#!/usr/bin/env python3 """ Aligner for faceswap.py """ import logging import cv2 import numpy as np from lib.umeyama import umeyama from lib.align_eyes import align_eyes as func_align_eyes, FACIAL_LANDMARKS_IDXS logger = logging.getLogger(__name__) # pylint: disable=invalid-name class Extract(): """ Based on the original https://www.reddit.com/r/deepfakes/ code sample + contribs """ def extract(self, image, face, size, align_eyes): """ Extract a face from an image """ logger.trace("size: %s. align_eyes: %s", size, align_eyes) padding = int(size * 0.1875) alignment = get_align_mat(face, size, align_eyes) extracted = self.transform(image, alignment, size, padding) logger.trace("Returning face and alignment matrix: (alignment_matrix: %s)", alignment) return extracted, alignment @staticmethod def transform_matrix(mat, size, padding): """ Transform the matrix for current size and padding """ logger.trace("size: %s. padding: %s", size, padding) matrix = mat * (size - 2 * padding) matrix[:, 2] += padding logger.trace("Returning: %s", matrix) return matrix def transform(self, image, mat, size, padding=0): """ Transform Image """ logger.trace("matrix: %s, size: %s. padding: %s", mat, size, padding) matrix = self.transform_matrix(mat, size, padding) interpolators = get_matrix_scaling(matrix) return cv2.warpAffine( # pylint: disable=no-member image, matrix, (size, size), flags=interpolators[0]) def transform_points(self, points, mat, size, padding=0): """ Transform points along matrix """ logger.trace("points: %s, matrix: %s, size: %s. padding: %s", points, mat, size, padding) matrix = self.transform_matrix(mat, size, padding) points = np.expand_dims(points, axis=1) points = cv2.transform( # pylint: disable=no-member points, matrix, points.shape) retval = np.squeeze(points) logger.trace("Returning: %s", retval) return retval def get_original_roi(self, mat, size, padding=0): """ Return the square aligned box location on the original image """ logger.trace("matrix: %s, size: %s. padding: %s", mat, size, padding) matrix = self.transform_matrix(mat, size, padding) points = np.array([[0, 0], [0, size - 1], [size - 1, size - 1], [size - 1, 0]], np.int32) points = points.reshape((-1, 1, 2)) matrix = cv2.invertAffineTransform(matrix) # pylint: disable=no-member logger.trace("Returning: (points: %s, matrix: %s", points, matrix) return cv2.transform(points, matrix) # pylint: disable=no-member @staticmethod def get_feature_mask(aligned_landmarks_68, size, padding=0, dilation=30): """ Return the face feature mask """ # pylint: disable=no-member logger.trace("aligned_landmarks_68: %s, size: %s, padding: %s, dilation: %s", aligned_landmarks_68, size, padding, dilation) scale = size - 2 * padding translation = padding pad_mat = np.matrix([[scale, 0.0, translation], [0.0, scale, translation]]) aligned_landmarks_68 = np.expand_dims(aligned_landmarks_68, axis=1) aligned_landmarks_68 = cv2.transform(aligned_landmarks_68, pad_mat, aligned_landmarks_68.shape) aligned_landmarks_68 = np.squeeze(aligned_landmarks_68) (l_start, l_end) = FACIAL_LANDMARKS_IDXS["left_eye"] (r_start, r_end) = FACIAL_LANDMARKS_IDXS["right_eye"] (m_start, m_end) = FACIAL_LANDMARKS_IDXS["mouth"] (n_start, n_end) = FACIAL_LANDMARKS_IDXS["nose"] (lb_start, lb_end) = FACIAL_LANDMARKS_IDXS["left_eyebrow"] (rb_start, rb_end) = FACIAL_LANDMARKS_IDXS["right_eyebrow"] (c_start, c_end) = FACIAL_LANDMARKS_IDXS["chin"] l_eye_points = aligned_landmarks_68[l_start:l_end].tolist() l_brow_points = aligned_landmarks_68[lb_start:lb_end].tolist() r_eye_points = aligned_landmarks_68[r_start:r_end].tolist() r_brow_points = aligned_landmarks_68[rb_start:rb_end].tolist() nose_points = aligned_landmarks_68[n_start:n_end].tolist() chin_points = aligned_landmarks_68[c_start:c_end].tolist() mouth_points = aligned_landmarks_68[m_start:m_end].tolist() l_eye_points = l_eye_points + l_brow_points r_eye_points = r_eye_points + r_brow_points mouth_points = mouth_points + nose_points + chin_points l_eye_hull = cv2.convexHull(np.array(l_eye_points).reshape( (-1, 2)).astype(int)).flatten().reshape((-1, 2)) r_eye_hull = cv2.convexHull(np.array(r_eye_points).reshape( (-1, 2)).astype(int)).flatten().reshape((-1, 2)) mouth_hull = cv2.convexHull(np.array(mouth_points).reshape( (-1, 2)).astype(int)).flatten().reshape((-1, 2)) mask = np.zeros((size, size, 3), dtype=float) cv2.fillConvexPoly(mask, l_eye_hull, (1, 1, 1)) cv2.fillConvexPoly(mask, r_eye_hull, (1, 1, 1)) cv2.fillConvexPoly(mask, mouth_hull, (1, 1, 1)) if dilation > 0: kernel = np.ones((dilation, dilation), np.uint8) mask = cv2.dilate(mask, kernel, iterations=1) logger.trace("Returning: %s", mask) return mask def get_matrix_scaling(mat): """ Get the correct interpolator """ x_scale = np.sqrt(mat[0, 0] * mat[0, 0] + mat[0, 1] * mat[0, 1]) y_scale = (mat[0, 0] * mat[1, 1] - mat[0, 1] * mat[1, 0]) / x_scale avg_scale = (x_scale + y_scale) * 0.5 if avg_scale >= 1.0: interpolators = cv2.INTER_CUBIC, cv2.INTER_AREA # pylint: disable=no-member else: interpolators = cv2.INTER_AREA, cv2.INTER_CUBIC # pylint: disable=no-member logger.trace("interpolator: %s, inverse interpolator: %s", interpolators[0], interpolators[1]) return interpolators def get_align_mat(face, size, should_align_eyes): """ Return the alignment Matrix """ logger.trace("size: %s, should_align_eyes: %s", size, should_align_eyes) mat_umeyama = umeyama(np.array(face.landmarks_as_xy[17:]), True)[0:2] if should_align_eyes is False: return mat_umeyama mat_umeyama = mat_umeyama * size # Convert to matrix landmarks = np.matrix(face.landmarks_as_xy) # cv2 expects points to be in the form # np.array([ [[x1, y1]], [[x2, y2]], ... ]), we'll expand the dim landmarks = np.expand_dims(landmarks, axis=1) # Align the landmarks using umeyama umeyama_landmarks = cv2.transform( # pylint: disable=no-member landmarks, mat_umeyama, landmarks.shape) # Determine a rotation matrix to align eyes horizontally mat_align_eyes = func_align_eyes(umeyama_landmarks, size) # Extend the 2x3 transform matrices to 3x3 so we can multiply them # and combine them as one mat_umeyama = np.matrix(mat_umeyama) mat_umeyama.resize((3, 3)) mat_align_eyes = np.matrix(mat_align_eyes) mat_align_eyes.resize((3, 3)) mat_umeyama[2] = mat_align_eyes[2] = [0, 0, 1] # Combine the umeyama transform with the extra rotation matrix transform_mat = mat_align_eyes * mat_umeyama # Remove the extra row added, shape needs to be 2x3 transform_mat = np.delete(transform_mat, 2, 0) transform_mat = transform_mat / size logger.trace("Returning: %s", transform_mat) return transform_mat