#!/usr/bin/env python3 """ Command Line Arguments """ import argparse from importlib import import_module import os import platform import sys from plugins.PluginLoader import PluginLoader class ScriptExecutor(object): """ Loads the relevant script modules and executes the script. This class is initialised in each of the argparsers for the relevant command, then execute script is called within their set_default function. """ def __init__(self, command, subparsers=None): self.command = command.lower() self.subparsers = subparsers def import_script(self): """ Only import a script's modules when running that script.""" self.test_for_gui() cmd = os.path.basename(sys.argv[0]) src = "tools" if cmd == "tools.py" else "scripts" mod = ".".join((src, self.command.lower())) module = import_module(mod) script = getattr(module, self.command.title()) return script def test_for_gui(self): """ If running the gui, check the prerequisites """ if self.command != "gui": return self.test_tkinter() self.check_display() @staticmethod def test_tkinter(): """ If the user is running the GUI, test whether the tkinter app is available on their machine. If not exit gracefully. This avoids having to import every tk function within the GUI in a wrapper and potentially spamming traceback errors to console """ try: import tkinter except ImportError: print( "It looks like TkInter isn't installed for your OS, so " "the GUI has been disabled. To enable the GUI please " "install the TkInter application.\n\n" "You can try:\n" " Windows/macOS: Install ActiveTcl Community " "Edition from " "www.activestate.com\n" " Ubuntu/Mint/Debian: sudo apt install python3-tk\n" " Arch: sudo pacman -S tk\n" " CentOS/Redhat: sudo yum install tkinter\n" " Fedora: sudo dnf install python3-tkinter\n") exit(1) @staticmethod def check_display(): """ Check whether there is a display to output the GUI. If running on Windows then assume not running in headless mode """ if not os.environ.get("DISPLAY", None) and os.name != "nt": print("No display detected. GUI mode has been disabled.") if platform.system() == "Darwin": print("macOS users need to install XQuartz. " "See https://support.apple.com/en-gb/HT201341") exit(1) def execute_script(self, arguments): """ Run the script for called command """ script = self.import_script() process = script(arguments) process.process() class FullPaths(argparse.Action): """ Expand user- and relative-paths """ def __call__(self, parser, namespace, values, option_string=None): setattr(namespace, self.dest, os.path.abspath( os.path.expanduser(values))) class DirFullPaths(FullPaths): """ Class that gui uses to determine if you need to open a directory """ pass class FileFullPaths(FullPaths): """ Class that gui uses to determine if you need to open a file. see lib/gui/utils.py FileHandler for current GUI filetypes """ def __init__(self, option_strings, dest, nargs=None, filetypes=None, **kwargs): super(FileFullPaths, self).__init__(option_strings, dest, **kwargs) if nargs is not None: raise ValueError("nargs not allowed") self.filetypes = filetypes def _get_kwargs(self): names = [ "option_strings", "dest", "nargs", "const", "default", "type", "choices", "help", "metavar", "filetypes" ] return [(name, getattr(self, name)) for name in names] class SaveFileFullPaths(FileFullPaths): """ Class that gui uses to determine if you need to save a file. see lib/gui/utils.py FileHandler for current GUI filetypes """ pass class ContextFullPaths(FileFullPaths): """ Class that gui uses to determine if you need to open a file or a directory based on which action you are choosing To use ContextFullPaths the action_option item should indicate which cli option dictates the context of the filesystem dialogue Bespoke actions are then set in lib/gui/utils.py FileHandler """ def __init__(self, option_strings, dest, nargs=None, filetypes=None, action_option=None, **kwargs): if nargs is not None: raise ValueError("nargs not allowed") super(ContextFullPaths, self).__init__(option_strings, dest, filetypes=None, **kwargs) self.action_option = action_option self.filetypes = filetypes def _get_kwargs(self): names = [ "option_strings", "dest", "nargs", "const", "default", "type", "choices", "help", "metavar", "filetypes", "action_option" ] return [(name, getattr(self, name)) for name in names] class FullHelpArgumentParser(argparse.ArgumentParser): """ Identical to the built-in argument parser, but on error it prints full help message instead of just usage information """ def error(self, message): self.print_help(sys.stderr) args = {"prog": self.prog, "message": message} self.exit(2, "%(prog)s: error: %(message)s\n" % args) class SmartFormatter(argparse.HelpFormatter): """ Smart formatter for allowing raw formatting in help text. To use prefix the help item with "R|" to overide default formatting from: https://stackoverflow.com/questions/3853722 """ def _split_lines(self, text, width): if text.startswith("R|"): return text[2:].splitlines() # this is the RawTextHelpFormatter._split_lines return argparse.HelpFormatter._split_lines(self, text, width) class FaceSwapArgs(object): """ Faceswap argument parser functions that are universal to all commands. Should be the parent function of all subsequent argparsers """ def __init__(self, subparser, command, description="default", subparsers=None): self.argument_list = self.get_argument_list() self.optional_arguments = self.get_optional_arguments() if not subparser: return self.parser = self.create_parser(subparser, command, description) self.add_arguments() script = ScriptExecutor(command, subparsers) self.parser.set_defaults(func=script.execute_script) @staticmethod def get_argument_list(): """ Put the arguments in a list so that they are accessible from both argparse and gui override for command specific arguments """ argument_list = [] return argument_list @staticmethod def get_optional_arguments(): """ Put the arguments in a list so that they are accessible from both argparse and gui. This is used for when there are sub-children (e.g. convert and extract) Override this for custom arguments """ argument_list = [] return argument_list @staticmethod def create_parser(subparser, command, description): """ Create the parser for the selected command """ parser = subparser.add_parser( command, help=description, description=description, epilog="Questions and feedback: \ https://github.com/deepfakes/faceswap-playground", formatter_class=SmartFormatter) return parser def add_arguments(self): """ Parse the arguments passed in from argparse """ for option in self.argument_list + self.optional_arguments: args = option["opts"] kwargs = {key: option[key] for key in option.keys() if key != "opts"} self.parser.add_argument(*args, **kwargs) class ExtractConvertArgs(FaceSwapArgs): """ This class is used as a parent class to capture arguments that will be used in both the extract and convert process. Arguments that can be used in both of these processes should be placed here, but no further processing should be done. This class just captures arguments """ @staticmethod def get_argument_list(): """ Put the arguments in a list so that they are accessible from both argparse and gui """ argument_list = list() argument_list.append({"opts": ("-i", "--input-dir"), "action": DirFullPaths, "dest": "input_dir", "default": "input", "help": "Input directory. A directory " "containing the files you wish to " "process. Defaults to 'input'"}) argument_list.append({"opts": ("-o", "--output-dir"), "action": DirFullPaths, "dest": "output_dir", "default": "output", "help": "Output directory. This is where the " "converted files will be stored. " "Defaults to 'output'"}) argument_list.append({"opts": ("--alignments", ), "action": FileFullPaths, "filetypes": 'alignments', "type": str, "dest": "alignments_path", "help": "Optional path to an alignments file."}) argument_list.append({"opts": ("--serializer", ), "type": str.lower, "dest": "serializer", "default": "json", "choices": ("json", "pickle", "yaml"), "help": "Serializer for alignments file. If " "yaml is chosen and not available, then " "json will be used as the default " "fallback."}) argument_list.append({"opts": ("-D", "--detector"), "type": str, # case sensitive because this is used to load a # plugin. "choices": ("dlib-hog", "dlib-cnn", "dlib-all", "mtcnn"), "default": "mtcnn", "help": "R|Detector to use.\n'dlib-hog': uses " "least resources, but is the least\n\t" "reliable.\n'dlib-cnn': faster than " "mtcnn but detects fewer faces\n\tand " "fewer false positives.\n'dlib-all': " "attempts to find faces using " "dlib-cnn,\n\tif none are found, " "attempts to find faces\n\tusing " "dlib-hog.\n'mtcnn': slower than dlib, " "but uses fewer resources\n\twhilst " "detecting more faces and more false\n\t" "positives. Has superior alignment to " "dlib"}) argument_list.append({"opts": ("-mtms", "--mtcnn-minsize"), "type": int, "dest": "mtcnn_minsize", "default": 20, "help": "The minimum size of a face to be " "accepted. Lower values use " "significantly more VRAM. Minimum " "value is 10. Default is 20 " "(MTCNN detector only)"}) argument_list.append({"opts": ("-mtth", "--mtcnn-threshold"), "nargs": "+", "type": str, "dest": "mtcnn_threshold", "default": ["0.6", "0.7", "0.7"], "help": "R|Three step threshold for face " "detection. Should be\nthree decimal " "numbers each less than 1. Eg:\n" "'--mtcnn-threshold 0.6 0.7 0.7'.\n" "1st stage: obtains face candidates.\n" "2nd stage: refinement of face " "candidates.\n3rd stage: further " "refinement of face candidates.\n" "Default is 0.6 0.7 0.7 " "(MTCNN detector only)"}) argument_list.append({"opts": ("-mtsc", "--mtcnn-scalefactor"), "type": float, "dest": "mtcnn_scalefactor", "default": 0.709, "help": "The scale factor for the image " "pyramid. Should be a decimal number " "less than one. Default is 0.709 " "(MTCNN detector only)"}) argument_list.append({"opts": ("-l", "--ref_threshold"), "type": float, "dest": "ref_threshold", "default": 0.6, "help": "Threshold for positive face " "recognition"}) argument_list.append({"opts": ("-n", "--nfilter"), "type": str, "dest": "nfilter", "nargs": "+", "default": None, "help": "Reference image for the persons you do " "not want to process. Should be a front " "portrait. Multiple images can be added " "space separated"}) argument_list.append({"opts": ("-f", "--filter"), "type": str, "dest": "filter", "nargs": "+", "default": None, "help": "Reference images for the person you " "want to process. Should be a front " "portrait. Multiple images can be added " "space separated"}) argument_list.append({"opts": ("-v", "--verbose"), "action": "store_true", "dest": "verbose", "default": False, "help": "Show verbose output"}) return argument_list class ExtractArgs(ExtractConvertArgs): """ Class to parse the command line arguments for extraction. Inherits base options from ExtractConvertArgs where arguments that are used for both extract and convert should be placed """ @staticmethod def get_optional_arguments(): """ Put the arguments in a list so that they are accessible from both argparse and gui """ argument_list = [] argument_list.append({"opts": ("-r", "--rotate-images"), "type": str, "dest": "rotate_images", "default": None, "help": "If a face isn't found, rotate the " "images to try to find a face. Can find " "more faces at the cost of extraction " "speed. Pass in a single number to use " "increments of that size up to 360, or " "pass in a list of numbers to enumerate " "exactly what angles to check"}) argument_list.append({"opts": ("-bt", "--blur-threshold"), "type": int, "dest": "blur_thresh", "default": None, "help": "Automatically discard images blurrier " "than the specified threshold. " "Discarded images are moved into a " "\"blurry\" sub-folder. Lower values " "allow more blur"}) argument_list.append({"opts": ("-mp", "--multiprocess"), "action": "store_true", "default": False, "help": "Run extraction on all available " "cores. (CPU only)"}) argument_list.append({"opts": ("-s", "--skip-existing"), "action": "store_true", "dest": "skip_existing", "default": False, "help": "Skips frames that have already been " "extracted"}) argument_list.append({"opts": ("-dl", "--debug-landmarks"), "action": "store_true", "dest": "debug_landmarks", "default": False, "help": "Draw landmarks on the ouput faces for " "debug"}) argument_list.append({"opts": ("-ae", "--align-eyes"), "action": "store_true", "dest": "align_eyes", "default": False, "help": "Perform extra alignment to ensure " "left/right eyes are at the same " "height"}) argument_list.append({"opts": ("-si", "--save-interval"), "dest": "save_interval", "type": int, "default": None, "help": "Automatically save the alignments file " "after a set amount of frames. Will only " "save at the end of extracting by " "default. WARNING: Don't interrupt the " "script when writing the file because " "it might get corrupted."}) return argument_list class ConvertArgs(ExtractConvertArgs): """ Class to parse the command line arguments for conversion. Inherits base options from ExtractConvertArgs where arguments that are used for both extract and convert should be placed """ @staticmethod def get_optional_arguments(): """ Put the arguments in a list so that they are accessible from both argparse and gui """ argument_list = [] argument_list.append({"opts": ("-m", "--model-dir"), "action": DirFullPaths, "dest": "model_dir", "default": "models", "help": "Model directory. A directory " "containing the trained model you wish " "to process. Defaults to 'models'"}) argument_list.append({"opts": ("-a", "--input-aligned-dir"), "action": DirFullPaths, "dest": "input_aligned_dir", "default": None, "help": "Input \"aligned directory\". A " "directory that should contain the " "aligned faces extracted from the input " "files. If you delete faces from this " "folder, they'll be skipped during " "conversion. If no aligned dir is " "specified, all faces will be " "converted"}) argument_list.append({"opts": ("-t", "--trainer"), "type": str, # case sensitive because this is used to # load a plug-in. "choices": PluginLoader.get_available_models(), "default": PluginLoader.get_default_model(), "help": "Select the trainer that was used to " "create the model"}) argument_list.append({"opts": ("-c", "--converter"), "type": str, # case sensitive because this is used # to load a plugin. "choices": ("Masked", "Adjust"), "default": "Masked", "help": "Converter to use"}) argument_list.append({"opts": ("-b", "--blur-size"), "type": int, "default": 2, "help": "Blur size. (Masked converter only)"}) argument_list.append({"opts": ("-e", "--erosion-kernel-size"), "dest": "erosion_kernel_size", "type": int, "default": None, "help": "Erosion kernel size. Positive values " "apply erosion which reduces the edge " "of the swapped face. Negative values " "apply dilation which allows the " "swapped face to cover more space. " "(Masked converter only)"}) argument_list.append({"opts": ("-M", "--mask-type"), # lowercase this, because it's just a # string later on. "type": str.lower, "dest": "mask_type", "choices": ["rect", "facehull", "facehullandrect"], "default": "facehullandrect", "help": "Mask to use to replace faces. " "(Masked converter only)"}) argument_list.append({"opts": ("-sh", "--sharpen"), "type": str.lower, "dest": "sharpen_image", "choices": ["bsharpen", "gsharpen"], "default": None, "help": "Use Sharpen Image. bsharpen for Box " "Blur, gsharpen for Gaussian Blur " "(Masked converter only)"}) argument_list.append({"opts": ("-g", "--gpus"), "type": int, "default": 1, "help": "Number of GPUs to use for conversion"}) argument_list.append({"opts": ("-fr", "--frame-ranges"), "nargs": "+", "type": str, "help": "frame ranges to apply transfer to e.g. " "For frames 10 to 50 and 90 to 100 use " "--frame-ranges 10-50 90-100. Files " "must have the frame-number as the last " "number in the name!"}) argument_list.append({"opts": ("-d", "--discard-frames"), "action": "store_true", "dest": "discard_frames", "default": False, "help": "When used with --frame-ranges discards " "frames that are not processed instead " "of writing them out unchanged"}) argument_list.append({"opts": ("-s", "--swap-model"), "action": "store_true", "dest": "swap_model", "default": False, "help": "Swap the model. Instead of A -> B, " "swap B -> A"}) argument_list.append({"opts": ("-S", "--seamless"), "action": "store_true", "dest": "seamless_clone", "default": False, "help": "Use cv2's seamless clone. " "(Masked converter only)"}) argument_list.append({"opts": ("-mh", "--match-histogram"), "action": "store_true", "dest": "match_histogram", "default": False, "help": "Use histogram matching. " "(Masked converter only)"}) argument_list.append({"opts": ("-sm", "--smooth-mask"), "action": "store_true", "dest": "smooth_mask", "default": True, "help": "Smooth mask (Adjust converter only)"}) argument_list.append({"opts": ("-aca", "--avg-color-adjust"), "action": "store_true", "dest": "avg_color_adjust", "default": True, "help": "Average color adjust. " "(Adjust converter only)"}) return argument_list class TrainArgs(FaceSwapArgs): """ Class to parse the command line arguments for training """ @staticmethod def get_argument_list(): """ Put the arguments in a list so that they are accessible from both argparse and gui """ argument_list = list() argument_list.append({"opts": ("-A", "--input-A"), "action": DirFullPaths, "dest": "input_A", "default": "input_A", "help": "Input directory. A directory " "containing training images for face A. " "Defaults to 'input'"}) argument_list.append({"opts": ("-B", "--input-B"), "action": DirFullPaths, "dest": "input_B", "default": "input_B", "help": "Input directory. A directory " "containing training images for face B. " "Defaults to 'input'"}) argument_list.append({"opts": ("-m", "--model-dir"), "action": DirFullPaths, "dest": "model_dir", "default": "models", "help": "Model directory. This is where the " "training data will be stored. " "Defaults to 'model'"}) argument_list.append({"opts": ("-s", "--save-interval"), "type": int, "dest": "save_interval", "default": 100, "help": "Sets the number of iterations before " "saving the model"}) argument_list.append({"opts": ("-t", "--trainer"), "type": str, "choices": PluginLoader.get_available_models(), "default": PluginLoader.get_default_model(), "help": "Select which trainer to use, Use " "LowMem for cards with less than 2GB of " "VRAM"}) argument_list.append({"opts": ("-bs", "--batch-size"), "type": int, "default": 64, "help": "Batch size, as a power of 2 " "(64, 128, 256, etc)"}) argument_list.append({"opts": ("-it", "--iterations"), "type": int, "default": 1000000, "help": "Length of training in iterations"}) argument_list.append({"opts": ("-g", "--gpus"), "type": int, "default": 1, "help": "Number of GPUs to use for training"}) argument_list.append({"opts": ("-p", "--preview"), "action": "store_true", "dest": "preview", "default": False, "help": "Show preview output. If not specified, " "write progress to file"}) argument_list.append({"opts": ("-w", "--write-image"), "action": "store_true", "dest": "write_image", "default": False, "help": "Writes the training result to a file " "even on preview mode"}) argument_list.append({"opts": ("-pl", "--use-perceptual-loss"), "action": "store_true", "dest": "perceptual_loss", "default": False, "help": "Use perceptual loss while training"}) argument_list.append({"opts": ("-ag", "--allow-growth"), "action": "store_true", "dest": "allow_growth", "default": False, "help": "Sets allow_growth option of Tensorflow " "to spare memory on some configs"}) argument_list.append({"opts": ("-v", "--verbose"), "action": "store_true", "dest": "verbose", "default": False, "help": "Show verbose output"}) # This is a hidden argument to indicate that the GUI is being used, # so the preview window should be redirected Accordingly argument_list.append({"opts": ("-gui", "--gui"), "action": "store_true", "dest": "redirect_gui", "default": False, "help": argparse.SUPPRESS}) return argument_list class GuiArgs(FaceSwapArgs): """ Class to parse the command line arguments for training """ @staticmethod def get_argument_list(): """ Put the arguments in a list so that they are accessible from both argparse and gui """ argument_list = [] argument_list.append({"opts": ("-d", "--debug"), "action": "store_true", "dest": "debug", "default": False, "help": "Output to Shell console instead of " "GUI console"}) return argument_list