1
0
Fork 0
mirror of https://github.com/deepfakes/faceswap synced 2025-06-09 04:36:50 -04:00
faceswap/plugins/train/model/dfl_sae.py
torzdf 43a4d06540
Smart Masks - Training Implementation (#914)
* Smart Masks - Training

- Reinstate smart mask training code
- Reinstate mask_type back to model.config
- change 'replicate_input_mask to 'learn_mask'
- Add learn mask option
- Add mask loading from alignments to plugins.train.trainer
- Add mask_blur and mask threshold options
- _base.py - Pass mask options through training_opts dict
- plugins.train.model - check for mask_type not None for learn_mask and penalized_mask_loss
- Limit alignments loading to just those faces that appear in the training folder
- Raise error if not all training images have an alignment, and alignment file is required
- lib.training_data - Mask generation code
- lib.faces_detect - cv2 dimension stripping bugfix
- Remove cv2 linting code

* Update mask helptext in cli.py

* Fix Warp to Landmarks
Remove SHA1 hashing from training data

* Update mask training config

* Capture missing masks at training init

* lib.image.read_image_batch - Return filenames with batch for ordering

* scripts.train - Documentation

* plugins.train.trainer - documentation

* Ensure backward compatibility.
Fix convert for new predicted masks

* Update removed masks to components for legacy models.
2019-12-05 16:02:01 +00:00

188 lines
8 KiB
Python

#!/usr/bin/env python3
""" DeepFakesLab SAE Model
Based on https://github.com/iperov/DeepFaceLab
"""
import numpy as np
from keras.layers import Concatenate, Dense, Flatten, Input, Reshape
from keras.models import Model as KerasModel
from ._base import ModelBase, logger
class Model(ModelBase):
""" Low Memory version of Original Faceswap Model """
def __init__(self, *args, **kwargs):
logger.debug("Initializing %s: (args: %s, kwargs: %s",
self.__class__.__name__, args, kwargs)
self.configfile = kwargs.get("configfile", None)
kwargs["input_shape"] = (self.config["input_size"], self.config["input_size"], 3)
super().__init__(*args, **kwargs)
logger.debug("Initialized %s", self.__class__.__name__)
@property
def architecture(self):
""" Return the architecture used from config """
return self.config["architecture"].lower()
@property
def use_mask(self):
""" Return True if a mask has been set else false """
return self.config.get("learn_mask", False)
@property
def ae_dims(self):
""" Set the Autoencoder Dimensions or set to default """
retval = self.config["autoencoder_dims"]
if retval == 0:
retval = 256 if self.architecture == "liae" else 512
return retval
@property
def multiscale_count(self):
""" Return 3 if multiscale decoder is set else 1 """
retval = 3 if self.config["multiscale_decoder"] else 1
return retval
def add_networks(self):
""" Add the DFL SAE Networks """
logger.debug("Adding networks")
# Encoder
self.add_network("encoder", None, getattr(self, "encoder_{}".format(self.architecture))())
# Intermediate
if self.architecture == "liae":
self.add_network("intermediate", "b", self.inter_liae())
self.add_network("intermediate", None, self.inter_liae())
# Decoder
decoder_sides = [None] if self.architecture == "liae" else ["a", "b"]
for side in decoder_sides:
self.add_network("decoder", side, self.decoder(), is_output=True)
logger.debug("Added networks")
def build_autoencoders(self, inputs):
""" Initialize DFL SAE model """
logger.debug("Initializing model")
getattr(self, "build_{}_autoencoder".format(self.architecture))(inputs)
logger.debug("Initialized model")
def build_liae_autoencoder(self, inputs):
""" Build the LIAE Autoencoder """
for side in ("a", "b"):
encoder = self.networks["encoder"].network(inputs[0])
if side == "a":
intermediate = Concatenate()([self.networks["intermediate"].network(encoder),
self.networks["intermediate"].network(encoder)])
else:
intermediate = Concatenate()([self.networks["intermediate_b"].network(encoder),
self.networks["intermediate"].network(encoder)])
output = self.networks["decoder"].network(intermediate)
autoencoder = KerasModel(inputs, output)
self.add_predictor(side, autoencoder)
def build_df_autoencoder(self, inputs):
""" Build the DF Autoencoder """
for side in ("a", "b"):
logger.debug("Adding Autoencoder. Side: %s", side)
decoder = self.networks["decoder_{}".format(side)].network
output = decoder(self.networks["encoder"].network(inputs[0]))
autoencoder = KerasModel(inputs, output)
self.add_predictor(side, autoencoder)
def encoder_df(self):
""" DFL SAE DF Encoder Network"""
input_ = Input(shape=self.input_shape)
dims = self.input_shape[-1] * self.config["encoder_dims"]
lowest_dense_res = self.input_shape[0] // 16
var_x = input_
var_x = self.blocks.conv(var_x, dims)
var_x = self.blocks.conv(var_x, dims * 2)
var_x = self.blocks.conv(var_x, dims * 4)
var_x = self.blocks.conv(var_x, dims * 8)
var_x = Dense(self.ae_dims)(Flatten()(var_x))
var_x = Dense(lowest_dense_res * lowest_dense_res * self.ae_dims)(var_x)
var_x = Reshape((lowest_dense_res, lowest_dense_res, self.ae_dims))(var_x)
var_x = self.blocks.upscale(var_x, self.ae_dims)
return KerasModel(input_, var_x)
def encoder_liae(self):
""" DFL SAE LIAE Encoder Network """
input_ = Input(shape=self.input_shape)
dims = self.input_shape[-1] * self.config["encoder_dims"]
var_x = input_
var_x = self.blocks.conv(var_x, dims)
var_x = self.blocks.conv(var_x, dims * 2)
var_x = self.blocks.conv(var_x, dims * 4)
var_x = self.blocks.conv(var_x, dims * 8)
var_x = Flatten()(var_x)
return KerasModel(input_, var_x)
def inter_liae(self):
""" DFL SAE LIAE Intermediate Network """
input_ = Input(shape=self.networks["encoder"].output_shapes[0][1:])
lowest_dense_res = self.input_shape[0] // 16
var_x = input_
var_x = Dense(self.ae_dims)(var_x)
var_x = Dense(lowest_dense_res * lowest_dense_res * self.ae_dims * 2)(var_x)
var_x = Reshape((lowest_dense_res, lowest_dense_res, self.ae_dims * 2))(var_x)
var_x = self.blocks.upscale(var_x, self.ae_dims * 2)
return KerasModel(input_, var_x)
def decoder(self):
""" DFL SAE Decoder Network"""
if self.architecture == "liae":
input_shape = np.array(self.networks["intermediate"].output_shapes[0][1:]) * (1, 1, 2)
else:
input_shape = self.networks["encoder"].output_shapes[0][1:]
input_ = Input(shape=input_shape)
outputs = list()
dims = self.input_shape[-1] * self.config["decoder_dims"]
var_x = input_
var_x1 = self.blocks.upscale(var_x, dims * 8, res_block_follows=True)
var_x1 = self.blocks.res_block(var_x1, dims * 8)
var_x1 = self.blocks.res_block(var_x1, dims * 8)
if self.multiscale_count >= 3:
outputs.append(self.blocks.conv2d(var_x1, 3,
kernel_size=5,
padding="same",
activation="sigmoid",
name="face_out_32"))
var_x2 = self.blocks.upscale(var_x1, dims * 4, res_block_follows=True)
var_x2 = self.blocks.res_block(var_x2, dims * 4)
var_x2 = self.blocks.res_block(var_x2, dims * 4)
if self.multiscale_count >= 2:
outputs.append(self.blocks.conv2d(var_x2, 3,
kernel_size=5,
padding="same",
activation="sigmoid",
name="face_out_64"))
var_x3 = self.blocks.upscale(var_x2, dims * 2, res_block_follows=True)
var_x3 = self.blocks.res_block(var_x3, dims * 2)
var_x3 = self.blocks.res_block(var_x3, dims * 2)
outputs.append(self.blocks.conv2d(var_x3, 3,
kernel_size=5,
padding="same",
activation="sigmoid",
name="face_out_128"))
if self.use_mask:
var_y = input_
var_y = self.blocks.upscale(var_y, self.config["decoder_dims"] * 8)
var_y = self.blocks.upscale(var_y, self.config["decoder_dims"] * 4)
var_y = self.blocks.upscale(var_y, self.config["decoder_dims"] * 2)
var_y = self.blocks.conv2d(var_y, 1,
kernel_size=5,
padding="same",
activation="sigmoid",
name="mask_out")
outputs.append(var_y)
return KerasModel(input_, outputs=outputs)