mirror of
https://github.com/deepfakes/faceswap
synced 2025-06-09 04:36:50 -04:00
317 lines
12 KiB
Python
317 lines
12 KiB
Python
#!/usr/bin/env python3
|
|
""" S3FD Face detection plugin
|
|
https://arxiv.org/abs/1708.05237
|
|
|
|
Adapted from S3FD Port in FAN:
|
|
https://github.com/1adrianb/face-alignment
|
|
"""
|
|
|
|
from scipy.special import logsumexp
|
|
import numpy as np
|
|
import keras
|
|
import keras.backend as K
|
|
|
|
from lib.model.session import KSession
|
|
from ._base import Detector, logger
|
|
|
|
|
|
class Detect(Detector):
|
|
""" S3FD detector for face recognition """
|
|
def __init__(self, **kwargs):
|
|
git_model_id = 11
|
|
model_filename = "s3fd_keras_v1.h5"
|
|
super().__init__(git_model_id=git_model_id, model_filename=model_filename, **kwargs)
|
|
self.name = "S3FD"
|
|
self.input_size = 640
|
|
self.vram = 4112
|
|
self.vram_warnings = 1024 # Will run at this with warnings
|
|
self.vram_per_batch = 208
|
|
self.batchsize = self.config["batch-size"]
|
|
|
|
def init_model(self):
|
|
""" Initialize S3FD Model"""
|
|
confidence = self.config["confidence"] / 100
|
|
model_kwargs = dict(custom_objects=dict(O2K_Add=O2K_Add,
|
|
O2K_Slice=O2K_Slice,
|
|
O2K_Sum=O2K_Sum,
|
|
O2K_Sqrt=O2K_Sqrt,
|
|
O2K_Pow=O2K_Pow,
|
|
O2K_ConstantLayer=O2K_ConstantLayer,
|
|
O2K_Div=O2K_Div))
|
|
self.model = S3fd(self.model_path, model_kwargs, self.config["allow_growth"], confidence)
|
|
|
|
def process_input(self, batch):
|
|
""" Compile the detection image(s) for prediction """
|
|
batch["feed"] = self.model.prepare_batch(batch["image"])
|
|
return batch
|
|
|
|
def predict(self, batch):
|
|
""" Run model to get predictions """
|
|
predictions = self.model.predict(batch["feed"])
|
|
batch["prediction"] = self.model.finalize_predictions(predictions)
|
|
logger.trace("filename: %s, prediction: %s", batch["filename"], batch["prediction"])
|
|
return batch
|
|
|
|
def process_output(self, batch):
|
|
""" Compile found faces for output """
|
|
return batch
|
|
|
|
|
|
################################################################################
|
|
# CUSTOM KERAS LAYERS
|
|
# generated by onnx2keras
|
|
################################################################################
|
|
class O2K_ElementwiseLayer(keras.engine.Layer):
|
|
def __init__(self, **kwargs):
|
|
super(O2K_ElementwiseLayer, self).__init__(**kwargs)
|
|
|
|
def call(self, *args):
|
|
raise NotImplementedError()
|
|
|
|
def compute_output_shape(self, input_shape):
|
|
# TODO: do this nicer
|
|
ldims = len(input_shape[0])
|
|
rdims = len(input_shape[1])
|
|
if ldims > rdims:
|
|
return input_shape[0]
|
|
if rdims > ldims:
|
|
return input_shape[1]
|
|
lprod = np.prod(list(filter(bool, input_shape[0])))
|
|
rprod = np.prod(list(filter(bool, input_shape[1])))
|
|
return input_shape[0 if lprod > rprod else 1]
|
|
|
|
|
|
class O2K_Add(O2K_ElementwiseLayer):
|
|
def call(self, x, *args):
|
|
return x[0] + x[1]
|
|
|
|
|
|
class O2K_Slice(keras.engine.Layer):
|
|
def __init__(self, starts, ends, axes=None, steps=None, **kwargs):
|
|
self._starts = starts
|
|
self._ends = ends
|
|
self._axes = axes
|
|
self._steps = steps
|
|
super(O2K_Slice, self).__init__(**kwargs)
|
|
|
|
def get_config(self):
|
|
config = super(O2K_Slice, self).get_config()
|
|
config.update({
|
|
'starts': self._starts, 'ends': self._ends,
|
|
'axes': self._axes, 'steps': self._steps
|
|
})
|
|
return config
|
|
|
|
def get_slices(self, ndims):
|
|
axes = self._axes
|
|
steps = self._steps
|
|
if axes is None:
|
|
axes = tuple(range(ndims))
|
|
if steps is None:
|
|
steps = (1,) * len(axes)
|
|
assert len(axes) == len(steps) == len(self._starts) == len(self._ends)
|
|
return list(zip(axes, self._starts, self._ends, steps))
|
|
|
|
def compute_output_shape(self, input_shape):
|
|
input_shape = list(input_shape)
|
|
for ax, start, end, steps in self.get_slices(len(input_shape)):
|
|
size = input_shape[ax]
|
|
if ax == 0:
|
|
raise AttributeError("Can not slice batch axis.")
|
|
if size is None:
|
|
if start < 0 or end < 0:
|
|
raise AttributeError("Negative slices not supported on symbolic axes")
|
|
logger.warning("Slicing symbolic axis might lead to problems.")
|
|
input_shape[ax] = (end - start) // steps
|
|
continue
|
|
if start < 0:
|
|
start = size - start
|
|
if end < 0:
|
|
end = size - end
|
|
input_shape[ax] = (min(size, end) - start) // steps
|
|
return tuple(input_shape)
|
|
|
|
def call(self, x, *args):
|
|
ax_map = dict((x[0], slice(*x[1:])) for x in self.get_slices(K.ndim(x)))
|
|
shape = K.int_shape(x)
|
|
slices = [(ax_map[a] if a in ax_map else slice(None)) for a in range(len(shape))]
|
|
x = x[tuple(slices)]
|
|
return x
|
|
|
|
|
|
class O2K_ReduceLayer(keras.engine.Layer):
|
|
def __init__(self, axes=None, keepdims=True, **kwargs):
|
|
self._axes = [axes] if isinstance(axes, int) else axes
|
|
self._keepdims = bool(keepdims)
|
|
super(O2K_ReduceLayer, self).__init__(**kwargs)
|
|
|
|
def get_config(self):
|
|
config = super(O2K_ReduceLayer, self).get_config()
|
|
config.update({
|
|
'axes': self._axes,
|
|
'keepdims': self._keepdims
|
|
})
|
|
return config
|
|
|
|
def compute_output_shape(self, input_shape):
|
|
if self._axes is None:
|
|
return (1,)*len(input_shape) if self._keepdims else tuple()
|
|
ret = list(input_shape)
|
|
for i in sorted(self._axes, reverse=True):
|
|
if self._keepdims:
|
|
ret[i] = 1
|
|
else:
|
|
ret.pop(i)
|
|
return tuple(ret)
|
|
|
|
def call(self, x, *args):
|
|
raise NotImplementedError()
|
|
|
|
|
|
class O2K_Sum(O2K_ReduceLayer):
|
|
def call(self, x, *args):
|
|
return K.sum(x, self._axes, self._keepdims)
|
|
|
|
|
|
class O2K_Sqrt(keras.engine.Layer):
|
|
def call(self, x, *args):
|
|
return K.sqrt(x)
|
|
|
|
|
|
class O2K_Pow(keras.engine.Layer):
|
|
def call(self, x, *args):
|
|
return K.pow(*x)
|
|
|
|
|
|
class O2K_ConstantLayer(keras.engine.Layer):
|
|
def __init__(self, constant_obj, dtype, **kwargs):
|
|
self._dtype = np.dtype(dtype).name
|
|
self._constant = np.array(constant_obj, dtype=self._dtype)
|
|
super(O2K_ConstantLayer, self).__init__(**kwargs)
|
|
|
|
def call(self, *args):
|
|
# pylint:disable=arguments-differ
|
|
data = K.constant(self._constant, dtype=self._dtype)
|
|
return data
|
|
|
|
def compute_output_shape(self, input_shape):
|
|
return self._constant.shape
|
|
|
|
def get_config(self):
|
|
config = super(O2K_ConstantLayer, self).get_config()
|
|
config.update({
|
|
'constant_obj': self._constant,
|
|
'dtype': self._dtype
|
|
})
|
|
return config
|
|
|
|
|
|
class O2K_Div(O2K_ElementwiseLayer):
|
|
# pylint:disable=arguments-differ
|
|
def call(self, x, *args):
|
|
return x[0] / x[1]
|
|
|
|
|
|
class S3fd(KSession):
|
|
""" Keras Network """
|
|
def __init__(self, model_path, model_kwargs, allow_growth, confidence):
|
|
logger.debug("Initializing: %s: (model_path: '%s', allow_growth: %s)",
|
|
self.__class__.__name__, model_path, allow_growth)
|
|
super().__init__("S3FD", model_path, model_kwargs=model_kwargs, allow_growth=allow_growth)
|
|
self.load_model()
|
|
self.confidence = confidence
|
|
self.average_img = np.array([104.0, 117.0, 123.0])
|
|
logger.debug("Initialized: %s", self.__class__.__name__)
|
|
|
|
def prepare_batch(self, batch):
|
|
""" Prepare a batch for prediction """
|
|
batch = batch - self.average_img
|
|
batch = batch.transpose(0, 3, 1, 2)
|
|
return batch
|
|
|
|
def finalize_predictions(self, bounding_boxes_scales):
|
|
""" Detect faces """
|
|
ret = list()
|
|
batch_size = range(bounding_boxes_scales[0].shape[0])
|
|
for img in batch_size:
|
|
bboxlist = [scale[img:img+1] for scale in bounding_boxes_scales]
|
|
boxes = self._post_process(bboxlist)
|
|
bboxlist = self._nms(boxes, 0.5)
|
|
ret.append(bboxlist)
|
|
return ret
|
|
|
|
def _post_process(self, bboxlist):
|
|
""" Perform post processing on output
|
|
TODO: do this on the batch.
|
|
"""
|
|
retval = list()
|
|
for i in range(len(bboxlist) // 2):
|
|
bboxlist[i * 2] = self.softmax(bboxlist[i * 2], axis=1)
|
|
for i in range(len(bboxlist) // 2):
|
|
ocls, oreg = bboxlist[i * 2], bboxlist[i * 2 + 1]
|
|
stride = 2 ** (i + 2) # 4,8,16,32,64,128
|
|
poss = zip(*np.where(ocls[:, 1, :, :] > 0.05))
|
|
for _, hindex, windex in poss:
|
|
axc, ayc = stride / 2 + windex * stride, stride / 2 + hindex * stride
|
|
score = ocls[0, 1, hindex, windex]
|
|
if score >= self.confidence:
|
|
loc = np.ascontiguousarray(oreg[0, :, hindex, windex]).reshape((1, 4))
|
|
priors = np.array([[axc / 1.0, ayc / 1.0, stride * 4 / 1.0, stride * 4 / 1.0]])
|
|
box = self.decode(loc, priors)
|
|
x_1, y_1, x_2, y_2 = box[0] * 1.0
|
|
retval.append([x_1, y_1, x_2, y_2, score])
|
|
return_numpy = np.array(retval) if len(retval) != 0 else np.zeros((1, 5))
|
|
return return_numpy
|
|
|
|
@staticmethod
|
|
def softmax(inp, axis):
|
|
"""Compute softmax values for each sets of scores in x."""
|
|
return np.exp(inp - logsumexp(inp, axis=axis, keepdims=True))
|
|
|
|
@staticmethod
|
|
def decode(loc, priors):
|
|
"""Decode locations from predictions using priors to undo
|
|
the encoding we did for offset regression at train time.
|
|
Args:
|
|
loc (tensor): location predictions for loc layers,
|
|
Shape: [num_priors,4]
|
|
priors (tensor): Prior boxes in center-offset form.
|
|
Shape: [num_priors,4].
|
|
variances: (list[float]) Variances of prior boxes
|
|
Return:
|
|
decoded bounding box predictions
|
|
"""
|
|
variances = [0.1, 0.2]
|
|
boxes = np.concatenate((priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:],
|
|
priors[:, 2:] * np.exp(loc[:, 2:] * variances[1])), axis=1)
|
|
boxes[:, :2] -= boxes[:, 2:] / 2
|
|
boxes[:, 2:] += boxes[:, :2]
|
|
return boxes
|
|
|
|
@staticmethod
|
|
def _nms(boxes, threshold):
|
|
""" Perform Non-Maximum Suppression """
|
|
retained_box_indices = list()
|
|
|
|
areas = (boxes[:, 2] - boxes[:, 0] + 1) * (boxes[:, 3] - boxes[:, 1] + 1)
|
|
ranked_indices = boxes[:, 4].argsort()[::-1]
|
|
while ranked_indices.size > 0:
|
|
best = ranked_indices[0]
|
|
rest = ranked_indices[1:]
|
|
|
|
max_of_xy = np.maximum(boxes[best, :2], boxes[rest, :2])
|
|
min_of_xy = np.minimum(boxes[best, 2:4], boxes[rest, 2:4])
|
|
width_height = np.maximum(0, min_of_xy - max_of_xy + 1)
|
|
intersection_areas = width_height[:, 0] * width_height[:, 1]
|
|
iou = intersection_areas / (areas[best] + areas[rest] - intersection_areas)
|
|
|
|
overlapping_boxes = (iou > threshold).nonzero()[0]
|
|
if len(overlapping_boxes) != 0:
|
|
overlap_set = ranked_indices[overlapping_boxes + 1]
|
|
vote = np.average(boxes[overlap_set, :4], axis=0, weights=boxes[overlap_set, 4])
|
|
boxes[best, :4] = vote
|
|
retained_box_indices.append(best)
|
|
|
|
non_overlapping_boxes = (iou <= threshold).nonzero()[0]
|
|
ranked_indices = ranked_indices[non_overlapping_boxes + 1]
|
|
return boxes[retained_box_indices]
|