(self):
|
|
""" Set timelapse paths if requested """
|
|
if (not self.args.timelapse_input_a and
|
|
not self.args.timelapse_input_b and
|
|
not self.args.timelapse_output):
|
|
return None
|
|
if not self.args.timelapse_input_a or not self.args.timelapse_input_b:
|
|
raise ValueError("To enable the timelapse, you have to supply "
|
|
"all the parameters (--timelapse-input-A and "
|
|
"--timelapse-input-B).")
|
|
|
|
timelapse_output = None
|
|
if self.args.timelapse_output is not None:
|
|
timelapse_output = str(get_folder(self.args.timelapse_output))
|
|
|
|
for folder in (self.args.timelapse_input_a,
|
|
self.args.timelapse_input_b,
|
|
timelapse_output):
|
|
if folder is not None and not os.path.isdir(folder):
|
|
raise ValueError("The Timelapse path '{}' does not exist".format(folder))
|
|
|
|
kwargs = {"input_a": self.args.timelapse_input_a,
|
|
"input_b": self.args.timelapse_input_b,
|
|
"output": timelapse_output}
|
|
logger.debug("Timelapse enabled: %s", kwargs)
|
|
return kwargs
|
|
|
|
def get_images(self):
|
|
""" Check the image dirs exist, contain images and return the image
|
|
objects """
|
|
logger.debug("Getting image paths")
|
|
images = dict()
|
|
for side in ("a", "b"):
|
|
image_dir = getattr(self.args, "input_{}".format(side))
|
|
if not os.path.isdir(image_dir):
|
|
logger.error("Error: '%s' does not exist", image_dir)
|
|
exit(1)
|
|
|
|
if not os.listdir(image_dir):
|
|
logger.error("Error: '%s' contains no images", image_dir)
|
|
exit(1)
|
|
|
|
images[side] = get_image_paths(image_dir)
|
|
logger.info("Model A Directory: %s", self.args.input_a)
|
|
logger.info("Model B Directory: %s", self.args.input_b)
|
|
logger.debug("Got image paths: %s", [(key, str(len(val)) + " images")
|
|
for key, val in images.items()])
|
|
return images
|
|
|
|
def process(self):
|
|
""" Call the training process object """
|
|
logger.debug("Starting Training Process")
|
|
logger.info("Training data directory: %s", self.args.model_dir)
|
|
set_system_verbosity(self.args.loglevel)
|
|
thread = self.start_thread()
|
|
# queue_manager.debug_monitor(1)
|
|
|
|
err = self.monitor(thread)
|
|
|
|
self.end_thread(thread, err)
|
|
logger.debug("Completed Training Process")
|
|
|
|
def start_thread(self):
|
|
""" Put the training process in a thread so we can keep control """
|
|
logger.debug("Launching Trainer thread")
|
|
thread = MultiThread(target=self.training)
|
|
thread.start()
|
|
logger.debug("Launched Trainer thread")
|
|
return thread
|
|
|
|
def end_thread(self, thread, err):
|
|
""" On termination output message and join thread back to main """
|
|
logger.debug("Ending Training thread")
|
|
if err:
|
|
msg = "Error caught! Exiting..."
|
|
log = logger.critical
|
|
else:
|
|
msg = ("Exit requested! The trainer will complete its current cycle, "
|
|
"save the models and quit (This can take a couple of minutes "
|
|
"depending on your training speed).")
|
|
if not self.args.redirect_gui:
|
|
msg += " If you want to kill it now, press Ctrl + c"
|
|
log = logger.info
|
|
log(msg)
|
|
self.stop = True
|
|
thread.join()
|
|
sys.stdout.flush()
|
|
logger.debug("Ended Training thread")
|
|
|
|
def training(self):
|
|
""" The training process to be run inside a thread """
|
|
try:
|
|
sleep(1) # Let preview instructions flush out to logger
|
|
logger.debug("Commencing Training")
|
|
logger.info("Loading data, this may take a while...")
|
|
|
|
if self.args.allow_growth:
|
|
self.set_tf_allow_growth()
|
|
model = self.load_model()
|
|
trainer = self.load_trainer(model)
|
|
self.run_training_cycle(model, trainer)
|
|
except KeyboardInterrupt:
|
|
try:
|
|
logger.debug("Keyboard Interrupt Caught. Saving Weights and exiting")
|
|
model.save_models()
|
|
trainer.clear_tensorboard()
|
|
except KeyboardInterrupt:
|
|
logger.info("Saving model weights has been cancelled!")
|
|
exit(0)
|
|
except Exception as err:
|
|
raise err
|
|
|
|
def load_model(self):
|
|
""" Load the model requested for training """
|
|
logger.debug("Loading Model")
|
|
model_dir = get_folder(self.args.model_dir)
|
|
configfile = self.args.configfile if hasattr(self.args, "configfile") else None
|
|
augment_color = not self.args.no_augment_color
|
|
model = PluginLoader.get_model(self.trainer_name)(
|
|
model_dir,
|
|
gpus=self.args.gpus,
|
|
configfile=configfile,
|
|
snapshot_interval=self.args.snapshot_interval,
|
|
no_logs=self.args.no_logs,
|
|
warp_to_landmarks=self.args.warp_to_landmarks,
|
|
augment_color=augment_color,
|
|
no_flip=self.args.no_flip,
|
|
training_image_size=self.image_size,
|
|
alignments_paths=self.alignments_paths,
|
|
preview_scale=self.args.preview_scale,
|
|
pingpong=self.args.pingpong,
|
|
memory_saving_gradients=self.args.memory_saving_gradients,
|
|
optimizer_savings=self.args.optimizer_savings,
|
|
predict=False)
|
|
logger.debug("Loaded Model")
|
|
return model
|
|
|
|
@property
|
|
def image_size(self):
|
|
""" Get the training set image size for storing in model data """
|
|
image = read_image(self.images["a"][0], raise_error=True)
|
|
size = image.shape[0]
|
|
logger.debug("Training image size: %s", size)
|
|
return size
|
|
|
|
@property
|
|
def alignments_paths(self):
|
|
""" Set the alignments path to input dirs if not provided """
|
|
alignments_paths = dict()
|
|
for side in ("a", "b"):
|
|
alignments_path = getattr(self.args, "alignments_path_{}".format(side))
|
|
if not alignments_path:
|
|
image_path = getattr(self.args, "input_{}".format(side))
|
|
alignments_path = os.path.join(image_path, "alignments.json")
|
|
alignments_paths[side] = alignments_path
|
|
logger.debug("Alignments paths: %s", alignments_paths)
|
|
return alignments_paths
|
|
|
|
def load_trainer(self, model):
|
|
""" Load the trainer requested for training """
|
|
logger.debug("Loading Trainer")
|
|
trainer = PluginLoader.get_trainer(model.trainer)
|
|
trainer = trainer(model,
|
|
self.images,
|
|
self.args.batch_size,
|
|
self.args.configfile)
|
|
logger.debug("Loaded Trainer")
|
|
return trainer
|
|
|
|
def run_training_cycle(self, model, trainer):
|
|
""" Perform the training cycle """
|
|
logger.debug("Running Training Cycle")
|
|
if self.args.write_image or self.args.redirect_gui or self.args.preview:
|
|
display_func = self.show
|
|
else:
|
|
display_func = None
|
|
|
|
for iteration in range(0, self.args.iterations):
|
|
logger.trace("Training iteration: %s", iteration)
|
|
save_iteration = iteration % self.args.save_interval == 0
|
|
viewer = display_func if save_iteration or self.save_now else None
|
|
timelapse = self.timelapse if save_iteration else None
|
|
trainer.train_one_step(viewer, timelapse)
|
|
if self.stop:
|
|
logger.debug("Stop received. Terminating")
|
|
break
|
|
if save_iteration:
|
|
logger.trace("Save Iteration: (iteration: %s", iteration)
|
|
if self.args.pingpong:
|
|
model.save_models()
|
|
trainer.pingpong.switch()
|
|
else:
|
|
model.save_models()
|
|
elif self.save_now:
|
|
logger.trace("Save Requested: (iteration: %s", iteration)
|
|
model.save_models()
|
|
self.save_now = False
|
|
logger.debug("Training cycle complete")
|
|
model.save_models()
|
|
trainer.clear_tensorboard()
|
|
self.stop = True
|
|
|
|
def monitor(self, thread):
|
|
""" Monitor the console, and generate + monitor preview if requested """
|
|
is_preview = self.args.preview
|
|
logger.debug("Launching Monitor")
|
|
logger.info("R|===================================================")
|
|
logger.info("R| Starting")
|
|
if is_preview:
|
|
logger.info("R| Using live preview")
|
|
logger.info("R| Press '%s' to save and quit",
|
|
"Terminate" if self.args.redirect_gui else "ENTER")
|
|
if not self.args.redirect_gui:
|
|
logger.info("R| Press 'S' to save model weights immediately")
|
|
logger.info("R|===================================================")
|
|
|
|
keypress = KBHit(is_gui=self.args.redirect_gui)
|
|
err = False
|
|
while True:
|
|
try:
|
|
if is_preview:
|
|
with self.lock:
|
|
for name, image in self.preview_buffer.items():
|
|
cv2.imshow(name, image) # pylint: disable=no-member
|
|
cv_key = cv2.waitKey(1000) # pylint: disable=no-member
|
|
else:
|
|
cv_key = None
|
|
|
|
if thread.has_error:
|
|
logger.debug("Thread error detected")
|
|
err = True
|
|
break
|
|
if self.stop:
|
|
logger.debug("Stop received")
|
|
break
|
|
|
|
# Preview Monitor
|
|
if is_preview and (cv_key == ord("\n") or cv_key == ord("\r")):
|
|
logger.debug("Exit requested")
|
|
break
|
|
if is_preview and cv_key == ord("s"):
|
|
logger.info("Save requested")
|
|
self.save_now = True
|
|
|
|
# Console Monitor
|
|
if keypress.kbhit():
|
|
console_key = keypress.getch()
|
|
if console_key in ("\n", "\r"):
|
|
logger.debug("Exit requested")
|
|
break
|
|
if console_key in ("s", "S"):
|
|
logger.info("Save requested")
|
|
self.save_now = True
|
|
|
|
sleep(1)
|
|
except KeyboardInterrupt:
|
|
logger.debug("Keyboard Interrupt received")
|
|
break
|
|
keypress.set_normal_term()
|
|
logger.debug("Closed Monitor")
|
|
return err
|
|
|
|
@staticmethod
|
|
def keypress_monitor(keypress_queue):
|
|
""" Monitor stdin for keypress """
|
|
while True:
|
|
keypress_queue.put(sys.stdin.read(1))
|
|
|
|
@staticmethod
|
|
def set_tf_allow_growth():
|
|
""" Allow TensorFlow to manage VRAM growth """
|
|
# pylint: disable=no-member
|
|
logger.debug("Setting Tensorflow 'allow_growth' option")
|
|
config = tf.ConfigProto()
|
|
config.gpu_options.allow_growth = True
|
|
config.gpu_options.visible_device_list = "0"
|
|
set_session(tf.Session(config=config))
|
|
logger.debug("Set Tensorflow 'allow_growth' option")
|
|
|
|
def show(self, image, name=""):
|
|
""" Generate the preview and write preview file output """
|
|
logger.trace("Updating preview: (name: %s)", name)
|
|
try:
|
|
scriptpath = os.path.realpath(os.path.dirname(sys.argv[0]))
|
|
if self.args.write_image:
|
|
logger.trace("Saving preview to disk")
|
|
img = "training_preview.jpg"
|
|
imgfile = os.path.join(scriptpath, img)
|
|
cv2.imwrite(imgfile, image) # pylint: disable=no-member
|
|
logger.trace("Saved preview to: '%s'", img)
|
|
if self.args.redirect_gui:
|
|
logger.trace("Generating preview for GUI")
|
|
img = ".gui_training_preview.jpg"
|
|
imgfile = os.path.join(scriptpath, "lib", "gui",
|
|
".cache", "preview", img)
|
|
cv2.imwrite(imgfile, image) # pylint: disable=no-member
|
|
logger.trace("Generated preview for GUI: '%s'", img)
|
|
if self.args.preview:
|
|
logger.trace("Generating preview for display: '%s'", name)
|
|
with self.lock:
|
|
self.preview_buffer[name] = image
|
|
logger.trace("Generated preview for display: '%s'", name)
|
|
except Exception as err:
|
|
logging.error("could not preview sample")
|
|
raise err
|
|
logger.trace("Updated preview: (name: %s)", name)
|