1
0
Fork 0
mirror of https://github.com/deepfakes/faceswap synced 2025-06-08 11:53:26 -04:00
faceswap/lib/faces_detect.py
torzdf 3a41cfdcbc
Add Face Hashes to Alignments (#550)
* Convert main scripts to use face hashes

* Alignment tool: Use hashes, add logging, add face rename function

* More logging. Update Manual tool to work with hashing
2018-12-14 12:49:11 +00:00

155 lines
6.2 KiB
Python

#!/usr/bin python3
""" Face and landmarks detection for faceswap.py """
import logging
from dlib import rectangle as d_rectangle # pylint: disable=no-name-in-module
from lib.aligner import Extract as AlignerExtract, get_align_mat
logger = logging.getLogger(__name__) # pylint: disable=invalid-name
class DetectedFace():
""" Detected face and landmark information """
def __init__( # pylint: disable=invalid-name
self, image=None, x=None, w=None, y=None, h=None,
frame_dims=None, landmarksXY=None):
logger.trace("Initializing %s", self.__class__.__name__)
self.image = image
self.x = x
self.w = w
self.y = y
self.h = h
self.frame_dims = frame_dims
self.landmarksXY = landmarksXY
self.hash = None # Hash must be set when the file is saved due to image compression
self.aligned = dict()
logger.trace("Initialized %s", self.__class__.__name__)
@property
def landmarks_as_xy(self):
""" Landmarks as XY """
return self.landmarksXY
def to_dlib_rect(self):
""" Return Bounding Box as Dlib Rectangle """
left = self.x
top = self.y
right = self.x + self.w
bottom = self.y + self.h
retval = d_rectangle(left, top, right, bottom)
logger.trace("Returning: %s", retval)
return retval
def from_dlib_rect(self, d_rect, image=None):
""" Set Bounding Box from a Dlib Rectangle """
logger.trace("Creating from dlib_rectangle: %s", d_rect)
if not isinstance(d_rect, d_rectangle):
raise ValueError("Supplied Bounding Box is not a dlib.rectangle.")
self.x = d_rect.left()
self.w = d_rect.right() - d_rect.left()
self.y = d_rect.top()
self.h = d_rect.bottom() - d_rect.top()
if image.any():
self.image_to_face(image)
logger.trace("Created from dlib_rectangle: (x: %s, w: %s, y: %s. h: %s)",
self.x, self.w, self.y, self.h)
def image_to_face(self, image):
""" Crop an image around bounding box to the face
and capture it's dimensions """
logger.trace("Cropping face from image")
self.image = image[self.y: self.y + self.h,
self.x: self.x + self.w]
def to_alignment(self):
""" Convert a detected face to alignment dict
NB: frame_dims should be the height and width
of the original frame. """
alignment = dict()
alignment["x"] = self.x
alignment["w"] = self.w
alignment["y"] = self.y
alignment["h"] = self.h
alignment["frame_dims"] = self.frame_dims
alignment["landmarksXY"] = self.landmarksXY
alignment["hash"] = self.hash
logger.trace("Returning: %s", alignment)
return alignment
def from_alignment(self, alignment, image=None):
""" Convert a face alignment to detected face object """
logger.trace("Creating from alignment: (alignment: %s, has_image: %s)",
alignment, bool(image is not None))
self.x = alignment["x"]
self.w = alignment["w"]
self.y = alignment["y"]
self.h = alignment["h"]
self.frame_dims = alignment["frame_dims"]
self.landmarksXY = alignment["landmarksXY"]
# Manual tool does not know the final hash so default to None
self.hash = alignment.get("hash", None)
if image is not None and image.any():
self.image_to_face(image)
logger.trace("Created from alignment: (x: %s, w: %s, y: %s. h: %s, "
"frame_dims: %s, landmarks: %s)",
self.x, self.w, self.y, self.h, self.frame_dims, self.landmarksXY)
# <<< Aligned Face methods and properties >>> #
def load_aligned(self, image, size=256, padding=48, align_eyes=False):
""" No need to load aligned information for all uses of this
class, so only call this to load the information for easy
reference to aligned properties for this face """
logger.trace("Loading aligned face: (size: %s, padding: %s, align_eyes: %s)",
size, padding, align_eyes)
self.aligned["size"] = size
self.aligned["padding"] = padding
self.aligned["align_eyes"] = align_eyes
self.aligned["matrix"] = get_align_mat(self, size, align_eyes)
if image is None:
self.aligned["face"] = None
else:
self.aligned["face"] = AlignerExtract().transform(
image,
self.aligned["matrix"],
size,
padding)
logger.trace("Loaded aligned face: %s", {key: val
for key, val in self.aligned.items()
if key != "face"})
@property
def original_roi(self):
""" Return the square aligned box location on the original
image """
roi = AlignerExtract().get_original_roi(self.aligned["matrix"],
self.aligned["size"],
self.aligned["padding"])
logger.trace("Returning: %s", roi)
return roi
@property
def aligned_landmarks(self):
""" Return the landmarks location transposed to extracted face """
landmarks = AlignerExtract().transform_points(self.landmarksXY,
self.aligned["matrix"],
self.aligned["size"],
self.aligned["padding"])
logger.trace("Returning: %s", landmarks)
return landmarks
@property
def aligned_face(self):
""" Return aligned detected face """
return self.aligned["face"]
@property
def adjusted_matrix(self):
""" Return adjusted matrix for size/padding combination """
mat = AlignerExtract().transform_matrix(self.aligned["matrix"],
self.aligned["size"],
self.aligned["padding"])
logger.trace("Returning: %s", mat)
return mat