1
0
Fork 0
mirror of https://github.com/deepfakes/faceswap synced 2025-06-09 04:36:50 -04:00
faceswap/plugins/train/model/realface.py
torzdf 43a4d06540
Smart Masks - Training Implementation (#914)
* Smart Masks - Training

- Reinstate smart mask training code
- Reinstate mask_type back to model.config
- change 'replicate_input_mask to 'learn_mask'
- Add learn mask option
- Add mask loading from alignments to plugins.train.trainer
- Add mask_blur and mask threshold options
- _base.py - Pass mask options through training_opts dict
- plugins.train.model - check for mask_type not None for learn_mask and penalized_mask_loss
- Limit alignments loading to just those faces that appear in the training folder
- Raise error if not all training images have an alignment, and alignment file is required
- lib.training_data - Mask generation code
- lib.faces_detect - cv2 dimension stripping bugfix
- Remove cv2 linting code

* Update mask helptext in cli.py

* Fix Warp to Landmarks
Remove SHA1 hashing from training data

* Update mask training config

* Capture missing masks at training init

* lib.image.read_image_batch - Return filenames with batch for ordering

* scripts.train - Documentation

* plugins.train.trainer - documentation

* Ensure backward compatibility.
Fix convert for new predicted masks

* Update removed masks to components for legacy models.
2019-12-05 16:02:01 +00:00

202 lines
8.6 KiB
Python

#!/usr/bin/env python3
""" RealFaceRC1, codenamed 'Pegasus'
Based on the original https://www.reddit.com/r/deepfakes/
code sample + contribs
Major thanks goes to BryanLyon as it vastly powered by his ideas and insights.
Without him it would not be possible to come up with the model.
Additional thanks: Birb - source of inspiration, great Encoder ideas
Kvrooman - additional couseling on autoencoders and practical advices
"""
from keras.initializers import RandomNormal
from keras.layers import Dense, Flatten, Input, Reshape
from keras.models import Model as KerasModel
from ._base import ModelBase, logger
class Model(ModelBase):
""" RealFace(tm) Faceswap Model """
def __init__(self, *args, **kwargs):
logger.debug("Initializing %s: (args: %s, kwargs: %s",
self.__class__.__name__, args, kwargs)
self.configfile = kwargs.get("configfile", None)
self.check_input_output()
self.dense_width, self.upscalers_no = self.get_dense_width_upscalers_numbers()
kwargs["input_shape"] = (self.config["input_size"], self.config["input_size"], 3)
self.kernel_initializer = RandomNormal(0, 0.02)
super().__init__(*args, **kwargs)
logger.debug("Initialized %s", self.__class__.__name__)
@property
def downscalers_no(self):
""" Number of downscalers. Don't change! """
return 4
@property
def _downscale_ratio(self):
""" Downscale Ratio """
return 2**self.downscalers_no
@property
def dense_filters(self):
""" Dense Filters. Don't change! """
return (int(1024 - (self.dense_width - 4) * 64) // 16) * 16
def check_input_output(self):
""" Confirm valid input and output sized have been provided """
if not 64 <= self.config["input_size"] <= 128 or self.config["input_size"] % 16 != 0:
logger.error("Config error: input_size must be between 64 and 128 and be divisible by "
"16.")
exit(1)
if not 64 <= self.config["output_size"] <= 256 or self.config["output_size"] % 32 != 0:
logger.error("Config error: output_size must be between 64 and 256 and be divisible "
"by 32.")
exit(1)
logger.debug("Input and output sizes are valid")
def get_dense_width_upscalers_numbers(self):
""" Return the dense width and number of upscalers """
output_size = self.config["output_size"]
sides = [(output_size // 2**n, n) for n in [4, 5] if (output_size // 2**n) < 10]
closest = min([x * self._downscale_ratio for x, _ in sides],
key=lambda x: abs(x - self.config["input_size"]))
dense_width, upscalers_no = [(s, n) for s, n in sides
if s * self._downscale_ratio == closest][0]
logger.debug("dense_width: %s, upscalers_no: %s", dense_width, upscalers_no)
return dense_width, upscalers_no
def add_networks(self):
""" Add the realface model weights """
logger.debug("Adding networks")
self.add_network("decoder", "a", self.decoder_a(), is_output=True)
self.add_network("decoder", "b", self.decoder_b(), is_output=True)
self.add_network("encoder", None, self.encoder())
logger.debug("Added networks")
def build_autoencoders(self, inputs):
""" Initialize realface model """
logger.debug("Initializing model")
for side in "a", "b":
logger.debug("Adding Autoencoder. Side: %s", side)
decoder = self.networks["decoder_{}".format(side)].network
output = decoder(self.networks["encoder"].network(inputs[0]))
autoencoder = KerasModel(inputs, output)
self.add_predictor(side, autoencoder)
logger.debug("Initialized model")
def encoder(self):
""" RealFace Encoder Network """
input_ = Input(shape=self.input_shape)
var_x = input_
encoder_complexity = self.config["complexity_encoder"]
for idx in range(self.downscalers_no - 1):
var_x = self.blocks.conv(var_x, encoder_complexity * 2**idx)
var_x = self.blocks.res_block(var_x, encoder_complexity * 2**idx, use_bias=True)
var_x = self.blocks.res_block(var_x, encoder_complexity * 2**idx, use_bias=True)
var_x = self.blocks.conv(var_x, encoder_complexity * 2**(idx + 1))
return KerasModel(input_, var_x)
def decoder_b(self):
""" RealFace Decoder Network """
input_filters = self.config["complexity_encoder"] * 2**(self.downscalers_no-1)
input_width = self.config["input_size"] // self._downscale_ratio
input_ = Input(shape=(input_width, input_width, input_filters))
var_xy = input_
var_xy = Dense(self.config["dense_nodes"])(Flatten()(var_xy))
var_xy = Dense(self.dense_width * self.dense_width * self.dense_filters)(var_xy)
var_xy = Reshape((self.dense_width, self.dense_width, self.dense_filters))(var_xy)
var_xy = self.blocks.upscale(var_xy, self.dense_filters)
var_x = var_xy
var_x = self.blocks.res_block(var_x, self.dense_filters, use_bias=False)
decoder_b_complexity = self.config["complexity_decoder"]
for idx in range(self.upscalers_no - 2):
var_x = self.blocks.upscale(var_x, decoder_b_complexity // 2**idx)
var_x = self.blocks.res_block(var_x, decoder_b_complexity // 2**idx, use_bias=False)
var_x = self.blocks.res_block(var_x, decoder_b_complexity // 2**idx, use_bias=True)
var_x = self.blocks.upscale(var_x, decoder_b_complexity // 2**(idx + 1))
var_x = self.blocks.conv2d(var_x, 3,
kernel_size=5,
padding="same",
activation="sigmoid",
name="face_out")
outputs = [var_x]
if self.config.get("learn_mask", False):
var_y = var_xy
mask_b_complexity = 384
for idx in range(self.upscalers_no-2):
var_y = self.blocks.upscale(var_y, mask_b_complexity // 2**idx)
var_y = self.blocks.upscale(var_y, mask_b_complexity // 2**(idx + 1))
var_y = self.blocks.conv2d(var_y, 1,
kernel_size=5,
padding="same",
activation="sigmoid",
name="mask_out")
outputs += [var_y]
return KerasModel(input_, outputs=outputs)
def decoder_a(self):
""" RealFace Decoder (A) Network """
input_filters = self.config["complexity_encoder"] * 2**(self.downscalers_no-1)
input_width = self.config["input_size"] // self._downscale_ratio
input_ = Input(shape=(input_width, input_width, input_filters))
var_xy = input_
dense_nodes = int(self.config["dense_nodes"]/1.5)
dense_filters = int(self.dense_filters/1.5)
var_xy = Dense(dense_nodes)(Flatten()(var_xy))
var_xy = Dense(self.dense_width * self.dense_width * dense_filters)(var_xy)
var_xy = Reshape((self.dense_width, self.dense_width, dense_filters))(var_xy)
var_xy = self.blocks.upscale(var_xy, dense_filters)
var_x = var_xy
var_x = self.blocks.res_block(var_x, dense_filters, use_bias=False)
decoder_a_complexity = int(self.config["complexity_decoder"] / 1.5)
for idx in range(self.upscalers_no-2):
var_x = self.blocks.upscale(var_x, decoder_a_complexity // 2**idx)
var_x = self.blocks.upscale(var_x, decoder_a_complexity // 2**(idx + 1))
var_x = self.blocks.conv2d(var_x, 3,
kernel_size=5,
padding="same",
activation="sigmoid",
name="face_out")
outputs = [var_x]
if self.config.get("learn_mask", False):
var_y = var_xy
mask_a_complexity = 384
for idx in range(self.upscalers_no-2):
var_y = self.blocks.upscale(var_y, mask_a_complexity // 2**idx)
var_y = self.blocks.upscale(var_y, mask_a_complexity // 2**(idx + 1))
var_y = self.blocks.conv2d(var_y, 1,
kernel_size=5,
padding="same",
activation="sigmoid",
name="mask_out")
outputs += [var_y]
return KerasModel(input_, outputs=outputs)