1
0
Fork 0
mirror of https://github.com/deepfakes/faceswap synced 2025-06-07 19:05:02 -04:00
faceswap/lib/model/normalization.py
torzdf 03f5c671bc
Remove plaidML support (#1325)
* Remove PlaidML reference from readme files

* Remove AMD option from installers

* remove amd requirements and update setup.py

* remove plaidml test from CI workflow

* gpustats: remove plaidml backend

* plaid removals:
  - faceswap.py - python version check
  - setup.cfg - plaidml typing ignore
  - lib.keras_utils - All plaid code
  - lib.launcher.py - All plaidml checks and configuration

* remove tf2.2 specific code from GUI event reader

* lib.model - remove all plaidml implementations

* plugins.extract - remove plaidml code

* plugins.train remove plaidml code

* lib.convert - remove plaidml code

* tools.model: remove plaidml code

* Remove plaidML tests from unit tests

* remove plaidml_utils and docsting cleanups

* Remove plaidML refs from configs

* fix keras imports
2023-06-21 12:57:33 +01:00

649 lines
25 KiB
Python

#!/usr/bin/env python3
""" Normalization methods for faceswap.py specific to Tensorflow backend """
import inspect
import sys
import tensorflow as tf
# Fix intellisense/linting for tf.keras' thoroughly broken import system
from tensorflow.python.keras.utils.conv_utils import normalize_data_format # noqa:E501 # pylint:disable=no-name-in-module
keras = tf.keras
layers = keras.layers
K = keras.backend
class AdaInstanceNormalization(layers.Layer): # type:ignore[name-defined]
""" Adaptive Instance Normalization Layer for Keras.
Parameters
----------
axis: int, optional
The axis that should be normalized (typically the features axis). For instance, after a
`Conv2D` layer with `data_format="channels_first"`, set `axis=1` in
:class:`InstanceNormalization`. Setting `axis=None` will normalize all values in each
instance of the batch. Axis 0 is the batch dimension. `axis` cannot be set to 0 to avoid
errors. Default: ``None``
momentum: float, optional
Momentum for the moving mean and the moving variance. Default: `0.99`
epsilon: float, optional
Small float added to variance to avoid dividing by zero. Default: `1e-3`
center: bool, optional
If ``True``, add offset of `beta` to normalized tensor. If ``False``, `beta` is ignored.
Default: ``True``
scale: bool, optional
If ``True``, multiply by `gamma`. If ``False``, `gamma` is not used. When the next layer
is linear (also e.g. `relu`), this can be disabled since the scaling will be done by
the next layer. Default: ``True``
References
----------
Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization - \
https://arxiv.org/abs/1703.06868
"""
def __init__(self, axis=-1, momentum=0.99, epsilon=1e-3, center=True, scale=True, **kwargs):
super().__init__(**kwargs)
self.axis = axis
self.momentum = momentum
self.epsilon = epsilon
self.center = center
self.scale = scale
def build(self, input_shape):
"""Creates the layer weights.
Parameters
----------
input_shape: tensor
Keras tensor (future input to layer) or ``list``/``tuple`` of Keras tensors to
reference for weight shape computations.
"""
dim = input_shape[0][self.axis]
if dim is None:
raise ValueError('Axis ' + str(self.axis) + ' of '
'input tensor should have a defined dimension '
'but the layer received an input with shape ' +
str(input_shape[0]) + '.')
super().build(input_shape)
def call(self, inputs, training=None): # pylint:disable=unused-argument,arguments-differ
"""This is where the layer's logic lives.
Parameters
----------
inputs: tensor
Input tensor, or list/tuple of input tensors
Returns
-------
tensor
A tensor or list/tuple of tensors
"""
input_shape = K.int_shape(inputs[0])
reduction_axes = list(range(0, len(input_shape)))
beta = inputs[1]
gamma = inputs[2]
if self.axis is not None:
del reduction_axes[self.axis]
del reduction_axes[0]
mean = K.mean(inputs[0], reduction_axes, keepdims=True)
stddev = K.std(inputs[0], reduction_axes, keepdims=True) + self.epsilon
normed = (inputs[0] - mean) / stddev
return normed * gamma + beta
def get_config(self):
"""Returns the config of the layer.
The Keras configuration for the layer.
Returns
--------
dict
A python dictionary containing the layer configuration
"""
config = {
'axis': self.axis,
'momentum': self.momentum,
'epsilon': self.epsilon,
'center': self.center,
'scale': self.scale
}
base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items()))
def compute_output_shape(self, input_shape):
""" Calculate the output shape from this layer.
Parameters
----------
input_shape: tuple
The input shape to the layer
Returns
-------
int
The output shape to the layer
"""
return input_shape[0]
class GroupNormalization(layers.Layer): # type:ignore[name-defined]
""" Group Normalization
Parameters
----------
axis: int, optional
The axis that should be normalized (typically the features axis). For instance, after a
`Conv2D` layer with `data_format="channels_first"`, set `axis=1` in
:class:`InstanceNormalization`. Setting `axis=None` will normalize all values in each
instance of the batch. Axis 0 is the batch dimension. `axis` cannot be set to 0 to avoid
errors. Default: ``None``
gamma_init: str, optional
Initializer for the gamma weight. Default: `"one"`
beta_init: str, optional
Initializer for the beta weight. Default `"zero"`
gamma_regularizer: varies, optional
Optional regularizer for the gamma weight. Default: ``None``
beta_regularizer: varies, optional
Optional regularizer for the beta weight. Default ``None``
epsilon: float, optional
Small float added to variance to avoid dividing by zero. Default: `1e-3`
group: int, optional
The group size. Default: `32`
data_format: ["channels_first", "channels_last"], optional
The required data format. Optional. Default: ``None``
kwargs: dict
Any additional standard Keras Layer key word arguments
References
----------
Shaoanlu GAN: https://github.com/shaoanlu/faceswap-GAN
"""
# pylint:disable=too-many-instance-attributes
def __init__(self, axis=-1, gamma_init='one', beta_init='zero', gamma_regularizer=None,
beta_regularizer=None, epsilon=1e-6, group=32, data_format=None, **kwargs):
self.beta = None
self.gamma = None
super().__init__(**kwargs)
self.axis = axis if isinstance(axis, (list, tuple)) else [axis]
self.gamma_init = keras.initializers.get(gamma_init)
self.beta_init = keras.initializers.get(beta_init)
self.gamma_regularizer = keras.regularizers.get(gamma_regularizer)
self.beta_regularizer = keras.regularizers.get(beta_regularizer)
self.epsilon = epsilon
self.group = group
self.data_format = normalize_data_format(data_format)
self.supports_masking = True
def build(self, input_shape):
"""Creates the layer weights.
Parameters
----------
input_shape: tensor
Keras tensor (future input to layer) or ``list``/``tuple`` of Keras tensors to
reference for weight shape computations.
"""
input_spec = [layers.InputSpec(shape=input_shape)]
self.input_spec = input_spec # pylint:disable=attribute-defined-outside-init
shape = [1 for _ in input_shape]
if self.data_format == 'channels_last':
channel_axis = -1
shape[channel_axis] = input_shape[channel_axis]
elif self.data_format == 'channels_first':
channel_axis = 1
shape[channel_axis] = input_shape[channel_axis]
# for i in self.axis:
# shape[i] = input_shape[i]
self.gamma = self.add_weight(shape=shape,
initializer=self.gamma_init,
regularizer=self.gamma_regularizer,
name='gamma')
self.beta = self.add_weight(shape=shape,
initializer=self.beta_init,
regularizer=self.beta_regularizer,
name='beta')
self.built = True # pylint:disable=attribute-defined-outside-init
def call(self, inputs, *args, **kwargs): # noqa:C901
"""This is where the layer's logic lives.
Parameters
----------
inputs: tensor
Input tensor, or list/tuple of input tensors
Returns
-------
tensor
A tensor or list/tuple of tensors
"""
input_shape = K.int_shape(inputs)
if len(input_shape) != 4 and len(input_shape) != 2:
raise ValueError('Inputs should have rank ' +
str(4) + " or " + str(2) +
'; Received input shape:', str(input_shape))
if len(input_shape) == 4:
if self.data_format == 'channels_last':
batch_size, height, width, channels = input_shape
if batch_size is None:
batch_size = -1
if channels < self.group:
raise ValueError('Input channels should be larger than group size' +
'; Received input channels: ' + str(channels) +
'; Group size: ' + str(self.group))
var_x = K.reshape(inputs, (batch_size,
height,
width,
self.group,
channels // self.group))
mean = K.mean(var_x, axis=[1, 2, 4], keepdims=True)
std = K.sqrt(K.var(var_x, axis=[1, 2, 4], keepdims=True) + self.epsilon)
var_x = (var_x - mean) / std
var_x = K.reshape(var_x, (batch_size, height, width, channels))
retval = self.gamma * var_x + self.beta
elif self.data_format == 'channels_first':
batch_size, channels, height, width = input_shape
if batch_size is None:
batch_size = -1
if channels < self.group:
raise ValueError('Input channels should be larger than group size' +
'; Received input channels: ' + str(channels) +
'; Group size: ' + str(self.group))
var_x = K.reshape(inputs, (batch_size,
self.group,
channels // self.group,
height,
width))
mean = K.mean(var_x, axis=[2, 3, 4], keepdims=True)
std = K.sqrt(K.var(var_x, axis=[2, 3, 4], keepdims=True) + self.epsilon)
var_x = (var_x - mean) / std
var_x = K.reshape(var_x, (batch_size, channels, height, width))
retval = self.gamma * var_x + self.beta
elif len(input_shape) == 2:
reduction_axes = list(range(0, len(input_shape)))
del reduction_axes[0]
batch_size, _ = input_shape
if batch_size is None:
batch_size = -1
mean = K.mean(inputs, keepdims=True)
std = K.sqrt(K.var(inputs, keepdims=True) + self.epsilon)
var_x = (inputs - mean) / std
retval = self.gamma * var_x + self.beta
return retval
def get_config(self):
"""Returns the config of the layer.
The Keras configuration for the layer.
Returns
--------
dict
A python dictionary containing the layer configuration
"""
config = {'epsilon': self.epsilon,
'axis': self.axis,
'gamma_init': keras.initializers.serialize(self.gamma_init),
'beta_init': keras.initializers.serialize(self.beta_init),
'gamma_regularizer': keras.regularizers.serialize(self.gamma_regularizer),
'beta_regularizer': keras.regularizers.serialize(self.gamma_regularizer),
'group': self.group}
base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items()))
class InstanceNormalization(layers.Layer): # type:ignore[name-defined]
"""Instance normalization layer (Lei Ba et al, 2016, Ulyanov et al., 2016).
Normalize the activations of the previous layer at each step, i.e. applies a transformation
that maintains the mean activation close to 0 and the activation standard deviation close to 1.
Parameters
----------
axis: int, optional
The axis that should be normalized (typically the features axis). For instance, after a
`Conv2D` layer with `data_format="channels_first"`, set `axis=1` in
:class:`InstanceNormalization`. Setting `axis=None` will normalize all values in each
instance of the batch. Axis 0 is the batch dimension. `axis` cannot be set to 0 to avoid
errors. Default: ``None``
epsilon: float, optional
Small float added to variance to avoid dividing by zero. Default: `1e-3`
center: bool, optional
If ``True``, add offset of `beta` to normalized tensor. If ``False``, `beta` is ignored.
Default: ``True``
scale: bool, optional
If ``True``, multiply by `gamma`. If ``False``, `gamma` is not used. When the next layer
is linear (also e.g. `relu`), this can be disabled since the scaling will be done by
the next layer. Default: ``True``
beta_initializer: str, optional
Initializer for the beta weight. Default: `"zeros"`
gamma_initializer: str, optional
Initializer for the gamma weight. Default: `"ones"`
beta_regularizer: str, optional
Optional regularizer for the beta weight. Default: ``None``
gamma_regularizer: str, optional
Optional regularizer for the gamma weight. Default: ``None``
beta_constraint: float, optional
Optional constraint for the beta weight. Default: ``None``
gamma_constraint: float, optional
Optional constraint for the gamma weight. Default: ``None``
References
----------
- Layer Normalization - https://arxiv.org/abs/1607.06450
- Instance Normalization: The Missing Ingredient for Fast Stylization - \
https://arxiv.org/abs/1607.08022
"""
# pylint:disable=too-many-instance-attributes,too-many-arguments
def __init__(self,
axis=None,
epsilon=1e-3,
center=True,
scale=True,
beta_initializer="zeros",
gamma_initializer="ones",
beta_regularizer=None,
gamma_regularizer=None,
beta_constraint=None,
gamma_constraint=None,
**kwargs):
self.beta = None
self.gamma = None
super().__init__(**kwargs)
self.supports_masking = True
self.axis = axis
self.epsilon = epsilon
self.center = center
self.scale = scale
self.beta_initializer = keras.initializers.get(beta_initializer)
self.gamma_initializer = keras.initializers.get(gamma_initializer)
self.beta_regularizer = keras.regularizers.get(beta_regularizer)
self.gamma_regularizer = keras.regularizers.get(gamma_regularizer)
self.beta_constraint = keras.constraints.get(beta_constraint)
self.gamma_constraint = keras.constraints.get(gamma_constraint)
def build(self, input_shape):
"""Creates the layer weights.
Parameters
----------
input_shape: tensor
Keras tensor (future input to layer) or ``list``/``tuple`` of Keras tensors to
reference for weight shape computations.
"""
ndim = len(input_shape)
if self.axis == 0:
raise ValueError("Axis cannot be zero")
if (self.axis is not None) and (ndim == 2):
raise ValueError("Cannot specify axis for rank 1 tensor")
self.input_spec = layers.InputSpec(ndim=ndim) # noqa:E501 pylint:disable=attribute-defined-outside-init
if self.axis is None:
shape = (1,)
else:
shape = (input_shape[self.axis],)
if self.scale:
self.gamma = self.add_weight(shape=shape,
name="gamma",
initializer=self.gamma_initializer,
regularizer=self.gamma_regularizer,
constraint=self.gamma_constraint)
else:
self.gamma = None
if self.center:
self.beta = self.add_weight(shape=shape,
name="beta",
initializer=self.beta_initializer,
regularizer=self.beta_regularizer,
constraint=self.beta_constraint)
else:
self.beta = None
self.built = True # pylint:disable=attribute-defined-outside-init
def call(self, inputs, training=None): # pylint:disable=arguments-differ,unused-argument
"""This is where the layer's logic lives.
Parameters
----------
inputs: tensor
Input tensor, or list/tuple of input tensors
Returns
-------
tensor
A tensor or list/tuple of tensors
"""
input_shape = K.int_shape(inputs)
reduction_axes = list(range(0, len(input_shape)))
if self.axis is not None:
del reduction_axes[self.axis]
del reduction_axes[0]
mean = K.mean(inputs, reduction_axes, keepdims=True)
stddev = K.std(inputs, reduction_axes, keepdims=True) + self.epsilon
normed = (inputs - mean) / stddev
broadcast_shape = [1] * len(input_shape)
if self.axis is not None:
broadcast_shape[self.axis] = input_shape[self.axis]
if self.scale:
broadcast_gamma = K.reshape(self.gamma, broadcast_shape)
normed = normed * broadcast_gamma
if self.center:
broadcast_beta = K.reshape(self.beta, broadcast_shape)
normed = normed + broadcast_beta
return normed
def get_config(self):
"""Returns the config of the layer.
A layer config is a Python dictionary (serializable) containing the configuration of a
layer. The same layer can be reinstated later (without its trained weights) from this
configuration.
The configuration of a layer does not include connectivity information, nor the layer
class name. These are handled by `Network` (one layer of abstraction above).
Returns
--------
dict
A python dictionary containing the layer configuration
"""
config = {
"axis": self.axis,
"epsilon": self.epsilon,
"center": self.center,
"scale": self.scale,
"beta_initializer": keras.initializers.serialize(self.beta_initializer),
"gamma_initializer": keras.initializers.serialize(self.gamma_initializer),
"beta_regularizer": keras.regularizers.serialize(self.beta_regularizer),
"gamma_regularizer": keras.regularizers.serialize(self.gamma_regularizer),
"beta_constraint": keras.constraints.serialize(self.beta_constraint),
"gamma_constraint": keras.constraints.serialize(self.gamma_constraint)
}
base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items()))
class RMSNormalization(layers.Layer): # type:ignore[name-defined]
""" Root Mean Square Layer Normalization (Biao Zhang, Rico Sennrich, 2019)
RMSNorm is a simplification of the original layer normalization (LayerNorm). LayerNorm is a
regularization technique that might handle the internal covariate shift issue so as to
stabilize the layer activations and improve model convergence. It has been proved quite
successful in NLP-based model. In some cases, LayerNorm has become an essential component
to enable model optimization, such as in the SOTA NMT model Transformer.
RMSNorm simplifies LayerNorm by removing the mean-centering operation, or normalizing layer
activations with RMS statistic.
Parameters
----------
axis: int
The axis to normalize across. Typically this is the features axis. The left-out axes are
typically the batch axis/axes. This argument defaults to `-1`, the last dimension in the
input.
epsilon: float, optional
Small float added to variance to avoid dividing by zero. Default: `1e-8`
partial: float, optional
Partial multiplier for calculating pRMSNorm. Valid values are between `0.0` and `1.0`.
Setting to `0.0` or `1.0` disables. Default: `0.0`
bias: bool, optional
Whether to use a bias term for RMSNorm. Disabled by default because RMSNorm does not
enforce re-centering invariance. Default ``False``
kwargs: dict
Standard keras layer kwargs
References
----------
- RMS Normalization - https://arxiv.org/abs/1910.07467
- Official implementation - https://github.com/bzhangGo/rmsnorm
"""
def __init__(self, axis=-1, epsilon=1e-8, partial=0.0, bias=False, **kwargs):
self.scale = None
self.offset = 0
super().__init__(**kwargs)
# Checks
if not isinstance(axis, int):
raise TypeError(f"Expected an int for the argument 'axis', but received: {axis}")
if not 0.0 <= partial <= 1.0:
raise ValueError(f"partial must be between 0.0 and 1.0, but received {partial}")
self.axis = axis
self.epsilon = epsilon
self.partial = partial
self.bias = bias
self.offset = 0.
def build(self, input_shape):
""" Validate and populate :attr:`axis`
Parameters
----------
input_shape: tensor
Keras tensor (future input to layer) or ``list``/``tuple`` of Keras tensors to
reference for weight shape computations.
"""
ndims = len(input_shape)
if ndims is None:
raise ValueError(f"Input shape {input_shape} has undefined rank.")
# Resolve negative axis
if self.axis < 0:
self.axis += ndims
# Validate axes
if self.axis < 0 or self.axis >= ndims:
raise ValueError(f"Invalid axis: {self.axis}")
param_shape = [input_shape[self.axis]]
self.scale = self.add_weight(
name="scale",
shape=param_shape,
initializer="ones")
if self.bias:
self.offset = self.add_weight(
name="offset",
shape=param_shape,
initializer="zeros")
self.built = True # pylint:disable=attribute-defined-outside-init
def call(self, inputs, *args, **kwargs):
""" Call Root Mean Square Layer Normalization
Parameters
----------
inputs: tensor
Input tensor, or list/tuple of input tensors
Returns
-------
tensor
A tensor or list/tuple of tensors
"""
# Compute the axes along which to reduce the mean / variance
input_shape = K.int_shape(inputs)
layer_size = input_shape[self.axis]
if self.partial in (0.0, 1.0):
mean_square = K.mean(K.square(inputs), axis=self.axis, keepdims=True)
else:
partial_size = int(layer_size * self.partial)
partial_x, _ = tf.split( # pylint:disable=redundant-keyword-arg,no-value-for-parameter
inputs,
[partial_size, layer_size - partial_size],
axis=self.axis)
mean_square = K.mean(K.square(partial_x), axis=self.axis, keepdims=True)
recip_square_root = tf.math.rsqrt(mean_square + self.epsilon)
output = self.scale * inputs * recip_square_root + self.offset
return output
def compute_output_shape(self, input_shape):
""" The output shape of the layer is the same as the input shape.
Parameters
----------
input_shape: tuple
The input shape to the layer
Returns
-------
tuple
The output shape to the layer
"""
return input_shape
def get_config(self):
"""Returns the config of the layer.
A layer config is a Python dictionary (serializable) containing the configuration of a
layer. The same layer can be reinstated later (without its trained weights) from this
configuration.
The configuration of a layer does not include connectivity information, nor the layer
class name. These are handled by `Network` (one layer of abstraction above).
Returns
--------
dict
A python dictionary containing the layer configuration
"""
base_config = super().get_config()
config = {"axis": self.axis,
"epsilon": self.epsilon,
"partial": self.partial,
"bias": self.bias}
return dict(list(base_config.items()) + list(config.items()))
# Update normalization into Keras custom objects
for name, obj in inspect.getmembers(sys.modules[__name__]):
if inspect.isclass(obj) and obj.__module__ == __name__:
keras.utils.get_custom_objects().update({name: obj})