mirror of
https://github.com/deepfakes/faceswap
synced 2025-06-08 20:13:52 -04:00
747 lines
30 KiB
Python
747 lines
30 KiB
Python
#!/usr/bin/env python3
|
|
"""
|
|
A tool that allows for sorting and grouping images in different ways.
|
|
"""
|
|
import logging
|
|
import os
|
|
import sys
|
|
import operator
|
|
from concurrent import futures
|
|
from shutil import copyfile
|
|
|
|
import numpy as np
|
|
import cv2
|
|
from tqdm import tqdm
|
|
|
|
# faceswap imports
|
|
from lib.serializer import get_serializer_from_filename
|
|
from lib.faces_detect import DetectedFace
|
|
from lib.image import ImagesLoader, read_image
|
|
from lib.utils import get_backend
|
|
from lib.vgg_face2_keras import VGGFace2 as VGGFace
|
|
from plugins.extract.pipeline import Extractor, ExtractMedia
|
|
from plugins.extract._config import Config
|
|
|
|
logger = logging.getLogger(__name__) # pylint: disable=invalid-name
|
|
|
|
|
|
class Sort():
|
|
""" Sorts folders of faces based on input criteria """
|
|
# pylint: disable=no-member
|
|
def __init__(self, arguments):
|
|
self.args = arguments
|
|
self.changes = None
|
|
self.serializer = None
|
|
self.vgg_face = None
|
|
# TODO set this as ImagesLoader in init. Need to move all processes to use it
|
|
self._loader = None
|
|
|
|
def process(self):
|
|
""" Main processing function of the sort tool """
|
|
|
|
# Setting default argument values that cannot be set by argparse
|
|
|
|
# Set output dir to the same value as input dir
|
|
# if the user didn't specify it.
|
|
if self.args.output_dir is None:
|
|
logger.verbose("No output directory provided. Using input dir as output dir.")
|
|
self.args.output_dir = self.args.input_dir
|
|
|
|
# Assigning default threshold values based on grouping method
|
|
if (self.args.final_process == "folders"
|
|
and self.args.min_threshold < 0.0):
|
|
method = self.args.group_method.lower()
|
|
if method == 'face-cnn':
|
|
self.args.min_threshold = 7.2
|
|
elif method == 'hist':
|
|
self.args.min_threshold = 0.3
|
|
|
|
# Load VGG Face if sorting by face
|
|
if self.args.sort_method.lower() == "face":
|
|
conf = Config("global", configfile=self.args.configfile)
|
|
allow_growth = (conf.config_dict["allow_growth"] and
|
|
self.args.backend.lower() == "gpu" and
|
|
get_backend() == "nvidia")
|
|
self.vgg_face = VGGFace(backend=self.args.backend,
|
|
allow_growth=allow_growth,
|
|
loglevel=self.args.loglevel)
|
|
|
|
# If logging is enabled, prepare container
|
|
if self.args.log_changes:
|
|
self.changes = dict()
|
|
|
|
# Assign default sort_log.json value if user didn't specify one
|
|
if self.args.log_file_path == 'sort_log.json':
|
|
self.args.log_file_path = os.path.join(self.args.input_dir,
|
|
'sort_log.json')
|
|
|
|
# Set serializer based on logfile extension
|
|
self.serializer = get_serializer_from_filename(self.args.log_file_path)
|
|
|
|
# Prepare sort, group and final process method names
|
|
_sort = "sort_" + self.args.sort_method.lower()
|
|
_group = "group_" + self.args.group_method.lower()
|
|
_final = "final_process_" + self.args.final_process.lower()
|
|
if _sort.startswith('sort_color-'):
|
|
self.args.color_method = _sort.replace('sort_color-', '')
|
|
_sort = _sort[:10]
|
|
self.args.sort_method = _sort.replace('-', '_')
|
|
self.args.group_method = _group.replace('-', '_')
|
|
self.args.final_process = _final.replace('-', '_')
|
|
|
|
self.sort_process()
|
|
|
|
@staticmethod
|
|
def launch_aligner():
|
|
""" Load the aligner plugin to retrieve landmarks """
|
|
extractor = Extractor(None, "fan", None, normalize_method="hist")
|
|
extractor.set_batchsize("align", 1)
|
|
extractor.launch()
|
|
return extractor
|
|
|
|
@staticmethod
|
|
def alignment_dict(filename, image):
|
|
""" Set the image to an ExtractMedia object for alignment """
|
|
height, width = image.shape[:2]
|
|
face = DetectedFace(x=0, w=width, y=0, h=height)
|
|
return ExtractMedia(filename, image, detected_faces=[face])
|
|
|
|
def _get_landmarks(self):
|
|
""" Multi-threaded, parallel and sequentially ordered landmark loader """
|
|
extractor = self.launch_aligner()
|
|
filename_list, image_list = self._get_images()
|
|
feed_list = list(map(Sort.alignment_dict, filename_list, image_list))
|
|
landmarks = np.zeros((len(feed_list), 68, 2), dtype='float32')
|
|
|
|
logger.info("Finding landmarks in images...")
|
|
# TODO thread the put to queue so we don't have to put and get at the same time
|
|
# Or even better, set up a proper background loader from disk (i.e. use lib.image.ImageIO)
|
|
for idx, feed in enumerate(tqdm(feed_list, desc="Aligning...", file=sys.stdout)):
|
|
extractor.input_queue.put(feed)
|
|
landmarks[idx] = next(extractor.detected_faces()).detected_faces[0].landmarks_xy
|
|
|
|
return filename_list, image_list, landmarks
|
|
|
|
def _get_images(self):
|
|
""" Multi-threaded, parallel and sequentially ordered image loader """
|
|
logger.info("Loading images...")
|
|
filename_list = self.find_images(self.args.input_dir)
|
|
with futures.ThreadPoolExecutor() as executor:
|
|
image_list = list(tqdm(executor.map(read_image, filename_list),
|
|
desc="Loading Images...",
|
|
file=sys.stdout,
|
|
total=len(filename_list)))
|
|
|
|
return filename_list, image_list
|
|
|
|
def sort_process(self):
|
|
"""
|
|
This method dynamically assigns the functions that will be used to run
|
|
the core process of sorting, optionally grouping, renaming/moving into
|
|
folders. After the functions are assigned they are executed.
|
|
"""
|
|
sort_method = self.args.sort_method.lower()
|
|
group_method = self.args.group_method.lower()
|
|
final_method = self.args.final_process.lower()
|
|
|
|
img_list = getattr(self, sort_method)()
|
|
if "folders" in final_method:
|
|
# Check if non-dissim sort method and group method are not the same
|
|
if group_method.replace('group_', '') not in sort_method:
|
|
img_list = self.reload_images(group_method, img_list)
|
|
img_list = getattr(self, group_method)(img_list)
|
|
else:
|
|
img_list = getattr(self, group_method)(img_list)
|
|
|
|
getattr(self, final_method)(img_list)
|
|
|
|
logger.info("Done.")
|
|
|
|
# Methods for sorting
|
|
def sort_blur(self):
|
|
""" Sort by blur amount """
|
|
logger.info("Sorting by estimated image blur...")
|
|
filename_list, image_list = self._get_images()
|
|
|
|
logger.info("Estimating blur...")
|
|
blurs = [self.estimate_blur(img) for img in image_list]
|
|
|
|
logger.info("Sorting...")
|
|
matched_list = list(zip(filename_list, blurs))
|
|
img_list = sorted(matched_list, key=operator.itemgetter(1), reverse=True)
|
|
return img_list
|
|
|
|
def sort_face(self):
|
|
""" Sort by identity similarity """
|
|
logger.info("Sorting by identity similarity...")
|
|
|
|
# TODO This should be set in init
|
|
self._loader = ImagesLoader(self.args.input_dir)
|
|
|
|
filenames = []
|
|
preds = np.empty((self._loader.count, 512), dtype="float32")
|
|
for idx, (filename, image) in enumerate(tqdm(self._loader.load(),
|
|
desc="Classifying Faces...",
|
|
total=self._loader.count)):
|
|
filenames.append(filename)
|
|
preds[idx] = self.vgg_face.predict(image)
|
|
|
|
logger.info("Sorting by ward linkage...")
|
|
|
|
indices = self.vgg_face.sorted_similarity(preds, method="ward")
|
|
img_list = np.array(filenames)[indices]
|
|
return img_list
|
|
|
|
def sort_face_cnn(self):
|
|
""" Sort by landmark similarity """
|
|
logger.info("Sorting by landmark similarity...")
|
|
filename_list, _, landmarks = self._get_landmarks()
|
|
img_list = list(zip(filename_list, landmarks))
|
|
|
|
logger.info("Comparing landmarks and sorting...")
|
|
img_list_len = len(img_list)
|
|
for i in tqdm(range(0, img_list_len - 1), desc="Comparing...", file=sys.stdout):
|
|
min_score = float("inf")
|
|
j_min_score = i + 1
|
|
for j in range(i + 1, img_list_len):
|
|
fl1 = img_list[i][1]
|
|
fl2 = img_list[j][1]
|
|
score = np.sum(np.absolute((fl2 - fl1).flatten()))
|
|
if score < min_score:
|
|
min_score = score
|
|
j_min_score = j
|
|
(img_list[i + 1], img_list[j_min_score]) = (img_list[j_min_score], img_list[i + 1])
|
|
return img_list
|
|
|
|
def sort_face_cnn_dissim(self):
|
|
""" Sort by landmark dissimilarity """
|
|
logger.info("Sorting by landmark dissimilarity...")
|
|
filename_list, _, landmarks = self._get_landmarks()
|
|
scores = np.zeros(len(filename_list), dtype='float32')
|
|
img_list = list(list(items) for items in zip(filename_list, landmarks, scores))
|
|
|
|
logger.info("Comparing landmarks...")
|
|
img_list_len = len(img_list)
|
|
for i in tqdm(range(0, img_list_len - 1), desc="Comparing...", file=sys.stdout):
|
|
score_total = 0
|
|
for j in range(i + 1, img_list_len):
|
|
if i == j:
|
|
continue
|
|
fl1 = img_list[i][1]
|
|
fl2 = img_list[j][1]
|
|
score_total += np.sum(np.absolute((fl2 - fl1).flatten()))
|
|
img_list[i][2] = score_total
|
|
|
|
logger.info("Sorting...")
|
|
img_list = sorted(img_list, key=operator.itemgetter(2), reverse=True)
|
|
return img_list
|
|
|
|
def sort_face_yaw(self):
|
|
""" Sort by estimated face yaw angle """
|
|
logger.info("Sorting by estimated face yaw angle..")
|
|
filename_list, _, landmarks = self._get_landmarks()
|
|
|
|
logger.info("Estimating yaw...")
|
|
yaws = [self.calc_landmarks_face_yaw(mark) for mark in landmarks]
|
|
|
|
logger.info("Sorting...")
|
|
matched_list = list(zip(filename_list, yaws))
|
|
img_list = sorted(matched_list, key=operator.itemgetter(1), reverse=True)
|
|
return img_list
|
|
|
|
def sort_hist(self):
|
|
""" Sort by image histogram similarity """
|
|
logger.info("Sorting by histogram similarity...")
|
|
filename_list, image_list = self._get_images()
|
|
distance = cv2.HISTCMP_BHATTACHARYYA
|
|
|
|
logger.info("Calculating histograms...")
|
|
histograms = [cv2.calcHist([img], [0], None, [256], [0, 256]) for img in image_list]
|
|
img_list = list(zip(filename_list, histograms))
|
|
|
|
logger.info("Comparing histograms and sorting...")
|
|
img_list_len = len(img_list)
|
|
for i in tqdm(range(0, img_list_len - 1), desc="Comparing", file=sys.stdout):
|
|
min_score = float("inf")
|
|
j_min_score = i + 1
|
|
for j in range(i + 1, img_list_len):
|
|
score = cv2.compareHist(img_list[i][1], img_list[j][1], distance)
|
|
if score < min_score:
|
|
min_score = score
|
|
j_min_score = j
|
|
(img_list[i + 1], img_list[j_min_score]) = (img_list[j_min_score], img_list[i + 1])
|
|
return img_list
|
|
|
|
def sort_hist_dissim(self):
|
|
""" Sort by image histogram dissimilarity """
|
|
logger.info("Sorting by histogram dissimilarity...")
|
|
filename_list, image_list = self._get_images()
|
|
scores = np.zeros(len(filename_list), dtype='float32')
|
|
distance = cv2.HISTCMP_BHATTACHARYYA
|
|
|
|
logger.info("Calculating histograms...")
|
|
histograms = [cv2.calcHist([img], [0], None, [256], [0, 256]) for img in image_list]
|
|
img_list = list(list(items) for items in zip(filename_list, histograms, scores))
|
|
|
|
logger.info("Comparing histograms...")
|
|
img_list_len = len(img_list)
|
|
for i in tqdm(range(0, img_list_len), desc="Comparing", file=sys.stdout):
|
|
score_total = 0
|
|
for j in range(0, img_list_len):
|
|
if i == j:
|
|
continue
|
|
score_total += cv2.compareHist(img_list[i][1], img_list[j][1], distance)
|
|
img_list[i][2] = score_total
|
|
|
|
logger.info("Sorting...")
|
|
img_list = sorted(img_list, key=operator.itemgetter(2), reverse=True)
|
|
return img_list
|
|
|
|
def sort_color(self):
|
|
""" Score by channel average intensity """
|
|
logger.info("Sorting by channel average intensity...")
|
|
desired_channel = {'gray': 0, 'luma': 0, 'orange': 1, 'green': 2}
|
|
method = self.args.color_method
|
|
channel_to_sort = next(v for (k, v) in desired_channel.items() if method.endswith(k))
|
|
filename_list, image_list = self._get_images()
|
|
|
|
logger.info("Converting to appropriate colorspace...")
|
|
same_size = all(img.size == image_list[0].size for img in image_list)
|
|
images = np.array(image_list, dtype='float32')[None, ...] if same_size else image_list
|
|
converted_images = self._convert_color(images, same_size, method)
|
|
|
|
logger.info("Scoring each image...")
|
|
if same_size:
|
|
scores = np.average(converted_images[0], axis=(1, 2))
|
|
else:
|
|
progress_bar = tqdm(converted_images, desc="Scoring", file=sys.stdout)
|
|
scores = np.array([np.average(image, axis=(0, 1)) for image in progress_bar])
|
|
|
|
logger.info("Sorting...")
|
|
matched_list = list(zip(filename_list, scores[:, channel_to_sort]))
|
|
sorted_file_img_list = sorted(matched_list, key=operator.itemgetter(1), reverse=True)
|
|
return sorted_file_img_list
|
|
|
|
# Methods for grouping
|
|
def group_blur(self, img_list):
|
|
""" Group into bins by blur """
|
|
# Starting the binning process
|
|
num_bins = self.args.num_bins
|
|
|
|
# The last bin will get all extra images if it's
|
|
# not possible to distribute them evenly
|
|
num_per_bin = len(img_list) // num_bins
|
|
remainder = len(img_list) % num_bins
|
|
|
|
logger.info("Grouping by blur...")
|
|
bins = [[] for _ in range(num_bins)]
|
|
idx = 0
|
|
for i in range(num_bins):
|
|
for _ in range(num_per_bin):
|
|
bins[i].append(img_list[idx][0])
|
|
idx += 1
|
|
|
|
# If remainder is 0, nothing gets added to the last bin.
|
|
for i in range(1, remainder + 1):
|
|
bins[-1].append(img_list[-i][0])
|
|
|
|
return bins
|
|
|
|
def group_face_cnn(self, img_list):
|
|
""" Group into bins by CNN face similarity """
|
|
logger.info("Grouping by face-cnn similarity...")
|
|
|
|
# Groups are of the form: group_num -> reference faces
|
|
reference_groups = dict()
|
|
|
|
# Bins array, where index is the group number and value is
|
|
# an array containing the file paths to the images in that group.
|
|
bins = []
|
|
|
|
# Comparison threshold used to decide how similar
|
|
# faces have to be to be grouped together.
|
|
# It is multiplied by 1000 here to allow the cli option to use smaller
|
|
# numbers.
|
|
min_threshold = self.args.min_threshold * 1000
|
|
|
|
img_list_len = len(img_list)
|
|
|
|
for i in tqdm(range(0, img_list_len - 1),
|
|
desc="Grouping",
|
|
file=sys.stdout):
|
|
fl1 = img_list[i][1]
|
|
|
|
current_best = [-1, float("inf")]
|
|
|
|
for key, references in reference_groups.items():
|
|
try:
|
|
score = self.get_avg_score_faces_cnn(fl1, references)
|
|
except TypeError:
|
|
score = float("inf")
|
|
except ZeroDivisionError:
|
|
score = float("inf")
|
|
if score < current_best[1]:
|
|
current_best[0], current_best[1] = key, score
|
|
|
|
if current_best[1] < min_threshold:
|
|
reference_groups[current_best[0]].append(fl1[0])
|
|
bins[current_best[0]].append(img_list[i][0])
|
|
else:
|
|
reference_groups[len(reference_groups)] = [img_list[i][1]]
|
|
bins.append([img_list[i][0]])
|
|
|
|
return bins
|
|
|
|
def group_face_yaw(self, img_list):
|
|
""" Group into bins by yaw of face """
|
|
# Starting the binning process
|
|
num_bins = self.args.num_bins
|
|
|
|
# The last bin will get all extra images if it's
|
|
# not possible to distribute them evenly
|
|
num_per_bin = len(img_list) // num_bins
|
|
remainder = len(img_list) % num_bins
|
|
|
|
logger.info("Grouping by face-yaw...")
|
|
bins = [[] for _ in range(num_bins)]
|
|
idx = 0
|
|
for i in range(num_bins):
|
|
for _ in range(num_per_bin):
|
|
bins[i].append(img_list[idx][0])
|
|
idx += 1
|
|
|
|
# If remainder is 0, nothing gets added to the last bin.
|
|
for i in range(1, remainder + 1):
|
|
bins[-1].append(img_list[-i][0])
|
|
|
|
return bins
|
|
|
|
def group_hist(self, img_list):
|
|
""" Group into bins by histogram """
|
|
logger.info("Grouping by histogram...")
|
|
|
|
# Groups are of the form: group_num -> reference histogram
|
|
reference_groups = dict()
|
|
|
|
# Bins array, where index is the group number and value is
|
|
# an array containing the file paths to the images in that group
|
|
bins = []
|
|
|
|
min_threshold = self.args.min_threshold
|
|
|
|
img_list_len = len(img_list)
|
|
reference_groups[0] = [img_list[0][1]]
|
|
bins.append([img_list[0][0]])
|
|
|
|
for i in tqdm(range(1, img_list_len),
|
|
desc="Grouping",
|
|
file=sys.stdout):
|
|
current_best = [-1, float("inf")]
|
|
for key, value in reference_groups.items():
|
|
score = self.get_avg_score_hist(img_list[i][1], value)
|
|
if score < current_best[1]:
|
|
current_best[0], current_best[1] = key, score
|
|
|
|
if current_best[1] < min_threshold:
|
|
reference_groups[current_best[0]].append(img_list[i][1])
|
|
bins[current_best[0]].append(img_list[i][0])
|
|
else:
|
|
reference_groups[len(reference_groups)] = [img_list[i][1]]
|
|
bins.append([img_list[i][0]])
|
|
|
|
return bins
|
|
|
|
# Final process methods
|
|
def final_process_rename(self, img_list):
|
|
""" Rename the files """
|
|
output_dir = self.args.output_dir
|
|
|
|
process_file = self.set_process_file_method(self.args.log_changes,
|
|
self.args.keep_original)
|
|
|
|
# Make sure output directory exists
|
|
if not os.path.exists(output_dir):
|
|
os.makedirs(output_dir)
|
|
|
|
description = (
|
|
"Copying and Renaming" if self.args.keep_original
|
|
else "Moving and Renaming"
|
|
)
|
|
|
|
for i in tqdm(range(0, len(img_list)),
|
|
desc=description,
|
|
leave=False,
|
|
file=sys.stdout):
|
|
src = img_list[i] if isinstance(img_list[i], str) else img_list[i][0]
|
|
src_basename = os.path.basename(src)
|
|
|
|
dst = os.path.join(output_dir, '{:05d}_{}'.format(i, src_basename))
|
|
try:
|
|
process_file(src, dst, self.changes)
|
|
except FileNotFoundError as err:
|
|
logger.error(err)
|
|
logger.error('fail to rename %s', src)
|
|
|
|
for i in tqdm(range(0, len(img_list)),
|
|
desc=description,
|
|
file=sys.stdout):
|
|
renaming = self.set_renaming_method(self.args.log_changes)
|
|
fname = img_list[i] if isinstance(img_list[i], str) else img_list[i][0]
|
|
src, dst = renaming(fname, output_dir, i, self.changes)
|
|
|
|
try:
|
|
os.rename(src, dst)
|
|
except FileNotFoundError as err:
|
|
logger.error(err)
|
|
logger.error('fail to rename %s', format(src))
|
|
|
|
if self.args.log_changes:
|
|
self.write_to_log(self.changes)
|
|
|
|
def final_process_folders(self, bins):
|
|
""" Move the files to folders """
|
|
output_dir = self.args.output_dir
|
|
|
|
process_file = self.set_process_file_method(self.args.log_changes,
|
|
self.args.keep_original)
|
|
|
|
# First create new directories to avoid checking
|
|
# for directory existence in the moving loop
|
|
logger.info("Creating group directories.")
|
|
for i in range(len(bins)):
|
|
directory = os.path.join(output_dir, str(i))
|
|
if not os.path.exists(directory):
|
|
os.makedirs(directory)
|
|
|
|
description = (
|
|
"Copying into Groups" if self.args.keep_original
|
|
else "Moving into Groups"
|
|
)
|
|
|
|
logger.info("Total groups found: %s", len(bins))
|
|
for i in tqdm(range(len(bins)), desc=description, file=sys.stdout):
|
|
for j in range(len(bins[i])):
|
|
src = bins[i][j]
|
|
src_basename = os.path.basename(src)
|
|
|
|
dst = os.path.join(output_dir, str(i), src_basename)
|
|
try:
|
|
process_file(src, dst, self.changes)
|
|
except FileNotFoundError as err:
|
|
logger.error(err)
|
|
logger.error("Failed to move '%s' to '%s'", src, dst)
|
|
|
|
if self.args.log_changes:
|
|
self.write_to_log(self.changes)
|
|
|
|
# Various helper methods
|
|
def write_to_log(self, changes):
|
|
""" Write the changes to log file """
|
|
logger.info("Writing sort log to: '%s'", self.args.log_file_path)
|
|
self.serializer.save(self.args.log_file_path, changes)
|
|
|
|
def reload_images(self, group_method, img_list):
|
|
"""
|
|
Reloads the image list by replacing the comparative values with those
|
|
that the chosen grouping method expects.
|
|
:param group_method: str name of the grouping method that will be used.
|
|
:param img_list: image list that has been sorted by one of the sort
|
|
methods.
|
|
:return: img_list but with the comparative values that the chosen
|
|
grouping method expects.
|
|
"""
|
|
logger.info("Preparing to group...")
|
|
if group_method == 'group_blur':
|
|
filename_list, image_list = self._get_images()
|
|
blurs = [self.estimate_blur(img) for img in image_list]
|
|
temp_list = list(zip(filename_list, blurs))
|
|
elif group_method == 'group_face_cnn':
|
|
filename_list, image_list, landmarks = self._get_landmarks()
|
|
temp_list = list(zip(filename_list, landmarks))
|
|
elif group_method == 'group_face_yaw':
|
|
filename_list, image_list, landmarks = self._get_landmarks()
|
|
yaws = [self.calc_landmarks_face_yaw(mark) for mark in landmarks]
|
|
temp_list = list(zip(filename_list, yaws))
|
|
elif group_method == 'group_hist':
|
|
filename_list, image_list = self._get_images()
|
|
histograms = [cv2.calcHist([img], [0], None, [256], [0, 256]) for img in image_list]
|
|
temp_list = list(zip(filename_list, histograms))
|
|
else:
|
|
raise ValueError("{} group_method not found.".format(group_method))
|
|
|
|
return self.splice_lists(img_list, temp_list)
|
|
|
|
@staticmethod
|
|
def _convert_color(imgs, same_size, method):
|
|
""" Helper function to convert colorspaces """
|
|
|
|
if method.endswith('gray'):
|
|
conversion = np.array([[0.0722], [0.7152], [0.2126]])
|
|
else:
|
|
conversion = np.array([[0.25, 0.5, 0.25], [-0.5, 0.0, 0.5], [-0.25, 0.5, -0.25]])
|
|
|
|
if same_size:
|
|
path = 'greedy'
|
|
operation = 'bijk, kl -> bijl' if method.endswith('gray') else 'bijl, kl -> bijk'
|
|
else:
|
|
operation = 'ijk, kl -> ijl' if method.endswith('gray') else 'ijl, kl -> ijk'
|
|
path = np.einsum_path(operation, imgs[0][..., :3], conversion, optimize='optimal')[0]
|
|
|
|
progress_bar = tqdm(imgs, desc="Converting", file=sys.stdout)
|
|
images = [np.einsum(operation, img[..., :3], conversion, optimize=path).astype('float32')
|
|
for img in progress_bar]
|
|
return images
|
|
|
|
@staticmethod
|
|
def splice_lists(sorted_list, new_vals_list):
|
|
"""
|
|
This method replaces the value at index 1 in each sub-list in the
|
|
sorted_list with the value that is calculated for the same img_path,
|
|
but found in new_vals_list.
|
|
|
|
Format of lists: [[img_path, value], [img_path2, value2], ...]
|
|
|
|
:param sorted_list: list that has been sorted by one of the sort
|
|
methods.
|
|
:param new_vals_list: list that has been loaded by a different method
|
|
than the sorted_list.
|
|
:return: list that is sorted in the same way as the input sorted list
|
|
but the values corresponding to each image are from new_vals_list.
|
|
"""
|
|
new_list = []
|
|
# Make new list of just image paths to serve as an index
|
|
val_index_list = [i[0] for i in new_vals_list]
|
|
for i in tqdm(range(len(sorted_list)), desc="Splicing", file=sys.stdout):
|
|
current_img = sorted_list[i] if isinstance(sorted_list[i], str) else sorted_list[i][0]
|
|
new_val_index = val_index_list.index(current_img)
|
|
new_list.append([current_img, new_vals_list[new_val_index][1]])
|
|
|
|
return new_list
|
|
|
|
@staticmethod
|
|
def find_images(input_dir):
|
|
""" Return list of images at specified location """
|
|
result = []
|
|
extensions = [".jpg", ".png", ".jpeg"]
|
|
for root, _, files in os.walk(input_dir):
|
|
for file in files:
|
|
if os.path.splitext(file)[1].lower() in extensions:
|
|
result.append(os.path.join(root, file))
|
|
break
|
|
return result
|
|
|
|
@staticmethod
|
|
def estimate_blur(image):
|
|
"""
|
|
Estimate the amount of blur an image has with the variance of the Laplacian.
|
|
Normalize by pixel number to offset the effect of image size on pixel gradients & variance
|
|
"""
|
|
if image.ndim == 3:
|
|
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
|
blur_map = cv2.Laplacian(image, cv2.CV_32F)
|
|
score = np.var(blur_map) / np.sqrt(image.shape[0] * image.shape[1])
|
|
return score
|
|
|
|
@staticmethod
|
|
def calc_landmarks_face_pitch(flm):
|
|
""" UNUSED - Calculate the amount of pitch in a face """
|
|
var_t = ((flm[6][1] - flm[8][1]) + (flm[10][1] - flm[8][1])) / 2.0
|
|
var_b = flm[8][1]
|
|
return var_b - var_t
|
|
|
|
@staticmethod
|
|
def calc_landmarks_face_yaw(flm):
|
|
""" Calculate the amount of yaw in a face """
|
|
var_l = ((flm[27][0] - flm[0][0])
|
|
+ (flm[28][0] - flm[1][0])
|
|
+ (flm[29][0] - flm[2][0])) / 3.0
|
|
var_r = ((flm[16][0] - flm[27][0])
|
|
+ (flm[15][0] - flm[28][0])
|
|
+ (flm[14][0] - flm[29][0])) / 3.0
|
|
return var_r - var_l
|
|
|
|
@staticmethod
|
|
def set_process_file_method(log_changes, keep_original):
|
|
"""
|
|
Assigns the final file processing method based on whether changes are
|
|
being logged and whether the original files are being kept in the
|
|
input directory.
|
|
Relevant cli arguments: -k, -l
|
|
:return: function reference
|
|
"""
|
|
if log_changes:
|
|
if keep_original:
|
|
def process_file(src, dst, changes):
|
|
""" Process file method if logging changes
|
|
and keeping original """
|
|
copyfile(src, dst)
|
|
changes[src] = dst
|
|
|
|
else:
|
|
def process_file(src, dst, changes):
|
|
""" Process file method if logging changes
|
|
and not keeping original """
|
|
os.rename(src, dst)
|
|
changes[src] = dst
|
|
|
|
else:
|
|
if keep_original:
|
|
def process_file(src, dst, changes): # pylint: disable=unused-argument
|
|
""" Process file method if not logging changes
|
|
and keeping original """
|
|
copyfile(src, dst)
|
|
|
|
else:
|
|
def process_file(src, dst, changes): # pylint: disable=unused-argument
|
|
""" Process file method if not logging changes
|
|
and not keeping original """
|
|
os.rename(src, dst)
|
|
return process_file
|
|
|
|
@staticmethod
|
|
def set_renaming_method(log_changes):
|
|
""" Set the method for renaming files """
|
|
if log_changes:
|
|
def renaming(src, output_dir, i, changes):
|
|
""" Rename files method if logging changes """
|
|
src_basename = os.path.basename(src)
|
|
|
|
__src = os.path.join(output_dir,
|
|
'{:05d}_{}'.format(i, src_basename))
|
|
dst = os.path.join(
|
|
output_dir,
|
|
'{:05d}{}'.format(i, os.path.splitext(src_basename)[1]))
|
|
changes[src] = dst
|
|
return __src, dst
|
|
else:
|
|
def renaming(src, output_dir, i, changes): # pylint: disable=unused-argument
|
|
""" Rename files method if not logging changes """
|
|
src_basename = os.path.basename(src)
|
|
|
|
src = os.path.join(output_dir,
|
|
'{:05d}_{}'.format(i, src_basename))
|
|
dst = os.path.join(
|
|
output_dir,
|
|
'{:05d}{}'.format(i, os.path.splitext(src_basename)[1]))
|
|
return src, dst
|
|
return renaming
|
|
|
|
@staticmethod
|
|
def get_avg_score_hist(img1, references):
|
|
""" Return the average histogram score between a face and
|
|
reference image """
|
|
scores = []
|
|
for img2 in references:
|
|
score = cv2.compareHist(img1, img2, cv2.HISTCMP_BHATTACHARYYA)
|
|
scores.append(score)
|
|
return sum(scores) / len(scores)
|
|
|
|
@staticmethod
|
|
def get_avg_score_faces_cnn(fl1, references):
|
|
""" Return the average CNN similarity score
|
|
between a face and reference image """
|
|
scores = []
|
|
for fl2 in references:
|
|
score = np.sum(np.absolute((fl2 - fl1).flatten()))
|
|
scores.append(score)
|
|
return sum(scores) / len(scores)
|