#!/usr/bin/env python3 """ Tests for Faceswap Normalization. Adapted from Keras tests. """ from itertools import product import numpy as np import pytest from keras import regularizers, models, layers from lib.model import normalization from lib.utils import get_backend from tests.lib.model.layers_test import layer_test @pytest.mark.parametrize('dummy', [None], ids=[get_backend().upper()]) def test_instance_normalization(dummy): # pylint:disable=unused-argument """ Basic test for instance normalization. """ layer_test(normalization.InstanceNormalization, kwargs={'epsilon': 0.1, 'gamma_regularizer': regularizers.l2(0.01), 'beta_regularizer': regularizers.l2(0.01)}, input_shape=(3, 4, 2)) layer_test(normalization.InstanceNormalization, kwargs={'epsilon': 0.1, 'axis': 1}, input_shape=(1, 4, 1)) layer_test(normalization.InstanceNormalization, kwargs={'gamma_initializer': 'ones', 'beta_initializer': 'ones'}, input_shape=(3, 4, 2, 4)) layer_test(normalization.InstanceNormalization, kwargs={'epsilon': 0.1, 'axis': 1, 'scale': False, 'center': False}, input_shape=(3, 4, 2, 4)) @pytest.mark.parametrize('dummy', [None], ids=[get_backend().upper()]) def test_group_normalization(dummy): # pylint:disable=unused-argument """ Basic test for instance normalization. """ layer_test(normalization.GroupNormalization, kwargs={'epsilon': 0.1, 'gamma_regularizer': regularizers.l2(0.01), 'beta_regularizer': regularizers.l2(0.01)}, input_shape=(4, 3, 4, 128)) layer_test(normalization.GroupNormalization, kwargs={'epsilon': 0.1, 'axis': 1}, input_shape=(4, 1, 4, 256)) layer_test(normalization.GroupNormalization, kwargs={'gamma_init': 'ones', 'beta_init': 'ones'}, input_shape=(4, 64)) layer_test(normalization.GroupNormalization, kwargs={'epsilon': 0.1, 'axis': 1, 'group': 16}, input_shape=(3, 64)) _PARAMS = ["center", "scale"] _VALUES = list(product([True, False], repeat=len(_PARAMS))) _IDS = ["{}[{}]".format("|".join([_PARAMS[idx] for idx, b in enumerate(v) if b]), get_backend().upper()) for v in _VALUES] @pytest.mark.parametrize(_PARAMS, _VALUES, ids=_IDS) def test_adain_normalization(center, scale): """ Basic test for Ada Instance Normalization. """ norm = normalization.AdaInstanceNormalization(center=center, scale=scale) shapes = [(4, 8, 8, 1280), (4, 1, 1, 1280), (4, 1, 1, 1280)] norm.build(shapes) expected_output_shape = norm.compute_output_shape(shapes) inputs = [layers.Input(shape=shapes[0][1:]), layers.Input(shape=shapes[1][1:]), layers.Input(shape=shapes[2][1:])] model = models.Model(inputs, norm(inputs)) data = [10 * np.random.random(shape) for shape in shapes] actual_output = model.predict(data) actual_output_shape = actual_output.shape for expected_dim, actual_dim in zip(expected_output_shape, actual_output_shape): if expected_dim is not None: assert expected_dim == actual_dim @pytest.mark.parametrize(_PARAMS, _VALUES, ids=_IDS) def test_layer_normalization(center, scale): """ Basic test for layer normalization. """ layer_test(normalization.LayerNormalization, kwargs={"center": center, "scale": scale}, input_shape=(4, 512)) _PARAMS = ["partial", "bias"] _VALUES = [(0.0, False), (0.25, False), (0.5, True), (0.75, False), (1.0, True)] _IDS = ["partial={}|bias={}[{}]".format(v[0], v[1], get_backend().upper()) for v in _VALUES] @pytest.mark.parametrize(_PARAMS, _VALUES, ids=_IDS) def test_rms_normalization(partial, bias): # pylint:disable=unused-argument """ Basic test for RMS Layer normalization. """ layer_test(normalization.RMSNormalization, kwargs={"partial": partial, "bias": bias}, input_shape=(4, 512))