1
0
Fork 0
mirror of https://github.com/deepfakes/faceswap synced 2025-06-08 20:13:52 -04:00
faceswap/scripts/fsmedia.py
torzdf 2b5b871156
lib.alignments - Slight update (#978)
* lib.alignments update:
  - Minor structure change (faces to nested dictionary)
  - Refactor internal and external methods
  - Documentation
2020-03-02 17:13:32 +00:00

632 lines
23 KiB
Python

#!/usr/bin/env python3
""" Helper functions for :mod:`~scripts.extract` and :mod:`~scripts.convert`.
Holds the classes for the 2 main Faceswap 'media' objects: Images and Alignments.
Holds optional pre/post processing functions for convert and extract.
"""
import logging
import os
import sys
from pathlib import Path
import cv2
import imageio
from lib.alignments import Alignments as AlignmentsBase
from lib.face_filter import FaceFilter as FilterFunc
from lib.image import count_frames, read_image
from lib.utils import (camel_case_split, get_image_paths, _video_extensions)
logger = logging.getLogger(__name__) # pylint: disable=invalid-name
def finalize(images_found, num_faces_detected, verify_output):
""" Output summary statistics at the end of the extract or convert processes.
Parameters
----------
images_found: int
The number of images/frames that were processed
num_faces_detected: int
The number of faces that have been detected
verify_output: bool
``True`` if multiple faces were detected in frames otherwise ``False``.
"""
logger.info("-------------------------")
logger.info("Images found: %s", images_found)
logger.info("Faces detected: %s", num_faces_detected)
logger.info("-------------------------")
if verify_output:
logger.info("Note:")
logger.info("Multiple faces were detected in one or more pictures.")
logger.info("Double check your results.")
logger.info("-------------------------")
logger.info("Process Succesfully Completed. Shutting Down...")
class Alignments(AlignmentsBase):
""" Override :class:`lib.alignments.Alignments` to add custom loading based on command
line arguments.
Parameters
----------
arguments: :class:`argparse.Namespace`
The command line arguments that were passed to Faceswap
is_extract: bool
``True`` if the process calling this class is extraction otherwise ``False``
input_is_video: bool, optional
``True`` if the input to the process is a video, ``False`` if it is a folder of images.
Default: False
"""
def __init__(self, arguments, is_extract, input_is_video=False):
logger.debug("Initializing %s: (is_extract: %s, input_is_video: %s)",
self.__class__.__name__, is_extract, input_is_video)
self._args = arguments
self._is_extract = is_extract
folder, filename = self._set_folder_filename(input_is_video)
super().__init__(folder, filename=filename)
logger.debug("Initialized %s", self.__class__.__name__)
def _set_folder_filename(self, input_is_video):
""" Return the folder and the filename for the alignments file.
If the input is a video, the alignments file will be stored in the same folder
as the video, with filename `<videoname>_alignments`.
If the input is a folder of images, the alignments file will be stored in folder with
the images and just be called 'alignments'
Parameters
----------
input_is_video: bool, optional
``True`` if the input to the process is a video, ``False`` if it is a folder of images.
Returns
-------
folder: str
The folder where the alignments file will be stored
filename: str
The filename of the alignments file
"""
if self._args.alignments_path:
logger.debug("Alignments File provided: '%s'", self._args.alignments_path)
folder, filename = os.path.split(str(self._args.alignments_path))
elif input_is_video:
logger.debug("Alignments from Video File: '%s'", self._args.input_dir)
folder, filename = os.path.split(self._args.input_dir)
filename = "{}_alignments".format(os.path.splitext(filename)[0])
else:
logger.debug("Alignments from Input Folder: '%s'", self._args.input_dir)
folder = str(self._args.input_dir)
filename = "alignments"
logger.debug("Setting Alignments: (folder: '%s' filename: '%s')", folder, filename)
return folder, filename
def _load(self):
""" Override the parent :func:`~lib.alignments.Alignments._load` to handle skip existing
frames and faces on extract.
If skip existing has been selected, existing alignments are loaded and returned to the
calling script.
Returns
-------
dict
Any alignments that have already been extracted if skip existing has been selected
otherwise an empty dictionary
"""
data = dict()
if not self._is_extract:
if not self.have_alignments_file:
return data
data = super()._load()
return data
skip_existing = hasattr(self._args, 'skip_existing') and self._args.skip_existing
skip_faces = hasattr(self._args, 'skip_faces') and self._args.skip_faces
if not skip_existing and not skip_faces:
logger.debug("No skipping selected. Returning empty dictionary")
return data
if not self.have_alignments_file and (skip_existing or skip_faces):
logger.warning("Skip Existing/Skip Faces selected, but no alignments file found!")
return data
data = self._serializer.load(self.file)
if skip_faces:
# Remove items from alignments that have no faces so they will
# be re-detected
del_keys = [key for key, val in data.items() if not val]
logger.debug("Frames with no faces selected for redetection: %s", len(del_keys))
for key in del_keys:
if key in data:
logger.trace("Selected for redetection: '%s'", key)
del data[key]
return data
class Images():
""" Handles the loading of frames from a folder of images or a video file for extract
and convert processes.
Parameters
----------
arguments: :class:`argparse.Namespace`
The command line arguments that were passed to Faceswap
"""
def __init__(self, arguments):
logger.debug("Initializing %s", self.__class__.__name__)
self._args = arguments
self._is_video = self._check_input_folder()
self._input_images = self._get_input_images()
self._images_found = self._count_images()
logger.debug("Initialized %s", self.__class__.__name__)
@property
def is_video(self):
"""bool: ``True`` if the input is a video file otherwise ``False``. """
return self._is_video
@property
def input_images(self):
"""str or list: Path to the video file if the input is a video otherwise list of
image paths. """
return self._input_images
@property
def images_found(self):
"""int: The number of frames that exist in the video file, or the folder of images. """
return self._images_found
def _count_images(self):
""" Get the number of Frames from a video file or folder of images.
Returns
-------
int
The number of frames in the image source
"""
if self._is_video:
retval = int(count_frames(self._args.input_dir, fast=True))
else:
retval = len(self._input_images)
return retval
def _check_input_folder(self):
""" Check whether the input is a folder or video.
Returns
-------
bool
``True`` if the input is a video otherwise ``False``
"""
if not os.path.exists(self._args.input_dir):
logger.error("Input location %s not found.", self._args.input_dir)
sys.exit(1)
if (os.path.isfile(self._args.input_dir) and
os.path.splitext(self._args.input_dir)[1].lower() in _video_extensions):
logger.info("Input Video: %s", self._args.input_dir)
retval = True
else:
logger.info("Input Directory: %s", self._args.input_dir)
retval = False
return retval
def _get_input_images(self):
""" Return the list of images or path to video file that is to be processed.
Returns
-------
str or list
Path to the video file if the input is a video otherwise list of image paths.
"""
if self._is_video:
input_images = self._args.input_dir
else:
input_images = get_image_paths(self._args.input_dir)
return input_images
def load(self):
""" Generator to load frames from a folder of images or from a video file.
Yields
------
filename: str
The filename of the current frame
image: :class:`numpy.ndarray`
A single frame
"""
iterator = self._load_video_frames if self._is_video else self._load_disk_frames
for filename, image in iterator():
yield filename, image
def _load_disk_frames(self):
""" Generator to load frames from a folder of images.
Yields
------
filename: str
The filename of the current frame
image: :class:`numpy.ndarray`
A single frame
"""
logger.debug("Input is separate Frames. Loading images")
for filename in self._input_images:
image = read_image(filename, raise_error=False)
if image is None:
continue
yield filename, image
def _load_video_frames(self):
""" Generator to load frames from a video file.
Yields
------
filename: str
The filename of the current frame
image: :class:`numpy.ndarray`
A single frame
"""
logger.debug("Input is video. Capturing frames")
vidname = os.path.splitext(os.path.basename(self._args.input_dir))[0]
reader = imageio.get_reader(self._args.input_dir, "ffmpeg")
for i, frame in enumerate(reader):
# Convert to BGR for cv2 compatibility
frame = frame[:, :, ::-1]
filename = "{}_{:06d}.png".format(vidname, i + 1)
logger.trace("Loading video frame: '%s'", filename)
yield filename, frame
reader.close()
def load_one_image(self, filename):
""" Obtain a single image for the given filename.
Parameters
----------
filename: str
The filename to return the image for
Returns
------
:class:`numpy.ndarray`
The image for the requested filename,
"""
logger.trace("Loading image: '%s'", filename)
if self._is_video:
if filename.isdigit():
frame_no = filename
else:
frame_no = os.path.splitext(filename)[0][filename.rfind("_") + 1:]
logger.trace("Extracted frame_no %s from filename '%s'", frame_no, filename)
retval = self._load_one_video_frame(int(frame_no))
else:
retval = read_image(filename, raise_error=True)
return retval
def _load_one_video_frame(self, frame_no):
""" Obtain a single frame from a video file.
Parameters
----------
frame_no: int
The frame index for the required frame
Returns
------
:class:`numpy.ndarray`
The image for the requested frame index,
"""
logger.trace("Loading video frame: %s", frame_no)
reader = imageio.get_reader(self._args.input_dir, "ffmpeg")
reader.set_image_index(frame_no - 1)
frame = reader.get_next_data()[:, :, ::-1]
reader.close()
return frame
class PostProcess(): # pylint:disable=too-few-public-methods
""" Optional pre/post processing tasks for convert and extract.
Builds a pipeline of actions that have optionally been requested to be performed
in this session.
Parameters
----------
arguments: :class:`argparse.Namespace`
The command line arguments that were passed to Faceswap
"""
def __init__(self, arguments):
logger.debug("Initializing %s", self.__class__.__name__)
self._args = arguments
self._actions = self._set_actions()
logger.debug("Initialized %s", self.__class__.__name__)
def _set_actions(self):
""" Compile the requested actions to be performed into a list
Returns
-------
list
The list of :class:`PostProcessAction` to be performed
"""
postprocess_items = self._get_items()
actions = list()
for action, options in postprocess_items.items():
options = dict() if options is None else options
args = options.get("args", tuple())
kwargs = options.get("kwargs", dict())
args = args if isinstance(args, tuple) else tuple()
kwargs = kwargs if isinstance(kwargs, dict) else dict()
task = globals()[action](*args, **kwargs)
if task.valid:
logger.debug("Adding Postprocess action: '%s'", task)
actions.append(task)
for action in actions:
action_name = camel_case_split(action.__class__.__name__)
logger.info("Adding post processing item: %s", " ".join(action_name))
return actions
def _get_items(self):
""" Check the passed in command line arguments for requested actions,
For any requested actions, add the item to the actions list along with
any relevant arguments and keyword arguments.
Returns
-------
dict
The name of the action to be performed as the key. Any action specific
arguments and keyword arguments as the value.
"""
postprocess_items = dict()
# Debug Landmarks
if (hasattr(self._args, 'debug_landmarks') and self._args.debug_landmarks):
postprocess_items["DebugLandmarks"] = None
# Face Filter post processing
if ((hasattr(self._args, "filter") and self._args.filter is not None) or
(hasattr(self._args, "nfilter") and
self._args.nfilter is not None)):
if hasattr(self._args, "detector"):
detector = self._args.detector.replace("-", "_").lower()
else:
detector = "cv2_dnn"
if hasattr(self._args, "aligner"):
aligner = self._args.aligner.replace("-", "_").lower()
else:
aligner = "cv2_dnn"
face_filter = dict(detector=detector,
aligner=aligner,
multiprocess=not self._args.singleprocess)
filter_lists = dict()
if hasattr(self._args, "ref_threshold"):
face_filter["ref_threshold"] = self._args.ref_threshold
for filter_type in ('filter', 'nfilter'):
filter_args = getattr(self._args, filter_type, None)
filter_args = None if not filter_args else filter_args
filter_lists[filter_type] = filter_args
face_filter["filter_lists"] = filter_lists
postprocess_items["FaceFilter"] = {"kwargs": face_filter}
logger.debug("Postprocess Items: %s", postprocess_items)
return postprocess_items
def do_actions(self, extract_media):
""" Perform the requested optional post-processing actions on the given image.
Parameters
----------
extract_media: :class:`~plugins.extract.pipeline.ExtractMedia`
The :class:`~plugins.extract.pipeline.ExtractMedia` object to perform the
action on.
Returns
-------
:class:`~plugins.extract.pipeline.ExtractMedia`
The original :class:`~plugins.extract.pipeline.ExtractMedia` with any actions applied
"""
for action in self._actions:
logger.debug("Performing postprocess action: '%s'", action.__class__.__name__)
action.process(extract_media)
class PostProcessAction(): # pylint: disable=too-few-public-methods
""" Parent class for Post Processing Actions.
Usable in Extract or Convert or both depending on context. Any post-processing actions should
inherit from this class.
Parameters
-----------
args: tuple
Varies for specific post process action
kwargs: dict
Varies for specific post process action
"""
def __init__(self, *args, **kwargs):
logger.debug("Initializing %s: (args: %s, kwargs: %s)",
self.__class__.__name__, args, kwargs)
self._valid = True # Set to False if invalid parameters passed in to disable
logger.debug("Initialized base class %s", self.__class__.__name__)
@property
def valid(self):
"""bool: ``True`` if the action if the parameters passed in for this action are valid,
otherwise ``False`` """
return self._valid
def process(self, extract_media):
""" Override for specific post processing action
Parameters
----------
extract_media: :class:`~plugins.extract.pipeline.ExtractMedia`
The :class:`~plugins.extract.pipeline.ExtractMedia` object to perform the
action on.
"""
raise NotImplementedError
class DebugLandmarks(PostProcessAction): # pylint: disable=too-few-public-methods
""" Draw debug landmarks on face output. Extract Only """
def process(self, extract_media):
""" Draw landmarks on a face.
Parameters
----------
extract_media: :class:`~plugins.extract.pipeline.ExtractMedia`
The :class:`~plugins.extract.pipeline.ExtractMedia` object that contains the faces to
draw the landmarks on to
Returns
-------
:class:`~plugins.extract.pipeline.ExtractMedia`
The original :class:`~plugins.extract.pipeline.ExtractMedia` with landmarks drawn
onto the face
"""
frame = os.path.splitext(os.path.basename(extract_media.filename))[0]
for idx, face in enumerate(extract_media.detected_faces):
logger.trace("Drawing Landmarks. Frame: '%s'. Face: %s", frame, idx)
aligned_landmarks = face.aligned_landmarks
for (pos_x, pos_y) in aligned_landmarks:
cv2.circle(face.aligned_face, (pos_x, pos_y), 2, (0, 0, 255), -1)
class FaceFilter(PostProcessAction):
""" Filter in or out faces based on input image(s). Extract or Convert
Parameters
-----------
args: tuple
Unused
kwargs: dict
Keyword arguments for face filter:
* **detector** (`str`) - The detector to use
* **aligner** (`str`) - The aligner to use
* **multiprocess** (`bool`) - Whether to run the extraction pipeline in single process \
mode or not
* **ref_threshold** (`float`) - The reference threshold for a positive match
* **filter_lists** (`dict`) - The filter and nfilter image paths
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
logger.info("Extracting and aligning face for Face Filter...")
self._filter = self._load_face_filter(**kwargs)
logger.debug("Initialized %s", self.__class__.__name__)
def _load_face_filter(self, filter_lists, ref_threshold, aligner, detector, multiprocess):
""" Set up and load the :class:`~lib.face_filter.FaceFilter`.
Parameters
----------
filter_lists: dict
The filter and nfilter image paths
ref_threshold: float
The reference threshold for a positive match
aligner: str
The aligner to use
detector: str
The detector to use
multiprocess: bool
Whether to run the extraction pipeline in single process mode or not
Returns
-------
:class:`~lib.face_filter.FaceFilter`
The face filter
"""
if not any(val for val in filter_lists.values()):
return None
facefilter = None
filter_files = [self._set_face_filter(f_type, filter_lists[f_type])
for f_type in ("filter", "nfilter")]
if any(filters for filters in filter_files):
facefilter = FilterFunc(filter_files[0],
filter_files[1],
detector,
aligner,
multiprocess,
ref_threshold)
logger.debug("Face filter: %s", facefilter)
else:
self.valid = False
return facefilter
@staticmethod
def _set_face_filter(f_type, f_args):
""" Check filter files exist and add the filter file paths to a list.
Parameters
----------
f_type: {"filter", "nfilter"}
The type of filter to create this list for
f_args: str or list
The filter image(s) to use
Returns
-------
list
The confirmed existing paths to filter files to use
"""
if not f_args:
return list()
logger.info("%s: %s", f_type.title(), f_args)
filter_files = f_args if isinstance(f_args, list) else [f_args]
filter_files = list(filter(lambda fpath: Path(fpath).exists(), filter_files))
if not filter_files:
logger.warning("Face %s files were requested, but no files could be found. This "
"filter will not be applied.", f_type)
logger.debug("Face Filter files: %s", filter_files)
return filter_files
def process(self, extract_media):
""" Filters in or out any wanted or unwanted faces based on command line arguments.
Parameters
----------
extract_media: :class:`~plugins.extract.pipeline.ExtractMedia`
The :class:`~plugins.extract.pipeline.ExtractMedia` object to perform the
face filtering on.
Returns
-------
:class:`~plugins.extract.pipeline.ExtractMedia`
The original :class:`~plugins.extract.pipeline.ExtractMedia` with any requested filters
applied
"""
if not self._filter:
return
ret_faces = list()
for idx, detect_face in enumerate(extract_media.detected_faces):
check_item = detect_face["face"] if isinstance(detect_face, dict) else detect_face
check_item.load_aligned(extract_media.image)
if not self._filter.check(check_item):
logger.verbose("Skipping not recognized face: (Frame: %s Face %s)",
extract_media.filename, idx)
continue
logger.trace("Accepting recognised face. Frame: %s. Face: %s",
extract_media.filename, idx)
ret_faces.append(detect_face)
extract_media.detected_faces = ret_faces