#!/usr/bin/env python3 """ Multithreading/processing utils for faceswap """ import logging import multiprocessing as mp from multiprocessing.sharedctypes import RawArray from ctypes import c_float import queue as Queue import sys import threading import numpy as np from lib.logger import LOG_QUEUE, set_root_logger logger = logging.getLogger(__name__) # pylint: disable=invalid-name _launched_processes = set() # pylint: disable=invalid-name def total_cpus(): """ Return total number of cpus """ return mp.cpu_count() class ConsumerBuffer(): """ Memory buffer for consuming """ def __init__(self, dispatcher, index, data): logger.trace("Initializing %s: (dispatcher: '%s', index: %s, data: %s)", self.__class__.__name__, dispatcher, index, data) self._data = data self._id = index self._dispatcher = dispatcher logger.trace("Initialized %s", self.__class__.__name__) def get(self): """ Return Data """ return self._data def free(self): """ Return Free """ self._dispatcher.free(self._id) def __enter__(self): """ On Enter """ return self.get() def __exit__(self, *args): """ On Exit """ self.free() class WorkerBuffer(): """ Memory buffer for working """ def __init__(self, index, data, stop_event, queue): logger.trace("Initializing %s: (index: '%s', data: %s, stop_event: %s, queue: %s)", self.__class__.__name__, index, data, stop_event, queue) self._id = index self._data = data self._stop_event = stop_event self._queue = queue logger.trace("Initialized %s", self.__class__.__name__) def get(self): """ Return Data """ return self._data def ready(self): """ Worker Ready """ if self._stop_event.is_set(): return self._queue.put(self._id) def __enter__(self): """ On Enter """ return self.get() def __exit__(self, *args): """ On Exit """ self.ready() class FixedProducerDispatcher(): """ Runs the given method in N subprocesses and provides fixed size shared memory to the method. This class is designed for endless running worker processes filling the provided memory with data, like preparing trainingsdata for neural network training. As soon as one worker finishes all worker are shutdown. Example: # Producer side def do_work(memory_gen): for memory_wrap in memory_gen: # alternative memory_wrap.get and memory_wrap.ready can be used with memory_wrap as memory: input, exp_result = prepare_batch(...) memory[0][:] = input memory[1][:] = exp_result # Consumer side batch_size = 64 dispatcher = FixedProducerDispatcher(do_work, shapes=[ (batch_size, 256,256,3), (batch_size, 256,256,3)]) for batch_wrapper in dispatcher: # alternative batch_wrapper.get and batch_wrapper.free can be used with batch_wrapper as batch: send_batch_to_trainer(batch) """ CTX = mp.get_context("spawn") EVENT = CTX.Event def __init__(self, method, shapes, in_queue, out_queue, args=tuple(), kwargs={}, ctype=c_float, workers=1, buffers=None): logger.debug("Initializing %s: (method: '%s', shapes: %s, args: %s, kwargs: %s, " "ctype: %s, workers: %s, buffers: %s)", self.__class__.__name__, method, shapes, args, kwargs, ctype, workers, buffers) if buffers is None: buffers = workers * 2 else: assert buffers >= 2 and buffers > workers self.name = "%s_FixedProducerDispatcher" % str(method) self._target_func = method self._shapes = shapes self._stop_event = self.EVENT() self._buffer_tokens = in_queue for i in range(buffers): self._buffer_tokens.put(i) self._result_tokens = out_queue worker_data, self.data = self._create_data(shapes, ctype, buffers) proc_args = { 'data': worker_data, 'stop_event': self._stop_event, 'target': self._target_func, 'buffer_tokens': self._buffer_tokens, 'result_tokens': self._result_tokens, 'dtype': np.dtype(ctype), 'shapes': shapes, 'log_queue': LOG_QUEUE, 'log_level': logger.getEffectiveLevel(), 'args': args, 'kwargs': kwargs } self._worker = tuple(self._create_worker(proc_args) for _ in range(workers)) self._open_worker = len(self._worker) logger.debug("Initialized %s", self.__class__.__name__) @staticmethod def _np_from_shared(shared, shapes, dtype): """ Numpy array from shared memory """ arrs = [] offset = 0 np_data = np.frombuffer(shared, dtype=dtype) for shape in shapes: count = np.prod(shape) arrs.append(np_data[offset:offset+count].reshape(shape)) offset += count return arrs def _create_data(self, shapes, ctype, buffers): """ Create data """ buffer_size = int(sum(np.prod(x) for x in shapes)) dtype = np.dtype(ctype) data = tuple(RawArray(ctype, buffer_size) for _ in range(buffers)) np_data = tuple(self._np_from_shared(arr, shapes, dtype) for arr in data) return data, np_data def _create_worker(self, kwargs): """ Create Worker """ return self.CTX.Process(target=self._runner, kwargs=kwargs) def free(self, index): """ Free memory """ if self._stop_event.is_set(): return if isinstance(index, ConsumerBuffer): index = index.index self._buffer_tokens.put(index) def __iter__(self): """ Iterator """ return self def __next__(self): """ Next item """ return self.next() def next(self, block=True, timeout=None): """ Yields ConsumerBuffer filled by the worker. Will raise StopIteration if no more elements are available OR any worker is finished. Will raise queue.Empty when block is False and no element is available. The returned data is safe until ConsumerBuffer.free() is called or the with context is left. If you plan to hold on to it after that make a copy. This method is thread safe. """ if self._stop_event.is_set(): raise StopIteration i = self._result_tokens.get(block=block, timeout=timeout) if i is None: self._open_worker -= 1 raise StopIteration if self._stop_event.is_set(): raise StopIteration return ConsumerBuffer(self, i, self.data[i]) def start(self): """ Start Workers """ for process in self._worker: process.start() _launched_processes.add(self) def is_alive(self): """ Check workers are alive """ for worker in self._worker: if worker.is_alive(): return True return False def join(self): """ Join Workers """ self.stop() while self._open_worker: if self._result_tokens.get() is None: self._open_worker -= 1 while True: try: self._buffer_tokens.get(block=False, timeout=0.01) except Queue.Empty: break for worker in self._worker: worker.join() def stop(self): """ Stop Workers """ self._stop_event.set() for _ in range(self._open_worker): self._buffer_tokens.put(None) def is_shutdown(self): """ Check if stop event is set """ return self._stop_event.is_set() @classmethod def _runner(cls, data=None, stop_event=None, target=None, buffer_tokens=None, result_tokens=None, dtype=None, shapes=None, log_queue=None, log_level=None, args=None, kwargs=None): """ Shared Memory Object runner """ # Fork inherits the queue handler, so skip registration with "fork" set_root_logger(log_level, queue=log_queue) logger.debug("FixedProducerDispatcher worker for %s started", str(target)) np_data = [cls._np_from_shared(d, shapes, dtype) for d in data] def get_free_slot(): while not stop_event.is_set(): i = buffer_tokens.get() if stop_event.is_set() or i is None or i == "EOF": break yield WorkerBuffer(i, np_data[i], stop_event, result_tokens) args = tuple((get_free_slot(),)) + tuple(args) try: target(*args, **kwargs) except Exception as ex: logger.exception(ex) stop_event.set() result_tokens.put(None) logger.debug("FixedProducerDispatcher worker for %s shutdown", str(target)) class PoolProcess(): """ Pool multiple processes """ def __init__(self, method, in_queue, out_queue, *args, processes=None, **kwargs): self._name = method.__qualname__ logger.debug("Initializing %s: (target: '%s', processes: %s)", self.__class__.__name__, self._name, processes) self.procs = self.set_procs(processes) ctx = mp.get_context("spawn") self.pool = ctx.Pool(processes=self.procs, initializer=set_root_logger, initargs=(logger.getEffectiveLevel(), LOG_QUEUE)) self._method = method self._kwargs = self.build_target_kwargs(in_queue, out_queue, kwargs) self._args = args logger.debug("Initialized %s: '%s'", self.__class__.__name__, self._name) @staticmethod def build_target_kwargs(in_queue, out_queue, kwargs): """ Add standard kwargs to passed in kwargs list """ kwargs["in_queue"] = in_queue kwargs["out_queue"] = out_queue return kwargs def set_procs(self, processes): """ Set the number of processes to use """ running_processes = len(mp.active_children()) avail_processes = max(mp.cpu_count() - running_processes, 1) processes = min(avail_processes, processes) logger.verbose("Processing '%s' in %s processes", self._name, processes) return processes def start(self): """ Run the processing pool """ logging.debug("Pooling Processes: (target: '%s', args: %s, kwargs: %s)", self._name, self._args, self._kwargs) for idx in range(self.procs): logger.debug("Adding process %s of %s to mp.Pool '%s'", idx + 1, self.procs, self._name) self.pool.apply_async(self._method, args=self._args, kwds=self._kwargs) _launched_processes.add(self.pool) logging.debug("Pooled Processes: '%s'", self._name) def join(self): """ Join the process """ logger.debug("Joining Pooled Process: '%s'", self._name) self.pool.close() self.pool.join() _launched_processes.remove(self.pool) logger.debug("Joined Pooled Process: '%s'", self._name) class SpawnProcess(mp.context.SpawnProcess): """ Process in spawnable context Must be spawnable to share CUDA across processes """ def __init__(self, target, in_queue, out_queue, *args, **kwargs): name = target.__qualname__ logger.debug("Initializing %s: (target: '%s', args: %s, kwargs: %s)", self.__class__.__name__, name, args, kwargs) ctx = mp.get_context("spawn") self.event = ctx.Event() self.error = ctx.Event() kwargs = self.build_target_kwargs(in_queue, out_queue, kwargs) super().__init__(target=target, name=name, args=args, kwargs=kwargs) self.daemon = True logger.debug("Initialized %s: '%s'", self.__class__.__name__, name) def build_target_kwargs(self, in_queue, out_queue, kwargs): """ Add standard kwargs to passed in kwargs list """ kwargs["event"] = self.event kwargs["error"] = self.error kwargs["log_init"] = set_root_logger kwargs["log_queue"] = LOG_QUEUE kwargs["log_level"] = logger.getEffectiveLevel() kwargs["in_queue"] = in_queue kwargs["out_queue"] = out_queue return kwargs def run(self): """ Add logger to spawned process """ logger_init = self._kwargs["log_init"] log_queue = self._kwargs["log_queue"] log_level = self._kwargs["log_level"] logger_init(log_level, log_queue) super().run() def start(self): """ Add logging to start function """ logger.debug("Spawning Process: (name: '%s', args: %s, kwargs: %s, daemon: %s)", self._name, self._args, self._kwargs, self.daemon) super().start() _launched_processes.add(self) logger.debug("Spawned Process: (name: '%s', PID: %s)", self._name, self.pid) def join(self, timeout=None): """ Add logging to join function """ logger.debug("Joining Process: (name: '%s', PID: %s)", self._name, self.pid) super().join(timeout=timeout) _launched_processes.remove(self) logger.debug("Joined Process: (name: '%s', PID: %s)", self._name, self.pid) class FSThread(threading.Thread): """ Subclass of thread that passes errors back to parent """ def __init__(self, group=None, target=None, name=None, # pylint: disable=too-many-arguments args=(), kwargs=None, *, daemon=None): super().__init__(group=group, target=target, name=name, args=args, kwargs=kwargs, daemon=daemon) self.err = None def run(self): try: if self._target: self._target(*self._args, **self._kwargs) except Exception: # pylint: disable=broad-except self.err = sys.exc_info() logger.debug("Error in thread (%s): %s", self._name, self.err[1].with_traceback(self.err[2])) finally: # Avoid a refcycle if the thread is running a function with # an argument that has a member that points to the thread. del self._target, self._args, self._kwargs class MultiThread(): """ Threading for IO heavy ops Catches errors in thread and rethrows to parent """ def __init__(self, target, *args, thread_count=1, name=None, **kwargs): self._name = name if name else target.__name__ logger.debug("Initializing %s: (target: '%s', thread_count: %s)", self.__class__.__name__, self._name, thread_count) logger.trace("args: %s, kwargs: %s", args, kwargs) self.daemon = True self._thread_count = thread_count self._threads = list() self._target = target self._args = args self._kwargs = kwargs logger.debug("Initialized %s: '%s'", self.__class__.__name__, self._name) @property def has_error(self): """ Return true if a thread has errored, otherwise false """ return any(thread.err for thread in self._threads) @property def errors(self): """ Return a list of thread errors """ return [thread.err for thread in self._threads] def check_and_raise_error(self): """ Checks for errors in thread and raises them in caller """ if not self.has_error: return logger.debug("Thread error caught: %s", self.errors) error = self.errors[0] raise error[1].with_traceback(error[2]) def start(self): """ Start a thread with the given method and args """ logger.debug("Starting thread(s): '%s'", self._name) for idx in range(self._thread_count): name = "{}_{}".format(self._name, idx) logger.debug("Starting thread %s of %s: '%s'", idx + 1, self._thread_count, name) thread = FSThread(name=name, target=self._target, args=self._args, kwargs=self._kwargs) thread.daemon = self.daemon thread.start() self._threads.append(thread) logger.debug("Started all threads '%s': %s", self._name, len(self._threads)) def join(self): """ Join the running threads, catching and re-raising any errors """ logger.debug("Joining Threads: '%s'", self._name) for thread in self._threads: logger.debug("Joining Thread: '%s'", thread._name) # pylint: disable=protected-access thread.join() if thread.err: logger.error("Caught exception in thread: '%s'", thread._name) # pylint: disable=protected-access raise thread.err[1].with_traceback(thread.err[2]) logger.debug("Joined all Threads: '%s'", self._name) class BackgroundGenerator(threading.Thread): """ Run a queue in the background. From: https://stackoverflow.com/questions/7323664/ """ # See below why prefetch count is flawed def __init__(self, generator, prefetch=1): threading.Thread.__init__(self) self.queue = Queue.Queue(maxsize=prefetch) self.generator = generator self.daemon = True self.start() def run(self): """ Put until queue size is reached. Note: put blocks only if put is called while queue has already reached max size => this makes 2 prefetched items! One in the queue, one waiting for insertion! """ for item in self.generator: self.queue.put(item) self.queue.put(None) def iterator(self): """ Iterate items out of the queue """ while True: next_item = self.queue.get() if next_item is None: break yield next_item def terminate_processes(): """ Join all active processes on unexpected shutdown If the process is doing long running work, make sure you have a mechanism in place to terminate this work to avoid long blocks """ logger.debug("Processes to join: %s", [process for process in _launched_processes if isinstance(process, mp.pool.Pool) or process.is_alive()]) for process in list(_launched_processes): if isinstance(process, mp.pool.Pool): process.terminate() if isinstance(process, mp.pool.Pool) or process.is_alive(): process.join()