mirror of
https://github.com/deepfakes/faceswap
synced 2025-06-09 04:36:50 -04:00
* Add simple backend tests for lib.model * Document lib.model * Fix GMSD Loss for AMD * Remove obsolete code from lib.model
300 lines
10 KiB
Python
300 lines
10 KiB
Python
#!/usr/bin/env python3
|
|
""" Custom Initializers for faceswap.py """
|
|
|
|
import logging
|
|
import sys
|
|
import inspect
|
|
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
from keras import backend as K
|
|
from keras import initializers
|
|
from keras.utils.generic_utils import get_custom_objects
|
|
|
|
from lib.utils import get_backend
|
|
|
|
logger = logging.getLogger(__name__) # pylint: disable=invalid-name
|
|
|
|
|
|
class ICNR(initializers.Initializer): # pylint: disable=invalid-name
|
|
""" ICNR initializer for checkerboard artifact free sub pixel convolution
|
|
|
|
Parameters
|
|
----------
|
|
initializer: :class:`keras.initializers.Initializer`
|
|
The initializer used for sub kernels (orthogonal, glorot uniform, etc.)
|
|
scale: int
|
|
scaling factor of sub pixel convolution (up sampling from 8x8 to 16x16 is scale 2)
|
|
|
|
Returns
|
|
-------
|
|
tensor
|
|
The modified kernel weights
|
|
|
|
Example
|
|
-------
|
|
>>> x = conv2d(... weights_initializer=ICNR(initializer=he_uniform(), scale=2))
|
|
|
|
References
|
|
----------
|
|
Andrew Aitken et al. Checkerboard artifact free sub-pixel convolution
|
|
https://arxiv.org/pdf/1707.02937.pdf, https://distill.pub/2016/deconv-checkerboard/
|
|
"""
|
|
|
|
def __init__(self, initializer, scale=2):
|
|
self.scale = scale
|
|
self.initializer = initializer
|
|
|
|
def __call__(self, shape, dtype="float32"):
|
|
""" Call function for the ICNR initializer.
|
|
|
|
Parameters
|
|
----------
|
|
shape: tuple or list
|
|
The required resized shape for the output tensor
|
|
dtype: str
|
|
The data type for the tensor
|
|
|
|
Returns
|
|
-------
|
|
tensor
|
|
The modified kernel weights
|
|
"""
|
|
shape = list(shape)
|
|
if self.scale == 1:
|
|
return self.initializer(shape)
|
|
new_shape = shape[:3] + [shape[3] // (self.scale ** 2)]
|
|
if isinstance(self.initializer, dict):
|
|
self.initializer = initializers.deserialize(self.initializer)
|
|
var_x = self.initializer(new_shape, dtype)
|
|
var_x = K.permute_dimensions(var_x, [2, 0, 1, 3])
|
|
var_x = self._resize_nearest_neighbour(var_x,
|
|
(shape[0] * self.scale, shape[1] * self.scale))
|
|
var_x = self._space_to_depth(var_x)
|
|
var_x = K.permute_dimensions(var_x, [1, 2, 0, 3])
|
|
logger.debug("Output: %s", var_x)
|
|
return var_x
|
|
|
|
def _resize_nearest_neighbour(self, input_tensor, size):
|
|
""" Resize a tensor using nearest neighbor interpolation.
|
|
|
|
Notes
|
|
-----
|
|
Tensorflow has a bug that resizes the image incorrectly if :attr:`align_corners` is not set
|
|
to ``True``. Keras Backend does not set this flag, so we explicitly call the Tensorflow
|
|
operation for non-amd backends.
|
|
|
|
Parameters
|
|
----------
|
|
input_tensor: tensor
|
|
The tensor to be resized
|
|
tuple: int
|
|
The (`h`, `w`) that the tensor should be resized to (used for non-amd backends only)
|
|
|
|
Returns
|
|
-------
|
|
tensor
|
|
The input tensor resized to the given size
|
|
"""
|
|
if get_backend() == "amd":
|
|
retval = K.resize_images(input_tensor, self.scale, self.scale, "channels_last",
|
|
interpolation="nearest")
|
|
else:
|
|
retval = tf.image.resize_nearest_neighbor(input_tensor, size=size, align_corners=True)
|
|
logger.debug("Input Tensor: %s, Output Tensor: %s", input_tensor, retval)
|
|
return retval
|
|
|
|
def _space_to_depth(self, input_tensor):
|
|
""" Space to depth implementation.
|
|
|
|
PlaidML does not have a space to depth operation, so calculate if backend is amd
|
|
otherwise returns the :func:`tensorflow.space_to_depth` operation.
|
|
|
|
Parameters
|
|
----------
|
|
input_tensor: tensor
|
|
The tensor to be manipulated
|
|
|
|
Returns
|
|
-------
|
|
tensor
|
|
The manipulated input tensor
|
|
"""
|
|
if get_backend() == "amd":
|
|
batch, height, width, depth = input_tensor.shape.dims
|
|
new_height = height // self.scale
|
|
new_width = width // self.scale
|
|
reshaped = K.reshape(input_tensor,
|
|
(batch, new_height, self.scale, new_width, self.scale, depth))
|
|
retval = K.reshape(K.permute_dimensions(reshaped, [0, 1, 3, 2, 4, 5]),
|
|
(batch, new_height, new_width, -1))
|
|
else:
|
|
retval = tf.space_to_depth(input_tensor, block_size=self.scale, data_format="NHWC")
|
|
logger.debug("Input Tensor: %s, Output Tensor: %s", input_tensor, retval)
|
|
return retval
|
|
|
|
def get_config(self):
|
|
""" Return the ICNR Initializer configuration.
|
|
|
|
Returns
|
|
-------
|
|
dict
|
|
The configuration for ICNR Initialization
|
|
"""
|
|
config = {"scale": self.scale,
|
|
"initializer": self.initializer
|
|
}
|
|
base_config = super(ICNR, self).get_config()
|
|
return dict(list(base_config.items()) + list(config.items()))
|
|
|
|
|
|
class ConvolutionAware(initializers.Initializer):
|
|
"""
|
|
Initializer that generates orthogonal convolution filters in the Fourier space. If this
|
|
initializer is passed a shape that is not 3D or 4D, orthogonal initialization will be used.
|
|
|
|
Adapted, fixed and optimized from:
|
|
https://github.com/keras-team/keras-contrib/blob/master/keras_contrib/initializers/convaware.py
|
|
|
|
Parameters
|
|
----------
|
|
eps_std: float
|
|
The Standard deviation for the random normal noise used to break symmetry in the inverse
|
|
Fourier transform.
|
|
seed: int, optional
|
|
Used to seed the random generator. Default: ``None``
|
|
|
|
Returns
|
|
-------
|
|
tensor
|
|
The modified kernel weights
|
|
|
|
References
|
|
----------
|
|
Armen Aghajanyan, https://arxiv.org/abs/1702.06295
|
|
|
|
Notes
|
|
-----
|
|
Convolutional Aware Initialization takes a long time. Keras model loading loads a model,
|
|
performs initialization and then loads weights, which is an unnecessary waste of time.
|
|
init defaults to False so that this is bypassed when loading a saved model passing zeros.
|
|
"""
|
|
|
|
def __init__(self, eps_std=0.05, seed=None, init=False):
|
|
self._init = init
|
|
self.eps_std = eps_std
|
|
self.seed = seed
|
|
self.orthogonal = initializers.Orthogonal()
|
|
self.he_uniform = initializers.he_uniform()
|
|
|
|
def __call__(self, shape, dtype=None):
|
|
""" Call function for the ICNR initializer.
|
|
|
|
Parameters
|
|
----------
|
|
shape: tuple or list
|
|
The required shape for the output tensor
|
|
dtype: str
|
|
The data type for the tensor
|
|
|
|
Returns
|
|
-------
|
|
tensor
|
|
The modified kernel weights
|
|
"""
|
|
dtype = K.floatx() if dtype is None else dtype
|
|
if self._init:
|
|
logger.info("Calculating Convolution Aware Initializer for shape: %s", shape)
|
|
else:
|
|
logger.debug("Bypassing Convolutional Aware Initializer for saved model")
|
|
# Dummy in he_uniform just in case there aren't any weighs being loaded
|
|
# and it needs some kind of initialization
|
|
return self.he_uniform(shape, dtype=dtype)
|
|
|
|
rank = len(shape)
|
|
if self.seed is not None:
|
|
np.random.seed(self.seed)
|
|
|
|
fan_in, _ = initializers._compute_fans(shape) # pylint:disable=protected-access
|
|
variance = 2 / fan_in
|
|
|
|
if rank == 3:
|
|
row, stack_size, filters_size = shape
|
|
|
|
transpose_dimensions = (2, 1, 0)
|
|
kernel_shape = (row,)
|
|
correct_ifft = lambda shape, s=[None]: np.fft.irfft(shape, s[0]) # noqa
|
|
correct_fft = np.fft.rfft
|
|
|
|
elif rank == 4:
|
|
row, column, stack_size, filters_size = shape
|
|
|
|
transpose_dimensions = (2, 3, 1, 0)
|
|
kernel_shape = (row, column)
|
|
correct_ifft = np.fft.irfft2
|
|
correct_fft = np.fft.rfft2
|
|
|
|
elif rank == 5:
|
|
var_x, var_y, var_z, stack_size, filters_size = shape
|
|
|
|
transpose_dimensions = (3, 4, 0, 1, 2)
|
|
kernel_shape = (var_x, var_y, var_z)
|
|
correct_fft = np.fft.rfftn
|
|
correct_ifft = np.fft.irfftn
|
|
|
|
else:
|
|
return K.variable(self.orthogonal(shape), dtype=dtype)
|
|
|
|
kernel_fourier_shape = correct_fft(np.zeros(kernel_shape)).shape
|
|
|
|
basis = self._create_basis(filters_size, stack_size, np.prod(kernel_fourier_shape), dtype)
|
|
basis = basis.reshape((filters_size, stack_size,) + kernel_fourier_shape)
|
|
randoms = np.random.normal(0, self.eps_std, basis.shape[:-2] + kernel_shape)
|
|
init = correct_ifft(basis, kernel_shape) + randoms
|
|
init = self._scale_filters(init, variance)
|
|
return K.variable(init.transpose(transpose_dimensions), dtype=dtype, name="conv_aware")
|
|
|
|
def _create_basis(self, filters_size, filters, size, dtype):
|
|
""" Create the basis for convolutional aware initialization """
|
|
if size == 1:
|
|
return np.random.normal(0.0, self.eps_std, (filters_size, filters, size))
|
|
nbb = filters // size + 1
|
|
var_a = np.random.normal(0.0, 1.0, (filters_size, nbb, size, size))
|
|
var_a = self._symmetrize(var_a)
|
|
var_u = np.linalg.svd(var_a)[0].transpose(0, 1, 3, 2)
|
|
var_p = np.reshape(var_u, (filters_size, nbb * size, size))[:, :filters, :].astype(dtype)
|
|
return var_p
|
|
|
|
@staticmethod
|
|
def _symmetrize(var_a):
|
|
""" Make the given tensor symmetrical. """
|
|
var_b = np.transpose(var_a, axes=(0, 1, 3, 2))
|
|
diag = var_a.diagonal(axis1=2, axis2=3)
|
|
var_c = np.array([[np.diag(arr) for arr in batch] for batch in diag])
|
|
return var_a + var_b - var_c
|
|
|
|
@staticmethod
|
|
def _scale_filters(filters, variance):
|
|
""" Scale the given filters. """
|
|
c_var = np.var(filters)
|
|
var_p = np.sqrt(variance / c_var)
|
|
return filters * var_p
|
|
|
|
def get_config(self):
|
|
""" Return the Convolutional Aware Initializer configuration.
|
|
|
|
Returns
|
|
-------
|
|
dict
|
|
The configuration for ICNR Initialization
|
|
"""
|
|
return {
|
|
"eps_std": self.eps_std,
|
|
"seed": self.seed
|
|
}
|
|
|
|
|
|
# Update initializers into Keras custom objects
|
|
for name, obj in inspect.getmembers(sys.modules[__name__]):
|
|
if inspect.isclass(obj) and obj.__module__ == __name__:
|
|
get_custom_objects().update({name: obj})
|