Limit queue sizes to reduce RAM usage
Rename lib.image.BackgroundIO to ImageIO
Create separate ImagesLoader and ImagesSaver classes
Load/Save images from centralized lib.image.ImageIO
scripts.extract documentation
tools.mask - A tool for creating masks for existing alignments files and outputting mask previews
lib.image.BackgroundIO - A background image loader and saver
* requirements.txt: - Pin opencv to 4.1.1 (fixes cv2-dnn error)
* lib.face_detect.DetectedFace: change LandmarksXY to landmarks_xy. Add left, right, top, bottom attributes
* lib.model.session: Session manager for loading models into different graphs (for Nvidia + CPU)
* plugins.extract._base: New parent class for all extract plugins
* plugins.extract.pipeline. Remove MultiProcessing. Dynamically limit batchsize for Nvidia cards. Remove loglevel input
* S3FD + FAN plugins. Standardise to Keras version for all backends
* Standardize all extract plugins to new threaded codebase
* Documentation. Start implementing Numpy style docstrings for Sphinx Documentation
* Remove s3fd_amd. Change convert OTF to expect DetectedFace object
* faces_detect - clean up and documentation
* Remove PoolProcess
* Migrate manual tool to new extract workflow
* Remove AMD specific extractor code from cli and plugins
* Sort tool to new extract workflow
* Remove multiprocessing from project
* Remove multiprocessing queues from QueueManager
* Remove multiprocessing support from logger
* Move face_filter to new extraction pipeline
* Alignments landmarksXY > landmarks_xy and legacy handling
* Intercept get_backend for sphinx doc build
# Add Sphinx documentation