import cv2 from pathlib import Path from tqdm import tqdm from lib.cli import DirectoryProcessor from lib.utils import get_folder from lib.multithreading import pool_process from plugins.PluginLoader import PluginLoader class ExtractTrainingData(DirectoryProcessor): def create_parser(self, subparser, command, description): self.parser = subparser.add_parser( command, help="Extract the faces from a pictures.", description=description, epilog="Questions and feedback: \ https://github.com/deepfakes/faceswap-playground" ) def add_optional_arguments(self, parser): parser.add_argument('-D', '--detector', type=str, choices=("hog", "cnn"), # case sensitive because this is used to load a plugin. default="hog", help="Detector to use. 'cnn' detects much more angles but will be much more resource intensive and may fail on large files.") parser.add_argument('-f', '--filter', type=str, dest="filter", default="filter.jpg", help="Reference image for the person you want to process. Should be a front portrait" ) parser.add_argument('-j', '--processes', type=int, default=1, help="Number of processes to use.") return parser def process(self): extractor_name = "Align" # TODO Pass as argument self.extractor = PluginLoader.get_extractor(extractor_name)() processes = self.arguments.processes try: if processes != 1: files = list(self.read_directory()) for fn, faces in tqdm(pool_process(self.processFiles, files, processes=processes), total = len(files)): self.num_faces_detected += 1 self.faces_detected[fn] = faces else: try: for filename in tqdm(self.read_directory()): self.faces_detected[filename] = self.handleImage(filename)[1] except Exception as e: print('Failed to extract from image: {}. Reason: {}'.format(filename, e)) finally: self.write_alignments() def processFiles(self, filename): try: return self.handleImage(filename) except Exception as e: print('Failed to extract from image: {}. Reason: {}'.format(filename, e)) def handleImage(self, filename): count = 0 image = cv2.imread(filename) faces = self.get_faces(image) rvals = [] for idx, face in faces: count = idx resized_image = self.extractor.extract(image, face, 256) output_file = get_folder(self.output_dir) / Path(filename).stem cv2.imwrite(str(output_file) + str(idx) + Path(filename).suffix, resized_image) f = { "x": face.x, "w": face.w, "y": face.y, "h": face.h, "landmarksXY": face.landmarksAsXY() } rvals.append(f) return filename, rvals