mirror of
https://github.com/DBD-SQLite/DBD-SQLite
synced 2025-06-07 14:19:10 -04:00
1402 lines
41 KiB
C
1402 lines
41 KiB
C
/*
|
|
** 2002 February 23
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This file contains the C functions that implement various SQL
|
|
** functions of SQLite.
|
|
**
|
|
** There is only one exported symbol in this file - the function
|
|
** sqliteRegisterBuildinFunctions() found at the bottom of the file.
|
|
** All other code has file scope.
|
|
**
|
|
** $Id: func.c,v 1.209 2008/12/10 23:04:13 drh Exp $
|
|
*/
|
|
#include "sqliteInt.h"
|
|
#include <ctype.h>
|
|
#include <stdlib.h>
|
|
#include <assert.h>
|
|
#include "vdbeInt.h"
|
|
|
|
/*
|
|
** Return the collating function associated with a function.
|
|
*/
|
|
static CollSeq *sqlite3GetFuncCollSeq(sqlite3_context *context){
|
|
return context->pColl;
|
|
}
|
|
|
|
/*
|
|
** Implementation of the non-aggregate min() and max() functions
|
|
*/
|
|
static void minmaxFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
int i;
|
|
int mask; /* 0 for min() or 0xffffffff for max() */
|
|
int iBest;
|
|
CollSeq *pColl;
|
|
|
|
if( argc==0 ) return;
|
|
mask = sqlite3_user_data(context)==0 ? 0 : -1;
|
|
pColl = sqlite3GetFuncCollSeq(context);
|
|
assert( pColl );
|
|
assert( mask==-1 || mask==0 );
|
|
iBest = 0;
|
|
if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
|
|
for(i=1; i<argc; i++){
|
|
if( sqlite3_value_type(argv[i])==SQLITE_NULL ) return;
|
|
if( (sqlite3MemCompare(argv[iBest], argv[i], pColl)^mask)>=0 ){
|
|
iBest = i;
|
|
}
|
|
}
|
|
sqlite3_result_value(context, argv[iBest]);
|
|
}
|
|
|
|
/*
|
|
** Return the type of the argument.
|
|
*/
|
|
static void typeofFunc(
|
|
sqlite3_context *context,
|
|
int NotUsed,
|
|
sqlite3_value **argv
|
|
){
|
|
const char *z = 0;
|
|
UNUSED_PARAMETER(NotUsed);
|
|
switch( sqlite3_value_type(argv[0]) ){
|
|
case SQLITE_NULL: z = "null"; break;
|
|
case SQLITE_INTEGER: z = "integer"; break;
|
|
case SQLITE_TEXT: z = "text"; break;
|
|
case SQLITE_FLOAT: z = "real"; break;
|
|
case SQLITE_BLOB: z = "blob"; break;
|
|
}
|
|
sqlite3_result_text(context, z, -1, SQLITE_STATIC);
|
|
}
|
|
|
|
|
|
/*
|
|
** Implementation of the length() function
|
|
*/
|
|
static void lengthFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
int len;
|
|
|
|
assert( argc==1 );
|
|
UNUSED_PARAMETER(argc);
|
|
switch( sqlite3_value_type(argv[0]) ){
|
|
case SQLITE_BLOB:
|
|
case SQLITE_INTEGER:
|
|
case SQLITE_FLOAT: {
|
|
sqlite3_result_int(context, sqlite3_value_bytes(argv[0]));
|
|
break;
|
|
}
|
|
case SQLITE_TEXT: {
|
|
const unsigned char *z = sqlite3_value_text(argv[0]);
|
|
if( z==0 ) return;
|
|
len = 0;
|
|
while( *z ){
|
|
len++;
|
|
SQLITE_SKIP_UTF8(z);
|
|
}
|
|
sqlite3_result_int(context, len);
|
|
break;
|
|
}
|
|
default: {
|
|
sqlite3_result_null(context);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Implementation of the abs() function
|
|
*/
|
|
static void absFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|
assert( argc==1 );
|
|
UNUSED_PARAMETER(argc);
|
|
switch( sqlite3_value_type(argv[0]) ){
|
|
case SQLITE_INTEGER: {
|
|
i64 iVal = sqlite3_value_int64(argv[0]);
|
|
if( iVal<0 ){
|
|
if( (iVal<<1)==0 ){
|
|
sqlite3_result_error(context, "integer overflow", -1);
|
|
return;
|
|
}
|
|
iVal = -iVal;
|
|
}
|
|
sqlite3_result_int64(context, iVal);
|
|
break;
|
|
}
|
|
case SQLITE_NULL: {
|
|
sqlite3_result_null(context);
|
|
break;
|
|
}
|
|
default: {
|
|
double rVal = sqlite3_value_double(argv[0]);
|
|
if( rVal<0 ) rVal = -rVal;
|
|
sqlite3_result_double(context, rVal);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Implementation of the substr() function.
|
|
**
|
|
** substr(x,p1,p2) returns p2 characters of x[] beginning with p1.
|
|
** p1 is 1-indexed. So substr(x,1,1) returns the first character
|
|
** of x. If x is text, then we actually count UTF-8 characters.
|
|
** If x is a blob, then we count bytes.
|
|
**
|
|
** If p1 is negative, then we begin abs(p1) from the end of x[].
|
|
*/
|
|
static void substrFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
const unsigned char *z;
|
|
const unsigned char *z2;
|
|
int len;
|
|
int p0type;
|
|
i64 p1, p2;
|
|
|
|
assert( argc==3 || argc==2 );
|
|
p0type = sqlite3_value_type(argv[0]);
|
|
if( p0type==SQLITE_BLOB ){
|
|
len = sqlite3_value_bytes(argv[0]);
|
|
z = sqlite3_value_blob(argv[0]);
|
|
if( z==0 ) return;
|
|
assert( len==sqlite3_value_bytes(argv[0]) );
|
|
}else{
|
|
z = sqlite3_value_text(argv[0]);
|
|
if( z==0 ) return;
|
|
len = 0;
|
|
for(z2=z; *z2; len++){
|
|
SQLITE_SKIP_UTF8(z2);
|
|
}
|
|
}
|
|
p1 = sqlite3_value_int(argv[1]);
|
|
if( argc==3 ){
|
|
p2 = sqlite3_value_int(argv[2]);
|
|
}else{
|
|
p2 = sqlite3_context_db_handle(context)->aLimit[SQLITE_LIMIT_LENGTH];
|
|
}
|
|
if( p1<0 ){
|
|
p1 += len;
|
|
if( p1<0 ){
|
|
p2 += p1;
|
|
p1 = 0;
|
|
}
|
|
}else if( p1>0 ){
|
|
p1--;
|
|
}
|
|
if( p1+p2>len ){
|
|
p2 = len-p1;
|
|
}
|
|
if( p0type!=SQLITE_BLOB ){
|
|
while( *z && p1 ){
|
|
SQLITE_SKIP_UTF8(z);
|
|
p1--;
|
|
}
|
|
for(z2=z; *z2 && p2; p2--){
|
|
SQLITE_SKIP_UTF8(z2);
|
|
}
|
|
sqlite3_result_text(context, (char*)z, (int)(z2-z), SQLITE_TRANSIENT);
|
|
}else{
|
|
if( p2<0 ) p2 = 0;
|
|
sqlite3_result_blob(context, (char*)&z[p1], (int)p2, SQLITE_TRANSIENT);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Implementation of the round() function
|
|
*/
|
|
static void roundFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|
int n = 0;
|
|
double r;
|
|
char zBuf[500]; /* larger than the %f representation of the largest double */
|
|
assert( argc==1 || argc==2 );
|
|
if( argc==2 ){
|
|
if( SQLITE_NULL==sqlite3_value_type(argv[1]) ) return;
|
|
n = sqlite3_value_int(argv[1]);
|
|
if( n>30 ) n = 30;
|
|
if( n<0 ) n = 0;
|
|
}
|
|
if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
|
|
r = sqlite3_value_double(argv[0]);
|
|
sqlite3_snprintf(sizeof(zBuf),zBuf,"%.*f",n,r);
|
|
sqlite3AtoF(zBuf, &r);
|
|
sqlite3_result_double(context, r);
|
|
}
|
|
|
|
/*
|
|
** Allocate nByte bytes of space using sqlite3_malloc(). If the
|
|
** allocation fails, call sqlite3_result_error_nomem() to notify
|
|
** the database handle that malloc() has failed.
|
|
*/
|
|
static void *contextMalloc(sqlite3_context *context, i64 nByte){
|
|
char *z;
|
|
if( nByte>sqlite3_context_db_handle(context)->aLimit[SQLITE_LIMIT_LENGTH] ){
|
|
sqlite3_result_error_toobig(context);
|
|
z = 0;
|
|
}else{
|
|
z = sqlite3Malloc((int)nByte);
|
|
if( !z && nByte>0 ){
|
|
sqlite3_result_error_nomem(context);
|
|
}
|
|
}
|
|
return z;
|
|
}
|
|
|
|
/*
|
|
** Implementation of the upper() and lower() SQL functions.
|
|
*/
|
|
static void upperFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|
char *z1;
|
|
const char *z2;
|
|
int i, n;
|
|
if( argc<1 || SQLITE_NULL==sqlite3_value_type(argv[0]) ) return;
|
|
z2 = (char*)sqlite3_value_text(argv[0]);
|
|
n = sqlite3_value_bytes(argv[0]);
|
|
/* Verify that the call to _bytes() does not invalidate the _text() pointer */
|
|
assert( z2==(char*)sqlite3_value_text(argv[0]) );
|
|
if( z2 ){
|
|
z1 = contextMalloc(context, ((i64)n)+1);
|
|
if( z1 ){
|
|
memcpy(z1, z2, n+1);
|
|
for(i=0; z1[i]; i++){
|
|
z1[i] = (char)toupper(z1[i]);
|
|
}
|
|
sqlite3_result_text(context, z1, -1, sqlite3_free);
|
|
}
|
|
}
|
|
}
|
|
static void lowerFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|
char *z1;
|
|
const char *z2;
|
|
int i, n;
|
|
if( argc<1 || SQLITE_NULL==sqlite3_value_type(argv[0]) ) return;
|
|
z2 = (char*)sqlite3_value_text(argv[0]);
|
|
n = sqlite3_value_bytes(argv[0]);
|
|
/* Verify that the call to _bytes() does not invalidate the _text() pointer */
|
|
assert( z2==(char*)sqlite3_value_text(argv[0]) );
|
|
if( z2 ){
|
|
z1 = contextMalloc(context, ((i64)n)+1);
|
|
if( z1 ){
|
|
memcpy(z1, z2, n+1);
|
|
for(i=0; z1[i]; i++){
|
|
z1[i] = (char)tolower(z1[i]);
|
|
}
|
|
sqlite3_result_text(context, z1, -1, sqlite3_free);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Implementation of the IFNULL(), NVL(), and COALESCE() functions.
|
|
** All three do the same thing. They return the first non-NULL
|
|
** argument.
|
|
*/
|
|
static void ifnullFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
int i;
|
|
for(i=0; i<argc; i++){
|
|
if( SQLITE_NULL!=sqlite3_value_type(argv[i]) ){
|
|
sqlite3_result_value(context, argv[i]);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Implementation of random(). Return a random integer.
|
|
*/
|
|
static void randomFunc(
|
|
sqlite3_context *context,
|
|
int NotUsed,
|
|
sqlite3_value **NotUsed2
|
|
){
|
|
sqlite_int64 r;
|
|
UNUSED_PARAMETER2(NotUsed, NotUsed2);
|
|
sqlite3_randomness(sizeof(r), &r);
|
|
if( (r<<1)==0 ) r = 0; /* Prevent 0x8000.... as the result so that we */
|
|
/* can always do abs() of the result */
|
|
sqlite3_result_int64(context, r);
|
|
}
|
|
|
|
/*
|
|
** Implementation of randomblob(N). Return a random blob
|
|
** that is N bytes long.
|
|
*/
|
|
static void randomBlob(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
int n;
|
|
unsigned char *p;
|
|
assert( argc==1 );
|
|
UNUSED_PARAMETER(argc);
|
|
n = sqlite3_value_int(argv[0]);
|
|
if( n<1 ){
|
|
n = 1;
|
|
}
|
|
p = contextMalloc(context, n);
|
|
if( p ){
|
|
sqlite3_randomness(n, p);
|
|
sqlite3_result_blob(context, (char*)p, n, sqlite3_free);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Implementation of the last_insert_rowid() SQL function. The return
|
|
** value is the same as the sqlite3_last_insert_rowid() API function.
|
|
*/
|
|
static void last_insert_rowid(
|
|
sqlite3_context *context,
|
|
int NotUsed,
|
|
sqlite3_value **NotUsed2
|
|
){
|
|
sqlite3 *db = sqlite3_context_db_handle(context);
|
|
UNUSED_PARAMETER2(NotUsed, NotUsed2);
|
|
sqlite3_result_int64(context, sqlite3_last_insert_rowid(db));
|
|
}
|
|
|
|
/*
|
|
** Implementation of the changes() SQL function. The return value is the
|
|
** same as the sqlite3_changes() API function.
|
|
*/
|
|
static void changes(
|
|
sqlite3_context *context,
|
|
int NotUsed,
|
|
sqlite3_value **NotUsed2
|
|
){
|
|
sqlite3 *db = sqlite3_context_db_handle(context);
|
|
UNUSED_PARAMETER2(NotUsed, NotUsed2);
|
|
sqlite3_result_int(context, sqlite3_changes(db));
|
|
}
|
|
|
|
/*
|
|
** Implementation of the total_changes() SQL function. The return value is
|
|
** the same as the sqlite3_total_changes() API function.
|
|
*/
|
|
static void total_changes(
|
|
sqlite3_context *context,
|
|
int NotUsed,
|
|
sqlite3_value **NotUsed2
|
|
){
|
|
sqlite3 *db = sqlite3_context_db_handle(context);
|
|
UNUSED_PARAMETER2(NotUsed, NotUsed2);
|
|
sqlite3_result_int(context, sqlite3_total_changes(db));
|
|
}
|
|
|
|
/*
|
|
** A structure defining how to do GLOB-style comparisons.
|
|
*/
|
|
struct compareInfo {
|
|
u8 matchAll;
|
|
u8 matchOne;
|
|
u8 matchSet;
|
|
u8 noCase;
|
|
};
|
|
|
|
/*
|
|
** For LIKE and GLOB matching on EBCDIC machines, assume that every
|
|
** character is exactly one byte in size. Also, all characters are
|
|
** able to participate in upper-case-to-lower-case mappings in EBCDIC
|
|
** whereas only characters less than 0x80 do in ASCII.
|
|
*/
|
|
#if defined(SQLITE_EBCDIC)
|
|
# define sqlite3Utf8Read(A,B,C) (*(A++))
|
|
# define GlogUpperToLower(A) A = sqlite3UpperToLower[A]
|
|
#else
|
|
# define GlogUpperToLower(A) if( A<0x80 ){ A = sqlite3UpperToLower[A]; }
|
|
#endif
|
|
|
|
static const struct compareInfo globInfo = { '*', '?', '[', 0 };
|
|
/* The correct SQL-92 behavior is for the LIKE operator to ignore
|
|
** case. Thus 'a' LIKE 'A' would be true. */
|
|
static const struct compareInfo likeInfoNorm = { '%', '_', 0, 1 };
|
|
/* If SQLITE_CASE_SENSITIVE_LIKE is defined, then the LIKE operator
|
|
** is case sensitive causing 'a' LIKE 'A' to be false */
|
|
static const struct compareInfo likeInfoAlt = { '%', '_', 0, 0 };
|
|
|
|
/*
|
|
** Compare two UTF-8 strings for equality where the first string can
|
|
** potentially be a "glob" expression. Return true (1) if they
|
|
** are the same and false (0) if they are different.
|
|
**
|
|
** Globbing rules:
|
|
**
|
|
** '*' Matches any sequence of zero or more characters.
|
|
**
|
|
** '?' Matches exactly one character.
|
|
**
|
|
** [...] Matches one character from the enclosed list of
|
|
** characters.
|
|
**
|
|
** [^...] Matches one character not in the enclosed list.
|
|
**
|
|
** With the [...] and [^...] matching, a ']' character can be included
|
|
** in the list by making it the first character after '[' or '^'. A
|
|
** range of characters can be specified using '-'. Example:
|
|
** "[a-z]" matches any single lower-case letter. To match a '-', make
|
|
** it the last character in the list.
|
|
**
|
|
** This routine is usually quick, but can be N**2 in the worst case.
|
|
**
|
|
** Hints: to match '*' or '?', put them in "[]". Like this:
|
|
**
|
|
** abc[*]xyz Matches "abc*xyz" only
|
|
*/
|
|
static int patternCompare(
|
|
const u8 *zPattern, /* The glob pattern */
|
|
const u8 *zString, /* The string to compare against the glob */
|
|
const struct compareInfo *pInfo, /* Information about how to do the compare */
|
|
const int esc /* The escape character */
|
|
){
|
|
int c, c2;
|
|
int invert;
|
|
int seen;
|
|
u8 matchOne = pInfo->matchOne;
|
|
u8 matchAll = pInfo->matchAll;
|
|
u8 matchSet = pInfo->matchSet;
|
|
u8 noCase = pInfo->noCase;
|
|
int prevEscape = 0; /* True if the previous character was 'escape' */
|
|
|
|
while( (c = sqlite3Utf8Read(zPattern,0,&zPattern))!=0 ){
|
|
if( !prevEscape && c==matchAll ){
|
|
while( (c=sqlite3Utf8Read(zPattern,0,&zPattern)) == matchAll
|
|
|| c == matchOne ){
|
|
if( c==matchOne && sqlite3Utf8Read(zString, 0, &zString)==0 ){
|
|
return 0;
|
|
}
|
|
}
|
|
if( c==0 ){
|
|
return 1;
|
|
}else if( c==esc ){
|
|
c = sqlite3Utf8Read(zPattern, 0, &zPattern);
|
|
if( c==0 ){
|
|
return 0;
|
|
}
|
|
}else if( c==matchSet ){
|
|
assert( esc==0 ); /* This is GLOB, not LIKE */
|
|
assert( matchSet<0x80 ); /* '[' is a single-byte character */
|
|
while( *zString && patternCompare(&zPattern[-1],zString,pInfo,esc)==0 ){
|
|
SQLITE_SKIP_UTF8(zString);
|
|
}
|
|
return *zString!=0;
|
|
}
|
|
while( (c2 = sqlite3Utf8Read(zString,0,&zString))!=0 ){
|
|
if( noCase ){
|
|
GlogUpperToLower(c2);
|
|
GlogUpperToLower(c);
|
|
while( c2 != 0 && c2 != c ){
|
|
c2 = sqlite3Utf8Read(zString, 0, &zString);
|
|
GlogUpperToLower(c2);
|
|
}
|
|
}else{
|
|
while( c2 != 0 && c2 != c ){
|
|
c2 = sqlite3Utf8Read(zString, 0, &zString);
|
|
}
|
|
}
|
|
if( c2==0 ) return 0;
|
|
if( patternCompare(zPattern,zString,pInfo,esc) ) return 1;
|
|
}
|
|
return 0;
|
|
}else if( !prevEscape && c==matchOne ){
|
|
if( sqlite3Utf8Read(zString, 0, &zString)==0 ){
|
|
return 0;
|
|
}
|
|
}else if( c==matchSet ){
|
|
int prior_c = 0;
|
|
assert( esc==0 ); /* This only occurs for GLOB, not LIKE */
|
|
seen = 0;
|
|
invert = 0;
|
|
c = sqlite3Utf8Read(zString, 0, &zString);
|
|
if( c==0 ) return 0;
|
|
c2 = sqlite3Utf8Read(zPattern, 0, &zPattern);
|
|
if( c2=='^' ){
|
|
invert = 1;
|
|
c2 = sqlite3Utf8Read(zPattern, 0, &zPattern);
|
|
}
|
|
if( c2==']' ){
|
|
if( c==']' ) seen = 1;
|
|
c2 = sqlite3Utf8Read(zPattern, 0, &zPattern);
|
|
}
|
|
while( c2 && c2!=']' ){
|
|
if( c2=='-' && zPattern[0]!=']' && zPattern[0]!=0 && prior_c>0 ){
|
|
c2 = sqlite3Utf8Read(zPattern, 0, &zPattern);
|
|
if( c>=prior_c && c<=c2 ) seen = 1;
|
|
prior_c = 0;
|
|
}else{
|
|
if( c==c2 ){
|
|
seen = 1;
|
|
}
|
|
prior_c = c2;
|
|
}
|
|
c2 = sqlite3Utf8Read(zPattern, 0, &zPattern);
|
|
}
|
|
if( c2==0 || (seen ^ invert)==0 ){
|
|
return 0;
|
|
}
|
|
}else if( esc==c && !prevEscape ){
|
|
prevEscape = 1;
|
|
}else{
|
|
c2 = sqlite3Utf8Read(zString, 0, &zString);
|
|
if( noCase ){
|
|
GlogUpperToLower(c);
|
|
GlogUpperToLower(c2);
|
|
}
|
|
if( c!=c2 ){
|
|
return 0;
|
|
}
|
|
prevEscape = 0;
|
|
}
|
|
}
|
|
return *zString==0;
|
|
}
|
|
|
|
/*
|
|
** Count the number of times that the LIKE operator (or GLOB which is
|
|
** just a variation of LIKE) gets called. This is used for testing
|
|
** only.
|
|
*/
|
|
#ifdef SQLITE_TEST
|
|
int sqlite3_like_count = 0;
|
|
#endif
|
|
|
|
|
|
/*
|
|
** Implementation of the like() SQL function. This function implements
|
|
** the build-in LIKE operator. The first argument to the function is the
|
|
** pattern and the second argument is the string. So, the SQL statements:
|
|
**
|
|
** A LIKE B
|
|
**
|
|
** is implemented as like(B,A).
|
|
**
|
|
** This same function (with a different compareInfo structure) computes
|
|
** the GLOB operator.
|
|
*/
|
|
static void likeFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
const unsigned char *zA, *zB;
|
|
int escape = 0;
|
|
sqlite3 *db = sqlite3_context_db_handle(context);
|
|
|
|
zB = sqlite3_value_text(argv[0]);
|
|
zA = sqlite3_value_text(argv[1]);
|
|
|
|
/* Limit the length of the LIKE or GLOB pattern to avoid problems
|
|
** of deep recursion and N*N behavior in patternCompare().
|
|
*/
|
|
if( sqlite3_value_bytes(argv[0]) >
|
|
db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] ){
|
|
sqlite3_result_error(context, "LIKE or GLOB pattern too complex", -1);
|
|
return;
|
|
}
|
|
assert( zB==sqlite3_value_text(argv[0]) ); /* Encoding did not change */
|
|
|
|
if( argc==3 ){
|
|
/* The escape character string must consist of a single UTF-8 character.
|
|
** Otherwise, return an error.
|
|
*/
|
|
const unsigned char *zEsc = sqlite3_value_text(argv[2]);
|
|
if( zEsc==0 ) return;
|
|
if( sqlite3Utf8CharLen((char*)zEsc, -1)!=1 ){
|
|
sqlite3_result_error(context,
|
|
"ESCAPE expression must be a single character", -1);
|
|
return;
|
|
}
|
|
escape = sqlite3Utf8Read(zEsc, 0, &zEsc);
|
|
}
|
|
if( zA && zB ){
|
|
struct compareInfo *pInfo = sqlite3_user_data(context);
|
|
#ifdef SQLITE_TEST
|
|
sqlite3_like_count++;
|
|
#endif
|
|
|
|
sqlite3_result_int(context, patternCompare(zB, zA, pInfo, escape));
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Implementation of the NULLIF(x,y) function. The result is the first
|
|
** argument if the arguments are different. The result is NULL if the
|
|
** arguments are equal to each other.
|
|
*/
|
|
static void nullifFunc(
|
|
sqlite3_context *context,
|
|
int NotUsed,
|
|
sqlite3_value **argv
|
|
){
|
|
CollSeq *pColl = sqlite3GetFuncCollSeq(context);
|
|
UNUSED_PARAMETER(NotUsed);
|
|
if( sqlite3MemCompare(argv[0], argv[1], pColl)!=0 ){
|
|
sqlite3_result_value(context, argv[0]);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Implementation of the VERSION(*) function. The result is the version
|
|
** of the SQLite library that is running.
|
|
*/
|
|
static void versionFunc(
|
|
sqlite3_context *context,
|
|
int NotUsed,
|
|
sqlite3_value **NotUsed2
|
|
){
|
|
UNUSED_PARAMETER2(NotUsed, NotUsed2);
|
|
sqlite3_result_text(context, sqlite3_version, -1, SQLITE_STATIC);
|
|
}
|
|
|
|
/* Array for converting from half-bytes (nybbles) into ASCII hex
|
|
** digits. */
|
|
static const char hexdigits[] = {
|
|
'0', '1', '2', '3', '4', '5', '6', '7',
|
|
'8', '9', 'A', 'B', 'C', 'D', 'E', 'F'
|
|
};
|
|
|
|
/*
|
|
** EXPERIMENTAL - This is not an official function. The interface may
|
|
** change. This function may disappear. Do not write code that depends
|
|
** on this function.
|
|
**
|
|
** Implementation of the QUOTE() function. This function takes a single
|
|
** argument. If the argument is numeric, the return value is the same as
|
|
** the argument. If the argument is NULL, the return value is the string
|
|
** "NULL". Otherwise, the argument is enclosed in single quotes with
|
|
** single-quote escapes.
|
|
*/
|
|
static void quoteFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|
if( argc<1 ) return;
|
|
switch( sqlite3_value_type(argv[0]) ){
|
|
case SQLITE_NULL: {
|
|
sqlite3_result_text(context, "NULL", 4, SQLITE_STATIC);
|
|
break;
|
|
}
|
|
case SQLITE_INTEGER:
|
|
case SQLITE_FLOAT: {
|
|
sqlite3_result_value(context, argv[0]);
|
|
break;
|
|
}
|
|
case SQLITE_BLOB: {
|
|
char *zText = 0;
|
|
char const *zBlob = sqlite3_value_blob(argv[0]);
|
|
int nBlob = sqlite3_value_bytes(argv[0]);
|
|
assert( zBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */
|
|
zText = (char *)contextMalloc(context, (2*(i64)nBlob)+4);
|
|
if( zText ){
|
|
int i;
|
|
for(i=0; i<nBlob; i++){
|
|
zText[(i*2)+2] = hexdigits[(zBlob[i]>>4)&0x0F];
|
|
zText[(i*2)+3] = hexdigits[(zBlob[i])&0x0F];
|
|
}
|
|
zText[(nBlob*2)+2] = '\'';
|
|
zText[(nBlob*2)+3] = '\0';
|
|
zText[0] = 'X';
|
|
zText[1] = '\'';
|
|
sqlite3_result_text(context, zText, -1, SQLITE_TRANSIENT);
|
|
sqlite3_free(zText);
|
|
}
|
|
break;
|
|
}
|
|
case SQLITE_TEXT: {
|
|
int i,j;
|
|
u64 n;
|
|
const unsigned char *zArg = sqlite3_value_text(argv[0]);
|
|
char *z;
|
|
|
|
if( zArg==0 ) return;
|
|
for(i=0, n=0; zArg[i]; i++){ if( zArg[i]=='\'' ) n++; }
|
|
z = contextMalloc(context, ((i64)i)+((i64)n)+3);
|
|
if( z ){
|
|
z[0] = '\'';
|
|
for(i=0, j=1; zArg[i]; i++){
|
|
z[j++] = zArg[i];
|
|
if( zArg[i]=='\'' ){
|
|
z[j++] = '\'';
|
|
}
|
|
}
|
|
z[j++] = '\'';
|
|
z[j] = 0;
|
|
sqlite3_result_text(context, z, j, sqlite3_free);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** The hex() function. Interpret the argument as a blob. Return
|
|
** a hexadecimal rendering as text.
|
|
*/
|
|
static void hexFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
int i, n;
|
|
const unsigned char *pBlob;
|
|
char *zHex, *z;
|
|
assert( argc==1 );
|
|
UNUSED_PARAMETER(argc);
|
|
pBlob = sqlite3_value_blob(argv[0]);
|
|
n = sqlite3_value_bytes(argv[0]);
|
|
assert( pBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */
|
|
z = zHex = contextMalloc(context, ((i64)n)*2 + 1);
|
|
if( zHex ){
|
|
for(i=0; i<n; i++, pBlob++){
|
|
unsigned char c = *pBlob;
|
|
*(z++) = hexdigits[(c>>4)&0xf];
|
|
*(z++) = hexdigits[c&0xf];
|
|
}
|
|
*z = 0;
|
|
sqlite3_result_text(context, zHex, n*2, sqlite3_free);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** The zeroblob(N) function returns a zero-filled blob of size N bytes.
|
|
*/
|
|
static void zeroblobFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
i64 n;
|
|
assert( argc==1 );
|
|
UNUSED_PARAMETER(argc);
|
|
n = sqlite3_value_int64(argv[0]);
|
|
if( n>SQLITE_MAX_LENGTH ){
|
|
sqlite3_result_error_toobig(context);
|
|
}else{
|
|
sqlite3_result_zeroblob(context, (int)n);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** The replace() function. Three arguments are all strings: call
|
|
** them A, B, and C. The result is also a string which is derived
|
|
** from A by replacing every occurance of B with C. The match
|
|
** must be exact. Collating sequences are not used.
|
|
*/
|
|
static void replaceFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
const unsigned char *zStr; /* The input string A */
|
|
const unsigned char *zPattern; /* The pattern string B */
|
|
const unsigned char *zRep; /* The replacement string C */
|
|
unsigned char *zOut; /* The output */
|
|
int nStr; /* Size of zStr */
|
|
int nPattern; /* Size of zPattern */
|
|
int nRep; /* Size of zRep */
|
|
i64 nOut; /* Maximum size of zOut */
|
|
int loopLimit; /* Last zStr[] that might match zPattern[] */
|
|
int i, j; /* Loop counters */
|
|
|
|
assert( argc==3 );
|
|
UNUSED_PARAMETER(argc);
|
|
zStr = sqlite3_value_text(argv[0]);
|
|
if( zStr==0 ) return;
|
|
nStr = sqlite3_value_bytes(argv[0]);
|
|
assert( zStr==sqlite3_value_text(argv[0]) ); /* No encoding change */
|
|
zPattern = sqlite3_value_text(argv[1]);
|
|
if( zPattern==0 || zPattern[0]==0 ) return;
|
|
nPattern = sqlite3_value_bytes(argv[1]);
|
|
assert( zPattern==sqlite3_value_text(argv[1]) ); /* No encoding change */
|
|
zRep = sqlite3_value_text(argv[2]);
|
|
if( zRep==0 ) return;
|
|
nRep = sqlite3_value_bytes(argv[2]);
|
|
assert( zRep==sqlite3_value_text(argv[2]) );
|
|
nOut = nStr + 1;
|
|
assert( nOut<SQLITE_MAX_LENGTH );
|
|
zOut = contextMalloc(context, (i64)nOut);
|
|
if( zOut==0 ){
|
|
return;
|
|
}
|
|
loopLimit = nStr - nPattern;
|
|
for(i=j=0; i<=loopLimit; i++){
|
|
if( zStr[i]!=zPattern[0] || memcmp(&zStr[i], zPattern, nPattern) ){
|
|
zOut[j++] = zStr[i];
|
|
}else{
|
|
u8 *zOld;
|
|
sqlite3 *db = sqlite3_context_db_handle(context);
|
|
nOut += nRep - nPattern;
|
|
if( nOut>=db->aLimit[SQLITE_LIMIT_LENGTH] ){
|
|
sqlite3_result_error_toobig(context);
|
|
sqlite3DbFree(db, zOut);
|
|
return;
|
|
}
|
|
zOld = zOut;
|
|
zOut = sqlite3_realloc(zOut, (int)nOut);
|
|
if( zOut==0 ){
|
|
sqlite3_result_error_nomem(context);
|
|
sqlite3DbFree(db, zOld);
|
|
return;
|
|
}
|
|
memcpy(&zOut[j], zRep, nRep);
|
|
j += nRep;
|
|
i += nPattern-1;
|
|
}
|
|
}
|
|
assert( j+nStr-i+1==nOut );
|
|
memcpy(&zOut[j], &zStr[i], nStr-i);
|
|
j += nStr - i;
|
|
assert( j<=nOut );
|
|
zOut[j] = 0;
|
|
sqlite3_result_text(context, (char*)zOut, j, sqlite3_free);
|
|
}
|
|
|
|
/*
|
|
** Implementation of the TRIM(), LTRIM(), and RTRIM() functions.
|
|
** The userdata is 0x1 for left trim, 0x2 for right trim, 0x3 for both.
|
|
*/
|
|
static void trimFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
const unsigned char *zIn; /* Input string */
|
|
const unsigned char *zCharSet; /* Set of characters to trim */
|
|
int nIn; /* Number of bytes in input */
|
|
int flags; /* 1: trimleft 2: trimright 3: trim */
|
|
int i; /* Loop counter */
|
|
unsigned char *aLen = 0; /* Length of each character in zCharSet */
|
|
unsigned char **azChar = 0; /* Individual characters in zCharSet */
|
|
int nChar; /* Number of characters in zCharSet */
|
|
|
|
if( sqlite3_value_type(argv[0])==SQLITE_NULL ){
|
|
return;
|
|
}
|
|
zIn = sqlite3_value_text(argv[0]);
|
|
if( zIn==0 ) return;
|
|
nIn = sqlite3_value_bytes(argv[0]);
|
|
assert( zIn==sqlite3_value_text(argv[0]) );
|
|
if( argc==1 ){
|
|
static const unsigned char lenOne[] = { 1 };
|
|
static unsigned char * const azOne[] = { (u8*)" " };
|
|
nChar = 1;
|
|
aLen = (u8*)lenOne;
|
|
azChar = (unsigned char **)azOne;
|
|
zCharSet = 0;
|
|
}else if( (zCharSet = sqlite3_value_text(argv[1]))==0 ){
|
|
return;
|
|
}else{
|
|
const unsigned char *z;
|
|
for(z=zCharSet, nChar=0; *z; nChar++){
|
|
SQLITE_SKIP_UTF8(z);
|
|
}
|
|
if( nChar>0 ){
|
|
azChar = contextMalloc(context, ((i64)nChar)*(sizeof(char*)+1));
|
|
if( azChar==0 ){
|
|
return;
|
|
}
|
|
aLen = (unsigned char*)&azChar[nChar];
|
|
for(z=zCharSet, nChar=0; *z; nChar++){
|
|
azChar[nChar] = (unsigned char *)z;
|
|
SQLITE_SKIP_UTF8(z);
|
|
aLen[nChar] = (u8)(z - azChar[nChar]);
|
|
}
|
|
}
|
|
}
|
|
if( nChar>0 ){
|
|
flags = SQLITE_PTR_TO_INT(sqlite3_user_data(context));
|
|
if( flags & 1 ){
|
|
while( nIn>0 ){
|
|
int len = 0;
|
|
for(i=0; i<nChar; i++){
|
|
len = aLen[i];
|
|
if( memcmp(zIn, azChar[i], len)==0 ) break;
|
|
}
|
|
if( i>=nChar ) break;
|
|
zIn += len;
|
|
nIn -= len;
|
|
}
|
|
}
|
|
if( flags & 2 ){
|
|
while( nIn>0 ){
|
|
int len = 0;
|
|
for(i=0; i<nChar; i++){
|
|
len = aLen[i];
|
|
if( len<=nIn && memcmp(&zIn[nIn-len],azChar[i],len)==0 ) break;
|
|
}
|
|
if( i>=nChar ) break;
|
|
nIn -= len;
|
|
}
|
|
}
|
|
if( zCharSet ){
|
|
sqlite3_free(azChar);
|
|
}
|
|
}
|
|
sqlite3_result_text(context, (char*)zIn, nIn, SQLITE_TRANSIENT);
|
|
}
|
|
|
|
|
|
#ifdef SQLITE_SOUNDEX
|
|
/*
|
|
** Compute the soundex encoding of a word.
|
|
*/
|
|
static void soundexFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
char zResult[8];
|
|
const u8 *zIn;
|
|
int i, j;
|
|
static const unsigned char iCode[] = {
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
|
|
1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
|
|
0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
|
|
1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
|
|
};
|
|
assert( argc==1 );
|
|
zIn = (u8*)sqlite3_value_text(argv[0]);
|
|
if( zIn==0 ) zIn = (u8*)"";
|
|
for(i=0; zIn[i] && !isalpha(zIn[i]); i++){}
|
|
if( zIn[i] ){
|
|
u8 prevcode = iCode[zIn[i]&0x7f];
|
|
zResult[0] = toupper(zIn[i]);
|
|
for(j=1; j<4 && zIn[i]; i++){
|
|
int code = iCode[zIn[i]&0x7f];
|
|
if( code>0 ){
|
|
if( code!=prevcode ){
|
|
prevcode = code;
|
|
zResult[j++] = code + '0';
|
|
}
|
|
}else{
|
|
prevcode = 0;
|
|
}
|
|
}
|
|
while( j<4 ){
|
|
zResult[j++] = '0';
|
|
}
|
|
zResult[j] = 0;
|
|
sqlite3_result_text(context, zResult, 4, SQLITE_TRANSIENT);
|
|
}else{
|
|
sqlite3_result_text(context, "?000", 4, SQLITE_STATIC);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifndef SQLITE_OMIT_LOAD_EXTENSION
|
|
/*
|
|
** A function that loads a shared-library extension then returns NULL.
|
|
*/
|
|
static void loadExt(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|
const char *zFile = (const char *)sqlite3_value_text(argv[0]);
|
|
const char *zProc;
|
|
sqlite3 *db = sqlite3_context_db_handle(context);
|
|
char *zErrMsg = 0;
|
|
|
|
if( argc==2 ){
|
|
zProc = (const char *)sqlite3_value_text(argv[1]);
|
|
}else{
|
|
zProc = 0;
|
|
}
|
|
if( zFile && sqlite3_load_extension(db, zFile, zProc, &zErrMsg) ){
|
|
sqlite3_result_error(context, zErrMsg, -1);
|
|
sqlite3_free(zErrMsg);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
/*
|
|
** An instance of the following structure holds the context of a
|
|
** sum() or avg() aggregate computation.
|
|
*/
|
|
typedef struct SumCtx SumCtx;
|
|
struct SumCtx {
|
|
double rSum; /* Floating point sum */
|
|
i64 iSum; /* Integer sum */
|
|
i64 cnt; /* Number of elements summed */
|
|
u8 overflow; /* True if integer overflow seen */
|
|
u8 approx; /* True if non-integer value was input to the sum */
|
|
};
|
|
|
|
/*
|
|
** Routines used to compute the sum, average, and total.
|
|
**
|
|
** The SUM() function follows the (broken) SQL standard which means
|
|
** that it returns NULL if it sums over no inputs. TOTAL returns
|
|
** 0.0 in that case. In addition, TOTAL always returns a float where
|
|
** SUM might return an integer if it never encounters a floating point
|
|
** value. TOTAL never fails, but SUM might through an exception if
|
|
** it overflows an integer.
|
|
*/
|
|
static void sumStep(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|
SumCtx *p;
|
|
int type;
|
|
assert( argc==1 );
|
|
UNUSED_PARAMETER(argc);
|
|
p = sqlite3_aggregate_context(context, sizeof(*p));
|
|
type = sqlite3_value_numeric_type(argv[0]);
|
|
if( p && type!=SQLITE_NULL ){
|
|
p->cnt++;
|
|
if( type==SQLITE_INTEGER ){
|
|
i64 v = sqlite3_value_int64(argv[0]);
|
|
p->rSum += v;
|
|
if( (p->approx|p->overflow)==0 ){
|
|
i64 iNewSum = p->iSum + v;
|
|
int s1 = (int)(p->iSum >> (sizeof(i64)*8-1));
|
|
int s2 = (int)(v >> (sizeof(i64)*8-1));
|
|
int s3 = (int)(iNewSum >> (sizeof(i64)*8-1));
|
|
p->overflow = ((s1&s2&~s3) | (~s1&~s2&s3))?1:0;
|
|
p->iSum = iNewSum;
|
|
}
|
|
}else{
|
|
p->rSum += sqlite3_value_double(argv[0]);
|
|
p->approx = 1;
|
|
}
|
|
}
|
|
}
|
|
static void sumFinalize(sqlite3_context *context){
|
|
SumCtx *p;
|
|
p = sqlite3_aggregate_context(context, 0);
|
|
if( p && p->cnt>0 ){
|
|
if( p->overflow ){
|
|
sqlite3_result_error(context,"integer overflow",-1);
|
|
}else if( p->approx ){
|
|
sqlite3_result_double(context, p->rSum);
|
|
}else{
|
|
sqlite3_result_int64(context, p->iSum);
|
|
}
|
|
}
|
|
}
|
|
static void avgFinalize(sqlite3_context *context){
|
|
SumCtx *p;
|
|
p = sqlite3_aggregate_context(context, 0);
|
|
if( p && p->cnt>0 ){
|
|
sqlite3_result_double(context, p->rSum/(double)p->cnt);
|
|
}
|
|
}
|
|
static void totalFinalize(sqlite3_context *context){
|
|
SumCtx *p;
|
|
p = sqlite3_aggregate_context(context, 0);
|
|
sqlite3_result_double(context, p ? p->rSum : 0.0);
|
|
}
|
|
|
|
/*
|
|
** The following structure keeps track of state information for the
|
|
** count() aggregate function.
|
|
*/
|
|
typedef struct CountCtx CountCtx;
|
|
struct CountCtx {
|
|
i64 n;
|
|
};
|
|
|
|
/*
|
|
** Routines to implement the count() aggregate function.
|
|
*/
|
|
static void countStep(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|
CountCtx *p;
|
|
p = sqlite3_aggregate_context(context, sizeof(*p));
|
|
if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && p ){
|
|
p->n++;
|
|
}
|
|
}
|
|
static void countFinalize(sqlite3_context *context){
|
|
CountCtx *p;
|
|
p = sqlite3_aggregate_context(context, 0);
|
|
sqlite3_result_int64(context, p ? p->n : 0);
|
|
}
|
|
|
|
/*
|
|
** Routines to implement min() and max() aggregate functions.
|
|
*/
|
|
static void minmaxStep(
|
|
sqlite3_context *context,
|
|
int NotUsed,
|
|
sqlite3_value **argv
|
|
){
|
|
Mem *pArg = (Mem *)argv[0];
|
|
Mem *pBest;
|
|
UNUSED_PARAMETER(NotUsed);
|
|
|
|
if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
|
|
pBest = (Mem *)sqlite3_aggregate_context(context, sizeof(*pBest));
|
|
if( !pBest ) return;
|
|
|
|
if( pBest->flags ){
|
|
int max;
|
|
int cmp;
|
|
CollSeq *pColl = sqlite3GetFuncCollSeq(context);
|
|
/* This step function is used for both the min() and max() aggregates,
|
|
** the only difference between the two being that the sense of the
|
|
** comparison is inverted. For the max() aggregate, the
|
|
** sqlite3_user_data() function returns (void *)-1. For min() it
|
|
** returns (void *)db, where db is the sqlite3* database pointer.
|
|
** Therefore the next statement sets variable 'max' to 1 for the max()
|
|
** aggregate, or 0 for min().
|
|
*/
|
|
max = sqlite3_user_data(context)!=0;
|
|
cmp = sqlite3MemCompare(pBest, pArg, pColl);
|
|
if( (max && cmp<0) || (!max && cmp>0) ){
|
|
sqlite3VdbeMemCopy(pBest, pArg);
|
|
}
|
|
}else{
|
|
sqlite3VdbeMemCopy(pBest, pArg);
|
|
}
|
|
}
|
|
static void minMaxFinalize(sqlite3_context *context){
|
|
sqlite3_value *pRes;
|
|
pRes = (sqlite3_value *)sqlite3_aggregate_context(context, 0);
|
|
if( pRes ){
|
|
if( pRes->flags ){
|
|
sqlite3_result_value(context, pRes);
|
|
}
|
|
sqlite3VdbeMemRelease(pRes);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** group_concat(EXPR, ?SEPARATOR?)
|
|
*/
|
|
static void groupConcatStep(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
const char *zVal;
|
|
StrAccum *pAccum;
|
|
const char *zSep;
|
|
int nVal, nSep, i;
|
|
if( argc==0 || sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
|
|
pAccum = (StrAccum*)sqlite3_aggregate_context(context, sizeof(*pAccum));
|
|
|
|
if( pAccum ){
|
|
sqlite3 *db = sqlite3_context_db_handle(context);
|
|
pAccum->useMalloc = 1;
|
|
pAccum->mxAlloc = db->aLimit[SQLITE_LIMIT_LENGTH];
|
|
if( pAccum->nChar ){
|
|
if( argc>1 ){
|
|
zSep = (char*)sqlite3_value_text(argv[argc-1]);
|
|
nSep = sqlite3_value_bytes(argv[argc-1]);
|
|
}else{
|
|
zSep = ",";
|
|
nSep = 1;
|
|
}
|
|
sqlite3StrAccumAppend(pAccum, zSep, nSep);
|
|
}
|
|
i = 0;
|
|
do{
|
|
zVal = (char*)sqlite3_value_text(argv[i]);
|
|
nVal = sqlite3_value_bytes(argv[i]);
|
|
sqlite3StrAccumAppend(pAccum, zVal, nVal);
|
|
i++;
|
|
}while( i<argc-1 );
|
|
}
|
|
}
|
|
static void groupConcatFinalize(sqlite3_context *context){
|
|
StrAccum *pAccum;
|
|
pAccum = sqlite3_aggregate_context(context, 0);
|
|
if( pAccum ){
|
|
if( pAccum->tooBig ){
|
|
sqlite3_result_error_toobig(context);
|
|
}else if( pAccum->mallocFailed ){
|
|
sqlite3_result_error_nomem(context);
|
|
}else{
|
|
sqlite3_result_text(context, sqlite3StrAccumFinish(pAccum), -1,
|
|
sqlite3_free);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** This function registered all of the above C functions as SQL
|
|
** functions. This should be the only routine in this file with
|
|
** external linkage.
|
|
*/
|
|
void sqlite3RegisterBuiltinFunctions(sqlite3 *db){
|
|
#ifndef SQLITE_OMIT_ALTERTABLE
|
|
sqlite3AlterFunctions(db);
|
|
#endif
|
|
if( !db->mallocFailed ){
|
|
int rc = sqlite3_overload_function(db, "MATCH", 2);
|
|
assert( rc==SQLITE_NOMEM || rc==SQLITE_OK );
|
|
if( rc==SQLITE_NOMEM ){
|
|
db->mallocFailed = 1;
|
|
}
|
|
}
|
|
#ifdef SQLITE_SSE
|
|
(void)sqlite3SseFunctions(db);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
** Set the LIKEOPT flag on the 2-argument function with the given name.
|
|
*/
|
|
static void setLikeOptFlag(sqlite3 *db, const char *zName, u8 flagVal){
|
|
FuncDef *pDef;
|
|
pDef = sqlite3FindFunction(db, zName, sqlite3Strlen30(zName),
|
|
2, SQLITE_UTF8, 0);
|
|
if( pDef ){
|
|
pDef->flags = flagVal;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Register the built-in LIKE and GLOB functions. The caseSensitive
|
|
** parameter determines whether or not the LIKE operator is case
|
|
** sensitive. GLOB is always case sensitive.
|
|
*/
|
|
void sqlite3RegisterLikeFunctions(sqlite3 *db, int caseSensitive){
|
|
struct compareInfo *pInfo;
|
|
if( caseSensitive ){
|
|
pInfo = (struct compareInfo*)&likeInfoAlt;
|
|
}else{
|
|
pInfo = (struct compareInfo*)&likeInfoNorm;
|
|
}
|
|
sqlite3CreateFunc(db, "like", 2, SQLITE_UTF8, pInfo, likeFunc, 0, 0);
|
|
sqlite3CreateFunc(db, "like", 3, SQLITE_UTF8, pInfo, likeFunc, 0, 0);
|
|
sqlite3CreateFunc(db, "glob", 2, SQLITE_UTF8,
|
|
(struct compareInfo*)&globInfo, likeFunc, 0,0);
|
|
setLikeOptFlag(db, "glob", SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE);
|
|
setLikeOptFlag(db, "like",
|
|
caseSensitive ? (SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE) : SQLITE_FUNC_LIKE);
|
|
}
|
|
|
|
/*
|
|
** pExpr points to an expression which implements a function. If
|
|
** it is appropriate to apply the LIKE optimization to that function
|
|
** then set aWc[0] through aWc[2] to the wildcard characters and
|
|
** return TRUE. If the function is not a LIKE-style function then
|
|
** return FALSE.
|
|
*/
|
|
int sqlite3IsLikeFunction(sqlite3 *db, Expr *pExpr, int *pIsNocase, char *aWc){
|
|
FuncDef *pDef;
|
|
if( pExpr->op!=TK_FUNCTION || !pExpr->pList ){
|
|
return 0;
|
|
}
|
|
if( pExpr->pList->nExpr!=2 ){
|
|
return 0;
|
|
}
|
|
pDef = sqlite3FindFunction(db, (char*)pExpr->token.z, pExpr->token.n, 2,
|
|
SQLITE_UTF8, 0);
|
|
if( pDef==0 || (pDef->flags & SQLITE_FUNC_LIKE)==0 ){
|
|
return 0;
|
|
}
|
|
|
|
/* The memcpy() statement assumes that the wildcard characters are
|
|
** the first three statements in the compareInfo structure. The
|
|
** asserts() that follow verify that assumption
|
|
*/
|
|
memcpy(aWc, pDef->pUserData, 3);
|
|
assert( (char*)&likeInfoAlt == (char*)&likeInfoAlt.matchAll );
|
|
assert( &((char*)&likeInfoAlt)[1] == (char*)&likeInfoAlt.matchOne );
|
|
assert( &((char*)&likeInfoAlt)[2] == (char*)&likeInfoAlt.matchSet );
|
|
*pIsNocase = (pDef->flags & SQLITE_FUNC_CASE)==0;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
** All all of the FuncDef structures in the aBuiltinFunc[] array above
|
|
** to the global function hash table. This occurs at start-time (as
|
|
** a consequence of calling sqlite3_initialize()).
|
|
**
|
|
** After this routine runs
|
|
*/
|
|
void sqlite3RegisterGlobalFunctions(void){
|
|
/*
|
|
** The following array holds FuncDef structures for all of the functions
|
|
** defined in this file.
|
|
**
|
|
** The array cannot be constant since changes are made to the
|
|
** FuncDef.pHash elements at start-time. The elements of this array
|
|
** are read-only after initialization is complete.
|
|
*/
|
|
static SQLITE_WSD FuncDef aBuiltinFunc[] = {
|
|
FUNCTION(ltrim, 1, 1, 0, trimFunc ),
|
|
FUNCTION(ltrim, 2, 1, 0, trimFunc ),
|
|
FUNCTION(rtrim, 1, 2, 0, trimFunc ),
|
|
FUNCTION(rtrim, 2, 2, 0, trimFunc ),
|
|
FUNCTION(trim, 1, 3, 0, trimFunc ),
|
|
FUNCTION(trim, 2, 3, 0, trimFunc ),
|
|
FUNCTION(min, -1, 0, 1, minmaxFunc ),
|
|
FUNCTION(min, 0, 0, 1, 0 ),
|
|
AGGREGATE(min, 1, 0, 1, minmaxStep, minMaxFinalize ),
|
|
FUNCTION(max, -1, 1, 1, minmaxFunc ),
|
|
FUNCTION(max, 0, 1, 1, 0 ),
|
|
AGGREGATE(max, 1, 1, 1, minmaxStep, minMaxFinalize ),
|
|
FUNCTION(typeof, 1, 0, 0, typeofFunc ),
|
|
FUNCTION(length, 1, 0, 0, lengthFunc ),
|
|
FUNCTION(substr, 2, 0, 0, substrFunc ),
|
|
FUNCTION(substr, 3, 0, 0, substrFunc ),
|
|
FUNCTION(abs, 1, 0, 0, absFunc ),
|
|
FUNCTION(round, 1, 0, 0, roundFunc ),
|
|
FUNCTION(round, 2, 0, 0, roundFunc ),
|
|
FUNCTION(upper, 1, 0, 0, upperFunc ),
|
|
FUNCTION(lower, 1, 0, 0, lowerFunc ),
|
|
FUNCTION(coalesce, 1, 0, 0, 0 ),
|
|
FUNCTION(coalesce, -1, 0, 0, ifnullFunc ),
|
|
FUNCTION(coalesce, 0, 0, 0, 0 ),
|
|
FUNCTION(hex, 1, 0, 0, hexFunc ),
|
|
FUNCTION(ifnull, 2, 0, 1, ifnullFunc ),
|
|
FUNCTION(random, -1, 0, 0, randomFunc ),
|
|
FUNCTION(randomblob, 1, 0, 0, randomBlob ),
|
|
FUNCTION(nullif, 2, 0, 1, nullifFunc ),
|
|
FUNCTION(sqlite_version, 0, 0, 0, versionFunc ),
|
|
FUNCTION(quote, 1, 0, 0, quoteFunc ),
|
|
FUNCTION(last_insert_rowid, 0, 0, 0, last_insert_rowid),
|
|
FUNCTION(changes, 0, 0, 0, changes ),
|
|
FUNCTION(total_changes, 0, 0, 0, total_changes ),
|
|
FUNCTION(replace, 3, 0, 0, replaceFunc ),
|
|
FUNCTION(zeroblob, 1, 0, 0, zeroblobFunc ),
|
|
#ifdef SQLITE_SOUNDEX
|
|
FUNCTION(soundex, 1, 0, 0, soundexFunc ),
|
|
#endif
|
|
#ifndef SQLITE_OMIT_LOAD_EXTENSION
|
|
FUNCTION(load_extension, 1, 0, 0, loadExt ),
|
|
FUNCTION(load_extension, 2, 0, 0, loadExt ),
|
|
#endif
|
|
AGGREGATE(sum, 1, 0, 0, sumStep, sumFinalize ),
|
|
AGGREGATE(total, 1, 0, 0, sumStep, totalFinalize ),
|
|
AGGREGATE(avg, 1, 0, 0, sumStep, avgFinalize ),
|
|
AGGREGATE(count, 0, 0, 0, countStep, countFinalize ),
|
|
AGGREGATE(count, 1, 0, 0, countStep, countFinalize ),
|
|
AGGREGATE(group_concat, -1, 0, 0, groupConcatStep, groupConcatFinalize),
|
|
|
|
LIKEFUNC(glob, 2, &globInfo, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
|
|
#ifdef SQLITE_CASE_SENSITIVE_LIKE
|
|
LIKEFUNC(like, 2, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
|
|
LIKEFUNC(like, 3, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
|
|
#else
|
|
LIKEFUNC(like, 2, &likeInfoNorm, SQLITE_FUNC_LIKE),
|
|
LIKEFUNC(like, 3, &likeInfoNorm, SQLITE_FUNC_LIKE),
|
|
#endif
|
|
};
|
|
|
|
int i;
|
|
FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions);
|
|
FuncDef *aFunc = (FuncDef*)&GLOBAL(FuncDef, aBuiltinFunc);
|
|
|
|
for(i=0; i<ArraySize(aBuiltinFunc); i++){
|
|
sqlite3FuncDefInsert(pHash, &aFunc[i]);
|
|
}
|
|
sqlite3RegisterDateTimeFunctions();
|
|
}
|