import cv2 from pathlib import Path from tqdm import tqdm import os from lib.cli import DirectoryProcessor, rotate_image from lib.utils import get_folder from lib.multithreading import pool_process from plugins.PluginLoader import PluginLoader class ExtractTrainingData(DirectoryProcessor): def create_parser(self, subparser, command, description): self.parser = subparser.add_parser( command, help="Extract the faces from a pictures.", description=description, epilog="Questions and feedback: \ https://github.com/deepfakes/faceswap-playground" ) def add_optional_arguments(self, parser): parser.add_argument('-D', '--detector', type=str, choices=("hog", "cnn", "all"), # case sensitive because this is used to load a plugin. default="hog", help="Detector to use. 'cnn' detects much more angles but will be much more resource intensive and may fail on large files.") parser.add_argument('-l', '--ref_threshold', type=float, dest="ref_threshold", default=0.6, help="Threshold for positive face recognition" ) parser.add_argument('-n', '--nfilter', type=str, dest="nfilter", nargs='+', default="nfilter.jpg", help="Reference image for the persons you do not want to process. Should be a front portrait" ) parser.add_argument('-f', '--filter', type=str, dest="filter", nargs='+', default="filter.jpg", help="Reference image for the person you want to process. Should be a front portrait" ) parser.add_argument('-j', '--processes', type=int, default=1, help="Number of processes to use.") parser.add_argument('-s', '--skip-existing', action='store_true', dest='skip_existing', default=False, help="Skips frames already extracted.") parser.add_argument('-dl', '--debug-landmarks', action="store_true", dest="debug_landmarks", default=False, help="Draw landmarks for debug.") parser.add_argument('-r', '--rotate-images', type=str, dest="rotate_images", choices=("on", "off"), default="off", help="If a face isn't found, rotate the images through 90 degree " "iterations to try to find a face. Can find more faces at the " "cost of extraction speed.") return parser def process(self): extractor_name = "Align" # TODO Pass as argument self.extractor = PluginLoader.get_extractor(extractor_name)() processes = self.arguments.processes try: if processes != 1: files = list(self.read_directory()) for filename, faces in tqdm(pool_process(self.processFiles, files, processes=processes), total = len(files)): self.num_faces_detected += 1 self.faces_detected[os.path.basename(filename)] = faces else: for filename in tqdm(self.read_directory()): try: image = cv2.imread(filename) self.faces_detected[os.path.basename(filename)] = self.handleImage(image, filename) except Exception as e: if self.arguments.verbose: print('Failed to extract from image: {}. Reason: {}'.format(filename, e)) pass finally: self.write_alignments() def processFiles(self, filename): try: image = cv2.imread(filename) return filename, self.handleImage(image, filename) except Exception as e: if self.arguments.verbose: print('Failed to extract from image: {}. Reason: {}'.format(filename, e)) pass return filename, [] def imageRotator(self, image): ''' rotates the image through 90 degree iterations to find a face ''' angle = 90 while angle <= 270: rotated_image = rotate_image(image, angle) faces = self.get_faces(rotated_image, rotation=angle) rotated_faces = [(idx, face) for idx, face in faces] if len(rotated_faces) != 0: if self.arguments.verbose: print('found face(s) by rotating image {} degrees'.format(angle)) break angle += 90 return rotated_faces, rotated_image def handleImage(self, image, filename): faces = self.get_faces(image) process_faces = [(idx, face) for idx, face in faces] # Run image rotator if requested and no faces found if self.arguments.rotate_images.lower() == 'on' and len(process_faces) == 0: process_faces, image = self.imageRotator(image) rvals = [] for idx, face in process_faces: # Draws landmarks for debug if self.arguments.debug_landmarks: for (x, y) in face.landmarksAsXY(): cv2.circle(image, (x, y), 2, (0, 0, 255), -1) resized_image = self.extractor.extract(image, face, 256) output_file = get_folder(self.output_dir) / Path(filename).stem cv2.imwrite('{}_{}{}'.format(str(output_file), str(idx), Path(filename).suffix), resized_image) f = { "r": face.r, "x": face.x, "w": face.w, "y": face.y, "h": face.h, "landmarksXY": face.landmarksAsXY() } rvals.append(f) return rvals