1
0
Fork 0
mirror of https://github.com/deepfakes/faceswap synced 2025-06-07 19:05:02 -04:00
faceswap/lib/cli.py
Édouard WILLISSECK 59d234ae5e Unified CLI (#22)
* Created a single script to call the other ones.

Usage is ./faceswap.py {train|extract|convert}

* Improved the help from the commands.

* Added forgotten faceswap.py file.

* Changed gitignore to add the scripts.

* Updates gitignore.

* Added guarding not to execute code when imported.

* Removed useless script. Display help when no arguments are provided.

* Update README
2017-12-25 02:17:02 +01:00

260 lines
9.7 KiB
Python

import argparse
import os
import cv2
import numpy
from lib.utils import get_image_paths, get_folder, load_images, stack_images
from lib.faces_detect import crop_faces
from lib.training_data import get_training_data
from lib.model import autoencoder_A, autoencoder_B
from lib.model import encoder, decoder_A, decoder_B
class FullPaths(argparse.Action):
"""Expand user- and relative-paths"""
def __call__(self, parser, namespace, values, option_string=None):
setattr(namespace, self.dest, os.path.abspath(
os.path.expanduser(values)))
class TrainingProcessor(object):
arguments = None
def __init__(self, subparser, command, description='default'):
self.parse_arguments(description, subparser, command)
def process_arguments(self, arguments):
self.arguments = arguments
print("Model A Directory: {}".format(self.arguments.input_A))
print("Model B Directory: {}".format(self.arguments.input_B))
print("Training data directory: {}".format(self.arguments.model_dir))
print('Starting, this may take a while...')
try:
encoder.load_weights(self.arguments.model_dir + '/encoder.h5')
decoder_A.load_weights(self.arguments.model_dir + '/decoder_A.h5')
decoder_B.load_weights(self.arguments.model_dir + '/decoder_B.h5')
except Exception as e:
print('Not loading existing training data.')
print(e)
self.process()
def parse_arguments(self, description, subparser, command):
parser = subparser.add_parser(
command,
help="This command trains the model for the two faces A and B.",
description=description,
epilog="Questions and feedback: \
https://github.com/deepfakes/faceswap-playground"
)
parser.add_argument('-A', '--input-A',
action=FullPaths,
dest="input_A",
default="input_A",
help="Input directory. A directory containing training images for face A.\
Defaults to 'input'")
parser.add_argument('-B', '--input-B',
action=FullPaths,
dest="input_B",
default="input_B",
help="Input directory. A directory containing training images for face B.\
Defaults to 'input'")
parser.add_argument('-m', '--model-dir',
action=FullPaths,
dest="model_dir",
default="models",
help="Model directory. This is where the training data will \
be stored. Defaults to 'model'")
parser.add_argument('-p', '--preview',
action="store_true",
dest="preview",
default=False,
help="Show preview output. If not specified, write progress \
to file.")
parser.add_argument('-v', '--verbose',
action="store_true",
dest="verbose",
default=False,
help="Show verbose output")
parser = self.add_optional_arguments(parser)
parser.set_defaults(func=self.process_arguments)
def add_optional_arguments(self, parser):
# Override this for custom arguments
return parser
def save_model_weights(self):
encoder.save_weights(self.arguments.model_dir + '/encoder.h5')
decoder_A.save_weights(self.arguments.model_dir + '/decoder_A.h5')
decoder_B.save_weights(self.arguments.model_dir + '/decoder_B.h5')
print('save model weights')
def show_sample(self, test_A, test_B):
figure_A = numpy.stack([
test_A,
autoencoder_A.predict(test_A),
autoencoder_B.predict(test_A),
], axis=1)
figure_B = numpy.stack([
test_B,
autoencoder_B.predict(test_B),
autoencoder_A.predict(test_B),
], axis=1)
figure = numpy.concatenate([figure_A, figure_B], axis=0)
figure = figure.reshape((4, 7) + figure.shape[1:])
figure = stack_images(figure)
figure = numpy.clip(figure * 255, 0, 255).astype('uint8')
if self.arguments.preview is True:
cv2.imshow('', figure)
else:
cv2.imwrite('_sample.jpg', figure)
def process(self):
images_A = get_image_paths(self.arguments.input_A)
images_B = get_image_paths(self.arguments.input_B)
images_A = load_images(images_A) / 255.0
images_B = load_images(images_B) / 255.0
images_A += images_B.mean(axis=(0, 1, 2)) - \
images_A.mean(axis=(0, 1, 2))
print('press "q" to stop training and save model')
BATCH_SIZE = 64
for epoch in range(1000000):
warped_A, target_A = get_training_data(images_A, BATCH_SIZE)
warped_B, target_B = get_training_data(images_B, BATCH_SIZE)
loss_A = autoencoder_A.train_on_batch(warped_A, target_A)
loss_B = autoencoder_B.train_on_batch(warped_B, target_B)
print(loss_A, loss_B)
if epoch % 100 == 0:
self.save_model_weights()
self.show_sample(target_A[0:14], target_B[0:14])
key = cv2.waitKey(1)
if key == ord('q'):
self.save_model_weights()
exit()
class DirectoryProcessor(object):
'''
Abstract class that processes a directory of images
and writes output to the specified folder
'''
arguments = None
parser = None
input_dir = None
output_dir = None
verify_output = False
images_found = 0
images_processed = 0
faces_detected = 0
def __init__(self, subparser, command, description='default'):
self.create_parser(subparser, command, description)
self.parse_arguments(description, subparser, command)
def process_arguments(self, arguments):
self.arguments = arguments
print("Input Directory: {}".format(self.arguments.input_dir))
print("Output Directory: {}".format(self.arguments.output_dir))
print('Starting, this may take a while...')
self.output_dir = get_folder(self.arguments.output_dir)
try:
self.input_dir = get_image_paths(self.arguments.input_dir)
except:
print('Input directory not found. Please ensure it exists.')
exit(1)
self.images_found = len(self.input_dir)
self.process_directory()
def process_directory(self):
for filename in self.input_dir:
if self.arguments.verbose:
print('Processing: {}'.format(os.path.basename(filename)))
self.process_image(filename)
self.images_processed = self.images_processed + 1
self.finalize()
def parse_arguments(self, description, subparser, command):
self.parser.add_argument('-i', '--input-dir',
action=FullPaths,
dest="input_dir",
default="input",
help="Input directory. A directory containing the files \
you wish to process. Defaults to 'input'")
self.parser.add_argument('-o', '--output-dir',
action=FullPaths,
dest="output_dir",
default="output",
help="Output directory. This is where the converted files will \
be stored. Defaults to 'output'")
self.parser.add_argument('-v', '--verbose',
action="store_true",
dest="verbose",
default=False,
help="Show verbose output")
self.parser = self.add_optional_arguments(self.parser)
self.parser.set_defaults(func=self.process_arguments)
def create_parser(self, subparser, command, description):
parser = subparser.add_parser(
command,
description=description,
epilog="Questions and feedback: \
https://github.com/deepfakes/faceswap-playground"
)
return parser
def add_optional_arguments(self, parser):
# Override this for custom arguments
return parser
def process_image(self, filename):
try:
image = cv2.imread(filename)
for (idx, face) in enumerate(crop_faces(image)):
if idx > 0 and self.arguments.verbose:
print('- Found more than one face!')
self.verify_output = True
self.process_face(face, idx, filename)
self.faces_detected = self.faces_detected + 1
except Exception as e:
print('Failed to extract from image: {}. Reason: {}'.format(filename, e))
def process_face(self, face, index, filename):
# implement your face processing!
raise NotImplementedError()
def finalize(self):
print('-------------------------')
print('Images found: {}'.format(self.images_found))
print('Images processed: {}'.format(self.images_processed))
print('Faces detected: {}'.format(self.faces_detected))
print('-------------------------')
if self.verify_output:
print('Note:')
print('Multiple faces were detected in one or more pictures.')
print('Double check your results.')
print('-------------------------')
print('Done!')