1
0
Fork 0
mirror of https://github.com/deepfakes/faceswap synced 2025-06-07 19:05:02 -04:00
faceswap/lib/utils.py

279 lines
9.9 KiB
Python

#!/usr/bin python3
""" Utilities available across all scripts """
import os
import warnings
from pathlib import Path
from re import finditer
from time import time
import cv2
import numpy as np
import dlib
from lib.faces_detect import DetectedFace
from lib.training_data import TrainingDataGenerator
# Global variables
_image_extensions = ['.bmp', '.jpeg', '.jpg', '.png', '.tif', '.tiff']
_video_extensions = ['.avi', '.flv', '.mkv', '.mov', '.mp4', '.mpeg', '.webm']
def get_folder(path):
""" Return a path to a folder, creating it if it doesn't exist """
output_dir = Path(path)
output_dir.mkdir(parents=True, exist_ok=True)
return output_dir
def get_image_paths(directory, exclude=list(), debug=False):
""" Return a list of images that reside in a folder """
image_extensions = _image_extensions
exclude_names = [os.path.basename(Path(x).stem[:Path(x).stem.rfind('_')] +
Path(x).suffix) for x in exclude]
dir_contents = list()
if not os.path.exists(directory):
directory = get_folder(directory)
dir_scanned = sorted(os.scandir(directory), key=lambda x: x.name)
for chkfile in dir_scanned:
if any([chkfile.name.lower().endswith(ext)
for ext in image_extensions]):
if chkfile.name in exclude_names:
if debug:
print("Already processed %s" % chkfile.name)
continue
else:
dir_contents.append(chkfile.path)
return dir_contents
def backup_file(directory, filename):
""" Backup a given file by appending .bk to the end """
origfile = os.path.join(directory, filename)
backupfile = origfile + '.bk'
if os.path.exists(backupfile):
os.remove(backupfile)
if os.path.exists(origfile):
os.rename(origfile, backupfile)
def set_system_verbosity(loglevel):
""" Set the verbosity level of tensorflow and suppresses
future and deprecation warnings from any modules
From:
https://stackoverflow.com/questions/35911252/disable-tensorflow-debugging-information
Can be set to:
0 - all logs shown
1 - filter out INFO logs
2 - filter out WARNING logs
3 - filter out ERROR logs """
os.environ['TF_CPP_MIN_LOG_LEVEL'] = loglevel
if loglevel != '0':
for warncat in (FutureWarning, DeprecationWarning):
warnings.simplefilter(action='ignore', category=warncat)
def add_alpha_channel(image, intensity=100):
""" Add an alpha channel to an image
intensity: The opacity of the alpha channel between 0 and 100
100 = transparent,
0 = solid """
assert 0 <= intensity <= 100, "Invalid intensity supplied"
intensity = (255.0 / 100.0) * intensity
d_type = image.dtype
image = image.astype("float32")
ch_b, ch_g, ch_r = cv2.split(image) # pylint: disable=no-member
ch_a = np.ones(ch_b.shape, dtype="float32") * intensity
image_bgra = cv2.merge( # pylint: disable=no-member
(ch_b, ch_g, ch_r, ch_a))
return image_bgra.astype(d_type)
def rotate_image_by_angle(image, angle,
rotated_width=None, rotated_height=None):
""" Rotate an image by a given angle.
From: https://stackoverflow.com/questions/22041699 """
height, width = image.shape[:2]
image_center = (width/2, height/2)
rotation_matrix = cv2.getRotationMatrix2D( # pylint: disable=no-member
image_center, -1.*angle, 1.)
if rotated_width is None or rotated_height is None:
abs_cos = abs(rotation_matrix[0, 0])
abs_sin = abs(rotation_matrix[0, 1])
if rotated_width is None:
rotated_width = int(height*abs_sin + width*abs_cos)
if rotated_height is None:
rotated_height = int(height*abs_cos + width*abs_sin)
rotation_matrix[0, 2] += rotated_width/2 - image_center[0]
rotation_matrix[1, 2] += rotated_height/2 - image_center[1]
return (cv2.warpAffine(image, # pylint: disable=no-member
rotation_matrix,
(rotated_width, rotated_height)),
rotation_matrix)
def rotate_landmarks(face, rotation_matrix):
""" Rotate the landmarks and bounding box for faces
found in rotated images.
Pass in a DetectedFace object, Alignments dict or DLib rectangle"""
if isinstance(face, DetectedFace):
bounding_box = [[face.x, face.y],
[face.x + face.w, face.y],
[face.x + face.w, face.y + face.h],
[face.x, face.y + face.h]]
landmarks = face.landmarksXY
elif isinstance(face, dict):
bounding_box = [[face.get("x", 0), face.get("y", 0)],
[face.get("x", 0) + face.get("w", 0),
face.get("y", 0)],
[face.get("x", 0) + face.get("w", 0),
face.get("y", 0) + face.get("h", 0)],
[face.get("x", 0),
face.get("y", 0) + face.get("h", 0)]]
landmarks = face.get("landmarksXY", list())
elif isinstance(face,
dlib.rectangle): # pylint: disable=c-extension-no-member
bounding_box = [[face.left(), face.top()],
[face.right(), face.top()],
[face.right(), face.bottom()],
[face.left(), face.bottom()]]
landmarks = list()
else:
raise ValueError("Unsupported face type")
rotation_matrix = cv2.invertAffineTransform( # pylint: disable=no-member
rotation_matrix)
rotated = list()
for item in (bounding_box, landmarks):
if not item:
continue
points = np.array(item, np.int32)
points = np.expand_dims(points, axis=0)
transformed = cv2.transform(points, # pylint: disable=no-member
rotation_matrix).astype(np.int32)
rotated.append(transformed.squeeze())
# Bounding box should follow x, y planes, so get min/max
# for non-90 degree rotations
pt_x = min([pnt[0] for pnt in rotated[0]])
pt_y = min([pnt[1] for pnt in rotated[0]])
pt_x1 = max([pnt[0] for pnt in rotated[0]])
pt_y1 = max([pnt[1] for pnt in rotated[0]])
if isinstance(face, DetectedFace):
face.x = int(pt_x)
face.y = int(pt_y)
face.w = int(pt_x1 - pt_x)
face.h = int(pt_y1 - pt_y)
face.r = 0
if len(rotated) > 1:
face.landmarksXY = [tuple(point) for point in rotated[1].tolist()]
elif isinstance(face, dict):
face["x"] = int(pt_x)
face["y"] = int(pt_y)
face["w"] = int(pt_x1 - pt_x)
face["h"] = int(pt_y1 - pt_y)
face["r"] = 0
if len(rotated) > 1:
face["landmarksXY"] = [tuple(point)
for point in rotated[1].tolist()]
else:
face = dlib.rectangle( # pylint: disable=c-extension-no-member
int(pt_x), int(pt_y), int(pt_x1), int(pt_y1))
return face
def camel_case_split(identifier):
""" Split a camel case name
from: https://stackoverflow.com/questions/29916065 """
matches = finditer(
".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)",
identifier)
return [m.group(0) for m in matches]
class Timelapse:
""" Time lapse function for training """
@classmethod
def create_timelapse(cls, input_dir_a, input_dir_b, output_dir, trainer):
""" Create the time lapse """
if input_dir_a is None and input_dir_b is None and output_dir is None:
return None
if input_dir_a is None or input_dir_b is None:
raise ValueError("To enable the timelapse, you have to supply "
"all the parameters (--timelapse-input-A and "
"--timelapse-input-B).")
if output_dir is None:
output_dir = get_folder(os.path.join(trainer.model.model_dir,
"timelapse"))
return Timelapse(input_dir_a, input_dir_b, output_dir, trainer)
def __init__(self, input_dir_a, input_dir_b, output, trainer):
self.output_dir = output
self.trainer = trainer
if not os.path.isdir(self.output_dir):
print('Error: {} does not exist'.format(self.output_dir))
exit(1)
self.files_a = self.read_input_images(input_dir_a)
self.files_b = self.read_input_images(input_dir_b)
btchsz = min(len(self.files_a), len(self.files_b))
self.images_a = self.get_image_data(self.files_a, btchsz)
self.images_b = self.get_image_data(self.files_b, btchsz)
@staticmethod
def read_input_images(input_dir):
""" Get the image paths """
if not os.path.isdir(input_dir):
print('Error: {} does not exist'.format(input_dir))
exit(1)
if not os.listdir(input_dir):
print('Error: {} contains no images'.format(input_dir))
exit(1)
return get_image_paths(input_dir)
def get_image_data(self, input_images, batch_size):
""" Get training images """
random_transform_args = {
'rotation_range': 0,
'zoom_range': 0,
'shift_range': 0,
'random_flip': 0
}
zoom = 1
if hasattr(self.trainer.model, 'IMAGE_SHAPE'):
zoom = self.trainer.model.IMAGE_SHAPE[0] // 64
generator = TrainingDataGenerator(random_transform_args, 160, zoom)
batch = generator.minibatchAB(input_images, batch_size,
doShuffle=False)
return next(batch)[2]
def work(self):
""" Write out timelapse image """
image = self.trainer.show_sample(self.images_a, self.images_b)
cv2.imwrite(os.path.join(self.output_dir, # pylint: disable=no-member
str(int(time())) + ".png"), image)