1
0
Fork 0
mirror of https://github.com/deepfakes/faceswap synced 2025-06-07 19:05:02 -04:00
faceswap/scripts/train.py
Clorr 34945cfcd7
Adding models as plugins + Face filtering (#53) + #39 + #43 + #44 + #49 (#61)
* Making Models as plugins

* Do not reload model on each image #39 + Adding FaceFilter #53

* Adding @lukaville PR for #43 and #44 (possibly)

* Training done in a separate thread

* Better log for plugin load

* Adding a prefetch to train.py #49
(Note that we prefetch 2 batches of images, due to the queue behavior)
+ More compact logging with verbose info included

* correction of DirectoryProcessor signature

* adding missing import

* Convert with parallel preprocessing of files

* Added coverage var for trainer

Added a var with comment. Feel free to add it as argument

* corrections

* Modifying preview and normalization of image + correction

* Cleanup
2018-01-31 18:56:44 +01:00

145 lines
5.6 KiB
Python

import cv2
import numpy
import time
from lib.utils import get_image_paths
from lib.cli import FullPaths
from plugins.PluginLoader import PluginLoader
class TrainingProcessor(object):
arguments = None
def __init__(self, subparser, command, description='default'):
self.parse_arguments(description, subparser, command)
def process_arguments(self, arguments):
self.arguments = arguments
print("Model A Directory: {}".format(self.arguments.input_A))
print("Model B Directory: {}".format(self.arguments.input_B))
print("Training data directory: {}".format(self.arguments.model_dir))
self.process()
def parse_arguments(self, description, subparser, command):
parser = subparser.add_parser(
command,
help="This command trains the model for the two faces A and B.",
description=description,
epilog="Questions and feedback: \
https://github.com/deepfakes/faceswap-playground"
)
parser.add_argument('-A', '--input-A',
action=FullPaths,
dest="input_A",
default="input_A",
help="Input directory. A directory containing training images for face A.\
Defaults to 'input'")
parser.add_argument('-B', '--input-B',
action=FullPaths,
dest="input_B",
default="input_B",
help="Input directory. A directory containing training images for face B.\
Defaults to 'input'")
parser.add_argument('-m', '--model-dir',
action=FullPaths,
dest="model_dir",
default="models",
help="Model directory. This is where the training data will \
be stored. Defaults to 'model'")
parser.add_argument('-p', '--preview',
action="store_true",
dest="preview",
default=False,
help="Show preview output. If not specified, write progress \
to file.")
parser.add_argument('-v', '--verbose',
action="store_true",
dest="verbose",
default=False,
help="Show verbose output")
parser.add_argument('-s', '--save-interval',
type=int,
dest="save_interval",
default=100,
help="Sets the number of iterations before saving the model.")
parser.add_argument('-w', '--write-image',
action="store_true",
dest="write_image",
default=False,
help="Writes the training result to a file even on preview mode.")
parser = self.add_optional_arguments(parser)
parser.set_defaults(func=self.process_arguments)
def add_optional_arguments(self, parser):
# Override this for custom arguments
return parser
def process(self):
import threading
self.stop = False
thr = threading.Thread(target=self.processThread, args=(), kwargs={})
thr.start()
if self.arguments.preview:
print('Using live preview')
while True:
for name, image in self.preview_buffer.items():
cv2.imshow(name, image)
key = cv2.waitKey(1000)
if key == ord('\n') or key == ord('\r'):
break
else:
input() # TODO how to catch a specific key instead of Enter?
print("Exit requested! The trainer will complete its current cycle, save the models and quit (it can take up a couple of seconds depending on your training speed). If you want to kill it now, press Ctrl + c")
self.stop = True
thr.join() # waits until thread finishes
def processThread(self):
variant = "Original" # TODO Pass as argument
print('Loading data, this may take a while...')
model = PluginLoader.get_model(variant)(self.arguments.model_dir)
model.load(swapped=False)
images_A = get_image_paths(self.arguments.input_A)
images_B = get_image_paths(self.arguments.input_B)
trainer = PluginLoader.get_trainer(variant)(model, images_A, images_B)
try:
print('Starting. Press "Enter" to stop training and save model')
for epoch in range(0, 1000000):
save_iteration = epoch % self.arguments.save_interval == 0
trainer.train_one_step(epoch, self.show if save_iteration else None)
if save_iteration:
model.save_weights()
if self.stop:
model.save_weights()
exit()
except KeyboardInterrupt:
try:
model.save_weights()
except KeyboardInterrupt:
print('Saving model weights has been cancelled!')
exit(0)
preview_buffer = {}
def show(self, image, name=''):
try:
if self.arguments.preview:
self.preview_buffer[name] = image
elif self.arguments.write_image:
cv2.imwrite('_sample_{}.jpg'.format(name), image)
except Exception as e:
print("could not preview sample")
print(e)