mirror of
https://github.com/deepfakes/faceswap
synced 2025-06-08 11:53:26 -04:00
* Convert main scripts to use face hashes * Alignment tool: Use hashes, add logging, add face rename function * More logging. Update Manual tool to work with hashing
155 lines
6.2 KiB
Python
155 lines
6.2 KiB
Python
#!/usr/bin python3
|
|
""" Face and landmarks detection for faceswap.py """
|
|
import logging
|
|
|
|
from dlib import rectangle as d_rectangle # pylint: disable=no-name-in-module
|
|
from lib.aligner import Extract as AlignerExtract, get_align_mat
|
|
|
|
logger = logging.getLogger(__name__) # pylint: disable=invalid-name
|
|
|
|
|
|
class DetectedFace():
|
|
""" Detected face and landmark information """
|
|
def __init__( # pylint: disable=invalid-name
|
|
self, image=None, x=None, w=None, y=None, h=None,
|
|
frame_dims=None, landmarksXY=None):
|
|
logger.trace("Initializing %s", self.__class__.__name__)
|
|
self.image = image
|
|
self.x = x
|
|
self.w = w
|
|
self.y = y
|
|
self.h = h
|
|
self.frame_dims = frame_dims
|
|
self.landmarksXY = landmarksXY
|
|
self.hash = None # Hash must be set when the file is saved due to image compression
|
|
|
|
self.aligned = dict()
|
|
logger.trace("Initialized %s", self.__class__.__name__)
|
|
|
|
@property
|
|
def landmarks_as_xy(self):
|
|
""" Landmarks as XY """
|
|
return self.landmarksXY
|
|
|
|
def to_dlib_rect(self):
|
|
""" Return Bounding Box as Dlib Rectangle """
|
|
left = self.x
|
|
top = self.y
|
|
right = self.x + self.w
|
|
bottom = self.y + self.h
|
|
retval = d_rectangle(left, top, right, bottom)
|
|
logger.trace("Returning: %s", retval)
|
|
return retval
|
|
|
|
def from_dlib_rect(self, d_rect, image=None):
|
|
""" Set Bounding Box from a Dlib Rectangle """
|
|
logger.trace("Creating from dlib_rectangle: %s", d_rect)
|
|
if not isinstance(d_rect, d_rectangle):
|
|
raise ValueError("Supplied Bounding Box is not a dlib.rectangle.")
|
|
self.x = d_rect.left()
|
|
self.w = d_rect.right() - d_rect.left()
|
|
self.y = d_rect.top()
|
|
self.h = d_rect.bottom() - d_rect.top()
|
|
if image.any():
|
|
self.image_to_face(image)
|
|
logger.trace("Created from dlib_rectangle: (x: %s, w: %s, y: %s. h: %s)",
|
|
self.x, self.w, self.y, self.h)
|
|
|
|
def image_to_face(self, image):
|
|
""" Crop an image around bounding box to the face
|
|
and capture it's dimensions """
|
|
logger.trace("Cropping face from image")
|
|
self.image = image[self.y: self.y + self.h,
|
|
self.x: self.x + self.w]
|
|
|
|
def to_alignment(self):
|
|
""" Convert a detected face to alignment dict
|
|
|
|
NB: frame_dims should be the height and width
|
|
of the original frame. """
|
|
|
|
alignment = dict()
|
|
alignment["x"] = self.x
|
|
alignment["w"] = self.w
|
|
alignment["y"] = self.y
|
|
alignment["h"] = self.h
|
|
alignment["frame_dims"] = self.frame_dims
|
|
alignment["landmarksXY"] = self.landmarksXY
|
|
alignment["hash"] = self.hash
|
|
logger.trace("Returning: %s", alignment)
|
|
return alignment
|
|
|
|
def from_alignment(self, alignment, image=None):
|
|
""" Convert a face alignment to detected face object """
|
|
logger.trace("Creating from alignment: (alignment: %s, has_image: %s)",
|
|
alignment, bool(image is not None))
|
|
self.x = alignment["x"]
|
|
self.w = alignment["w"]
|
|
self.y = alignment["y"]
|
|
self.h = alignment["h"]
|
|
self.frame_dims = alignment["frame_dims"]
|
|
self.landmarksXY = alignment["landmarksXY"]
|
|
# Manual tool does not know the final hash so default to None
|
|
self.hash = alignment.get("hash", None)
|
|
if image is not None and image.any():
|
|
self.image_to_face(image)
|
|
logger.trace("Created from alignment: (x: %s, w: %s, y: %s. h: %s, "
|
|
"frame_dims: %s, landmarks: %s)",
|
|
self.x, self.w, self.y, self.h, self.frame_dims, self.landmarksXY)
|
|
|
|
# <<< Aligned Face methods and properties >>> #
|
|
def load_aligned(self, image, size=256, padding=48, align_eyes=False):
|
|
""" No need to load aligned information for all uses of this
|
|
class, so only call this to load the information for easy
|
|
reference to aligned properties for this face """
|
|
logger.trace("Loading aligned face: (size: %s, padding: %s, align_eyes: %s)",
|
|
size, padding, align_eyes)
|
|
self.aligned["size"] = size
|
|
self.aligned["padding"] = padding
|
|
self.aligned["align_eyes"] = align_eyes
|
|
self.aligned["matrix"] = get_align_mat(self, size, align_eyes)
|
|
if image is None:
|
|
self.aligned["face"] = None
|
|
else:
|
|
self.aligned["face"] = AlignerExtract().transform(
|
|
image,
|
|
self.aligned["matrix"],
|
|
size,
|
|
padding)
|
|
logger.trace("Loaded aligned face: %s", {key: val
|
|
for key, val in self.aligned.items()
|
|
if key != "face"})
|
|
|
|
@property
|
|
def original_roi(self):
|
|
""" Return the square aligned box location on the original
|
|
image """
|
|
roi = AlignerExtract().get_original_roi(self.aligned["matrix"],
|
|
self.aligned["size"],
|
|
self.aligned["padding"])
|
|
logger.trace("Returning: %s", roi)
|
|
return roi
|
|
|
|
@property
|
|
def aligned_landmarks(self):
|
|
""" Return the landmarks location transposed to extracted face """
|
|
landmarks = AlignerExtract().transform_points(self.landmarksXY,
|
|
self.aligned["matrix"],
|
|
self.aligned["size"],
|
|
self.aligned["padding"])
|
|
logger.trace("Returning: %s", landmarks)
|
|
return landmarks
|
|
|
|
@property
|
|
def aligned_face(self):
|
|
""" Return aligned detected face """
|
|
return self.aligned["face"]
|
|
|
|
@property
|
|
def adjusted_matrix(self):
|
|
""" Return adjusted matrix for size/padding combination """
|
|
mat = AlignerExtract().transform_matrix(self.aligned["matrix"],
|
|
self.aligned["size"],
|
|
self.aligned["padding"])
|
|
logger.trace("Returning: %s", mat)
|
|
return mat
|