#!/usr/bin/env python3 """ Original Model Based on the original https://www.reddit.com/r/deepfakes/ code sample + contribs """ from keras.layers import Dense, Flatten, Input, Reshape from keras.models import Model as KerasModel from .original import logger, Model as OriginalModel class Model(OriginalModel): """ Lightweight Model for ~2GB Graphics Cards """ def __init__(self, *args, **kwargs): logger.debug("Initializing %s: (args: %s, kwargs: %s", self.__class__.__name__, args, kwargs) kwargs["input_shape"] = (64, 64, 3) kwargs["encoder_dim"] = 512 super().__init__(*args, **kwargs) logger.debug("Initialized %s", self.__class__.__name__) def encoder(self): """ Encoder Network """ input_ = Input(shape=self.input_shape) var_x = input_ var_x = self.blocks.conv(var_x, 128) var_x = self.blocks.conv(var_x, 256) var_x = self.blocks.conv(var_x, 512) var_x = Dense(self.encoder_dim)(Flatten()(var_x)) var_x = Dense(4 * 4 * 512)(var_x) var_x = Reshape((4, 4, 512))(var_x) var_x = self.blocks.upscale(var_x, 256) return KerasModel(input_, var_x) def decoder(self): """ Decoder Network """ input_ = Input(shape=(8, 8, 256)) var_x = input_ var_x = self.blocks.upscale(var_x, 512) var_x = self.blocks.upscale(var_x, 256) var_x = self.blocks.upscale(var_x, 128) var_x = self.blocks.conv2d(var_x, 3, kernel_size=5, padding="same", activation="sigmoid", name="face_out") outputs = [var_x] if self.config.get("learn_mask", False): var_y = input_ var_y = self.blocks.upscale(var_y, 512) var_y = self.blocks.upscale(var_y, 256) var_y = self.blocks.upscale(var_y, 128) var_y = self.blocks.conv2d(var_y, 1, kernel_size=5, padding="same", activation="sigmoid", name="mask_out") outputs.append(var_y) return KerasModel(input_, outputs=outputs)