1
0
Fork 0
mirror of https://github.com/deepfakes/faceswap synced 2025-06-08 03:26:47 -04:00
faceswap/lib/faces_detect.py
torzdf 2783c27e00
Fix convert-adjust (#531)
* Add dimensions to alignments + refactor

* Add frame_dims + funcs to DetectFaces. Add alignments lib

* Convert Adjust working

* Refactor and tidy up
2018-11-07 20:21:22 +00:00

112 lines
4.2 KiB
Python

#!/usr/bin python3
""" Face and landmarks detection for faceswap.py """
from dlib import rectangle as d_rectangle # pylint: disable=no-name-in-module
from lib.aligner import Extract as AlignerExtract, get_align_mat
class DetectedFace():
""" Detected face and landmark information """
def __init__(self, image=None, x=None, w=None, y=None, h=None,
frame_dims=None, landmarksXY=None):
self.image = image
self.x = x
self.w = w
self.y = y
self.h = h
self.frame_dims = frame_dims
self.landmarksXY = landmarksXY
self.aligned = dict()
def landmarks_as_xy(self):
""" Landmarks as XY """
return self.landmarksXY
def to_dlib_rect(self):
""" Return Bounding Box as Dlib Rectangle """
left = self.x
top = self.y
right = self.x + self.w
bottom = self.y + self.h
return d_rectangle(left, top, right, bottom)
def from_dlib_rect(self, d_rect):
""" Set Bounding Box from a Dlib Rectangle """
if not isinstance(d_rect, d_rectangle):
raise ValueError("Supplied Bounding Box is not a dlib.rectangle.")
self.x = d_rect.left()
self.w = d_rect.right() - d_rect.left()
self.y = d_rect.top()
self.h = d_rect.bottom() - d_rect.top()
def image_to_face(self, image):
""" Crop an image around bounding box to the face
and capture it's dimensions """
self.image = image[self.y: self.y + self.h,
self.x: self.x + self.w]
def to_alignment(self):
""" Convert a detected face to alignment dict """
alignment = dict()
alignment["x"] = self.x
alignment["w"] = self.w
alignment["y"] = self.y
alignment["h"] = self.h
alignment["frame_dims"] = self.frame_dims
alignment["landmarksXY"] = self.landmarksXY
return alignment
def from_alignment(self, alignment, image=None):
""" Convert a face alignment to detected face object """
self.x = alignment["x"]
self.w = alignment["w"]
self.y = alignment["y"]
self.h = alignment["h"]
self.frame_dims = alignment["frame_dims"]
self.landmarksXY = alignment["landmarksXY"]
if image.any():
self.image_to_face(image)
# <<< Aligned Face methods and properties >>> #
def load_aligned(self, image, size=256, padding=48, align_eyes=False):
""" No need to load aligned information for all uses of this
class, so only call this to load the information for easy
reference to aligned properties for this face """
self.aligned["size"] = size
self.aligned["padding"] = padding
self.aligned["align_eyes"] = align_eyes
self.aligned["matrix"] = get_align_mat(self, size, align_eyes)
self.aligned["face"] = AlignerExtract().transform(
image,
self.aligned["matrix"],
size,
padding)
@property
def original_roi(self):
""" Return the square aligned box location on the original
image """
return AlignerExtract().get_original_roi(self.aligned["matrix"],
self.aligned["size"],
self.aligned["padding"])
@property
def aligned_landmarks(self):
""" Return the landmarks location transposed to extracted face """
return AlignerExtract().transform_points(self.landmarksXY,
self.aligned["matrix"],
self.aligned["size"],
self.aligned["padding"])
@property
def aligned_face(self):
""" Return aligned detected face """
return self.aligned["face"]
@property
def adjusted_matrix(self):
""" Return adjusted matrix for size/padding combination """
return AlignerExtract().transform_matrix(self.aligned["matrix"],
self.aligned["size"],
self.aligned["padding"])