mirror of
https://github.com/deepfakes/faceswap
synced 2025-06-09 04:36:50 -04:00
* Smart Masks - Training - Reinstate smart mask training code - Reinstate mask_type back to model.config - change 'replicate_input_mask to 'learn_mask' - Add learn mask option - Add mask loading from alignments to plugins.train.trainer - Add mask_blur and mask threshold options - _base.py - Pass mask options through training_opts dict - plugins.train.model - check for mask_type not None for learn_mask and penalized_mask_loss - Limit alignments loading to just those faces that appear in the training folder - Raise error if not all training images have an alignment, and alignment file is required - lib.training_data - Mask generation code - lib.faces_detect - cv2 dimension stripping bugfix - Remove cv2 linting code * Update mask helptext in cli.py * Fix Warp to Landmarks Remove SHA1 hashing from training data * Update mask training config * Capture missing masks at training init * lib.image.read_image_batch - Return filenames with batch for ordering * scripts.train - Documentation * plugins.train.trainer - documentation * Ensure backward compatibility. Fix convert for new predicted masks * Update removed masks to components for legacy models.
202 lines
8.6 KiB
Python
202 lines
8.6 KiB
Python
#!/usr/bin/env python3
|
|
""" RealFaceRC1, codenamed 'Pegasus'
|
|
Based on the original https://www.reddit.com/r/deepfakes/
|
|
code sample + contribs
|
|
Major thanks goes to BryanLyon as it vastly powered by his ideas and insights.
|
|
Without him it would not be possible to come up with the model.
|
|
Additional thanks: Birb - source of inspiration, great Encoder ideas
|
|
Kvrooman - additional couseling on autoencoders and practical advices
|
|
"""
|
|
|
|
from keras.initializers import RandomNormal
|
|
from keras.layers import Dense, Flatten, Input, Reshape
|
|
from keras.models import Model as KerasModel
|
|
|
|
from ._base import ModelBase, logger
|
|
|
|
|
|
class Model(ModelBase):
|
|
""" RealFace(tm) Faceswap Model """
|
|
def __init__(self, *args, **kwargs):
|
|
logger.debug("Initializing %s: (args: %s, kwargs: %s",
|
|
self.__class__.__name__, args, kwargs)
|
|
|
|
self.configfile = kwargs.get("configfile", None)
|
|
self.check_input_output()
|
|
self.dense_width, self.upscalers_no = self.get_dense_width_upscalers_numbers()
|
|
kwargs["input_shape"] = (self.config["input_size"], self.config["input_size"], 3)
|
|
self.kernel_initializer = RandomNormal(0, 0.02)
|
|
|
|
super().__init__(*args, **kwargs)
|
|
logger.debug("Initialized %s", self.__class__.__name__)
|
|
|
|
@property
|
|
def downscalers_no(self):
|
|
""" Number of downscalers. Don't change! """
|
|
return 4
|
|
|
|
@property
|
|
def _downscale_ratio(self):
|
|
""" Downscale Ratio """
|
|
return 2**self.downscalers_no
|
|
|
|
@property
|
|
def dense_filters(self):
|
|
""" Dense Filters. Don't change! """
|
|
return (int(1024 - (self.dense_width - 4) * 64) // 16) * 16
|
|
|
|
def check_input_output(self):
|
|
""" Confirm valid input and output sized have been provided """
|
|
if not 64 <= self.config["input_size"] <= 128 or self.config["input_size"] % 16 != 0:
|
|
logger.error("Config error: input_size must be between 64 and 128 and be divisible by "
|
|
"16.")
|
|
exit(1)
|
|
if not 64 <= self.config["output_size"] <= 256 or self.config["output_size"] % 32 != 0:
|
|
logger.error("Config error: output_size must be between 64 and 256 and be divisible "
|
|
"by 32.")
|
|
exit(1)
|
|
logger.debug("Input and output sizes are valid")
|
|
|
|
def get_dense_width_upscalers_numbers(self):
|
|
""" Return the dense width and number of upscalers """
|
|
output_size = self.config["output_size"]
|
|
sides = [(output_size // 2**n, n) for n in [4, 5] if (output_size // 2**n) < 10]
|
|
closest = min([x * self._downscale_ratio for x, _ in sides],
|
|
key=lambda x: abs(x - self.config["input_size"]))
|
|
dense_width, upscalers_no = [(s, n) for s, n in sides
|
|
if s * self._downscale_ratio == closest][0]
|
|
logger.debug("dense_width: %s, upscalers_no: %s", dense_width, upscalers_no)
|
|
return dense_width, upscalers_no
|
|
|
|
def add_networks(self):
|
|
""" Add the realface model weights """
|
|
logger.debug("Adding networks")
|
|
self.add_network("decoder", "a", self.decoder_a(), is_output=True)
|
|
self.add_network("decoder", "b", self.decoder_b(), is_output=True)
|
|
self.add_network("encoder", None, self.encoder())
|
|
logger.debug("Added networks")
|
|
|
|
def build_autoencoders(self, inputs):
|
|
""" Initialize realface model """
|
|
logger.debug("Initializing model")
|
|
for side in "a", "b":
|
|
logger.debug("Adding Autoencoder. Side: %s", side)
|
|
decoder = self.networks["decoder_{}".format(side)].network
|
|
output = decoder(self.networks["encoder"].network(inputs[0]))
|
|
autoencoder = KerasModel(inputs, output)
|
|
self.add_predictor(side, autoencoder)
|
|
logger.debug("Initialized model")
|
|
|
|
def encoder(self):
|
|
""" RealFace Encoder Network """
|
|
input_ = Input(shape=self.input_shape)
|
|
var_x = input_
|
|
|
|
encoder_complexity = self.config["complexity_encoder"]
|
|
|
|
for idx in range(self.downscalers_no - 1):
|
|
var_x = self.blocks.conv(var_x, encoder_complexity * 2**idx)
|
|
var_x = self.blocks.res_block(var_x, encoder_complexity * 2**idx, use_bias=True)
|
|
var_x = self.blocks.res_block(var_x, encoder_complexity * 2**idx, use_bias=True)
|
|
|
|
var_x = self.blocks.conv(var_x, encoder_complexity * 2**(idx + 1))
|
|
|
|
return KerasModel(input_, var_x)
|
|
|
|
def decoder_b(self):
|
|
""" RealFace Decoder Network """
|
|
input_filters = self.config["complexity_encoder"] * 2**(self.downscalers_no-1)
|
|
input_width = self.config["input_size"] // self._downscale_ratio
|
|
input_ = Input(shape=(input_width, input_width, input_filters))
|
|
|
|
var_xy = input_
|
|
|
|
var_xy = Dense(self.config["dense_nodes"])(Flatten()(var_xy))
|
|
var_xy = Dense(self.dense_width * self.dense_width * self.dense_filters)(var_xy)
|
|
var_xy = Reshape((self.dense_width, self.dense_width, self.dense_filters))(var_xy)
|
|
var_xy = self.blocks.upscale(var_xy, self.dense_filters)
|
|
|
|
var_x = var_xy
|
|
var_x = self.blocks.res_block(var_x, self.dense_filters, use_bias=False)
|
|
|
|
decoder_b_complexity = self.config["complexity_decoder"]
|
|
for idx in range(self.upscalers_no - 2):
|
|
var_x = self.blocks.upscale(var_x, decoder_b_complexity // 2**idx)
|
|
var_x = self.blocks.res_block(var_x, decoder_b_complexity // 2**idx, use_bias=False)
|
|
var_x = self.blocks.res_block(var_x, decoder_b_complexity // 2**idx, use_bias=True)
|
|
var_x = self.blocks.upscale(var_x, decoder_b_complexity // 2**(idx + 1))
|
|
|
|
var_x = self.blocks.conv2d(var_x, 3,
|
|
kernel_size=5,
|
|
padding="same",
|
|
activation="sigmoid",
|
|
name="face_out")
|
|
|
|
outputs = [var_x]
|
|
|
|
if self.config.get("learn_mask", False):
|
|
var_y = var_xy
|
|
mask_b_complexity = 384
|
|
for idx in range(self.upscalers_no-2):
|
|
var_y = self.blocks.upscale(var_y, mask_b_complexity // 2**idx)
|
|
var_y = self.blocks.upscale(var_y, mask_b_complexity // 2**(idx + 1))
|
|
|
|
var_y = self.blocks.conv2d(var_y, 1,
|
|
kernel_size=5,
|
|
padding="same",
|
|
activation="sigmoid",
|
|
name="mask_out")
|
|
|
|
outputs += [var_y]
|
|
|
|
return KerasModel(input_, outputs=outputs)
|
|
|
|
def decoder_a(self):
|
|
""" RealFace Decoder (A) Network """
|
|
input_filters = self.config["complexity_encoder"] * 2**(self.downscalers_no-1)
|
|
input_width = self.config["input_size"] // self._downscale_ratio
|
|
input_ = Input(shape=(input_width, input_width, input_filters))
|
|
|
|
var_xy = input_
|
|
|
|
dense_nodes = int(self.config["dense_nodes"]/1.5)
|
|
dense_filters = int(self.dense_filters/1.5)
|
|
|
|
var_xy = Dense(dense_nodes)(Flatten()(var_xy))
|
|
var_xy = Dense(self.dense_width * self.dense_width * dense_filters)(var_xy)
|
|
var_xy = Reshape((self.dense_width, self.dense_width, dense_filters))(var_xy)
|
|
|
|
var_xy = self.blocks.upscale(var_xy, dense_filters)
|
|
|
|
var_x = var_xy
|
|
var_x = self.blocks.res_block(var_x, dense_filters, use_bias=False)
|
|
|
|
decoder_a_complexity = int(self.config["complexity_decoder"] / 1.5)
|
|
for idx in range(self.upscalers_no-2):
|
|
var_x = self.blocks.upscale(var_x, decoder_a_complexity // 2**idx)
|
|
var_x = self.blocks.upscale(var_x, decoder_a_complexity // 2**(idx + 1))
|
|
|
|
var_x = self.blocks.conv2d(var_x, 3,
|
|
kernel_size=5,
|
|
padding="same",
|
|
activation="sigmoid",
|
|
name="face_out")
|
|
|
|
outputs = [var_x]
|
|
|
|
if self.config.get("learn_mask", False):
|
|
var_y = var_xy
|
|
mask_a_complexity = 384
|
|
for idx in range(self.upscalers_no-2):
|
|
var_y = self.blocks.upscale(var_y, mask_a_complexity // 2**idx)
|
|
var_y = self.blocks.upscale(var_y, mask_a_complexity // 2**(idx + 1))
|
|
|
|
var_y = self.blocks.conv2d(var_y, 1,
|
|
kernel_size=5,
|
|
padding="same",
|
|
activation="sigmoid",
|
|
name="mask_out")
|
|
|
|
outputs += [var_y]
|
|
|
|
return KerasModel(input_, outputs=outputs)
|