1
0
Fork 0
mirror of https://github.com/deepfakes/faceswap synced 2025-06-08 20:13:52 -04:00
faceswap/tests/lib/model/initializers_test.py
torzdf 03f5c671bc
Remove plaidML support (#1325)
* Remove PlaidML reference from readme files

* Remove AMD option from installers

* remove amd requirements and update setup.py

* remove plaidml test from CI workflow

* gpustats: remove plaidml backend

* plaid removals:
  - faceswap.py - python version check
  - setup.cfg - plaidml typing ignore
  - lib.keras_utils - All plaid code
  - lib.launcher.py - All plaidml checks and configuration

* remove tf2.2 specific code from GUI event reader

* lib.model - remove all plaidml implementations

* plugins.extract - remove plaidml code

* plugins.train remove plaidml code

* lib.convert - remove plaidml code

* tools.model: remove plaidml code

* Remove plaidML tests from unit tests

* remove plaidml_utils and docsting cleanups

* Remove plaidML refs from configs

* fix keras imports
2023-06-21 12:57:33 +01:00

65 lines
2 KiB
Python

#!/usr/bin/env python3
""" Tests for Faceswap Initializers.
Adapted from Keras tests.
"""
import pytest
import numpy as np
from tensorflow.keras import backend as K # pylint:disable=import-error
from tensorflow.keras import initializers as k_initializers # noqa:E501 # pylint:disable=import-error
from lib.model import initializers
from lib.utils import get_backend
CONV_SHAPE = (3, 3, 256, 2048)
CONV_ID = get_backend().upper()
def _runner(init, shape, target_mean=None, target_std=None,
target_max=None, target_min=None):
variable = K.variable(init(shape))
output = K.get_value(variable)
lim = 3e-2
if target_std is not None:
assert abs(output.std() - target_std) < lim
if target_mean is not None:
assert abs(output.mean() - target_mean) < lim
if target_max is not None:
assert abs(output.max() - target_max) < lim
if target_min is not None:
assert abs(output.min() - target_min) < lim
@pytest.mark.parametrize('tensor_shape', [CONV_SHAPE], ids=[CONV_ID])
def test_icnr(tensor_shape):
""" ICNR Initialization Test
Parameters
----------
tensor_shape: tuple
The shape of the tensor to feed to the initializer
"""
fan_in, _ = initializers.compute_fans(tensor_shape)
std = np.sqrt(2. / fan_in)
_runner(initializers.ICNR(initializer=k_initializers.he_uniform(), # pylint:disable=no-member
scale=2),
tensor_shape,
target_mean=0,
target_std=std)
@pytest.mark.parametrize('tensor_shape', [CONV_SHAPE], ids=[CONV_ID])
def test_convolution_aware(tensor_shape):
""" Convolution Aware Initialization Test
Parameters
----------
tensor_shape: tuple
The shape of the tensor to feed to the initializer
"""
fan_in, _ = initializers.compute_fans(tensor_shape)
std = np.sqrt(2. / fan_in)
_runner(initializers.ConvolutionAware(seed=123), tensor_shape,
target_mean=0, target_std=std)