1
0
Fork 0
mirror of https://github.com/deepfakes/faceswap synced 2025-06-08 11:53:26 -04:00
faceswap/scripts/train.py

455 lines
18 KiB
Python

#!/usr/bin python3
""" Main entry point to the training process of FaceSwap """
import logging
import os
import sys
from threading import Lock
from time import sleep
import cv2
from lib.keypress import KBHit
from lib.multithreading import MultiThread
from lib.utils import (get_folder, get_image_paths, FaceswapError, _image_extensions)
from plugins.plugin_loader import PluginLoader
logger = logging.getLogger(__name__) # pylint: disable=invalid-name
class Train(): # pylint:disable=too-few-public-methods
""" The Faceswap Training Process.
The training process is responsible for training a model on a set of source faces and a set of
destination faces.
The training process is self contained and should not be referenced by any other scripts, so it
contains no public properties.
Parameters
----------
arguments: argparse.Namespace
The arguments to be passed to the training process as generated from Faceswap's command
line arguments
"""
def __init__(self, arguments):
logger.debug("Initializing %s: (args: %s", self.__class__.__name__, arguments)
self._args = arguments
if self._args.summary:
# If just outputting summary we don't need to initialize everything
return
self._images = self._get_images()
self._timelapse = self._set_timelapse()
self._gui_preview_trigger = os.path.join(os.path.realpath(os.path.dirname(sys.argv[0])),
"lib", "gui", ".cache", ".preview_trigger")
self._stop = False
self._save_now = False
self._refresh_preview = False
self._preview_buffer = dict()
self._lock = Lock()
logger.debug("Initialized %s", self.__class__.__name__)
def _get_images(self):
""" Check the image folders exist and contains images and obtain image paths.
Returns
-------
dict
The image paths for each side. The key is the side, the value is the list of paths
for that side.
"""
logger.debug("Getting image paths")
images = dict()
for side in ("a", "b"):
image_dir = getattr(self._args, "input_{}".format(side))
if not os.path.isdir(image_dir):
logger.error("Error: '%s' does not exist", image_dir)
sys.exit(1)
images[side] = get_image_paths(image_dir)
if not images[side]:
logger.error("Error: '%s' contains no images", image_dir)
sys.exit(1)
logger.info("Model A Directory: %s", self._args.input_a)
logger.info("Model B Directory: %s", self._args.input_b)
logger.debug("Got image paths: %s", [(key, str(len(val)) + " images")
for key, val in images.items()])
self._validate_image_counts(images)
return images
@classmethod
def _validate_image_counts(cls, images):
""" Validate that there are sufficient images to commence training without raising an
error.
Confirms that there are at least 24 images in each folder. Whilst this is not enough images
to train a Neural Network to any successful degree, it should allow the process to train
without raising errors when generating previews.
A warning is raised if there are fewer than 250 images on any side.
Parameters
----------
images: dict
The image paths for each side. The key is the side, the value is the list of paths
for that side.
"""
counts = {side: len(paths) for side, paths in images.items()}
msg = ("You need to provide a significant number of images to successfully train a Neural "
"Network. Aim for between 500 - 5000 images per side.")
if any(count < 25 for count in counts.values()):
logger.error("At least one of your input folders contains fewer than 25 images.")
logger.error(msg)
sys.exit(1)
if any(count < 250 for count in counts.values()):
logger.warning("At least one of your input folders contains fewer than 250 images. "
"Results are likely to be poor.")
logger.warning(msg)
def _set_timelapse(self):
""" Set time-lapse paths if requested.
Returns
-------
dict
The time-lapse keyword arguments for passing to the trainer
"""
if (not self._args.timelapse_input_a and
not self._args.timelapse_input_b and
not self._args.timelapse_output):
return None
if (not self._args.timelapse_input_a or
not self._args.timelapse_input_b or
not self._args.timelapse_output):
raise FaceswapError("To enable the timelapse, you have to supply all the parameters "
"(--timelapse-input-A, --timelapse-input-B and "
"--timelapse-output).")
timelapse_output = str(get_folder(self._args.timelapse_output))
for side in ("a", "b"):
folder = getattr(self._args, "timelapse_input_{}".format(side))
if folder is not None and not os.path.isdir(folder):
raise FaceswapError("The Timelapse path '{}' does not exist".format(folder))
training_folder = getattr(self._args, "input_{}".format(side))
if folder == training_folder:
continue # Time-lapse folder is training folder
filenames = [fname for fname in os.listdir(folder)
if os.path.splitext(fname)[-1].lower() in _image_extensions]
if not filenames:
raise FaceswapError("The Timelapse path '{}' does not contain any valid "
"images".format(folder))
# Time-lapse images must appear in the training set, as we need access to alignment and
# mask info. Check filenames are there to save failing much later in the process.
training_images = [os.path.basename(img) for img in self._images[side]]
if not all(img in training_images for img in filenames):
raise FaceswapError("All images in the Timelapse folder '{}' must exist in the "
"training folder '{}'".format(folder, training_folder))
kwargs = {"input_a": self._args.timelapse_input_a,
"input_b": self._args.timelapse_input_b,
"output": timelapse_output}
logger.debug("Timelapse enabled: %s", kwargs)
return kwargs
def process(self):
""" The entry point for triggering the Training Process.
Should only be called from :class:`lib.cli.launcher.ScriptExecutor`
"""
if self._args.summary:
self._load_model()
return
logger.debug("Starting Training Process")
logger.info("Training data directory: %s", self._args.model_dir)
thread = self._start_thread()
# from lib.queue_manager import queue_manager; queue_manager.debug_monitor(1)
err = self._monitor(thread)
self._end_thread(thread, err)
logger.debug("Completed Training Process")
def _start_thread(self):
""" Put the :func:`_training` into a background thread so we can keep control.
Returns
-------
:class:`lib.multithreading.MultiThread`
The background thread for running training
"""
logger.debug("Launching Trainer thread")
thread = MultiThread(target=self._training)
thread.start()
logger.debug("Launched Trainer thread")
return thread
def _end_thread(self, thread, err):
""" Output message and join thread back to main on termination.
Parameters
----------
thread: :class:`lib.multithreading.MultiThread`
The background training thread
err: bool
Whether an error has been detected in :func:`_monitor`
"""
logger.debug("Ending Training thread")
if err:
msg = "Error caught! Exiting..."
log = logger.critical
else:
msg = ("Exit requested! The trainer will complete its current cycle, "
"save the models and quit (This can take a couple of minutes "
"depending on your training speed).")
if not self._args.redirect_gui:
msg += " If you want to kill it now, press Ctrl + c"
log = logger.info
log(msg)
self._stop = True
thread.join()
sys.stdout.flush()
logger.debug("Ended training thread")
def _training(self):
""" The training process to be run inside a thread. """
try:
sleep(1) # Let preview instructions flush out to logger
logger.debug("Commencing Training")
logger.info("Loading data, this may take a while...")
model = self._load_model()
trainer = self._load_trainer(model)
self._run_training_cycle(model, trainer)
except KeyboardInterrupt:
try:
logger.debug("Keyboard Interrupt Caught. Saving Weights and exiting")
model.save()
trainer.clear_tensorboard()
except KeyboardInterrupt:
logger.info("Saving model weights has been cancelled!")
sys.exit(0)
except Exception as err:
raise err
def _load_model(self):
""" Load the model requested for training.
Returns
-------
:file:`plugins.train.model` plugin
The requested model plugin
"""
logger.debug("Loading Model")
model_dir = str(get_folder(self._args.model_dir))
model = PluginLoader.get_model(self._args.trainer)(
model_dir,
self._args,
predict=False)
model.build()
logger.debug("Loaded Model")
return model
def _load_trainer(self, model):
""" Load the trainer requested for training.
Parameters
----------
model: :file:`plugins.train.model` plugin
The requested model plugin
Returns
-------
:file:`plugins.train.trainer` plugin
The requested model trainer plugin
"""
logger.debug("Loading Trainer")
trainer = PluginLoader.get_trainer(model.trainer)
trainer = trainer(model,
self._images,
self._args.batch_size,
self._args.configfile)
logger.debug("Loaded Trainer")
return trainer
def _run_training_cycle(self, model, trainer):
""" Perform the training cycle.
Handles the background training, updating previews/time-lapse on each save interval,
and saving the model.
Parameters
----------
model: :file:`plugins.train.model` plugin
The requested model plugin
trainer: :file:`plugins.train.trainer` plugin
The requested model trainer plugin
"""
logger.debug("Running Training Cycle")
if self._args.write_image or self._args.redirect_gui or self._args.preview:
display_func = self._show
else:
display_func = None
for iteration in range(1, self._args.iterations + 1):
logger.trace("Training iteration: %s", iteration)
save_iteration = iteration % self._args.save_interval == 0 or iteration == 1
if save_iteration or self._save_now or self._refresh_preview:
viewer = display_func
else:
viewer = None
timelapse = self._timelapse if save_iteration else None
trainer.train_one_step(viewer, timelapse)
if self._stop:
logger.debug("Stop received. Terminating")
break
if self._refresh_preview and viewer is not None:
if self._args.redirect_gui:
print("\n")
logger.info("[Preview Updated]")
if os.path.isfile(self._gui_preview_trigger):
logger.debug("Removing gui trigger file: %s", self._gui_preview_trigger)
os.remove(self._gui_preview_trigger)
self._refresh_preview = False
if save_iteration:
logger.debug("Save Iteration: (iteration: %s", iteration)
model.save()
elif self._save_now:
logger.debug("Save Requested: (iteration: %s", iteration)
model.save()
self._save_now = False
logger.debug("Training cycle complete")
model.save()
trainer.clear_tensorboard()
self._stop = True
def _monitor(self, thread):
""" Monitor the background :func:`_training` thread for key presses and errors.
Returns
-------
bool
``True`` if there has been an error in the background thread otherwise ``False``
"""
is_preview = self._args.preview
preview_trigger_set = False
logger.debug("Launching Monitor")
logger.info("===================================================")
logger.info(" Starting")
if is_preview:
logger.info(" Using live preview")
logger.info(" Press '%s' to save and quit",
"Stop" if self._args.redirect_gui or self._args.colab else "ENTER")
if not self._args.redirect_gui and not self._args.colab:
logger.info(" Press 'S' to save model weights immediately")
logger.info("===================================================")
keypress = KBHit(is_gui=self._args.redirect_gui)
err = False
while True:
try:
if is_preview:
with self._lock:
for name, image in self._preview_buffer.items():
cv2.imshow(name, image) # pylint: disable=no-member
cv_key = cv2.waitKey(1000) # pylint: disable=no-member
else:
cv_key = None
if thread.has_error:
logger.debug("Thread error detected")
err = True
break
if self._stop:
logger.debug("Stop received")
break
# Preview Monitor
if is_preview and (cv_key == ord("\n") or cv_key == ord("\r")):
logger.debug("Exit requested")
break
if is_preview and cv_key == ord("s"):
print("\n")
logger.info("Save requested")
self._save_now = True
if is_preview and cv_key == ord("r"):
print("\n")
logger.info("Refresh preview requested")
self._refresh_preview = True
# Console Monitor
if keypress.kbhit():
console_key = keypress.getch()
if console_key in ("\n", "\r"):
logger.debug("Exit requested")
break
if console_key in ("s", "S"):
logger.info("Save requested")
self._save_now = True
# GUI Preview trigger update monitor
if self._args.redirect_gui:
if not preview_trigger_set and os.path.isfile(self._gui_preview_trigger):
print("\n")
logger.info("Refresh preview requested")
self._refresh_preview = True
preview_trigger_set = True
if preview_trigger_set and not self._refresh_preview:
logger.debug("Resetting GUI preview trigger")
preview_trigger_set = False
sleep(1)
except KeyboardInterrupt:
logger.debug("Keyboard Interrupt received")
break
keypress.set_normal_term()
logger.debug("Closed Monitor")
return err
def _show(self, image, name=""):
""" Generate the preview and write preview file output.
Handles the output and display of preview images.
Parameters
----------
image: :class:`numpy.ndarray`
The preview image to be displayed and/or written out
name: str, optional
The name of the image for saving or display purposes. If an empty string is passed
then it will automatically be names. Default: ""
"""
logger.debug("Updating preview: (name: %s)", name)
try:
scriptpath = os.path.realpath(os.path.dirname(sys.argv[0]))
if self._args.write_image:
logger.debug("Saving preview to disk")
img = "training_preview.jpg"
imgfile = os.path.join(scriptpath, img)
cv2.imwrite(imgfile, image) # pylint: disable=no-member
logger.debug("Saved preview to: '%s'", img)
if self._args.redirect_gui:
logger.debug("Generating preview for GUI")
img = ".gui_training_preview.jpg"
imgfile = os.path.join(scriptpath, "lib", "gui",
".cache", "preview", img)
cv2.imwrite(imgfile, image) # pylint: disable=no-member
logger.debug("Generated preview for GUI: '%s'", img)
if self._args.preview:
logger.debug("Generating preview for display: '%s'", name)
with self._lock:
self._preview_buffer[name] = image
logger.debug("Generated preview for display: '%s'", name)
except Exception as err:
logging.error("could not preview sample")
raise err
logger.debug("Updated preview: (name: %s)", name)