mirror of
https://github.com/DBD-SQLite/DBD-SQLite
synced 2025-06-07 22:28:47 -04:00
DBD-SQLite: switched to amalgamation
This commit is contained in:
parent
66d7264f8e
commit
e63c389e96
96 changed files with 0 additions and 98345 deletions
629
alter.c
629
alter.c
|
@ -1,629 +0,0 @@
|
|||
/*
|
||||
** 2005 February 15
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This file contains C code routines that used to generate VDBE code
|
||||
** that implements the ALTER TABLE command.
|
||||
**
|
||||
** $Id: alter.c,v 1.55 2009/03/24 15:08:10 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
/*
|
||||
** The code in this file only exists if we are not omitting the
|
||||
** ALTER TABLE logic from the build.
|
||||
*/
|
||||
#ifndef SQLITE_OMIT_ALTERTABLE
|
||||
|
||||
|
||||
/*
|
||||
** This function is used by SQL generated to implement the
|
||||
** ALTER TABLE command. The first argument is the text of a CREATE TABLE or
|
||||
** CREATE INDEX command. The second is a table name. The table name in
|
||||
** the CREATE TABLE or CREATE INDEX statement is replaced with the third
|
||||
** argument and the result returned. Examples:
|
||||
**
|
||||
** sqlite_rename_table('CREATE TABLE abc(a, b, c)', 'def')
|
||||
** -> 'CREATE TABLE def(a, b, c)'
|
||||
**
|
||||
** sqlite_rename_table('CREATE INDEX i ON abc(a)', 'def')
|
||||
** -> 'CREATE INDEX i ON def(a, b, c)'
|
||||
*/
|
||||
static void renameTableFunc(
|
||||
sqlite3_context *context,
|
||||
int NotUsed,
|
||||
sqlite3_value **argv
|
||||
){
|
||||
unsigned char const *zSql = sqlite3_value_text(argv[0]);
|
||||
unsigned char const *zTableName = sqlite3_value_text(argv[1]);
|
||||
|
||||
int token;
|
||||
Token tname;
|
||||
unsigned char const *zCsr = zSql;
|
||||
int len = 0;
|
||||
char *zRet;
|
||||
|
||||
sqlite3 *db = sqlite3_context_db_handle(context);
|
||||
|
||||
UNUSED_PARAMETER(NotUsed);
|
||||
|
||||
/* The principle used to locate the table name in the CREATE TABLE
|
||||
** statement is that the table name is the first non-space token that
|
||||
** is immediately followed by a TK_LP or TK_USING token.
|
||||
*/
|
||||
if( zSql ){
|
||||
do {
|
||||
if( !*zCsr ){
|
||||
/* Ran out of input before finding an opening bracket. Return NULL. */
|
||||
return;
|
||||
}
|
||||
|
||||
/* Store the token that zCsr points to in tname. */
|
||||
tname.z = zCsr;
|
||||
tname.n = len;
|
||||
|
||||
/* Advance zCsr to the next token. Store that token type in 'token',
|
||||
** and its length in 'len' (to be used next iteration of this loop).
|
||||
*/
|
||||
do {
|
||||
zCsr += len;
|
||||
len = sqlite3GetToken(zCsr, &token);
|
||||
} while( token==TK_SPACE );
|
||||
assert( len>0 );
|
||||
} while( token!=TK_LP && token!=TK_USING );
|
||||
|
||||
zRet = sqlite3MPrintf(db, "%.*s\"%w\"%s", tname.z - zSql, zSql,
|
||||
zTableName, tname.z+tname.n);
|
||||
sqlite3_result_text(context, zRet, -1, SQLITE_DYNAMIC);
|
||||
}
|
||||
}
|
||||
|
||||
#ifndef SQLITE_OMIT_TRIGGER
|
||||
/* This function is used by SQL generated to implement the
|
||||
** ALTER TABLE command. The first argument is the text of a CREATE TRIGGER
|
||||
** statement. The second is a table name. The table name in the CREATE
|
||||
** TRIGGER statement is replaced with the third argument and the result
|
||||
** returned. This is analagous to renameTableFunc() above, except for CREATE
|
||||
** TRIGGER, not CREATE INDEX and CREATE TABLE.
|
||||
*/
|
||||
static void renameTriggerFunc(
|
||||
sqlite3_context *context,
|
||||
int NotUsed,
|
||||
sqlite3_value **argv
|
||||
){
|
||||
unsigned char const *zSql = sqlite3_value_text(argv[0]);
|
||||
unsigned char const *zTableName = sqlite3_value_text(argv[1]);
|
||||
|
||||
int token;
|
||||
Token tname;
|
||||
int dist = 3;
|
||||
unsigned char const *zCsr = zSql;
|
||||
int len = 0;
|
||||
char *zRet;
|
||||
sqlite3 *db = sqlite3_context_db_handle(context);
|
||||
|
||||
UNUSED_PARAMETER(NotUsed);
|
||||
|
||||
/* The principle used to locate the table name in the CREATE TRIGGER
|
||||
** statement is that the table name is the first token that is immediatedly
|
||||
** preceded by either TK_ON or TK_DOT and immediatedly followed by one
|
||||
** of TK_WHEN, TK_BEGIN or TK_FOR.
|
||||
*/
|
||||
if( zSql ){
|
||||
do {
|
||||
|
||||
if( !*zCsr ){
|
||||
/* Ran out of input before finding the table name. Return NULL. */
|
||||
return;
|
||||
}
|
||||
|
||||
/* Store the token that zCsr points to in tname. */
|
||||
tname.z = zCsr;
|
||||
tname.n = len;
|
||||
|
||||
/* Advance zCsr to the next token. Store that token type in 'token',
|
||||
** and its length in 'len' (to be used next iteration of this loop).
|
||||
*/
|
||||
do {
|
||||
zCsr += len;
|
||||
len = sqlite3GetToken(zCsr, &token);
|
||||
}while( token==TK_SPACE );
|
||||
assert( len>0 );
|
||||
|
||||
/* Variable 'dist' stores the number of tokens read since the most
|
||||
** recent TK_DOT or TK_ON. This means that when a WHEN, FOR or BEGIN
|
||||
** token is read and 'dist' equals 2, the condition stated above
|
||||
** to be met.
|
||||
**
|
||||
** Note that ON cannot be a database, table or column name, so
|
||||
** there is no need to worry about syntax like
|
||||
** "CREATE TRIGGER ... ON ON.ON BEGIN ..." etc.
|
||||
*/
|
||||
dist++;
|
||||
if( token==TK_DOT || token==TK_ON ){
|
||||
dist = 0;
|
||||
}
|
||||
} while( dist!=2 || (token!=TK_WHEN && token!=TK_FOR && token!=TK_BEGIN) );
|
||||
|
||||
/* Variable tname now contains the token that is the old table-name
|
||||
** in the CREATE TRIGGER statement.
|
||||
*/
|
||||
zRet = sqlite3MPrintf(db, "%.*s\"%w\"%s", tname.z - zSql, zSql,
|
||||
zTableName, tname.z+tname.n);
|
||||
sqlite3_result_text(context, zRet, -1, SQLITE_DYNAMIC);
|
||||
}
|
||||
}
|
||||
#endif /* !SQLITE_OMIT_TRIGGER */
|
||||
|
||||
/*
|
||||
** Register built-in functions used to help implement ALTER TABLE
|
||||
*/
|
||||
void sqlite3AlterFunctions(sqlite3 *db){
|
||||
sqlite3CreateFunc(db, "sqlite_rename_table", 2, SQLITE_UTF8, 0,
|
||||
renameTableFunc, 0, 0);
|
||||
#ifndef SQLITE_OMIT_TRIGGER
|
||||
sqlite3CreateFunc(db, "sqlite_rename_trigger", 2, SQLITE_UTF8, 0,
|
||||
renameTriggerFunc, 0, 0);
|
||||
#endif
|
||||
}
|
||||
|
||||
/*
|
||||
** Generate the text of a WHERE expression which can be used to select all
|
||||
** temporary triggers on table pTab from the sqlite_temp_master table. If
|
||||
** table pTab has no temporary triggers, or is itself stored in the
|
||||
** temporary database, NULL is returned.
|
||||
*/
|
||||
static char *whereTempTriggers(Parse *pParse, Table *pTab){
|
||||
Trigger *pTrig;
|
||||
char *zWhere = 0;
|
||||
char *tmp = 0;
|
||||
const Schema *pTempSchema = pParse->db->aDb[1].pSchema; /* Temp db schema */
|
||||
|
||||
/* If the table is not located in the temp-db (in which case NULL is
|
||||
** returned, loop through the tables list of triggers. For each trigger
|
||||
** that is not part of the temp-db schema, add a clause to the WHERE
|
||||
** expression being built up in zWhere.
|
||||
*/
|
||||
if( pTab->pSchema!=pTempSchema ){
|
||||
sqlite3 *db = pParse->db;
|
||||
for(pTrig=sqlite3TriggerList(pParse, pTab); pTrig; pTrig=pTrig->pNext){
|
||||
if( pTrig->pSchema==pTempSchema ){
|
||||
if( !zWhere ){
|
||||
zWhere = sqlite3MPrintf(db, "name=%Q", pTrig->name);
|
||||
}else{
|
||||
tmp = zWhere;
|
||||
zWhere = sqlite3MPrintf(db, "%s OR name=%Q", zWhere, pTrig->name);
|
||||
sqlite3DbFree(db, tmp);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return zWhere;
|
||||
}
|
||||
|
||||
/*
|
||||
** Generate code to drop and reload the internal representation of table
|
||||
** pTab from the database, including triggers and temporary triggers.
|
||||
** Argument zName is the name of the table in the database schema at
|
||||
** the time the generated code is executed. This can be different from
|
||||
** pTab->zName if this function is being called to code part of an
|
||||
** "ALTER TABLE RENAME TO" statement.
|
||||
*/
|
||||
static void reloadTableSchema(Parse *pParse, Table *pTab, const char *zName){
|
||||
Vdbe *v;
|
||||
char *zWhere;
|
||||
int iDb; /* Index of database containing pTab */
|
||||
#ifndef SQLITE_OMIT_TRIGGER
|
||||
Trigger *pTrig;
|
||||
#endif
|
||||
|
||||
v = sqlite3GetVdbe(pParse);
|
||||
if( !v ) return;
|
||||
assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
|
||||
iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
|
||||
assert( iDb>=0 );
|
||||
|
||||
#ifndef SQLITE_OMIT_TRIGGER
|
||||
/* Drop any table triggers from the internal schema. */
|
||||
for(pTrig=sqlite3TriggerList(pParse, pTab); pTrig; pTrig=pTrig->pNext){
|
||||
int iTrigDb = sqlite3SchemaToIndex(pParse->db, pTrig->pSchema);
|
||||
assert( iTrigDb==iDb || iTrigDb==1 );
|
||||
sqlite3VdbeAddOp4(v, OP_DropTrigger, iTrigDb, 0, 0, pTrig->name, 0);
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Drop the table and index from the internal schema */
|
||||
sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
|
||||
|
||||
/* Reload the table, index and permanent trigger schemas. */
|
||||
zWhere = sqlite3MPrintf(pParse->db, "tbl_name=%Q", zName);
|
||||
if( !zWhere ) return;
|
||||
sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);
|
||||
|
||||
#ifndef SQLITE_OMIT_TRIGGER
|
||||
/* Now, if the table is not stored in the temp database, reload any temp
|
||||
** triggers. Don't use IN(...) in case SQLITE_OMIT_SUBQUERY is defined.
|
||||
*/
|
||||
if( (zWhere=whereTempTriggers(pParse, pTab))!=0 ){
|
||||
sqlite3VdbeAddOp4(v, OP_ParseSchema, 1, 0, 0, zWhere, P4_DYNAMIC);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
/*
|
||||
** Generate code to implement the "ALTER TABLE xxx RENAME TO yyy"
|
||||
** command.
|
||||
*/
|
||||
void sqlite3AlterRenameTable(
|
||||
Parse *pParse, /* Parser context. */
|
||||
SrcList *pSrc, /* The table to rename. */
|
||||
Token *pName /* The new table name. */
|
||||
){
|
||||
int iDb; /* Database that contains the table */
|
||||
char *zDb; /* Name of database iDb */
|
||||
Table *pTab; /* Table being renamed */
|
||||
char *zName = 0; /* NULL-terminated version of pName */
|
||||
sqlite3 *db = pParse->db; /* Database connection */
|
||||
int nTabName; /* Number of UTF-8 characters in zTabName */
|
||||
const char *zTabName; /* Original name of the table */
|
||||
Vdbe *v;
|
||||
#ifndef SQLITE_OMIT_TRIGGER
|
||||
char *zWhere = 0; /* Where clause to locate temp triggers */
|
||||
#endif
|
||||
int isVirtualRename = 0; /* True if this is a v-table with an xRename() */
|
||||
|
||||
if( db->mallocFailed ) goto exit_rename_table;
|
||||
assert( pSrc->nSrc==1 );
|
||||
assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
|
||||
|
||||
pTab = sqlite3LocateTable(pParse, 0, pSrc->a[0].zName, pSrc->a[0].zDatabase);
|
||||
if( !pTab ) goto exit_rename_table;
|
||||
iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
|
||||
zDb = db->aDb[iDb].zName;
|
||||
|
||||
/* Get a NULL terminated version of the new table name. */
|
||||
zName = sqlite3NameFromToken(db, pName);
|
||||
if( !zName ) goto exit_rename_table;
|
||||
|
||||
/* Check that a table or index named 'zName' does not already exist
|
||||
** in database iDb. If so, this is an error.
|
||||
*/
|
||||
if( sqlite3FindTable(db, zName, zDb) || sqlite3FindIndex(db, zName, zDb) ){
|
||||
sqlite3ErrorMsg(pParse,
|
||||
"there is already another table or index with this name: %s", zName);
|
||||
goto exit_rename_table;
|
||||
}
|
||||
|
||||
/* Make sure it is not a system table being altered, or a reserved name
|
||||
** that the table is being renamed to.
|
||||
*/
|
||||
if( sqlite3Strlen30(pTab->zName)>6
|
||||
&& 0==sqlite3StrNICmp(pTab->zName, "sqlite_", 7)
|
||||
){
|
||||
sqlite3ErrorMsg(pParse, "table %s may not be altered", pTab->zName);
|
||||
goto exit_rename_table;
|
||||
}
|
||||
if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
|
||||
goto exit_rename_table;
|
||||
}
|
||||
|
||||
#ifndef SQLITE_OMIT_VIEW
|
||||
if( pTab->pSelect ){
|
||||
sqlite3ErrorMsg(pParse, "view %s may not be altered", pTab->zName);
|
||||
goto exit_rename_table;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifndef SQLITE_OMIT_AUTHORIZATION
|
||||
/* Invoke the authorization callback. */
|
||||
if( sqlite3AuthCheck(pParse, SQLITE_ALTER_TABLE, zDb, pTab->zName, 0) ){
|
||||
goto exit_rename_table;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
||||
if( sqlite3ViewGetColumnNames(pParse, pTab) ){
|
||||
goto exit_rename_table;
|
||||
}
|
||||
if( IsVirtual(pTab) && pTab->pMod->pModule->xRename ){
|
||||
isVirtualRename = 1;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Begin a transaction and code the VerifyCookie for database iDb.
|
||||
** Then modify the schema cookie (since the ALTER TABLE modifies the
|
||||
** schema). Open a statement transaction if the table is a virtual
|
||||
** table.
|
||||
*/
|
||||
v = sqlite3GetVdbe(pParse);
|
||||
if( v==0 ){
|
||||
goto exit_rename_table;
|
||||
}
|
||||
sqlite3BeginWriteOperation(pParse, isVirtualRename, iDb);
|
||||
sqlite3ChangeCookie(pParse, iDb);
|
||||
|
||||
/* If this is a virtual table, invoke the xRename() function if
|
||||
** one is defined. The xRename() callback will modify the names
|
||||
** of any resources used by the v-table implementation (including other
|
||||
** SQLite tables) that are identified by the name of the virtual table.
|
||||
*/
|
||||
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
||||
if( isVirtualRename ){
|
||||
int i = ++pParse->nMem;
|
||||
sqlite3VdbeAddOp4(v, OP_String8, 0, i, 0, zName, 0);
|
||||
sqlite3VdbeAddOp4(v, OP_VRename, i, 0, 0,(const char*)pTab->pVtab, P4_VTAB);
|
||||
}
|
||||
#endif
|
||||
|
||||
/* figure out how many UTF-8 characters are in zName */
|
||||
zTabName = pTab->zName;
|
||||
nTabName = sqlite3Utf8CharLen(zTabName, -1);
|
||||
|
||||
/* Modify the sqlite_master table to use the new table name. */
|
||||
sqlite3NestedParse(pParse,
|
||||
"UPDATE %Q.%s SET "
|
||||
#ifdef SQLITE_OMIT_TRIGGER
|
||||
"sql = sqlite_rename_table(sql, %Q), "
|
||||
#else
|
||||
"sql = CASE "
|
||||
"WHEN type = 'trigger' THEN sqlite_rename_trigger(sql, %Q)"
|
||||
"ELSE sqlite_rename_table(sql, %Q) END, "
|
||||
#endif
|
||||
"tbl_name = %Q, "
|
||||
"name = CASE "
|
||||
"WHEN type='table' THEN %Q "
|
||||
"WHEN name LIKE 'sqlite_autoindex%%' AND type='index' THEN "
|
||||
"'sqlite_autoindex_' || %Q || substr(name,%d+18) "
|
||||
"ELSE name END "
|
||||
"WHERE tbl_name=%Q AND "
|
||||
"(type='table' OR type='index' OR type='trigger');",
|
||||
zDb, SCHEMA_TABLE(iDb), zName, zName, zName,
|
||||
#ifndef SQLITE_OMIT_TRIGGER
|
||||
zName,
|
||||
#endif
|
||||
zName, nTabName, zTabName
|
||||
);
|
||||
|
||||
#ifndef SQLITE_OMIT_AUTOINCREMENT
|
||||
/* If the sqlite_sequence table exists in this database, then update
|
||||
** it with the new table name.
|
||||
*/
|
||||
if( sqlite3FindTable(db, "sqlite_sequence", zDb) ){
|
||||
sqlite3NestedParse(pParse,
|
||||
"UPDATE \"%w\".sqlite_sequence set name = %Q WHERE name = %Q",
|
||||
zDb, zName, pTab->zName);
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifndef SQLITE_OMIT_TRIGGER
|
||||
/* If there are TEMP triggers on this table, modify the sqlite_temp_master
|
||||
** table. Don't do this if the table being ALTERed is itself located in
|
||||
** the temp database.
|
||||
*/
|
||||
if( (zWhere=whereTempTriggers(pParse, pTab))!=0 ){
|
||||
sqlite3NestedParse(pParse,
|
||||
"UPDATE sqlite_temp_master SET "
|
||||
"sql = sqlite_rename_trigger(sql, %Q), "
|
||||
"tbl_name = %Q "
|
||||
"WHERE %s;", zName, zName, zWhere);
|
||||
sqlite3DbFree(db, zWhere);
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Drop and reload the internal table schema. */
|
||||
reloadTableSchema(pParse, pTab, zName);
|
||||
|
||||
exit_rename_table:
|
||||
sqlite3SrcListDelete(db, pSrc);
|
||||
sqlite3DbFree(db, zName);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** This function is called after an "ALTER TABLE ... ADD" statement
|
||||
** has been parsed. Argument pColDef contains the text of the new
|
||||
** column definition.
|
||||
**
|
||||
** The Table structure pParse->pNewTable was extended to include
|
||||
** the new column during parsing.
|
||||
*/
|
||||
void sqlite3AlterFinishAddColumn(Parse *pParse, Token *pColDef){
|
||||
Table *pNew; /* Copy of pParse->pNewTable */
|
||||
Table *pTab; /* Table being altered */
|
||||
int iDb; /* Database number */
|
||||
const char *zDb; /* Database name */
|
||||
const char *zTab; /* Table name */
|
||||
char *zCol; /* Null-terminated column definition */
|
||||
Column *pCol; /* The new column */
|
||||
Expr *pDflt; /* Default value for the new column */
|
||||
sqlite3 *db; /* The database connection; */
|
||||
|
||||
db = pParse->db;
|
||||
if( pParse->nErr || db->mallocFailed ) return;
|
||||
pNew = pParse->pNewTable;
|
||||
assert( pNew );
|
||||
|
||||
assert( sqlite3BtreeHoldsAllMutexes(db) );
|
||||
iDb = sqlite3SchemaToIndex(db, pNew->pSchema);
|
||||
zDb = db->aDb[iDb].zName;
|
||||
zTab = &pNew->zName[16]; /* Skip the "sqlite_altertab_" prefix on the name */
|
||||
pCol = &pNew->aCol[pNew->nCol-1];
|
||||
pDflt = pCol->pDflt;
|
||||
pTab = sqlite3FindTable(db, zTab, zDb);
|
||||
assert( pTab );
|
||||
|
||||
#ifndef SQLITE_OMIT_AUTHORIZATION
|
||||
/* Invoke the authorization callback. */
|
||||
if( sqlite3AuthCheck(pParse, SQLITE_ALTER_TABLE, zDb, pTab->zName, 0) ){
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* If the default value for the new column was specified with a
|
||||
** literal NULL, then set pDflt to 0. This simplifies checking
|
||||
** for an SQL NULL default below.
|
||||
*/
|
||||
if( pDflt && pDflt->op==TK_NULL ){
|
||||
pDflt = 0;
|
||||
}
|
||||
|
||||
/* Check that the new column is not specified as PRIMARY KEY or UNIQUE.
|
||||
** If there is a NOT NULL constraint, then the default value for the
|
||||
** column must not be NULL.
|
||||
*/
|
||||
if( pCol->isPrimKey ){
|
||||
sqlite3ErrorMsg(pParse, "Cannot add a PRIMARY KEY column");
|
||||
return;
|
||||
}
|
||||
if( pNew->pIndex ){
|
||||
sqlite3ErrorMsg(pParse, "Cannot add a UNIQUE column");
|
||||
return;
|
||||
}
|
||||
if( pCol->notNull && !pDflt ){
|
||||
sqlite3ErrorMsg(pParse,
|
||||
"Cannot add a NOT NULL column with default value NULL");
|
||||
return;
|
||||
}
|
||||
|
||||
/* Ensure the default expression is something that sqlite3ValueFromExpr()
|
||||
** can handle (i.e. not CURRENT_TIME etc.)
|
||||
*/
|
||||
if( pDflt ){
|
||||
sqlite3_value *pVal;
|
||||
if( sqlite3ValueFromExpr(db, pDflt, SQLITE_UTF8, SQLITE_AFF_NONE, &pVal) ){
|
||||
db->mallocFailed = 1;
|
||||
return;
|
||||
}
|
||||
if( !pVal ){
|
||||
sqlite3ErrorMsg(pParse, "Cannot add a column with non-constant default");
|
||||
return;
|
||||
}
|
||||
sqlite3ValueFree(pVal);
|
||||
}
|
||||
|
||||
/* Modify the CREATE TABLE statement. */
|
||||
zCol = sqlite3DbStrNDup(db, (char*)pColDef->z, pColDef->n);
|
||||
if( zCol ){
|
||||
char *zEnd = &zCol[pColDef->n-1];
|
||||
while( (zEnd>zCol && *zEnd==';') || sqlite3Isspace(*zEnd) ){
|
||||
*zEnd-- = '\0';
|
||||
}
|
||||
sqlite3NestedParse(pParse,
|
||||
"UPDATE \"%w\".%s SET "
|
||||
"sql = substr(sql,1,%d) || ', ' || %Q || substr(sql,%d) "
|
||||
"WHERE type = 'table' AND name = %Q",
|
||||
zDb, SCHEMA_TABLE(iDb), pNew->addColOffset, zCol, pNew->addColOffset+1,
|
||||
zTab
|
||||
);
|
||||
sqlite3DbFree(db, zCol);
|
||||
}
|
||||
|
||||
/* If the default value of the new column is NULL, then set the file
|
||||
** format to 2. If the default value of the new column is not NULL,
|
||||
** the file format becomes 3.
|
||||
*/
|
||||
sqlite3MinimumFileFormat(pParse, iDb, pDflt ? 3 : 2);
|
||||
|
||||
/* Reload the schema of the modified table. */
|
||||
reloadTableSchema(pParse, pTab, pTab->zName);
|
||||
}
|
||||
|
||||
/*
|
||||
** This function is called by the parser after the table-name in
|
||||
** an "ALTER TABLE <table-name> ADD" statement is parsed. Argument
|
||||
** pSrc is the full-name of the table being altered.
|
||||
**
|
||||
** This routine makes a (partial) copy of the Table structure
|
||||
** for the table being altered and sets Parse.pNewTable to point
|
||||
** to it. Routines called by the parser as the column definition
|
||||
** is parsed (i.e. sqlite3AddColumn()) add the new Column data to
|
||||
** the copy. The copy of the Table structure is deleted by tokenize.c
|
||||
** after parsing is finished.
|
||||
**
|
||||
** Routine sqlite3AlterFinishAddColumn() will be called to complete
|
||||
** coding the "ALTER TABLE ... ADD" statement.
|
||||
*/
|
||||
void sqlite3AlterBeginAddColumn(Parse *pParse, SrcList *pSrc){
|
||||
Table *pNew;
|
||||
Table *pTab;
|
||||
Vdbe *v;
|
||||
int iDb;
|
||||
int i;
|
||||
int nAlloc;
|
||||
sqlite3 *db = pParse->db;
|
||||
|
||||
/* Look up the table being altered. */
|
||||
assert( pParse->pNewTable==0 );
|
||||
assert( sqlite3BtreeHoldsAllMutexes(db) );
|
||||
if( db->mallocFailed ) goto exit_begin_add_column;
|
||||
pTab = sqlite3LocateTable(pParse, 0, pSrc->a[0].zName, pSrc->a[0].zDatabase);
|
||||
if( !pTab ) goto exit_begin_add_column;
|
||||
|
||||
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
||||
if( IsVirtual(pTab) ){
|
||||
sqlite3ErrorMsg(pParse, "virtual tables may not be altered");
|
||||
goto exit_begin_add_column;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Make sure this is not an attempt to ALTER a view. */
|
||||
if( pTab->pSelect ){
|
||||
sqlite3ErrorMsg(pParse, "Cannot add a column to a view");
|
||||
goto exit_begin_add_column;
|
||||
}
|
||||
|
||||
assert( pTab->addColOffset>0 );
|
||||
iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
|
||||
|
||||
/* Put a copy of the Table struct in Parse.pNewTable for the
|
||||
** sqlite3AddColumn() function and friends to modify. But modify
|
||||
** the name by adding an "sqlite_altertab_" prefix. By adding this
|
||||
** prefix, we insure that the name will not collide with an existing
|
||||
** table because user table are not allowed to have the "sqlite_"
|
||||
** prefix on their name.
|
||||
*/
|
||||
pNew = (Table*)sqlite3DbMallocZero(db, sizeof(Table));
|
||||
if( !pNew ) goto exit_begin_add_column;
|
||||
pParse->pNewTable = pNew;
|
||||
pNew->nRef = 1;
|
||||
pNew->dbMem = pTab->dbMem;
|
||||
pNew->nCol = pTab->nCol;
|
||||
assert( pNew->nCol>0 );
|
||||
nAlloc = (((pNew->nCol-1)/8)*8)+8;
|
||||
assert( nAlloc>=pNew->nCol && nAlloc%8==0 && nAlloc-pNew->nCol<8 );
|
||||
pNew->aCol = (Column*)sqlite3DbMallocZero(db, sizeof(Column)*nAlloc);
|
||||
pNew->zName = sqlite3MPrintf(db, "sqlite_altertab_%s", pTab->zName);
|
||||
if( !pNew->aCol || !pNew->zName ){
|
||||
db->mallocFailed = 1;
|
||||
goto exit_begin_add_column;
|
||||
}
|
||||
memcpy(pNew->aCol, pTab->aCol, sizeof(Column)*pNew->nCol);
|
||||
for(i=0; i<pNew->nCol; i++){
|
||||
Column *pCol = &pNew->aCol[i];
|
||||
pCol->zName = sqlite3DbStrDup(db, pCol->zName);
|
||||
pCol->zColl = 0;
|
||||
pCol->zType = 0;
|
||||
pCol->pDflt = 0;
|
||||
}
|
||||
pNew->pSchema = db->aDb[iDb].pSchema;
|
||||
pNew->addColOffset = pTab->addColOffset;
|
||||
pNew->nRef = 1;
|
||||
|
||||
/* Begin a transaction and increment the schema cookie. */
|
||||
sqlite3BeginWriteOperation(pParse, 0, iDb);
|
||||
v = sqlite3GetVdbe(pParse);
|
||||
if( !v ) goto exit_begin_add_column;
|
||||
sqlite3ChangeCookie(pParse, iDb);
|
||||
|
||||
exit_begin_add_column:
|
||||
sqlite3SrcListDelete(db, pSrc);
|
||||
return;
|
||||
}
|
||||
#endif /* SQLITE_ALTER_TABLE */
|
431
analyze.c
431
analyze.c
|
@ -1,431 +0,0 @@
|
|||
/*
|
||||
** 2005 July 8
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This file contains code associated with the ANALYZE command.
|
||||
**
|
||||
** @(#) $Id: analyze.c,v 1.51 2009/02/28 10:47:42 danielk1977 Exp $
|
||||
*/
|
||||
#ifndef SQLITE_OMIT_ANALYZE
|
||||
#include "sqliteInt.h"
|
||||
|
||||
/*
|
||||
** This routine generates code that opens the sqlite_stat1 table on cursor
|
||||
** iStatCur.
|
||||
**
|
||||
** If the sqlite_stat1 tables does not previously exist, it is created.
|
||||
** If it does previously exist, all entires associated with table zWhere
|
||||
** are removed. If zWhere==0 then all entries are removed.
|
||||
*/
|
||||
static void openStatTable(
|
||||
Parse *pParse, /* Parsing context */
|
||||
int iDb, /* The database we are looking in */
|
||||
int iStatCur, /* Open the sqlite_stat1 table on this cursor */
|
||||
const char *zWhere /* Delete entries associated with this table */
|
||||
){
|
||||
sqlite3 *db = pParse->db;
|
||||
Db *pDb;
|
||||
int iRootPage;
|
||||
u8 createStat1 = 0;
|
||||
Table *pStat;
|
||||
Vdbe *v = sqlite3GetVdbe(pParse);
|
||||
|
||||
if( v==0 ) return;
|
||||
assert( sqlite3BtreeHoldsAllMutexes(db) );
|
||||
assert( sqlite3VdbeDb(v)==db );
|
||||
pDb = &db->aDb[iDb];
|
||||
if( (pStat = sqlite3FindTable(db, "sqlite_stat1", pDb->zName))==0 ){
|
||||
/* The sqlite_stat1 tables does not exist. Create it.
|
||||
** Note that a side-effect of the CREATE TABLE statement is to leave
|
||||
** the rootpage of the new table in register pParse->regRoot. This is
|
||||
** important because the OpenWrite opcode below will be needing it. */
|
||||
sqlite3NestedParse(pParse,
|
||||
"CREATE TABLE %Q.sqlite_stat1(tbl,idx,stat)",
|
||||
pDb->zName
|
||||
);
|
||||
iRootPage = pParse->regRoot;
|
||||
createStat1 = 1; /* Cause rootpage to be taken from top of stack */
|
||||
}else if( zWhere ){
|
||||
/* The sqlite_stat1 table exists. Delete all entries associated with
|
||||
** the table zWhere. */
|
||||
sqlite3NestedParse(pParse,
|
||||
"DELETE FROM %Q.sqlite_stat1 WHERE tbl=%Q",
|
||||
pDb->zName, zWhere
|
||||
);
|
||||
iRootPage = pStat->tnum;
|
||||
}else{
|
||||
/* The sqlite_stat1 table already exists. Delete all rows. */
|
||||
iRootPage = pStat->tnum;
|
||||
sqlite3VdbeAddOp2(v, OP_Clear, pStat->tnum, iDb);
|
||||
}
|
||||
|
||||
/* Open the sqlite_stat1 table for writing. Unless it was created
|
||||
** by this vdbe program, lock it for writing at the shared-cache level.
|
||||
** If this vdbe did create the sqlite_stat1 table, then it must have
|
||||
** already obtained a schema-lock, making the write-lock redundant.
|
||||
*/
|
||||
if( !createStat1 ){
|
||||
sqlite3TableLock(pParse, iDb, iRootPage, 1, "sqlite_stat1");
|
||||
}
|
||||
sqlite3VdbeAddOp3(v, OP_OpenWrite, iStatCur, iRootPage, iDb);
|
||||
sqlite3VdbeChangeP4(v, -1, (char *)3, P4_INT32);
|
||||
sqlite3VdbeChangeP5(v, createStat1);
|
||||
}
|
||||
|
||||
/*
|
||||
** Generate code to do an analysis of all indices associated with
|
||||
** a single table.
|
||||
*/
|
||||
static void analyzeOneTable(
|
||||
Parse *pParse, /* Parser context */
|
||||
Table *pTab, /* Table whose indices are to be analyzed */
|
||||
int iStatCur, /* Index of VdbeCursor that writes the sqlite_stat1 table */
|
||||
int iMem /* Available memory locations begin here */
|
||||
){
|
||||
Index *pIdx; /* An index to being analyzed */
|
||||
int iIdxCur; /* Index of VdbeCursor for index being analyzed */
|
||||
int nCol; /* Number of columns in the index */
|
||||
Vdbe *v; /* The virtual machine being built up */
|
||||
int i; /* Loop counter */
|
||||
int topOfLoop; /* The top of the loop */
|
||||
int endOfLoop; /* The end of the loop */
|
||||
int addr; /* The address of an instruction */
|
||||
int iDb; /* Index of database containing pTab */
|
||||
|
||||
v = sqlite3GetVdbe(pParse);
|
||||
if( v==0 || pTab==0 || pTab->pIndex==0 ){
|
||||
/* Do no analysis for tables that have no indices */
|
||||
return;
|
||||
}
|
||||
assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
|
||||
iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
|
||||
assert( iDb>=0 );
|
||||
#ifndef SQLITE_OMIT_AUTHORIZATION
|
||||
if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0,
|
||||
pParse->db->aDb[iDb].zName ) ){
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Establish a read-lock on the table at the shared-cache level. */
|
||||
sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
|
||||
|
||||
iIdxCur = pParse->nTab++;
|
||||
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
||||
KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
|
||||
int regFields; /* Register block for building records */
|
||||
int regRec; /* Register holding completed record */
|
||||
int regTemp; /* Temporary use register */
|
||||
int regCol; /* Content of a column from the table being analyzed */
|
||||
int regRowid; /* Rowid for the inserted record */
|
||||
int regF2;
|
||||
|
||||
/* Open a cursor to the index to be analyzed
|
||||
*/
|
||||
assert( iDb==sqlite3SchemaToIndex(pParse->db, pIdx->pSchema) );
|
||||
nCol = pIdx->nColumn;
|
||||
sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb,
|
||||
(char *)pKey, P4_KEYINFO_HANDOFF);
|
||||
VdbeComment((v, "%s", pIdx->zName));
|
||||
regFields = iMem+nCol*2;
|
||||
regTemp = regRowid = regCol = regFields+3;
|
||||
regRec = regCol+1;
|
||||
if( regRec>pParse->nMem ){
|
||||
pParse->nMem = regRec;
|
||||
}
|
||||
|
||||
/* Memory cells are used as follows:
|
||||
**
|
||||
** mem[iMem]: The total number of rows in the table.
|
||||
** mem[iMem+1]: Number of distinct values in column 1
|
||||
** ...
|
||||
** mem[iMem+nCol]: Number of distinct values in column N
|
||||
** mem[iMem+nCol+1] Last observed value of column 1
|
||||
** ...
|
||||
** mem[iMem+nCol+nCol]: Last observed value of column N
|
||||
**
|
||||
** Cells iMem through iMem+nCol are initialized to 0. The others
|
||||
** are initialized to NULL.
|
||||
*/
|
||||
for(i=0; i<=nCol; i++){
|
||||
sqlite3VdbeAddOp2(v, OP_Integer, 0, iMem+i);
|
||||
}
|
||||
for(i=0; i<nCol; i++){
|
||||
sqlite3VdbeAddOp2(v, OP_Null, 0, iMem+nCol+i+1);
|
||||
}
|
||||
|
||||
/* Do the analysis.
|
||||
*/
|
||||
endOfLoop = sqlite3VdbeMakeLabel(v);
|
||||
sqlite3VdbeAddOp2(v, OP_Rewind, iIdxCur, endOfLoop);
|
||||
topOfLoop = sqlite3VdbeCurrentAddr(v);
|
||||
sqlite3VdbeAddOp2(v, OP_AddImm, iMem, 1);
|
||||
for(i=0; i<nCol; i++){
|
||||
sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regCol);
|
||||
sqlite3VdbeAddOp3(v, OP_Ne, regCol, 0, iMem+nCol+i+1);
|
||||
/**** TODO: add collating sequence *****/
|
||||
sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
|
||||
}
|
||||
sqlite3VdbeAddOp2(v, OP_Goto, 0, endOfLoop);
|
||||
for(i=0; i<nCol; i++){
|
||||
sqlite3VdbeJumpHere(v, topOfLoop + 2*(i + 1));
|
||||
sqlite3VdbeAddOp2(v, OP_AddImm, iMem+i+1, 1);
|
||||
sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, iMem+nCol+i+1);
|
||||
}
|
||||
sqlite3VdbeResolveLabel(v, endOfLoop);
|
||||
sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, topOfLoop);
|
||||
sqlite3VdbeAddOp1(v, OP_Close, iIdxCur);
|
||||
|
||||
/* Store the results.
|
||||
**
|
||||
** The result is a single row of the sqlite_stat1 table. The first
|
||||
** two columns are the names of the table and index. The third column
|
||||
** is a string composed of a list of integer statistics about the
|
||||
** index. The first integer in the list is the total number of entries
|
||||
** in the index. There is one additional integer in the list for each
|
||||
** column of the table. This additional integer is a guess of how many
|
||||
** rows of the table the index will select. If D is the count of distinct
|
||||
** values and K is the total number of rows, then the integer is computed
|
||||
** as:
|
||||
**
|
||||
** I = (K+D-1)/D
|
||||
**
|
||||
** If K==0 then no entry is made into the sqlite_stat1 table.
|
||||
** If K>0 then it is always the case the D>0 so division by zero
|
||||
** is never possible.
|
||||
*/
|
||||
addr = sqlite3VdbeAddOp1(v, OP_IfNot, iMem);
|
||||
sqlite3VdbeAddOp4(v, OP_String8, 0, regFields, 0, pTab->zName, 0);
|
||||
sqlite3VdbeAddOp4(v, OP_String8, 0, regFields+1, 0, pIdx->zName, 0);
|
||||
regF2 = regFields+2;
|
||||
sqlite3VdbeAddOp2(v, OP_SCopy, iMem, regF2);
|
||||
for(i=0; i<nCol; i++){
|
||||
sqlite3VdbeAddOp4(v, OP_String8, 0, regTemp, 0, " ", 0);
|
||||
sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regF2, regF2);
|
||||
sqlite3VdbeAddOp3(v, OP_Add, iMem, iMem+i+1, regTemp);
|
||||
sqlite3VdbeAddOp2(v, OP_AddImm, regTemp, -1);
|
||||
sqlite3VdbeAddOp3(v, OP_Divide, iMem+i+1, regTemp, regTemp);
|
||||
sqlite3VdbeAddOp1(v, OP_ToInt, regTemp);
|
||||
sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regF2, regF2);
|
||||
}
|
||||
sqlite3VdbeAddOp4(v, OP_MakeRecord, regFields, 3, regRec, "aaa", 0);
|
||||
sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regRowid);
|
||||
sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regRowid);
|
||||
sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
|
||||
sqlite3VdbeJumpHere(v, addr);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Generate code that will cause the most recent index analysis to
|
||||
** be laoded into internal hash tables where is can be used.
|
||||
*/
|
||||
static void loadAnalysis(Parse *pParse, int iDb){
|
||||
Vdbe *v = sqlite3GetVdbe(pParse);
|
||||
if( v ){
|
||||
sqlite3VdbeAddOp1(v, OP_LoadAnalysis, iDb);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Generate code that will do an analysis of an entire database
|
||||
*/
|
||||
static void analyzeDatabase(Parse *pParse, int iDb){
|
||||
sqlite3 *db = pParse->db;
|
||||
Schema *pSchema = db->aDb[iDb].pSchema; /* Schema of database iDb */
|
||||
HashElem *k;
|
||||
int iStatCur;
|
||||
int iMem;
|
||||
|
||||
sqlite3BeginWriteOperation(pParse, 0, iDb);
|
||||
iStatCur = pParse->nTab++;
|
||||
openStatTable(pParse, iDb, iStatCur, 0);
|
||||
iMem = pParse->nMem+1;
|
||||
for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
|
||||
Table *pTab = (Table*)sqliteHashData(k);
|
||||
analyzeOneTable(pParse, pTab, iStatCur, iMem);
|
||||
}
|
||||
loadAnalysis(pParse, iDb);
|
||||
}
|
||||
|
||||
/*
|
||||
** Generate code that will do an analysis of a single table in
|
||||
** a database.
|
||||
*/
|
||||
static void analyzeTable(Parse *pParse, Table *pTab){
|
||||
int iDb;
|
||||
int iStatCur;
|
||||
|
||||
assert( pTab!=0 );
|
||||
assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
|
||||
iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
|
||||
sqlite3BeginWriteOperation(pParse, 0, iDb);
|
||||
iStatCur = pParse->nTab++;
|
||||
openStatTable(pParse, iDb, iStatCur, pTab->zName);
|
||||
analyzeOneTable(pParse, pTab, iStatCur, pParse->nMem+1);
|
||||
loadAnalysis(pParse, iDb);
|
||||
}
|
||||
|
||||
/*
|
||||
** Generate code for the ANALYZE command. The parser calls this routine
|
||||
** when it recognizes an ANALYZE command.
|
||||
**
|
||||
** ANALYZE -- 1
|
||||
** ANALYZE <database> -- 2
|
||||
** ANALYZE ?<database>.?<tablename> -- 3
|
||||
**
|
||||
** Form 1 causes all indices in all attached databases to be analyzed.
|
||||
** Form 2 analyzes all indices the single database named.
|
||||
** Form 3 analyzes all indices associated with the named table.
|
||||
*/
|
||||
void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){
|
||||
sqlite3 *db = pParse->db;
|
||||
int iDb;
|
||||
int i;
|
||||
char *z, *zDb;
|
||||
Table *pTab;
|
||||
Token *pTableName;
|
||||
|
||||
/* Read the database schema. If an error occurs, leave an error message
|
||||
** and code in pParse and return NULL. */
|
||||
assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
|
||||
if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
|
||||
return;
|
||||
}
|
||||
|
||||
if( pName1==0 ){
|
||||
/* Form 1: Analyze everything */
|
||||
for(i=0; i<db->nDb; i++){
|
||||
if( i==1 ) continue; /* Do not analyze the TEMP database */
|
||||
analyzeDatabase(pParse, i);
|
||||
}
|
||||
}else if( pName2==0 || pName2->n==0 ){
|
||||
/* Form 2: Analyze the database or table named */
|
||||
iDb = sqlite3FindDb(db, pName1);
|
||||
if( iDb>=0 ){
|
||||
analyzeDatabase(pParse, iDb);
|
||||
}else{
|
||||
z = sqlite3NameFromToken(db, pName1);
|
||||
if( z ){
|
||||
pTab = sqlite3LocateTable(pParse, 0, z, 0);
|
||||
sqlite3DbFree(db, z);
|
||||
if( pTab ){
|
||||
analyzeTable(pParse, pTab);
|
||||
}
|
||||
}
|
||||
}
|
||||
}else{
|
||||
/* Form 3: Analyze the fully qualified table name */
|
||||
iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName);
|
||||
if( iDb>=0 ){
|
||||
zDb = db->aDb[iDb].zName;
|
||||
z = sqlite3NameFromToken(db, pTableName);
|
||||
if( z ){
|
||||
pTab = sqlite3LocateTable(pParse, 0, z, zDb);
|
||||
sqlite3DbFree(db, z);
|
||||
if( pTab ){
|
||||
analyzeTable(pParse, pTab);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Used to pass information from the analyzer reader through to the
|
||||
** callback routine.
|
||||
*/
|
||||
typedef struct analysisInfo analysisInfo;
|
||||
struct analysisInfo {
|
||||
sqlite3 *db;
|
||||
const char *zDatabase;
|
||||
};
|
||||
|
||||
/*
|
||||
** This callback is invoked once for each index when reading the
|
||||
** sqlite_stat1 table.
|
||||
**
|
||||
** argv[0] = name of the index
|
||||
** argv[1] = results of analysis - on integer for each column
|
||||
*/
|
||||
static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){
|
||||
analysisInfo *pInfo = (analysisInfo*)pData;
|
||||
Index *pIndex;
|
||||
int i, c;
|
||||
unsigned int v;
|
||||
const char *z;
|
||||
|
||||
assert( argc==2 );
|
||||
UNUSED_PARAMETER2(NotUsed, argc);
|
||||
|
||||
if( argv==0 || argv[0]==0 || argv[1]==0 ){
|
||||
return 0;
|
||||
}
|
||||
pIndex = sqlite3FindIndex(pInfo->db, argv[0], pInfo->zDatabase);
|
||||
if( pIndex==0 ){
|
||||
return 0;
|
||||
}
|
||||
z = argv[1];
|
||||
for(i=0; *z && i<=pIndex->nColumn; i++){
|
||||
v = 0;
|
||||
while( (c=z[0])>='0' && c<='9' ){
|
||||
v = v*10 + c - '0';
|
||||
z++;
|
||||
}
|
||||
pIndex->aiRowEst[i] = v;
|
||||
if( *z==' ' ) z++;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
** Load the content of the sqlite_stat1 table into the index hash tables.
|
||||
*/
|
||||
int sqlite3AnalysisLoad(sqlite3 *db, int iDb){
|
||||
analysisInfo sInfo;
|
||||
HashElem *i;
|
||||
char *zSql;
|
||||
int rc;
|
||||
|
||||
assert( iDb>=0 && iDb<db->nDb );
|
||||
assert( db->aDb[iDb].pBt!=0 );
|
||||
assert( sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
|
||||
|
||||
/* Clear any prior statistics */
|
||||
for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){
|
||||
Index *pIdx = sqliteHashData(i);
|
||||
sqlite3DefaultRowEst(pIdx);
|
||||
}
|
||||
|
||||
/* Check to make sure the sqlite_stat1 table existss */
|
||||
sInfo.db = db;
|
||||
sInfo.zDatabase = db->aDb[iDb].zName;
|
||||
if( sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase)==0 ){
|
||||
return SQLITE_ERROR;
|
||||
}
|
||||
|
||||
|
||||
/* Load new statistics out of the sqlite_stat1 table */
|
||||
zSql = sqlite3MPrintf(db, "SELECT idx, stat FROM %Q.sqlite_stat1",
|
||||
sInfo.zDatabase);
|
||||
if( zSql==0 ){
|
||||
rc = SQLITE_NOMEM;
|
||||
}else{
|
||||
(void)sqlite3SafetyOff(db);
|
||||
rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0);
|
||||
(void)sqlite3SafetyOn(db);
|
||||
sqlite3DbFree(db, zSql);
|
||||
if( rc==SQLITE_NOMEM ) db->mallocFailed = 1;
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
|
||||
|
||||
#endif /* SQLITE_OMIT_ANALYZE */
|
539
attach.c
539
attach.c
|
@ -1,539 +0,0 @@
|
|||
/*
|
||||
** 2003 April 6
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This file contains code used to implement the ATTACH and DETACH commands.
|
||||
**
|
||||
** $Id: attach.c,v 1.84 2009/04/08 13:51:51 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
#ifndef SQLITE_OMIT_ATTACH
|
||||
/*
|
||||
** Resolve an expression that was part of an ATTACH or DETACH statement. This
|
||||
** is slightly different from resolving a normal SQL expression, because simple
|
||||
** identifiers are treated as strings, not possible column names or aliases.
|
||||
**
|
||||
** i.e. if the parser sees:
|
||||
**
|
||||
** ATTACH DATABASE abc AS def
|
||||
**
|
||||
** it treats the two expressions as literal strings 'abc' and 'def' instead of
|
||||
** looking for columns of the same name.
|
||||
**
|
||||
** This only applies to the root node of pExpr, so the statement:
|
||||
**
|
||||
** ATTACH DATABASE abc||def AS 'db2'
|
||||
**
|
||||
** will fail because neither abc or def can be resolved.
|
||||
*/
|
||||
static int resolveAttachExpr(NameContext *pName, Expr *pExpr)
|
||||
{
|
||||
int rc = SQLITE_OK;
|
||||
if( pExpr ){
|
||||
if( pExpr->op!=TK_ID ){
|
||||
rc = sqlite3ResolveExprNames(pName, pExpr);
|
||||
if( rc==SQLITE_OK && !sqlite3ExprIsConstant(pExpr) ){
|
||||
sqlite3ErrorMsg(pName->pParse, "invalid name: \"%T\"", &pExpr->span);
|
||||
return SQLITE_ERROR;
|
||||
}
|
||||
}else{
|
||||
pExpr->op = TK_STRING;
|
||||
}
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** An SQL user-function registered to do the work of an ATTACH statement. The
|
||||
** three arguments to the function come directly from an attach statement:
|
||||
**
|
||||
** ATTACH DATABASE x AS y KEY z
|
||||
**
|
||||
** SELECT sqlite_attach(x, y, z)
|
||||
**
|
||||
** If the optional "KEY z" syntax is omitted, an SQL NULL is passed as the
|
||||
** third argument.
|
||||
*/
|
||||
static void attachFunc(
|
||||
sqlite3_context *context,
|
||||
int NotUsed,
|
||||
sqlite3_value **argv
|
||||
){
|
||||
int i;
|
||||
int rc = 0;
|
||||
sqlite3 *db = sqlite3_context_db_handle(context);
|
||||
const char *zName;
|
||||
const char *zFile;
|
||||
Db *aNew;
|
||||
char *zErrDyn = 0;
|
||||
char zErr[128];
|
||||
|
||||
UNUSED_PARAMETER(NotUsed);
|
||||
|
||||
zFile = (const char *)sqlite3_value_text(argv[0]);
|
||||
zName = (const char *)sqlite3_value_text(argv[1]);
|
||||
if( zFile==0 ) zFile = "";
|
||||
if( zName==0 ) zName = "";
|
||||
|
||||
/* Check for the following errors:
|
||||
**
|
||||
** * Too many attached databases,
|
||||
** * Transaction currently open
|
||||
** * Specified database name already being used.
|
||||
*/
|
||||
if( db->nDb>=db->aLimit[SQLITE_LIMIT_ATTACHED]+2 ){
|
||||
sqlite3_snprintf(
|
||||
sizeof(zErr), zErr, "too many attached databases - max %d",
|
||||
db->aLimit[SQLITE_LIMIT_ATTACHED]
|
||||
);
|
||||
goto attach_error;
|
||||
}
|
||||
if( !db->autoCommit ){
|
||||
sqlite3_snprintf(sizeof(zErr), zErr,
|
||||
"cannot ATTACH database within transaction");
|
||||
goto attach_error;
|
||||
}
|
||||
for(i=0; i<db->nDb; i++){
|
||||
char *z = db->aDb[i].zName;
|
||||
if( z && zName && sqlite3StrICmp(z, zName)==0 ){
|
||||
sqlite3_snprintf(sizeof(zErr), zErr,
|
||||
"database %s is already in use", zName);
|
||||
goto attach_error;
|
||||
}
|
||||
}
|
||||
|
||||
/* Allocate the new entry in the db->aDb[] array and initialise the schema
|
||||
** hash tables.
|
||||
*/
|
||||
if( db->aDb==db->aDbStatic ){
|
||||
aNew = sqlite3DbMallocRaw(db, sizeof(db->aDb[0])*3 );
|
||||
if( aNew==0 ) return;
|
||||
memcpy(aNew, db->aDb, sizeof(db->aDb[0])*2);
|
||||
}else{
|
||||
aNew = sqlite3DbRealloc(db, db->aDb, sizeof(db->aDb[0])*(db->nDb+1) );
|
||||
if( aNew==0 ) return;
|
||||
}
|
||||
db->aDb = aNew;
|
||||
aNew = &db->aDb[db->nDb++];
|
||||
memset(aNew, 0, sizeof(*aNew));
|
||||
|
||||
/* Open the database file. If the btree is successfully opened, use
|
||||
** it to obtain the database schema. At this point the schema may
|
||||
** or may not be initialised.
|
||||
*/
|
||||
rc = sqlite3BtreeFactory(db, zFile, 0, SQLITE_DEFAULT_CACHE_SIZE,
|
||||
db->openFlags | SQLITE_OPEN_MAIN_DB,
|
||||
&aNew->pBt);
|
||||
if( rc==SQLITE_OK ){
|
||||
Pager *pPager;
|
||||
aNew->pSchema = sqlite3SchemaGet(db, aNew->pBt);
|
||||
if( !aNew->pSchema ){
|
||||
rc = SQLITE_NOMEM;
|
||||
}else if( aNew->pSchema->file_format && aNew->pSchema->enc!=ENC(db) ){
|
||||
sqlite3_snprintf(sizeof(zErr), zErr,
|
||||
"attached databases must use the same text encoding as main database");
|
||||
goto attach_error;
|
||||
}
|
||||
pPager = sqlite3BtreePager(aNew->pBt);
|
||||
sqlite3PagerLockingMode(pPager, db->dfltLockMode);
|
||||
sqlite3PagerJournalMode(pPager, db->dfltJournalMode);
|
||||
}
|
||||
aNew->zName = sqlite3DbStrDup(db, zName);
|
||||
aNew->safety_level = 3;
|
||||
|
||||
#if SQLITE_HAS_CODEC
|
||||
{
|
||||
extern int sqlite3CodecAttach(sqlite3*, int, const void*, int);
|
||||
extern void sqlite3CodecGetKey(sqlite3*, int, void**, int*);
|
||||
int nKey;
|
||||
char *zKey;
|
||||
int t = sqlite3_value_type(argv[2]);
|
||||
switch( t ){
|
||||
case SQLITE_INTEGER:
|
||||
case SQLITE_FLOAT:
|
||||
zErrDyn = sqlite3DbStrDup(db, "Invalid key value");
|
||||
rc = SQLITE_ERROR;
|
||||
break;
|
||||
|
||||
case SQLITE_TEXT:
|
||||
case SQLITE_BLOB:
|
||||
nKey = sqlite3_value_bytes(argv[2]);
|
||||
zKey = (char *)sqlite3_value_blob(argv[2]);
|
||||
sqlite3CodecAttach(db, db->nDb-1, zKey, nKey);
|
||||
break;
|
||||
|
||||
case SQLITE_NULL:
|
||||
/* No key specified. Use the key from the main database */
|
||||
sqlite3CodecGetKey(db, 0, (void**)&zKey, &nKey);
|
||||
sqlite3CodecAttach(db, db->nDb-1, zKey, nKey);
|
||||
break;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
/* If the file was opened successfully, read the schema for the new database.
|
||||
** If this fails, or if opening the file failed, then close the file and
|
||||
** remove the entry from the db->aDb[] array. i.e. put everything back the way
|
||||
** we found it.
|
||||
*/
|
||||
if( rc==SQLITE_OK ){
|
||||
(void)sqlite3SafetyOn(db);
|
||||
sqlite3BtreeEnterAll(db);
|
||||
rc = sqlite3Init(db, &zErrDyn);
|
||||
sqlite3BtreeLeaveAll(db);
|
||||
(void)sqlite3SafetyOff(db);
|
||||
}
|
||||
if( rc ){
|
||||
int iDb = db->nDb - 1;
|
||||
assert( iDb>=2 );
|
||||
if( db->aDb[iDb].pBt ){
|
||||
sqlite3BtreeClose(db->aDb[iDb].pBt);
|
||||
db->aDb[iDb].pBt = 0;
|
||||
db->aDb[iDb].pSchema = 0;
|
||||
}
|
||||
sqlite3ResetInternalSchema(db, 0);
|
||||
db->nDb = iDb;
|
||||
if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){
|
||||
db->mallocFailed = 1;
|
||||
sqlite3_snprintf(sizeof(zErr),zErr, "out of memory");
|
||||
}else{
|
||||
sqlite3_snprintf(sizeof(zErr),zErr, "unable to open database: %s", zFile);
|
||||
}
|
||||
goto attach_error;
|
||||
}
|
||||
|
||||
return;
|
||||
|
||||
attach_error:
|
||||
/* Return an error if we get here */
|
||||
if( zErrDyn ){
|
||||
sqlite3_result_error(context, zErrDyn, -1);
|
||||
sqlite3DbFree(db, zErrDyn);
|
||||
}else{
|
||||
zErr[sizeof(zErr)-1] = 0;
|
||||
sqlite3_result_error(context, zErr, -1);
|
||||
}
|
||||
if( rc ) sqlite3_result_error_code(context, rc);
|
||||
}
|
||||
|
||||
/*
|
||||
** An SQL user-function registered to do the work of an DETACH statement. The
|
||||
** three arguments to the function come directly from a detach statement:
|
||||
**
|
||||
** DETACH DATABASE x
|
||||
**
|
||||
** SELECT sqlite_detach(x)
|
||||
*/
|
||||
static void detachFunc(
|
||||
sqlite3_context *context,
|
||||
int NotUsed,
|
||||
sqlite3_value **argv
|
||||
){
|
||||
const char *zName = (const char *)sqlite3_value_text(argv[0]);
|
||||
sqlite3 *db = sqlite3_context_db_handle(context);
|
||||
int i;
|
||||
Db *pDb = 0;
|
||||
char zErr[128];
|
||||
|
||||
UNUSED_PARAMETER(NotUsed);
|
||||
|
||||
if( zName==0 ) zName = "";
|
||||
for(i=0; i<db->nDb; i++){
|
||||
pDb = &db->aDb[i];
|
||||
if( pDb->pBt==0 ) continue;
|
||||
if( sqlite3StrICmp(pDb->zName, zName)==0 ) break;
|
||||
}
|
||||
|
||||
if( i>=db->nDb ){
|
||||
sqlite3_snprintf(sizeof(zErr),zErr, "no such database: %s", zName);
|
||||
goto detach_error;
|
||||
}
|
||||
if( i<2 ){
|
||||
sqlite3_snprintf(sizeof(zErr),zErr, "cannot detach database %s", zName);
|
||||
goto detach_error;
|
||||
}
|
||||
if( !db->autoCommit ){
|
||||
sqlite3_snprintf(sizeof(zErr), zErr,
|
||||
"cannot DETACH database within transaction");
|
||||
goto detach_error;
|
||||
}
|
||||
if( sqlite3BtreeIsInReadTrans(pDb->pBt) || sqlite3BtreeIsInBackup(pDb->pBt) ){
|
||||
sqlite3_snprintf(sizeof(zErr),zErr, "database %s is locked", zName);
|
||||
goto detach_error;
|
||||
}
|
||||
|
||||
sqlite3BtreeClose(pDb->pBt);
|
||||
pDb->pBt = 0;
|
||||
pDb->pSchema = 0;
|
||||
sqlite3ResetInternalSchema(db, 0);
|
||||
return;
|
||||
|
||||
detach_error:
|
||||
sqlite3_result_error(context, zErr, -1);
|
||||
}
|
||||
|
||||
/*
|
||||
** This procedure generates VDBE code for a single invocation of either the
|
||||
** sqlite_detach() or sqlite_attach() SQL user functions.
|
||||
*/
|
||||
static void codeAttach(
|
||||
Parse *pParse, /* The parser context */
|
||||
int type, /* Either SQLITE_ATTACH or SQLITE_DETACH */
|
||||
FuncDef *pFunc, /* FuncDef wrapper for detachFunc() or attachFunc() */
|
||||
Expr *pAuthArg, /* Expression to pass to authorization callback */
|
||||
Expr *pFilename, /* Name of database file */
|
||||
Expr *pDbname, /* Name of the database to use internally */
|
||||
Expr *pKey /* Database key for encryption extension */
|
||||
){
|
||||
int rc;
|
||||
NameContext sName;
|
||||
Vdbe *v;
|
||||
sqlite3* db = pParse->db;
|
||||
int regArgs;
|
||||
|
||||
#ifndef SQLITE_OMIT_AUTHORIZATION
|
||||
assert( db->mallocFailed || pAuthArg );
|
||||
if( pAuthArg ){
|
||||
char *zAuthArg = sqlite3NameFromToken(db, &pAuthArg->span);
|
||||
if( !zAuthArg ){
|
||||
goto attach_end;
|
||||
}
|
||||
rc = sqlite3AuthCheck(pParse, type, zAuthArg, 0, 0);
|
||||
sqlite3DbFree(db, zAuthArg);
|
||||
if(rc!=SQLITE_OK ){
|
||||
goto attach_end;
|
||||
}
|
||||
}
|
||||
#endif /* SQLITE_OMIT_AUTHORIZATION */
|
||||
|
||||
memset(&sName, 0, sizeof(NameContext));
|
||||
sName.pParse = pParse;
|
||||
|
||||
if(
|
||||
SQLITE_OK!=(rc = resolveAttachExpr(&sName, pFilename)) ||
|
||||
SQLITE_OK!=(rc = resolveAttachExpr(&sName, pDbname)) ||
|
||||
SQLITE_OK!=(rc = resolveAttachExpr(&sName, pKey))
|
||||
){
|
||||
pParse->nErr++;
|
||||
goto attach_end;
|
||||
}
|
||||
|
||||
v = sqlite3GetVdbe(pParse);
|
||||
regArgs = sqlite3GetTempRange(pParse, 4);
|
||||
sqlite3ExprCode(pParse, pFilename, regArgs);
|
||||
sqlite3ExprCode(pParse, pDbname, regArgs+1);
|
||||
sqlite3ExprCode(pParse, pKey, regArgs+2);
|
||||
|
||||
assert( v || db->mallocFailed );
|
||||
if( v ){
|
||||
sqlite3VdbeAddOp3(v, OP_Function, 0, regArgs+3-pFunc->nArg, regArgs+3);
|
||||
assert( pFunc->nArg==-1 || (pFunc->nArg&0xff)==pFunc->nArg );
|
||||
sqlite3VdbeChangeP5(v, (u8)(pFunc->nArg));
|
||||
sqlite3VdbeChangeP4(v, -1, (char *)pFunc, P4_FUNCDEF);
|
||||
|
||||
/* Code an OP_Expire. For an ATTACH statement, set P1 to true (expire this
|
||||
** statement only). For DETACH, set it to false (expire all existing
|
||||
** statements).
|
||||
*/
|
||||
sqlite3VdbeAddOp1(v, OP_Expire, (type==SQLITE_ATTACH));
|
||||
}
|
||||
|
||||
attach_end:
|
||||
sqlite3ExprDelete(db, pFilename);
|
||||
sqlite3ExprDelete(db, pDbname);
|
||||
sqlite3ExprDelete(db, pKey);
|
||||
}
|
||||
|
||||
/*
|
||||
** Called by the parser to compile a DETACH statement.
|
||||
**
|
||||
** DETACH pDbname
|
||||
*/
|
||||
void sqlite3Detach(Parse *pParse, Expr *pDbname){
|
||||
static FuncDef detach_func = {
|
||||
1, /* nArg */
|
||||
SQLITE_UTF8, /* iPrefEnc */
|
||||
0, /* flags */
|
||||
0, /* pUserData */
|
||||
0, /* pNext */
|
||||
detachFunc, /* xFunc */
|
||||
0, /* xStep */
|
||||
0, /* xFinalize */
|
||||
"sqlite_detach", /* zName */
|
||||
0 /* pHash */
|
||||
};
|
||||
codeAttach(pParse, SQLITE_DETACH, &detach_func, pDbname, 0, 0, pDbname);
|
||||
}
|
||||
|
||||
/*
|
||||
** Called by the parser to compile an ATTACH statement.
|
||||
**
|
||||
** ATTACH p AS pDbname KEY pKey
|
||||
*/
|
||||
void sqlite3Attach(Parse *pParse, Expr *p, Expr *pDbname, Expr *pKey){
|
||||
static FuncDef attach_func = {
|
||||
3, /* nArg */
|
||||
SQLITE_UTF8, /* iPrefEnc */
|
||||
0, /* flags */
|
||||
0, /* pUserData */
|
||||
0, /* pNext */
|
||||
attachFunc, /* xFunc */
|
||||
0, /* xStep */
|
||||
0, /* xFinalize */
|
||||
"sqlite_attach", /* zName */
|
||||
0 /* pHash */
|
||||
};
|
||||
codeAttach(pParse, SQLITE_ATTACH, &attach_func, p, p, pDbname, pKey);
|
||||
}
|
||||
#endif /* SQLITE_OMIT_ATTACH */
|
||||
|
||||
/*
|
||||
** Initialize a DbFixer structure. This routine must be called prior
|
||||
** to passing the structure to one of the sqliteFixAAAA() routines below.
|
||||
**
|
||||
** The return value indicates whether or not fixation is required. TRUE
|
||||
** means we do need to fix the database references, FALSE means we do not.
|
||||
*/
|
||||
int sqlite3FixInit(
|
||||
DbFixer *pFix, /* The fixer to be initialized */
|
||||
Parse *pParse, /* Error messages will be written here */
|
||||
int iDb, /* This is the database that must be used */
|
||||
const char *zType, /* "view", "trigger", or "index" */
|
||||
const Token *pName /* Name of the view, trigger, or index */
|
||||
){
|
||||
sqlite3 *db;
|
||||
|
||||
if( iDb<0 || iDb==1 ) return 0;
|
||||
db = pParse->db;
|
||||
assert( db->nDb>iDb );
|
||||
pFix->pParse = pParse;
|
||||
pFix->zDb = db->aDb[iDb].zName;
|
||||
pFix->zType = zType;
|
||||
pFix->pName = pName;
|
||||
return 1;
|
||||
}
|
||||
|
||||
/*
|
||||
** The following set of routines walk through the parse tree and assign
|
||||
** a specific database to all table references where the database name
|
||||
** was left unspecified in the original SQL statement. The pFix structure
|
||||
** must have been initialized by a prior call to sqlite3FixInit().
|
||||
**
|
||||
** These routines are used to make sure that an index, trigger, or
|
||||
** view in one database does not refer to objects in a different database.
|
||||
** (Exception: indices, triggers, and views in the TEMP database are
|
||||
** allowed to refer to anything.) If a reference is explicitly made
|
||||
** to an object in a different database, an error message is added to
|
||||
** pParse->zErrMsg and these routines return non-zero. If everything
|
||||
** checks out, these routines return 0.
|
||||
*/
|
||||
int sqlite3FixSrcList(
|
||||
DbFixer *pFix, /* Context of the fixation */
|
||||
SrcList *pList /* The Source list to check and modify */
|
||||
){
|
||||
int i;
|
||||
const char *zDb;
|
||||
struct SrcList_item *pItem;
|
||||
|
||||
if( pList==0 ) return 0;
|
||||
zDb = pFix->zDb;
|
||||
for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
|
||||
if( pItem->zDatabase==0 ){
|
||||
pItem->zDatabase = sqlite3DbStrDup(pFix->pParse->db, zDb);
|
||||
}else if( sqlite3StrICmp(pItem->zDatabase,zDb)!=0 ){
|
||||
sqlite3ErrorMsg(pFix->pParse,
|
||||
"%s %T cannot reference objects in database %s",
|
||||
pFix->zType, pFix->pName, pItem->zDatabase);
|
||||
return 1;
|
||||
}
|
||||
#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER)
|
||||
if( sqlite3FixSelect(pFix, pItem->pSelect) ) return 1;
|
||||
if( sqlite3FixExpr(pFix, pItem->pOn) ) return 1;
|
||||
#endif
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER)
|
||||
int sqlite3FixSelect(
|
||||
DbFixer *pFix, /* Context of the fixation */
|
||||
Select *pSelect /* The SELECT statement to be fixed to one database */
|
||||
){
|
||||
while( pSelect ){
|
||||
if( sqlite3FixExprList(pFix, pSelect->pEList) ){
|
||||
return 1;
|
||||
}
|
||||
if( sqlite3FixSrcList(pFix, pSelect->pSrc) ){
|
||||
return 1;
|
||||
}
|
||||
if( sqlite3FixExpr(pFix, pSelect->pWhere) ){
|
||||
return 1;
|
||||
}
|
||||
if( sqlite3FixExpr(pFix, pSelect->pHaving) ){
|
||||
return 1;
|
||||
}
|
||||
pSelect = pSelect->pPrior;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
int sqlite3FixExpr(
|
||||
DbFixer *pFix, /* Context of the fixation */
|
||||
Expr *pExpr /* The expression to be fixed to one database */
|
||||
){
|
||||
while( pExpr ){
|
||||
if( ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_SpanToken) ) break;
|
||||
if( ExprHasProperty(pExpr, EP_xIsSelect) ){
|
||||
if( sqlite3FixSelect(pFix, pExpr->x.pSelect) ) return 1;
|
||||
}else{
|
||||
if( sqlite3FixExprList(pFix, pExpr->x.pList) ) return 1;
|
||||
}
|
||||
if( sqlite3FixExpr(pFix, pExpr->pRight) ){
|
||||
return 1;
|
||||
}
|
||||
pExpr = pExpr->pLeft;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
int sqlite3FixExprList(
|
||||
DbFixer *pFix, /* Context of the fixation */
|
||||
ExprList *pList /* The expression to be fixed to one database */
|
||||
){
|
||||
int i;
|
||||
struct ExprList_item *pItem;
|
||||
if( pList==0 ) return 0;
|
||||
for(i=0, pItem=pList->a; i<pList->nExpr; i++, pItem++){
|
||||
if( sqlite3FixExpr(pFix, pItem->pExpr) ){
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifndef SQLITE_OMIT_TRIGGER
|
||||
int sqlite3FixTriggerStep(
|
||||
DbFixer *pFix, /* Context of the fixation */
|
||||
TriggerStep *pStep /* The trigger step be fixed to one database */
|
||||
){
|
||||
while( pStep ){
|
||||
if( sqlite3FixSelect(pFix, pStep->pSelect) ){
|
||||
return 1;
|
||||
}
|
||||
if( sqlite3FixExpr(pFix, pStep->pWhere) ){
|
||||
return 1;
|
||||
}
|
||||
if( sqlite3FixExprList(pFix, pStep->pExprList) ){
|
||||
return 1;
|
||||
}
|
||||
pStep = pStep->pNext;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
#endif
|
234
auth.c
234
auth.c
|
@ -1,234 +0,0 @@
|
|||
/*
|
||||
** 2003 January 11
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This file contains code used to implement the sqlite3_set_authorizer()
|
||||
** API. This facility is an optional feature of the library. Embedded
|
||||
** systems that do not need this facility may omit it by recompiling
|
||||
** the library with -DSQLITE_OMIT_AUTHORIZATION=1
|
||||
**
|
||||
** $Id: auth.c,v 1.29 2007/09/18 15:55:07 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
/*
|
||||
** All of the code in this file may be omitted by defining a single
|
||||
** macro.
|
||||
*/
|
||||
#ifndef SQLITE_OMIT_AUTHORIZATION
|
||||
|
||||
/*
|
||||
** Set or clear the access authorization function.
|
||||
**
|
||||
** The access authorization function is be called during the compilation
|
||||
** phase to verify that the user has read and/or write access permission on
|
||||
** various fields of the database. The first argument to the auth function
|
||||
** is a copy of the 3rd argument to this routine. The second argument
|
||||
** to the auth function is one of these constants:
|
||||
**
|
||||
** SQLITE_CREATE_INDEX
|
||||
** SQLITE_CREATE_TABLE
|
||||
** SQLITE_CREATE_TEMP_INDEX
|
||||
** SQLITE_CREATE_TEMP_TABLE
|
||||
** SQLITE_CREATE_TEMP_TRIGGER
|
||||
** SQLITE_CREATE_TEMP_VIEW
|
||||
** SQLITE_CREATE_TRIGGER
|
||||
** SQLITE_CREATE_VIEW
|
||||
** SQLITE_DELETE
|
||||
** SQLITE_DROP_INDEX
|
||||
** SQLITE_DROP_TABLE
|
||||
** SQLITE_DROP_TEMP_INDEX
|
||||
** SQLITE_DROP_TEMP_TABLE
|
||||
** SQLITE_DROP_TEMP_TRIGGER
|
||||
** SQLITE_DROP_TEMP_VIEW
|
||||
** SQLITE_DROP_TRIGGER
|
||||
** SQLITE_DROP_VIEW
|
||||
** SQLITE_INSERT
|
||||
** SQLITE_PRAGMA
|
||||
** SQLITE_READ
|
||||
** SQLITE_SELECT
|
||||
** SQLITE_TRANSACTION
|
||||
** SQLITE_UPDATE
|
||||
**
|
||||
** The third and fourth arguments to the auth function are the name of
|
||||
** the table and the column that are being accessed. The auth function
|
||||
** should return either SQLITE_OK, SQLITE_DENY, or SQLITE_IGNORE. If
|
||||
** SQLITE_OK is returned, it means that access is allowed. SQLITE_DENY
|
||||
** means that the SQL statement will never-run - the sqlite3_exec() call
|
||||
** will return with an error. SQLITE_IGNORE means that the SQL statement
|
||||
** should run but attempts to read the specified column will return NULL
|
||||
** and attempts to write the column will be ignored.
|
||||
**
|
||||
** Setting the auth function to NULL disables this hook. The default
|
||||
** setting of the auth function is NULL.
|
||||
*/
|
||||
int sqlite3_set_authorizer(
|
||||
sqlite3 *db,
|
||||
int (*xAuth)(void*,int,const char*,const char*,const char*,const char*),
|
||||
void *pArg
|
||||
){
|
||||
sqlite3_mutex_enter(db->mutex);
|
||||
db->xAuth = xAuth;
|
||||
db->pAuthArg = pArg;
|
||||
sqlite3ExpirePreparedStatements(db);
|
||||
sqlite3_mutex_leave(db->mutex);
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Write an error message into pParse->zErrMsg that explains that the
|
||||
** user-supplied authorization function returned an illegal value.
|
||||
*/
|
||||
static void sqliteAuthBadReturnCode(Parse *pParse, int rc){
|
||||
sqlite3ErrorMsg(pParse, "illegal return value (%d) from the "
|
||||
"authorization function - should be SQLITE_OK, SQLITE_IGNORE, "
|
||||
"or SQLITE_DENY", rc);
|
||||
pParse->rc = SQLITE_ERROR;
|
||||
}
|
||||
|
||||
/*
|
||||
** The pExpr should be a TK_COLUMN expression. The table referred to
|
||||
** is in pTabList or else it is the NEW or OLD table of a trigger.
|
||||
** Check to see if it is OK to read this particular column.
|
||||
**
|
||||
** If the auth function returns SQLITE_IGNORE, change the TK_COLUMN
|
||||
** instruction into a TK_NULL. If the auth function returns SQLITE_DENY,
|
||||
** then generate an error.
|
||||
*/
|
||||
void sqlite3AuthRead(
|
||||
Parse *pParse, /* The parser context */
|
||||
Expr *pExpr, /* The expression to check authorization on */
|
||||
Schema *pSchema, /* The schema of the expression */
|
||||
SrcList *pTabList /* All table that pExpr might refer to */
|
||||
){
|
||||
sqlite3 *db = pParse->db;
|
||||
int rc;
|
||||
Table *pTab = 0; /* The table being read */
|
||||
const char *zCol; /* Name of the column of the table */
|
||||
int iSrc; /* Index in pTabList->a[] of table being read */
|
||||
const char *zDBase; /* Name of database being accessed */
|
||||
TriggerStack *pStack; /* The stack of current triggers */
|
||||
int iDb; /* The index of the database the expression refers to */
|
||||
|
||||
if( db->xAuth==0 ) return;
|
||||
if( pExpr->op!=TK_COLUMN ) return;
|
||||
iDb = sqlite3SchemaToIndex(pParse->db, pSchema);
|
||||
if( iDb<0 ){
|
||||
/* An attempt to read a column out of a subquery or other
|
||||
** temporary table. */
|
||||
return;
|
||||
}
|
||||
for(iSrc=0; pTabList && iSrc<pTabList->nSrc; iSrc++){
|
||||
if( pExpr->iTable==pTabList->a[iSrc].iCursor ) break;
|
||||
}
|
||||
if( iSrc>=0 && pTabList && iSrc<pTabList->nSrc ){
|
||||
pTab = pTabList->a[iSrc].pTab;
|
||||
}else if( (pStack = pParse->trigStack)!=0 ){
|
||||
/* This must be an attempt to read the NEW or OLD pseudo-tables
|
||||
** of a trigger.
|
||||
*/
|
||||
assert( pExpr->iTable==pStack->newIdx || pExpr->iTable==pStack->oldIdx );
|
||||
pTab = pStack->pTab;
|
||||
}
|
||||
if( pTab==0 ) return;
|
||||
if( pExpr->iColumn>=0 ){
|
||||
assert( pExpr->iColumn<pTab->nCol );
|
||||
zCol = pTab->aCol[pExpr->iColumn].zName;
|
||||
}else if( pTab->iPKey>=0 ){
|
||||
assert( pTab->iPKey<pTab->nCol );
|
||||
zCol = pTab->aCol[pTab->iPKey].zName;
|
||||
}else{
|
||||
zCol = "ROWID";
|
||||
}
|
||||
assert( iDb>=0 && iDb<db->nDb );
|
||||
zDBase = db->aDb[iDb].zName;
|
||||
rc = db->xAuth(db->pAuthArg, SQLITE_READ, pTab->zName, zCol, zDBase,
|
||||
pParse->zAuthContext);
|
||||
if( rc==SQLITE_IGNORE ){
|
||||
pExpr->op = TK_NULL;
|
||||
}else if( rc==SQLITE_DENY ){
|
||||
if( db->nDb>2 || iDb!=0 ){
|
||||
sqlite3ErrorMsg(pParse, "access to %s.%s.%s is prohibited",
|
||||
zDBase, pTab->zName, zCol);
|
||||
}else{
|
||||
sqlite3ErrorMsg(pParse, "access to %s.%s is prohibited",pTab->zName,zCol);
|
||||
}
|
||||
pParse->rc = SQLITE_AUTH;
|
||||
}else if( rc!=SQLITE_OK ){
|
||||
sqliteAuthBadReturnCode(pParse, rc);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Do an authorization check using the code and arguments given. Return
|
||||
** either SQLITE_OK (zero) or SQLITE_IGNORE or SQLITE_DENY. If SQLITE_DENY
|
||||
** is returned, then the error count and error message in pParse are
|
||||
** modified appropriately.
|
||||
*/
|
||||
int sqlite3AuthCheck(
|
||||
Parse *pParse,
|
||||
int code,
|
||||
const char *zArg1,
|
||||
const char *zArg2,
|
||||
const char *zArg3
|
||||
){
|
||||
sqlite3 *db = pParse->db;
|
||||
int rc;
|
||||
|
||||
/* Don't do any authorization checks if the database is initialising
|
||||
** or if the parser is being invoked from within sqlite3_declare_vtab.
|
||||
*/
|
||||
if( db->init.busy || IN_DECLARE_VTAB ){
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
if( db->xAuth==0 ){
|
||||
return SQLITE_OK;
|
||||
}
|
||||
rc = db->xAuth(db->pAuthArg, code, zArg1, zArg2, zArg3, pParse->zAuthContext);
|
||||
if( rc==SQLITE_DENY ){
|
||||
sqlite3ErrorMsg(pParse, "not authorized");
|
||||
pParse->rc = SQLITE_AUTH;
|
||||
}else if( rc!=SQLITE_OK && rc!=SQLITE_IGNORE ){
|
||||
rc = SQLITE_DENY;
|
||||
sqliteAuthBadReturnCode(pParse, rc);
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** Push an authorization context. After this routine is called, the
|
||||
** zArg3 argument to authorization callbacks will be zContext until
|
||||
** popped. Or if pParse==0, this routine is a no-op.
|
||||
*/
|
||||
void sqlite3AuthContextPush(
|
||||
Parse *pParse,
|
||||
AuthContext *pContext,
|
||||
const char *zContext
|
||||
){
|
||||
pContext->pParse = pParse;
|
||||
if( pParse ){
|
||||
pContext->zAuthContext = pParse->zAuthContext;
|
||||
pParse->zAuthContext = zContext;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Pop an authorization context that was previously pushed
|
||||
** by sqlite3AuthContextPush
|
||||
*/
|
||||
void sqlite3AuthContextPop(AuthContext *pContext){
|
||||
if( pContext->pParse ){
|
||||
pContext->pParse->zAuthContext = pContext->zAuthContext;
|
||||
pContext->pParse = 0;
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* SQLITE_OMIT_AUTHORIZATION */
|
611
backup.c
611
backup.c
|
@ -1,611 +0,0 @@
|
|||
/*
|
||||
** 2009 January 28
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This file contains the implementation of the sqlite3_backup_XXX()
|
||||
** API functions and the related features.
|
||||
**
|
||||
** $Id: backup.c,v 1.13 2009/03/16 13:19:36 danielk1977 Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
#include "btreeInt.h"
|
||||
|
||||
/* Macro to find the minimum of two numeric values.
|
||||
*/
|
||||
#ifndef MIN
|
||||
# define MIN(x,y) ((x)<(y)?(x):(y))
|
||||
#endif
|
||||
|
||||
/*
|
||||
** Structure allocated for each backup operation.
|
||||
*/
|
||||
struct sqlite3_backup {
|
||||
sqlite3* pDestDb; /* Destination database handle */
|
||||
Btree *pDest; /* Destination b-tree file */
|
||||
u32 iDestSchema; /* Original schema cookie in destination */
|
||||
int bDestLocked; /* True once a write-transaction is open on pDest */
|
||||
|
||||
Pgno iNext; /* Page number of the next source page to copy */
|
||||
sqlite3* pSrcDb; /* Source database handle */
|
||||
Btree *pSrc; /* Source b-tree file */
|
||||
|
||||
int rc; /* Backup process error code */
|
||||
|
||||
/* These two variables are set by every call to backup_step(). They are
|
||||
** read by calls to backup_remaining() and backup_pagecount().
|
||||
*/
|
||||
Pgno nRemaining; /* Number of pages left to copy */
|
||||
Pgno nPagecount; /* Total number of pages to copy */
|
||||
|
||||
sqlite3_backup *pNext; /* Next backup associated with source pager */
|
||||
};
|
||||
|
||||
/*
|
||||
** THREAD SAFETY NOTES:
|
||||
**
|
||||
** Once it has been created using backup_init(), a single sqlite3_backup
|
||||
** structure may be accessed via two groups of thread-safe entry points:
|
||||
**
|
||||
** * Via the sqlite3_backup_XXX() API function backup_step() and
|
||||
** backup_finish(). Both these functions obtain the source database
|
||||
** handle mutex and the mutex associated with the source BtShared
|
||||
** structure, in that order.
|
||||
**
|
||||
** * Via the BackupUpdate() and BackupRestart() functions, which are
|
||||
** invoked by the pager layer to report various state changes in
|
||||
** the page cache associated with the source database. The mutex
|
||||
** associated with the source database BtShared structure will always
|
||||
** be held when either of these functions are invoked.
|
||||
**
|
||||
** The other sqlite3_backup_XXX() API functions, backup_remaining() and
|
||||
** backup_pagecount() are not thread-safe functions. If they are called
|
||||
** while some other thread is calling backup_step() or backup_finish(),
|
||||
** the values returned may be invalid. There is no way for a call to
|
||||
** BackupUpdate() or BackupRestart() to interfere with backup_remaining()
|
||||
** or backup_pagecount().
|
||||
**
|
||||
** Depending on the SQLite configuration, the database handles and/or
|
||||
** the Btree objects may have their own mutexes that require locking.
|
||||
** Non-sharable Btrees (in-memory databases for example), do not have
|
||||
** associated mutexes.
|
||||
*/
|
||||
|
||||
/*
|
||||
** Return a pointer corresponding to database zDb (i.e. "main", "temp")
|
||||
** in connection handle pDb. If such a database cannot be found, return
|
||||
** a NULL pointer and write an error message to pErrorDb.
|
||||
**
|
||||
** If the "temp" database is requested, it may need to be opened by this
|
||||
** function. If an error occurs while doing so, return 0 and write an
|
||||
** error message to pErrorDb.
|
||||
*/
|
||||
static Btree *findBtree(sqlite3 *pErrorDb, sqlite3 *pDb, const char *zDb){
|
||||
int i = sqlite3FindDbName(pDb, zDb);
|
||||
|
||||
if( i==1 ){
|
||||
Parse sParse;
|
||||
memset(&sParse, 0, sizeof(sParse));
|
||||
sParse.db = pDb;
|
||||
if( sqlite3OpenTempDatabase(&sParse) ){
|
||||
sqlite3ErrorClear(&sParse);
|
||||
sqlite3Error(pErrorDb, sParse.rc, "%s", sParse.zErrMsg);
|
||||
return 0;
|
||||
}
|
||||
assert( sParse.zErrMsg==0 );
|
||||
}
|
||||
|
||||
if( i<0 ){
|
||||
sqlite3Error(pErrorDb, SQLITE_ERROR, "unknown database %s", zDb);
|
||||
return 0;
|
||||
}
|
||||
|
||||
return pDb->aDb[i].pBt;
|
||||
}
|
||||
|
||||
/*
|
||||
** Create an sqlite3_backup process to copy the contents of zSrcDb from
|
||||
** connection handle pSrcDb to zDestDb in pDestDb. If successful, return
|
||||
** a pointer to the new sqlite3_backup object.
|
||||
**
|
||||
** If an error occurs, NULL is returned and an error code and error message
|
||||
** stored in database handle pDestDb.
|
||||
*/
|
||||
sqlite3_backup *sqlite3_backup_init(
|
||||
sqlite3* pDestDb, /* Database to write to */
|
||||
const char *zDestDb, /* Name of database within pDestDb */
|
||||
sqlite3* pSrcDb, /* Database connection to read from */
|
||||
const char *zSrcDb /* Name of database within pSrcDb */
|
||||
){
|
||||
sqlite3_backup *p; /* Value to return */
|
||||
|
||||
/* Lock the source database handle. The destination database
|
||||
** handle is not locked in this routine, but it is locked in
|
||||
** sqlite3_backup_step(). The user is required to ensure that no
|
||||
** other thread accesses the destination handle for the duration
|
||||
** of the backup operation. Any attempt to use the destination
|
||||
** database connection while a backup is in progress may cause
|
||||
** a malfunction or a deadlock.
|
||||
*/
|
||||
sqlite3_mutex_enter(pSrcDb->mutex);
|
||||
sqlite3_mutex_enter(pDestDb->mutex);
|
||||
|
||||
if( pSrcDb==pDestDb ){
|
||||
sqlite3Error(
|
||||
pDestDb, SQLITE_ERROR, "source and destination must be distinct"
|
||||
);
|
||||
p = 0;
|
||||
}else {
|
||||
/* Allocate space for a new sqlite3_backup object */
|
||||
p = (sqlite3_backup *)sqlite3_malloc(sizeof(sqlite3_backup));
|
||||
if( !p ){
|
||||
sqlite3Error(pDestDb, SQLITE_NOMEM, 0);
|
||||
}
|
||||
}
|
||||
|
||||
/* If the allocation succeeded, populate the new object. */
|
||||
if( p ){
|
||||
memset(p, 0, sizeof(sqlite3_backup));
|
||||
p->pSrc = findBtree(pDestDb, pSrcDb, zSrcDb);
|
||||
p->pDest = findBtree(pDestDb, pDestDb, zDestDb);
|
||||
p->pDestDb = pDestDb;
|
||||
p->pSrcDb = pSrcDb;
|
||||
p->iNext = 1;
|
||||
|
||||
if( 0==p->pSrc || 0==p->pDest ){
|
||||
/* One (or both) of the named databases did not exist. An error has
|
||||
** already been written into the pDestDb handle. All that is left
|
||||
** to do here is free the sqlite3_backup structure.
|
||||
*/
|
||||
sqlite3_free(p);
|
||||
p = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/* If everything has gone as planned, attach the backup object to the
|
||||
** source pager. The source pager calls BackupUpdate() and BackupRestart()
|
||||
** to notify this module if the source file is modified mid-backup.
|
||||
*/
|
||||
if( p ){
|
||||
sqlite3_backup **pp; /* Pointer to head of pagers backup list */
|
||||
sqlite3BtreeEnter(p->pSrc);
|
||||
pp = sqlite3PagerBackupPtr(sqlite3BtreePager(p->pSrc));
|
||||
p->pNext = *pp;
|
||||
*pp = p;
|
||||
sqlite3BtreeLeave(p->pSrc);
|
||||
p->pSrc->nBackup++;
|
||||
}
|
||||
|
||||
sqlite3_mutex_leave(pDestDb->mutex);
|
||||
sqlite3_mutex_leave(pSrcDb->mutex);
|
||||
return p;
|
||||
}
|
||||
|
||||
/*
|
||||
** Argument rc is an SQLite error code. Return true if this error is
|
||||
** considered fatal if encountered during a backup operation. All errors
|
||||
** are considered fatal except for SQLITE_BUSY and SQLITE_LOCKED.
|
||||
*/
|
||||
static int isFatalError(int rc){
|
||||
return (rc!=SQLITE_OK && rc!=SQLITE_BUSY && rc!=SQLITE_LOCKED);
|
||||
}
|
||||
|
||||
/*
|
||||
** Parameter zSrcData points to a buffer containing the data for
|
||||
** page iSrcPg from the source database. Copy this data into the
|
||||
** destination database.
|
||||
*/
|
||||
static int backupOnePage(sqlite3_backup *p, Pgno iSrcPg, const u8 *zSrcData){
|
||||
Pager * const pDestPager = sqlite3BtreePager(p->pDest);
|
||||
const int nSrcPgsz = sqlite3BtreeGetPageSize(p->pSrc);
|
||||
int nDestPgsz = sqlite3BtreeGetPageSize(p->pDest);
|
||||
const int nCopy = MIN(nSrcPgsz, nDestPgsz);
|
||||
const i64 iEnd = (i64)iSrcPg*(i64)nSrcPgsz;
|
||||
|
||||
int rc = SQLITE_OK;
|
||||
i64 iOff;
|
||||
|
||||
assert( p->bDestLocked );
|
||||
assert( !isFatalError(p->rc) );
|
||||
assert( iSrcPg!=PENDING_BYTE_PAGE(p->pSrc->pBt) );
|
||||
assert( zSrcData );
|
||||
|
||||
/* Catch the case where the destination is an in-memory database and the
|
||||
** page sizes of the source and destination differ.
|
||||
*/
|
||||
if( nSrcPgsz!=nDestPgsz && sqlite3PagerIsMemdb(sqlite3BtreePager(p->pDest)) ){
|
||||
rc = SQLITE_READONLY;
|
||||
}
|
||||
|
||||
/* This loop runs once for each destination page spanned by the source
|
||||
** page. For each iteration, variable iOff is set to the byte offset
|
||||
** of the destination page.
|
||||
*/
|
||||
for(iOff=iEnd-(i64)nSrcPgsz; rc==SQLITE_OK && iOff<iEnd; iOff+=nDestPgsz){
|
||||
DbPage *pDestPg = 0;
|
||||
Pgno iDest = (Pgno)(iOff/nDestPgsz)+1;
|
||||
if( iDest==PENDING_BYTE_PAGE(p->pDest->pBt) ) continue;
|
||||
if( SQLITE_OK==(rc = sqlite3PagerGet(pDestPager, iDest, &pDestPg))
|
||||
&& SQLITE_OK==(rc = sqlite3PagerWrite(pDestPg))
|
||||
){
|
||||
const u8 *zIn = &zSrcData[iOff%nSrcPgsz];
|
||||
u8 *zDestData = sqlite3PagerGetData(pDestPg);
|
||||
u8 *zOut = &zDestData[iOff%nDestPgsz];
|
||||
|
||||
/* Copy the data from the source page into the destination page.
|
||||
** Then clear the Btree layer MemPage.isInit flag. Both this module
|
||||
** and the pager code use this trick (clearing the first byte
|
||||
** of the page 'extra' space to invalidate the Btree layers
|
||||
** cached parse of the page). MemPage.isInit is marked
|
||||
** "MUST BE FIRST" for this purpose.
|
||||
*/
|
||||
memcpy(zOut, zIn, nCopy);
|
||||
((u8 *)sqlite3PagerGetExtra(pDestPg))[0] = 0;
|
||||
}
|
||||
sqlite3PagerUnref(pDestPg);
|
||||
}
|
||||
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** If pFile is currently larger than iSize bytes, then truncate it to
|
||||
** exactly iSize bytes. If pFile is not larger than iSize bytes, then
|
||||
** this function is a no-op.
|
||||
**
|
||||
** Return SQLITE_OK if everything is successful, or an SQLite error
|
||||
** code if an error occurs.
|
||||
*/
|
||||
static int backupTruncateFile(sqlite3_file *pFile, i64 iSize){
|
||||
i64 iCurrent;
|
||||
int rc = sqlite3OsFileSize(pFile, &iCurrent);
|
||||
if( rc==SQLITE_OK && iCurrent>iSize ){
|
||||
rc = sqlite3OsTruncate(pFile, iSize);
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** Copy nPage pages from the source b-tree to the destination.
|
||||
*/
|
||||
int sqlite3_backup_step(sqlite3_backup *p, int nPage){
|
||||
int rc;
|
||||
|
||||
sqlite3_mutex_enter(p->pSrcDb->mutex);
|
||||
sqlite3BtreeEnter(p->pSrc);
|
||||
if( p->pDestDb ){
|
||||
sqlite3_mutex_enter(p->pDestDb->mutex);
|
||||
}
|
||||
|
||||
rc = p->rc;
|
||||
if( !isFatalError(rc) ){
|
||||
Pager * const pSrcPager = sqlite3BtreePager(p->pSrc); /* Source pager */
|
||||
Pager * const pDestPager = sqlite3BtreePager(p->pDest); /* Dest pager */
|
||||
int ii; /* Iterator variable */
|
||||
int nSrcPage = -1; /* Size of source db in pages */
|
||||
int bCloseTrans = 0; /* True if src db requires unlocking */
|
||||
|
||||
/* If the source pager is currently in a write-transaction, return
|
||||
** SQLITE_BUSY immediately.
|
||||
*/
|
||||
if( p->pDestDb && p->pSrc->pBt->inTransaction==TRANS_WRITE ){
|
||||
rc = SQLITE_BUSY;
|
||||
}else{
|
||||
rc = SQLITE_OK;
|
||||
}
|
||||
|
||||
/* Lock the destination database, if it is not locked already. */
|
||||
if( SQLITE_OK==rc && p->bDestLocked==0
|
||||
&& SQLITE_OK==(rc = sqlite3BtreeBeginTrans(p->pDest, 2))
|
||||
){
|
||||
p->bDestLocked = 1;
|
||||
rc = sqlite3BtreeGetMeta(p->pDest, 1, &p->iDestSchema);
|
||||
}
|
||||
|
||||
/* If there is no open read-transaction on the source database, open
|
||||
** one now. If a transaction is opened here, then it will be closed
|
||||
** before this function exits.
|
||||
*/
|
||||
if( rc==SQLITE_OK && 0==sqlite3BtreeIsInReadTrans(p->pSrc) ){
|
||||
rc = sqlite3BtreeBeginTrans(p->pSrc, 0);
|
||||
bCloseTrans = 1;
|
||||
}
|
||||
|
||||
/* Now that there is a read-lock on the source database, query the
|
||||
** source pager for the number of pages in the database.
|
||||
*/
|
||||
if( rc==SQLITE_OK ){
|
||||
rc = sqlite3PagerPagecount(pSrcPager, &nSrcPage);
|
||||
}
|
||||
for(ii=0; (nPage<0 || ii<nPage) && p->iNext<=(Pgno)nSrcPage && !rc; ii++){
|
||||
const Pgno iSrcPg = p->iNext; /* Source page number */
|
||||
if( iSrcPg!=PENDING_BYTE_PAGE(p->pSrc->pBt) ){
|
||||
DbPage *pSrcPg; /* Source page object */
|
||||
rc = sqlite3PagerGet(pSrcPager, iSrcPg, &pSrcPg);
|
||||
if( rc==SQLITE_OK ){
|
||||
rc = backupOnePage(p, iSrcPg, sqlite3PagerGetData(pSrcPg));
|
||||
sqlite3PagerUnref(pSrcPg);
|
||||
}
|
||||
}
|
||||
p->iNext++;
|
||||
}
|
||||
if( rc==SQLITE_OK ){
|
||||
p->nPagecount = nSrcPage;
|
||||
p->nRemaining = nSrcPage+1-p->iNext;
|
||||
if( p->iNext>(Pgno)nSrcPage ){
|
||||
rc = SQLITE_DONE;
|
||||
}
|
||||
}
|
||||
|
||||
if( rc==SQLITE_DONE ){
|
||||
const int nSrcPagesize = sqlite3BtreeGetPageSize(p->pSrc);
|
||||
const int nDestPagesize = sqlite3BtreeGetPageSize(p->pDest);
|
||||
int nDestTruncate;
|
||||
|
||||
/* Update the schema version field in the destination database. This
|
||||
** is to make sure that the schema-version really does change in
|
||||
** the case where the source and destination databases have the
|
||||
** same schema version.
|
||||
*/
|
||||
sqlite3BtreeUpdateMeta(p->pDest, 1, p->iDestSchema+1);
|
||||
if( p->pDestDb ){
|
||||
sqlite3ResetInternalSchema(p->pDestDb, 0);
|
||||
}
|
||||
|
||||
/* Set nDestTruncate to the final number of pages in the destination
|
||||
** database. The complication here is that the destination page
|
||||
** size may be different to the source page size.
|
||||
**
|
||||
** If the source page size is smaller than the destination page size,
|
||||
** round up. In this case the call to sqlite3OsTruncate() below will
|
||||
** fix the size of the file. However it is important to call
|
||||
** sqlite3PagerTruncateImage() here so that any pages in the
|
||||
** destination file that lie beyond the nDestTruncate page mark are
|
||||
** journalled by PagerCommitPhaseOne() before they are destroyed
|
||||
** by the file truncation.
|
||||
*/
|
||||
if( nSrcPagesize<nDestPagesize ){
|
||||
int ratio = nDestPagesize/nSrcPagesize;
|
||||
nDestTruncate = (nSrcPage+ratio-1)/ratio;
|
||||
if( nDestTruncate==(int)PENDING_BYTE_PAGE(p->pDest->pBt) ){
|
||||
nDestTruncate--;
|
||||
}
|
||||
}else{
|
||||
nDestTruncate = nSrcPage * (nSrcPagesize/nDestPagesize);
|
||||
}
|
||||
sqlite3PagerTruncateImage(pDestPager, nDestTruncate);
|
||||
|
||||
if( nSrcPagesize<nDestPagesize ){
|
||||
/* If the source page-size is smaller than the destination page-size,
|
||||
** two extra things may need to happen:
|
||||
**
|
||||
** * The destination may need to be truncated, and
|
||||
**
|
||||
** * Data stored on the pages immediately following the
|
||||
** pending-byte page in the source database may need to be
|
||||
** copied into the destination database.
|
||||
*/
|
||||
const i64 iSize = (i64)nSrcPagesize * (i64)nSrcPage;
|
||||
sqlite3_file * const pFile = sqlite3PagerFile(pDestPager);
|
||||
|
||||
assert( pFile );
|
||||
assert( (i64)nDestTruncate*(i64)nDestPagesize >= iSize || (
|
||||
nDestTruncate==(int)(PENDING_BYTE_PAGE(p->pDest->pBt)-1)
|
||||
&& iSize>=PENDING_BYTE && iSize<=PENDING_BYTE+nDestPagesize
|
||||
));
|
||||
if( SQLITE_OK==(rc = sqlite3PagerCommitPhaseOne(pDestPager, 0, 1))
|
||||
&& SQLITE_OK==(rc = backupTruncateFile(pFile, iSize))
|
||||
&& SQLITE_OK==(rc = sqlite3PagerSync(pDestPager))
|
||||
){
|
||||
i64 iOff;
|
||||
i64 iEnd = MIN(PENDING_BYTE + nDestPagesize, iSize);
|
||||
for(
|
||||
iOff=PENDING_BYTE+nSrcPagesize;
|
||||
rc==SQLITE_OK && iOff<iEnd;
|
||||
iOff+=nSrcPagesize
|
||||
){
|
||||
PgHdr *pSrcPg = 0;
|
||||
const Pgno iSrcPg = (Pgno)((iOff/nSrcPagesize)+1);
|
||||
rc = sqlite3PagerGet(pSrcPager, iSrcPg, &pSrcPg);
|
||||
if( rc==SQLITE_OK ){
|
||||
u8 *zData = sqlite3PagerGetData(pSrcPg);
|
||||
rc = sqlite3OsWrite(pFile, zData, nSrcPagesize, iOff);
|
||||
}
|
||||
sqlite3PagerUnref(pSrcPg);
|
||||
}
|
||||
}
|
||||
}else{
|
||||
rc = sqlite3PagerCommitPhaseOne(pDestPager, 0, 0);
|
||||
}
|
||||
|
||||
/* Finish committing the transaction to the destination database. */
|
||||
if( SQLITE_OK==rc
|
||||
&& SQLITE_OK==(rc = sqlite3BtreeCommitPhaseTwo(p->pDest))
|
||||
){
|
||||
rc = SQLITE_DONE;
|
||||
}
|
||||
}
|
||||
|
||||
/* If bCloseTrans is true, then this function opened a read transaction
|
||||
** on the source database. Close the read transaction here. There is
|
||||
** no need to check the return values of the btree methods here, as
|
||||
** "committing" a read-only transaction cannot fail.
|
||||
*/
|
||||
if( bCloseTrans ){
|
||||
TESTONLY( int rc2 );
|
||||
TESTONLY( rc2 = ) sqlite3BtreeCommitPhaseOne(p->pSrc, 0);
|
||||
TESTONLY( rc2 |= ) sqlite3BtreeCommitPhaseTwo(p->pSrc);
|
||||
assert( rc2==SQLITE_OK );
|
||||
}
|
||||
|
||||
p->rc = rc;
|
||||
}
|
||||
if( p->pDestDb ){
|
||||
sqlite3_mutex_leave(p->pDestDb->mutex);
|
||||
}
|
||||
sqlite3BtreeLeave(p->pSrc);
|
||||
sqlite3_mutex_leave(p->pSrcDb->mutex);
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** Release all resources associated with an sqlite3_backup* handle.
|
||||
*/
|
||||
int sqlite3_backup_finish(sqlite3_backup *p){
|
||||
sqlite3_backup **pp; /* Ptr to head of pagers backup list */
|
||||
sqlite3_mutex *mutex; /* Mutex to protect source database */
|
||||
int rc; /* Value to return */
|
||||
|
||||
/* Enter the mutexes */
|
||||
sqlite3_mutex_enter(p->pSrcDb->mutex);
|
||||
sqlite3BtreeEnter(p->pSrc);
|
||||
mutex = p->pSrcDb->mutex;
|
||||
if( p->pDestDb ){
|
||||
sqlite3_mutex_enter(p->pDestDb->mutex);
|
||||
}
|
||||
|
||||
/* Detach this backup from the source pager. */
|
||||
if( p->pDestDb ){
|
||||
pp = sqlite3PagerBackupPtr(sqlite3BtreePager(p->pSrc));
|
||||
while( *pp!=p ){
|
||||
pp = &(*pp)->pNext;
|
||||
}
|
||||
*pp = p->pNext;
|
||||
p->pSrc->nBackup--;
|
||||
}
|
||||
|
||||
/* If a transaction is still open on the Btree, roll it back. */
|
||||
sqlite3BtreeRollback(p->pDest);
|
||||
|
||||
/* Set the error code of the destination database handle. */
|
||||
rc = (p->rc==SQLITE_DONE) ? SQLITE_OK : p->rc;
|
||||
sqlite3Error(p->pDestDb, rc, 0);
|
||||
|
||||
/* Exit the mutexes and free the backup context structure. */
|
||||
if( p->pDestDb ){
|
||||
sqlite3_mutex_leave(p->pDestDb->mutex);
|
||||
}
|
||||
sqlite3BtreeLeave(p->pSrc);
|
||||
if( p->pDestDb ){
|
||||
sqlite3_free(p);
|
||||
}
|
||||
sqlite3_mutex_leave(mutex);
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** Return the number of pages still to be backed up as of the most recent
|
||||
** call to sqlite3_backup_step().
|
||||
*/
|
||||
int sqlite3_backup_remaining(sqlite3_backup *p){
|
||||
return p->nRemaining;
|
||||
}
|
||||
|
||||
/*
|
||||
** Return the total number of pages in the source database as of the most
|
||||
** recent call to sqlite3_backup_step().
|
||||
*/
|
||||
int sqlite3_backup_pagecount(sqlite3_backup *p){
|
||||
return p->nPagecount;
|
||||
}
|
||||
|
||||
/*
|
||||
** This function is called after the contents of page iPage of the
|
||||
** source database have been modified. If page iPage has already been
|
||||
** copied into the destination database, then the data written to the
|
||||
** destination is now invalidated. The destination copy of iPage needs
|
||||
** to be updated with the new data before the backup operation is
|
||||
** complete.
|
||||
**
|
||||
** It is assumed that the mutex associated with the BtShared object
|
||||
** corresponding to the source database is held when this function is
|
||||
** called.
|
||||
*/
|
||||
void sqlite3BackupUpdate(sqlite3_backup *pBackup, Pgno iPage, const u8 *aData){
|
||||
sqlite3_backup *p; /* Iterator variable */
|
||||
for(p=pBackup; p; p=p->pNext){
|
||||
assert( sqlite3_mutex_held(p->pSrc->pBt->mutex) );
|
||||
if( !isFatalError(p->rc) && iPage<p->iNext ){
|
||||
/* The backup process p has already copied page iPage. But now it
|
||||
** has been modified by a transaction on the source pager. Copy
|
||||
** the new data into the backup.
|
||||
*/
|
||||
int rc = backupOnePage(p, iPage, aData);
|
||||
assert( rc!=SQLITE_BUSY && rc!=SQLITE_LOCKED );
|
||||
if( rc!=SQLITE_OK ){
|
||||
p->rc = rc;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Restart the backup process. This is called when the pager layer
|
||||
** detects that the database has been modified by an external database
|
||||
** connection. In this case there is no way of knowing which of the
|
||||
** pages that have been copied into the destination database are still
|
||||
** valid and which are not, so the entire process needs to be restarted.
|
||||
**
|
||||
** It is assumed that the mutex associated with the BtShared object
|
||||
** corresponding to the source database is held when this function is
|
||||
** called.
|
||||
*/
|
||||
void sqlite3BackupRestart(sqlite3_backup *pBackup){
|
||||
sqlite3_backup *p; /* Iterator variable */
|
||||
for(p=pBackup; p; p=p->pNext){
|
||||
assert( sqlite3_mutex_held(p->pSrc->pBt->mutex) );
|
||||
p->iNext = 1;
|
||||
}
|
||||
}
|
||||
|
||||
#ifndef SQLITE_OMIT_VACUUM
|
||||
/*
|
||||
** Copy the complete content of pBtFrom into pBtTo. A transaction
|
||||
** must be active for both files.
|
||||
**
|
||||
** The size of file pTo may be reduced by this operation. If anything
|
||||
** goes wrong, the transaction on pTo is rolled back. If successful, the
|
||||
** transaction is committed before returning.
|
||||
*/
|
||||
int sqlite3BtreeCopyFile(Btree *pTo, Btree *pFrom){
|
||||
int rc;
|
||||
sqlite3_backup b;
|
||||
sqlite3BtreeEnter(pTo);
|
||||
sqlite3BtreeEnter(pFrom);
|
||||
|
||||
/* Set up an sqlite3_backup object. sqlite3_backup.pDestDb must be set
|
||||
** to 0. This is used by the implementations of sqlite3_backup_step()
|
||||
** and sqlite3_backup_finish() to detect that they are being called
|
||||
** from this function, not directly by the user.
|
||||
*/
|
||||
memset(&b, 0, sizeof(b));
|
||||
b.pSrcDb = pFrom->db;
|
||||
b.pSrc = pFrom;
|
||||
b.pDest = pTo;
|
||||
b.iNext = 1;
|
||||
|
||||
/* 0x7FFFFFFF is the hard limit for the number of pages in a database
|
||||
** file. By passing this as the number of pages to copy to
|
||||
** sqlite3_backup_step(), we can guarantee that the copy finishes
|
||||
** within a single call (unless an error occurs). The assert() statement
|
||||
** checks this assumption - (p->rc) should be set to either SQLITE_DONE
|
||||
** or an error code.
|
||||
*/
|
||||
sqlite3_backup_step(&b, 0x7FFFFFFF);
|
||||
assert( b.rc!=SQLITE_OK );
|
||||
rc = sqlite3_backup_finish(&b);
|
||||
if( rc==SQLITE_OK ){
|
||||
pTo->pBt->pageSizeFixed = 0;
|
||||
}
|
||||
|
||||
sqlite3BtreeLeave(pFrom);
|
||||
sqlite3BtreeLeave(pTo);
|
||||
return rc;
|
||||
}
|
||||
#endif /* SQLITE_OMIT_VACUUM */
|
396
bitvec.c
396
bitvec.c
|
@ -1,396 +0,0 @@
|
|||
/*
|
||||
** 2008 February 16
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This file implements an object that represents a fixed-length
|
||||
** bitmap. Bits are numbered starting with 1.
|
||||
**
|
||||
** A bitmap is used to record which pages of a database file have been
|
||||
** journalled during a transaction, or which pages have the "dont-write"
|
||||
** property. Usually only a few pages are meet either condition.
|
||||
** So the bitmap is usually sparse and has low cardinality.
|
||||
** But sometimes (for example when during a DROP of a large table) most
|
||||
** or all of the pages in a database can get journalled. In those cases,
|
||||
** the bitmap becomes dense with high cardinality. The algorithm needs
|
||||
** to handle both cases well.
|
||||
**
|
||||
** The size of the bitmap is fixed when the object is created.
|
||||
**
|
||||
** All bits are clear when the bitmap is created. Individual bits
|
||||
** may be set or cleared one at a time.
|
||||
**
|
||||
** Test operations are about 100 times more common that set operations.
|
||||
** Clear operations are exceedingly rare. There are usually between
|
||||
** 5 and 500 set operations per Bitvec object, though the number of sets can
|
||||
** sometimes grow into tens of thousands or larger. The size of the
|
||||
** Bitvec object is the number of pages in the database file at the
|
||||
** start of a transaction, and is thus usually less than a few thousand,
|
||||
** but can be as large as 2 billion for a really big database.
|
||||
**
|
||||
** @(#) $Id: bitvec.c,v 1.14 2009/04/01 23:49:04 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
/* Size of the Bitvec structure in bytes. */
|
||||
#define BITVEC_SZ 512
|
||||
|
||||
/* Round the union size down to the nearest pointer boundary, since that's how
|
||||
** it will be aligned within the Bitvec struct. */
|
||||
#define BITVEC_USIZE (((BITVEC_SZ-(3*sizeof(u32)))/sizeof(Bitvec*))*sizeof(Bitvec*))
|
||||
|
||||
/* Type of the array "element" for the bitmap representation.
|
||||
** Should be a power of 2, and ideally, evenly divide into BITVEC_USIZE.
|
||||
** Setting this to the "natural word" size of your CPU may improve
|
||||
** performance. */
|
||||
#define BITVEC_TELEM u8
|
||||
/* Size, in bits, of the bitmap element. */
|
||||
#define BITVEC_SZELEM 8
|
||||
/* Number of elements in a bitmap array. */
|
||||
#define BITVEC_NELEM (BITVEC_USIZE/sizeof(BITVEC_TELEM))
|
||||
/* Number of bits in the bitmap array. */
|
||||
#define BITVEC_NBIT (BITVEC_NELEM*BITVEC_SZELEM)
|
||||
|
||||
/* Number of u32 values in hash table. */
|
||||
#define BITVEC_NINT (BITVEC_USIZE/sizeof(u32))
|
||||
/* Maximum number of entries in hash table before
|
||||
** sub-dividing and re-hashing. */
|
||||
#define BITVEC_MXHASH (BITVEC_NINT/2)
|
||||
/* Hashing function for the aHash representation.
|
||||
** Empirical testing showed that the *37 multiplier
|
||||
** (an arbitrary prime)in the hash function provided
|
||||
** no fewer collisions than the no-op *1. */
|
||||
#define BITVEC_HASH(X) (((X)*1)%BITVEC_NINT)
|
||||
|
||||
#define BITVEC_NPTR (BITVEC_USIZE/sizeof(Bitvec *))
|
||||
|
||||
|
||||
/*
|
||||
** A bitmap is an instance of the following structure.
|
||||
**
|
||||
** This bitmap records the existance of zero or more bits
|
||||
** with values between 1 and iSize, inclusive.
|
||||
**
|
||||
** There are three possible representations of the bitmap.
|
||||
** If iSize<=BITVEC_NBIT, then Bitvec.u.aBitmap[] is a straight
|
||||
** bitmap. The least significant bit is bit 1.
|
||||
**
|
||||
** If iSize>BITVEC_NBIT and iDivisor==0 then Bitvec.u.aHash[] is
|
||||
** a hash table that will hold up to BITVEC_MXHASH distinct values.
|
||||
**
|
||||
** Otherwise, the value i is redirected into one of BITVEC_NPTR
|
||||
** sub-bitmaps pointed to by Bitvec.u.apSub[]. Each subbitmap
|
||||
** handles up to iDivisor separate values of i. apSub[0] holds
|
||||
** values between 1 and iDivisor. apSub[1] holds values between
|
||||
** iDivisor+1 and 2*iDivisor. apSub[N] holds values between
|
||||
** N*iDivisor+1 and (N+1)*iDivisor. Each subbitmap is normalized
|
||||
** to hold deal with values between 1 and iDivisor.
|
||||
*/
|
||||
struct Bitvec {
|
||||
u32 iSize; /* Maximum bit index. Max iSize is 4,294,967,296. */
|
||||
u32 nSet; /* Number of bits that are set - only valid for aHash
|
||||
** element. Max is BITVEC_NINT. For BITVEC_SZ of 512,
|
||||
** this would be 125. */
|
||||
u32 iDivisor; /* Number of bits handled by each apSub[] entry. */
|
||||
/* Should >=0 for apSub element. */
|
||||
/* Max iDivisor is max(u32) / BITVEC_NPTR + 1. */
|
||||
/* For a BITVEC_SZ of 512, this would be 34,359,739. */
|
||||
union {
|
||||
BITVEC_TELEM aBitmap[BITVEC_NELEM]; /* Bitmap representation */
|
||||
u32 aHash[BITVEC_NINT]; /* Hash table representation */
|
||||
Bitvec *apSub[BITVEC_NPTR]; /* Recursive representation */
|
||||
} u;
|
||||
};
|
||||
|
||||
/*
|
||||
** Create a new bitmap object able to handle bits between 0 and iSize,
|
||||
** inclusive. Return a pointer to the new object. Return NULL if
|
||||
** malloc fails.
|
||||
*/
|
||||
Bitvec *sqlite3BitvecCreate(u32 iSize){
|
||||
Bitvec *p;
|
||||
assert( sizeof(*p)==BITVEC_SZ );
|
||||
p = sqlite3MallocZero( sizeof(*p) );
|
||||
if( p ){
|
||||
p->iSize = iSize;
|
||||
}
|
||||
return p;
|
||||
}
|
||||
|
||||
/*
|
||||
** Check to see if the i-th bit is set. Return true or false.
|
||||
** If p is NULL (if the bitmap has not been created) or if
|
||||
** i is out of range, then return false.
|
||||
*/
|
||||
int sqlite3BitvecTest(Bitvec *p, u32 i){
|
||||
if( p==0 ) return 0;
|
||||
if( i>p->iSize || i==0 ) return 0;
|
||||
i--;
|
||||
while( p->iDivisor ){
|
||||
u32 bin = i/p->iDivisor;
|
||||
i = i%p->iDivisor;
|
||||
p = p->u.apSub[bin];
|
||||
if (!p) {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
if( p->iSize<=BITVEC_NBIT ){
|
||||
return (p->u.aBitmap[i/BITVEC_SZELEM] & (1<<(i&(BITVEC_SZELEM-1))))!=0;
|
||||
} else{
|
||||
u32 h = BITVEC_HASH(i++);
|
||||
while( p->u.aHash[h] ){
|
||||
if( p->u.aHash[h]==i ) return 1;
|
||||
h++;
|
||||
if( h>=BITVEC_NINT ) h = 0;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Set the i-th bit. Return 0 on success and an error code if
|
||||
** anything goes wrong.
|
||||
**
|
||||
** This routine might cause sub-bitmaps to be allocated. Failing
|
||||
** to get the memory needed to hold the sub-bitmap is the only
|
||||
** that can go wrong with an insert, assuming p and i are valid.
|
||||
**
|
||||
** The calling function must ensure that p is a valid Bitvec object
|
||||
** and that the value for "i" is within range of the Bitvec object.
|
||||
** Otherwise the behavior is undefined.
|
||||
*/
|
||||
int sqlite3BitvecSet(Bitvec *p, u32 i){
|
||||
u32 h;
|
||||
assert( p!=0 );
|
||||
assert( i>0 );
|
||||
assert( i<=p->iSize );
|
||||
i--;
|
||||
while((p->iSize > BITVEC_NBIT) && p->iDivisor) {
|
||||
u32 bin = i/p->iDivisor;
|
||||
i = i%p->iDivisor;
|
||||
if( p->u.apSub[bin]==0 ){
|
||||
p->u.apSub[bin] = sqlite3BitvecCreate( p->iDivisor );
|
||||
if( p->u.apSub[bin]==0 ) return SQLITE_NOMEM;
|
||||
}
|
||||
p = p->u.apSub[bin];
|
||||
}
|
||||
if( p->iSize<=BITVEC_NBIT ){
|
||||
p->u.aBitmap[i/BITVEC_SZELEM] |= 1 << (i&(BITVEC_SZELEM-1));
|
||||
return SQLITE_OK;
|
||||
}
|
||||
h = BITVEC_HASH(i++);
|
||||
/* if there wasn't a hash collision, and this doesn't */
|
||||
/* completely fill the hash, then just add it without */
|
||||
/* worring about sub-dividing and re-hashing. */
|
||||
if( !p->u.aHash[h] ){
|
||||
if (p->nSet<(BITVEC_NINT-1)) {
|
||||
goto bitvec_set_end;
|
||||
} else {
|
||||
goto bitvec_set_rehash;
|
||||
}
|
||||
}
|
||||
/* there was a collision, check to see if it's already */
|
||||
/* in hash, if not, try to find a spot for it */
|
||||
do {
|
||||
if( p->u.aHash[h]==i ) return SQLITE_OK;
|
||||
h++;
|
||||
if( h>=BITVEC_NINT ) h = 0;
|
||||
} while( p->u.aHash[h] );
|
||||
/* we didn't find it in the hash. h points to the first */
|
||||
/* available free spot. check to see if this is going to */
|
||||
/* make our hash too "full". */
|
||||
bitvec_set_rehash:
|
||||
if( p->nSet>=BITVEC_MXHASH ){
|
||||
unsigned int j;
|
||||
int rc;
|
||||
u32 aiValues[BITVEC_NINT];
|
||||
memcpy(aiValues, p->u.aHash, sizeof(aiValues));
|
||||
memset(p->u.apSub, 0, sizeof(aiValues));
|
||||
p->iDivisor = (p->iSize + BITVEC_NPTR - 1)/BITVEC_NPTR;
|
||||
rc = sqlite3BitvecSet(p, i);
|
||||
for(j=0; j<BITVEC_NINT; j++){
|
||||
if( aiValues[j] ) rc |= sqlite3BitvecSet(p, aiValues[j]);
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
bitvec_set_end:
|
||||
p->nSet++;
|
||||
p->u.aHash[h] = i;
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Clear the i-th bit.
|
||||
*/
|
||||
void sqlite3BitvecClear(Bitvec *p, u32 i){
|
||||
assert( p!=0 );
|
||||
assert( i>0 );
|
||||
i--;
|
||||
while( p->iDivisor ){
|
||||
u32 bin = i/p->iDivisor;
|
||||
i = i%p->iDivisor;
|
||||
p = p->u.apSub[bin];
|
||||
if (!p) {
|
||||
return;
|
||||
}
|
||||
}
|
||||
if( p->iSize<=BITVEC_NBIT ){
|
||||
p->u.aBitmap[i/BITVEC_SZELEM] &= ~(1 << (i&(BITVEC_SZELEM-1)));
|
||||
}else{
|
||||
unsigned int j;
|
||||
u32 aiValues[BITVEC_NINT];
|
||||
memcpy(aiValues, p->u.aHash, sizeof(aiValues));
|
||||
memset(p->u.aHash, 0, sizeof(aiValues));
|
||||
p->nSet = 0;
|
||||
for(j=0; j<BITVEC_NINT; j++){
|
||||
if( aiValues[j] && aiValues[j]!=(i+1) ){
|
||||
u32 h = BITVEC_HASH(aiValues[j]-1);
|
||||
p->nSet++;
|
||||
while( p->u.aHash[h] ){
|
||||
h++;
|
||||
if( h>=BITVEC_NINT ) h = 0;
|
||||
}
|
||||
p->u.aHash[h] = aiValues[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Destroy a bitmap object. Reclaim all memory used.
|
||||
*/
|
||||
void sqlite3BitvecDestroy(Bitvec *p){
|
||||
if( p==0 ) return;
|
||||
if( p->iDivisor ){
|
||||
unsigned int i;
|
||||
for(i=0; i<BITVEC_NPTR; i++){
|
||||
sqlite3BitvecDestroy(p->u.apSub[i]);
|
||||
}
|
||||
}
|
||||
sqlite3_free(p);
|
||||
}
|
||||
|
||||
/*
|
||||
** Return the value of the iSize parameter specified when Bitvec *p
|
||||
** was created.
|
||||
*/
|
||||
u32 sqlite3BitvecSize(Bitvec *p){
|
||||
return p->iSize;
|
||||
}
|
||||
|
||||
#ifndef SQLITE_OMIT_BUILTIN_TEST
|
||||
/*
|
||||
** Let V[] be an array of unsigned characters sufficient to hold
|
||||
** up to N bits. Let I be an integer between 0 and N. 0<=I<N.
|
||||
** Then the following macros can be used to set, clear, or test
|
||||
** individual bits within V.
|
||||
*/
|
||||
#define SETBIT(V,I) V[I>>3] |= (1<<(I&7))
|
||||
#define CLEARBIT(V,I) V[I>>3] &= ~(1<<(I&7))
|
||||
#define TESTBIT(V,I) (V[I>>3]&(1<<(I&7)))!=0
|
||||
|
||||
/*
|
||||
** This routine runs an extensive test of the Bitvec code.
|
||||
**
|
||||
** The input is an array of integers that acts as a program
|
||||
** to test the Bitvec. The integers are opcodes followed
|
||||
** by 0, 1, or 3 operands, depending on the opcode. Another
|
||||
** opcode follows immediately after the last operand.
|
||||
**
|
||||
** There are 6 opcodes numbered from 0 through 5. 0 is the
|
||||
** "halt" opcode and causes the test to end.
|
||||
**
|
||||
** 0 Halt and return the number of errors
|
||||
** 1 N S X Set N bits beginning with S and incrementing by X
|
||||
** 2 N S X Clear N bits beginning with S and incrementing by X
|
||||
** 3 N Set N randomly chosen bits
|
||||
** 4 N Clear N randomly chosen bits
|
||||
** 5 N S X Set N bits from S increment X in array only, not in bitvec
|
||||
**
|
||||
** The opcodes 1 through 4 perform set and clear operations are performed
|
||||
** on both a Bitvec object and on a linear array of bits obtained from malloc.
|
||||
** Opcode 5 works on the linear array only, not on the Bitvec.
|
||||
** Opcode 5 is used to deliberately induce a fault in order to
|
||||
** confirm that error detection works.
|
||||
**
|
||||
** At the conclusion of the test the linear array is compared
|
||||
** against the Bitvec object. If there are any differences,
|
||||
** an error is returned. If they are the same, zero is returned.
|
||||
**
|
||||
** If a memory allocation error occurs, return -1.
|
||||
*/
|
||||
int sqlite3BitvecBuiltinTest(int sz, int *aOp){
|
||||
Bitvec *pBitvec = 0;
|
||||
unsigned char *pV = 0;
|
||||
int rc = -1;
|
||||
int i, nx, pc, op;
|
||||
|
||||
/* Allocate the Bitvec to be tested and a linear array of
|
||||
** bits to act as the reference */
|
||||
pBitvec = sqlite3BitvecCreate( sz );
|
||||
pV = sqlite3_malloc( (sz+7)/8 + 1 );
|
||||
if( pBitvec==0 || pV==0 ) goto bitvec_end;
|
||||
memset(pV, 0, (sz+7)/8 + 1);
|
||||
|
||||
/* Run the program */
|
||||
pc = 0;
|
||||
while( (op = aOp[pc])!=0 ){
|
||||
switch( op ){
|
||||
case 1:
|
||||
case 2:
|
||||
case 5: {
|
||||
nx = 4;
|
||||
i = aOp[pc+2] - 1;
|
||||
aOp[pc+2] += aOp[pc+3];
|
||||
break;
|
||||
}
|
||||
case 3:
|
||||
case 4:
|
||||
default: {
|
||||
nx = 2;
|
||||
sqlite3_randomness(sizeof(i), &i);
|
||||
break;
|
||||
}
|
||||
}
|
||||
if( (--aOp[pc+1]) > 0 ) nx = 0;
|
||||
pc += nx;
|
||||
i = (i & 0x7fffffff)%sz;
|
||||
if( (op & 1)!=0 ){
|
||||
SETBIT(pV, (i+1));
|
||||
if( op!=5 ){
|
||||
if( sqlite3BitvecSet(pBitvec, i+1) ) goto bitvec_end;
|
||||
}
|
||||
}else{
|
||||
CLEARBIT(pV, (i+1));
|
||||
sqlite3BitvecClear(pBitvec, i+1);
|
||||
}
|
||||
}
|
||||
|
||||
/* Test to make sure the linear array exactly matches the
|
||||
** Bitvec object. Start with the assumption that they do
|
||||
** match (rc==0). Change rc to non-zero if a discrepancy
|
||||
** is found.
|
||||
*/
|
||||
rc = sqlite3BitvecTest(0,0) + sqlite3BitvecTest(pBitvec, sz+1)
|
||||
+ sqlite3BitvecTest(pBitvec, 0)
|
||||
+ (sqlite3BitvecSize(pBitvec) - sz);
|
||||
for(i=1; i<=sz; i++){
|
||||
if( (TESTBIT(pV,i))!=sqlite3BitvecTest(pBitvec,i) ){
|
||||
rc = i;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
/* Free allocated structure */
|
||||
bitvec_end:
|
||||
sqlite3_free(pV);
|
||||
sqlite3BitvecDestroy(pBitvec);
|
||||
return rc;
|
||||
}
|
||||
#endif /* SQLITE_OMIT_BUILTIN_TEST */
|
354
btmutex.c
354
btmutex.c
|
@ -1,354 +0,0 @@
|
|||
/*
|
||||
** 2007 August 27
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
**
|
||||
** $Id: btmutex.c,v 1.15 2009/04/10 12:55:17 danielk1977 Exp $
|
||||
**
|
||||
** This file contains code used to implement mutexes on Btree objects.
|
||||
** This code really belongs in btree.c. But btree.c is getting too
|
||||
** big and we want to break it down some. This packaged seemed like
|
||||
** a good breakout.
|
||||
*/
|
||||
#include "btreeInt.h"
|
||||
#ifndef SQLITE_OMIT_SHARED_CACHE
|
||||
#if SQLITE_THREADSAFE
|
||||
|
||||
/*
|
||||
** Obtain the BtShared mutex associated with B-Tree handle p. Also,
|
||||
** set BtShared.db to the database handle associated with p and the
|
||||
** p->locked boolean to true.
|
||||
*/
|
||||
static void lockBtreeMutex(Btree *p){
|
||||
assert( p->locked==0 );
|
||||
assert( sqlite3_mutex_notheld(p->pBt->mutex) );
|
||||
assert( sqlite3_mutex_held(p->db->mutex) );
|
||||
|
||||
sqlite3_mutex_enter(p->pBt->mutex);
|
||||
p->pBt->db = p->db;
|
||||
p->locked = 1;
|
||||
}
|
||||
|
||||
/*
|
||||
** Release the BtShared mutex associated with B-Tree handle p and
|
||||
** clear the p->locked boolean.
|
||||
*/
|
||||
static void unlockBtreeMutex(Btree *p){
|
||||
assert( p->locked==1 );
|
||||
assert( sqlite3_mutex_held(p->pBt->mutex) );
|
||||
assert( sqlite3_mutex_held(p->db->mutex) );
|
||||
assert( p->db==p->pBt->db );
|
||||
|
||||
sqlite3_mutex_leave(p->pBt->mutex);
|
||||
p->locked = 0;
|
||||
}
|
||||
|
||||
/*
|
||||
** Enter a mutex on the given BTree object.
|
||||
**
|
||||
** If the object is not sharable, then no mutex is ever required
|
||||
** and this routine is a no-op. The underlying mutex is non-recursive.
|
||||
** But we keep a reference count in Btree.wantToLock so the behavior
|
||||
** of this interface is recursive.
|
||||
**
|
||||
** To avoid deadlocks, multiple Btrees are locked in the same order
|
||||
** by all database connections. The p->pNext is a list of other
|
||||
** Btrees belonging to the same database connection as the p Btree
|
||||
** which need to be locked after p. If we cannot get a lock on
|
||||
** p, then first unlock all of the others on p->pNext, then wait
|
||||
** for the lock to become available on p, then relock all of the
|
||||
** subsequent Btrees that desire a lock.
|
||||
*/
|
||||
void sqlite3BtreeEnter(Btree *p){
|
||||
Btree *pLater;
|
||||
|
||||
/* Some basic sanity checking on the Btree. The list of Btrees
|
||||
** connected by pNext and pPrev should be in sorted order by
|
||||
** Btree.pBt value. All elements of the list should belong to
|
||||
** the same connection. Only shared Btrees are on the list. */
|
||||
assert( p->pNext==0 || p->pNext->pBt>p->pBt );
|
||||
assert( p->pPrev==0 || p->pPrev->pBt<p->pBt );
|
||||
assert( p->pNext==0 || p->pNext->db==p->db );
|
||||
assert( p->pPrev==0 || p->pPrev->db==p->db );
|
||||
assert( p->sharable || (p->pNext==0 && p->pPrev==0) );
|
||||
|
||||
/* Check for locking consistency */
|
||||
assert( !p->locked || p->wantToLock>0 );
|
||||
assert( p->sharable || p->wantToLock==0 );
|
||||
|
||||
/* We should already hold a lock on the database connection */
|
||||
assert( sqlite3_mutex_held(p->db->mutex) );
|
||||
|
||||
/* Unless the database is sharable and unlocked, then BtShared.db
|
||||
** should already be set correctly. */
|
||||
assert( (p->locked==0 && p->sharable) || p->pBt->db==p->db );
|
||||
|
||||
if( !p->sharable ) return;
|
||||
p->wantToLock++;
|
||||
if( p->locked ) return;
|
||||
|
||||
/* In most cases, we should be able to acquire the lock we
|
||||
** want without having to go throught the ascending lock
|
||||
** procedure that follows. Just be sure not to block.
|
||||
*/
|
||||
if( sqlite3_mutex_try(p->pBt->mutex)==SQLITE_OK ){
|
||||
p->pBt->db = p->db;
|
||||
p->locked = 1;
|
||||
return;
|
||||
}
|
||||
|
||||
/* To avoid deadlock, first release all locks with a larger
|
||||
** BtShared address. Then acquire our lock. Then reacquire
|
||||
** the other BtShared locks that we used to hold in ascending
|
||||
** order.
|
||||
*/
|
||||
for(pLater=p->pNext; pLater; pLater=pLater->pNext){
|
||||
assert( pLater->sharable );
|
||||
assert( pLater->pNext==0 || pLater->pNext->pBt>pLater->pBt );
|
||||
assert( !pLater->locked || pLater->wantToLock>0 );
|
||||
if( pLater->locked ){
|
||||
unlockBtreeMutex(pLater);
|
||||
}
|
||||
}
|
||||
lockBtreeMutex(p);
|
||||
for(pLater=p->pNext; pLater; pLater=pLater->pNext){
|
||||
if( pLater->wantToLock ){
|
||||
lockBtreeMutex(pLater);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Exit the recursive mutex on a Btree.
|
||||
*/
|
||||
void sqlite3BtreeLeave(Btree *p){
|
||||
if( p->sharable ){
|
||||
assert( p->wantToLock>0 );
|
||||
p->wantToLock--;
|
||||
if( p->wantToLock==0 ){
|
||||
unlockBtreeMutex(p);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#ifndef NDEBUG
|
||||
/*
|
||||
** Return true if the BtShared mutex is held on the btree, or if the
|
||||
** B-Tree is not marked as sharable.
|
||||
**
|
||||
** This routine is used only from within assert() statements.
|
||||
*/
|
||||
int sqlite3BtreeHoldsMutex(Btree *p){
|
||||
assert( p->sharable==0 || p->locked==0 || p->wantToLock>0 );
|
||||
assert( p->sharable==0 || p->locked==0 || p->db==p->pBt->db );
|
||||
assert( p->sharable==0 || p->locked==0 || sqlite3_mutex_held(p->pBt->mutex) );
|
||||
assert( p->sharable==0 || p->locked==0 || sqlite3_mutex_held(p->db->mutex) );
|
||||
|
||||
return (p->sharable==0 || p->locked);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
#ifndef SQLITE_OMIT_INCRBLOB
|
||||
/*
|
||||
** Enter and leave a mutex on a Btree given a cursor owned by that
|
||||
** Btree. These entry points are used by incremental I/O and can be
|
||||
** omitted if that module is not used.
|
||||
*/
|
||||
void sqlite3BtreeEnterCursor(BtCursor *pCur){
|
||||
sqlite3BtreeEnter(pCur->pBtree);
|
||||
}
|
||||
void sqlite3BtreeLeaveCursor(BtCursor *pCur){
|
||||
sqlite3BtreeLeave(pCur->pBtree);
|
||||
}
|
||||
#endif /* SQLITE_OMIT_INCRBLOB */
|
||||
|
||||
|
||||
/*
|
||||
** Enter the mutex on every Btree associated with a database
|
||||
** connection. This is needed (for example) prior to parsing
|
||||
** a statement since we will be comparing table and column names
|
||||
** against all schemas and we do not want those schemas being
|
||||
** reset out from under us.
|
||||
**
|
||||
** There is a corresponding leave-all procedures.
|
||||
**
|
||||
** Enter the mutexes in accending order by BtShared pointer address
|
||||
** to avoid the possibility of deadlock when two threads with
|
||||
** two or more btrees in common both try to lock all their btrees
|
||||
** at the same instant.
|
||||
*/
|
||||
void sqlite3BtreeEnterAll(sqlite3 *db){
|
||||
int i;
|
||||
Btree *p, *pLater;
|
||||
assert( sqlite3_mutex_held(db->mutex) );
|
||||
for(i=0; i<db->nDb; i++){
|
||||
p = db->aDb[i].pBt;
|
||||
assert( !p || (p->locked==0 && p->sharable) || p->pBt->db==p->db );
|
||||
if( p && p->sharable ){
|
||||
p->wantToLock++;
|
||||
if( !p->locked ){
|
||||
assert( p->wantToLock==1 );
|
||||
while( p->pPrev ) p = p->pPrev;
|
||||
while( p->locked && p->pNext ) p = p->pNext;
|
||||
for(pLater = p->pNext; pLater; pLater=pLater->pNext){
|
||||
if( pLater->locked ){
|
||||
unlockBtreeMutex(pLater);
|
||||
}
|
||||
}
|
||||
while( p ){
|
||||
lockBtreeMutex(p);
|
||||
p = p->pNext;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
void sqlite3BtreeLeaveAll(sqlite3 *db){
|
||||
int i;
|
||||
Btree *p;
|
||||
assert( sqlite3_mutex_held(db->mutex) );
|
||||
for(i=0; i<db->nDb; i++){
|
||||
p = db->aDb[i].pBt;
|
||||
if( p && p->sharable ){
|
||||
assert( p->wantToLock>0 );
|
||||
p->wantToLock--;
|
||||
if( p->wantToLock==0 ){
|
||||
unlockBtreeMutex(p);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#ifndef NDEBUG
|
||||
/*
|
||||
** Return true if the current thread holds the database connection
|
||||
** mutex and all required BtShared mutexes.
|
||||
**
|
||||
** This routine is used inside assert() statements only.
|
||||
*/
|
||||
int sqlite3BtreeHoldsAllMutexes(sqlite3 *db){
|
||||
int i;
|
||||
if( !sqlite3_mutex_held(db->mutex) ){
|
||||
return 0;
|
||||
}
|
||||
for(i=0; i<db->nDb; i++){
|
||||
Btree *p;
|
||||
p = db->aDb[i].pBt;
|
||||
if( p && p->sharable &&
|
||||
(p->wantToLock==0 || !sqlite3_mutex_held(p->pBt->mutex)) ){
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
#endif /* NDEBUG */
|
||||
|
||||
/*
|
||||
** Add a new Btree pointer to a BtreeMutexArray.
|
||||
** if the pointer can possibly be shared with
|
||||
** another database connection.
|
||||
**
|
||||
** The pointers are kept in sorted order by pBtree->pBt. That
|
||||
** way when we go to enter all the mutexes, we can enter them
|
||||
** in order without every having to backup and retry and without
|
||||
** worrying about deadlock.
|
||||
**
|
||||
** The number of shared btrees will always be small (usually 0 or 1)
|
||||
** so an insertion sort is an adequate algorithm here.
|
||||
*/
|
||||
void sqlite3BtreeMutexArrayInsert(BtreeMutexArray *pArray, Btree *pBtree){
|
||||
int i, j;
|
||||
BtShared *pBt;
|
||||
if( pBtree==0 || pBtree->sharable==0 ) return;
|
||||
#ifndef NDEBUG
|
||||
{
|
||||
for(i=0; i<pArray->nMutex; i++){
|
||||
assert( pArray->aBtree[i]!=pBtree );
|
||||
}
|
||||
}
|
||||
#endif
|
||||
assert( pArray->nMutex>=0 );
|
||||
assert( pArray->nMutex<ArraySize(pArray->aBtree)-1 );
|
||||
pBt = pBtree->pBt;
|
||||
for(i=0; i<pArray->nMutex; i++){
|
||||
assert( pArray->aBtree[i]!=pBtree );
|
||||
if( pArray->aBtree[i]->pBt>pBt ){
|
||||
for(j=pArray->nMutex; j>i; j--){
|
||||
pArray->aBtree[j] = pArray->aBtree[j-1];
|
||||
}
|
||||
pArray->aBtree[i] = pBtree;
|
||||
pArray->nMutex++;
|
||||
return;
|
||||
}
|
||||
}
|
||||
pArray->aBtree[pArray->nMutex++] = pBtree;
|
||||
}
|
||||
|
||||
/*
|
||||
** Enter the mutex of every btree in the array. This routine is
|
||||
** called at the beginning of sqlite3VdbeExec(). The mutexes are
|
||||
** exited at the end of the same function.
|
||||
*/
|
||||
void sqlite3BtreeMutexArrayEnter(BtreeMutexArray *pArray){
|
||||
int i;
|
||||
for(i=0; i<pArray->nMutex; i++){
|
||||
Btree *p = pArray->aBtree[i];
|
||||
/* Some basic sanity checking */
|
||||
assert( i==0 || pArray->aBtree[i-1]->pBt<p->pBt );
|
||||
assert( !p->locked || p->wantToLock>0 );
|
||||
|
||||
/* We should already hold a lock on the database connection */
|
||||
assert( sqlite3_mutex_held(p->db->mutex) );
|
||||
|
||||
p->wantToLock++;
|
||||
if( !p->locked && p->sharable ){
|
||||
lockBtreeMutex(p);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Leave the mutex of every btree in the group.
|
||||
*/
|
||||
void sqlite3BtreeMutexArrayLeave(BtreeMutexArray *pArray){
|
||||
int i;
|
||||
for(i=0; i<pArray->nMutex; i++){
|
||||
Btree *p = pArray->aBtree[i];
|
||||
/* Some basic sanity checking */
|
||||
assert( i==0 || pArray->aBtree[i-1]->pBt<p->pBt );
|
||||
assert( p->locked || !p->sharable );
|
||||
assert( p->wantToLock>0 );
|
||||
|
||||
/* We should already hold a lock on the database connection */
|
||||
assert( sqlite3_mutex_held(p->db->mutex) );
|
||||
|
||||
p->wantToLock--;
|
||||
if( p->wantToLock==0 && p->locked ){
|
||||
unlockBtreeMutex(p);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#else
|
||||
void sqlite3BtreeEnter(Btree *p){
|
||||
p->pBt->db = p->db;
|
||||
}
|
||||
void sqlite3BtreeEnterAll(sqlite3 *db){
|
||||
int i;
|
||||
for(i=0; i<db->nDb; i++){
|
||||
Btree *p = db->aDb[i].pBt;
|
||||
if( p ){
|
||||
p->pBt->db = p->db;
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif /* if SQLITE_THREADSAFE */
|
||||
#endif /* ifndef SQLITE_OMIT_SHARED_CACHE */
|
225
btree.h
225
btree.h
|
@ -1,225 +0,0 @@
|
|||
/*
|
||||
** 2001 September 15
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This header file defines the interface that the sqlite B-Tree file
|
||||
** subsystem. See comments in the source code for a detailed description
|
||||
** of what each interface routine does.
|
||||
**
|
||||
** @(#) $Id: btree.h,v 1.113 2009/04/10 12:55:17 danielk1977 Exp $
|
||||
*/
|
||||
#ifndef _BTREE_H_
|
||||
#define _BTREE_H_
|
||||
|
||||
/* TODO: This definition is just included so other modules compile. It
|
||||
** needs to be revisited.
|
||||
*/
|
||||
#define SQLITE_N_BTREE_META 10
|
||||
|
||||
/*
|
||||
** If defined as non-zero, auto-vacuum is enabled by default. Otherwise
|
||||
** it must be turned on for each database using "PRAGMA auto_vacuum = 1".
|
||||
*/
|
||||
#ifndef SQLITE_DEFAULT_AUTOVACUUM
|
||||
#define SQLITE_DEFAULT_AUTOVACUUM 0
|
||||
#endif
|
||||
|
||||
#define BTREE_AUTOVACUUM_NONE 0 /* Do not do auto-vacuum */
|
||||
#define BTREE_AUTOVACUUM_FULL 1 /* Do full auto-vacuum */
|
||||
#define BTREE_AUTOVACUUM_INCR 2 /* Incremental vacuum */
|
||||
|
||||
/*
|
||||
** Forward declarations of structure
|
||||
*/
|
||||
typedef struct Btree Btree;
|
||||
typedef struct BtCursor BtCursor;
|
||||
typedef struct BtShared BtShared;
|
||||
typedef struct BtreeMutexArray BtreeMutexArray;
|
||||
|
||||
/*
|
||||
** This structure records all of the Btrees that need to hold
|
||||
** a mutex before we enter sqlite3VdbeExec(). The Btrees are
|
||||
** are placed in aBtree[] in order of aBtree[]->pBt. That way,
|
||||
** we can always lock and unlock them all quickly.
|
||||
*/
|
||||
struct BtreeMutexArray {
|
||||
int nMutex;
|
||||
Btree *aBtree[SQLITE_MAX_ATTACHED+1];
|
||||
};
|
||||
|
||||
|
||||
int sqlite3BtreeOpen(
|
||||
const char *zFilename, /* Name of database file to open */
|
||||
sqlite3 *db, /* Associated database connection */
|
||||
Btree **, /* Return open Btree* here */
|
||||
int flags, /* Flags */
|
||||
int vfsFlags /* Flags passed through to VFS open */
|
||||
);
|
||||
|
||||
/* The flags parameter to sqlite3BtreeOpen can be the bitwise or of the
|
||||
** following values.
|
||||
**
|
||||
** NOTE: These values must match the corresponding PAGER_ values in
|
||||
** pager.h.
|
||||
*/
|
||||
#define BTREE_OMIT_JOURNAL 1 /* Do not use journal. No argument */
|
||||
#define BTREE_NO_READLOCK 2 /* Omit readlocks on readonly files */
|
||||
#define BTREE_MEMORY 4 /* In-memory DB. No argument */
|
||||
#define BTREE_READONLY 8 /* Open the database in read-only mode */
|
||||
#define BTREE_READWRITE 16 /* Open for both reading and writing */
|
||||
#define BTREE_CREATE 32 /* Create the database if it does not exist */
|
||||
|
||||
int sqlite3BtreeClose(Btree*);
|
||||
int sqlite3BtreeSetCacheSize(Btree*,int);
|
||||
int sqlite3BtreeSetSafetyLevel(Btree*,int,int);
|
||||
int sqlite3BtreeSyncDisabled(Btree*);
|
||||
int sqlite3BtreeSetPageSize(Btree*,int,int,int);
|
||||
int sqlite3BtreeGetPageSize(Btree*);
|
||||
int sqlite3BtreeMaxPageCount(Btree*,int);
|
||||
int sqlite3BtreeGetReserve(Btree*);
|
||||
int sqlite3BtreeSetAutoVacuum(Btree *, int);
|
||||
int sqlite3BtreeGetAutoVacuum(Btree *);
|
||||
int sqlite3BtreeBeginTrans(Btree*,int);
|
||||
int sqlite3BtreeCommitPhaseOne(Btree*, const char *zMaster);
|
||||
int sqlite3BtreeCommitPhaseTwo(Btree*);
|
||||
int sqlite3BtreeCommit(Btree*);
|
||||
int sqlite3BtreeRollback(Btree*);
|
||||
int sqlite3BtreeBeginStmt(Btree*,int);
|
||||
int sqlite3BtreeCreateTable(Btree*, int*, int flags);
|
||||
int sqlite3BtreeIsInTrans(Btree*);
|
||||
int sqlite3BtreeIsInReadTrans(Btree*);
|
||||
int sqlite3BtreeIsInBackup(Btree*);
|
||||
void *sqlite3BtreeSchema(Btree *, int, void(*)(void *));
|
||||
int sqlite3BtreeSchemaLocked(Btree *);
|
||||
int sqlite3BtreeLockTable(Btree *, int, u8);
|
||||
int sqlite3BtreeSavepoint(Btree *, int, int);
|
||||
|
||||
const char *sqlite3BtreeGetFilename(Btree *);
|
||||
const char *sqlite3BtreeGetJournalname(Btree *);
|
||||
int sqlite3BtreeCopyFile(Btree *, Btree *);
|
||||
|
||||
int sqlite3BtreeIncrVacuum(Btree *);
|
||||
|
||||
/* The flags parameter to sqlite3BtreeCreateTable can be the bitwise OR
|
||||
** of the following flags:
|
||||
*/
|
||||
#define BTREE_INTKEY 1 /* Table has only 64-bit signed integer keys */
|
||||
#define BTREE_ZERODATA 2 /* Table has keys only - no data */
|
||||
#define BTREE_LEAFDATA 4 /* Data stored in leaves only. Implies INTKEY */
|
||||
|
||||
int sqlite3BtreeDropTable(Btree*, int, int*);
|
||||
int sqlite3BtreeClearTable(Btree*, int, int*);
|
||||
int sqlite3BtreeGetMeta(Btree*, int idx, u32 *pValue);
|
||||
int sqlite3BtreeUpdateMeta(Btree*, int idx, u32 value);
|
||||
void sqlite3BtreeTripAllCursors(Btree*, int);
|
||||
|
||||
int sqlite3BtreeCursor(
|
||||
Btree*, /* BTree containing table to open */
|
||||
int iTable, /* Index of root page */
|
||||
int wrFlag, /* 1 for writing. 0 for read-only */
|
||||
struct KeyInfo*, /* First argument to compare function */
|
||||
BtCursor *pCursor /* Space to write cursor structure */
|
||||
);
|
||||
int sqlite3BtreeCursorSize(void);
|
||||
|
||||
int sqlite3BtreeCloseCursor(BtCursor*);
|
||||
int sqlite3BtreeMoveto(
|
||||
BtCursor*,
|
||||
const void *pKey,
|
||||
i64 nKey,
|
||||
int bias,
|
||||
int *pRes
|
||||
);
|
||||
int sqlite3BtreeMovetoUnpacked(
|
||||
BtCursor*,
|
||||
UnpackedRecord *pUnKey,
|
||||
i64 intKey,
|
||||
int bias,
|
||||
int *pRes
|
||||
);
|
||||
int sqlite3BtreeCursorHasMoved(BtCursor*, int*);
|
||||
int sqlite3BtreeDelete(BtCursor*);
|
||||
int sqlite3BtreeInsert(BtCursor*, const void *pKey, i64 nKey,
|
||||
const void *pData, int nData,
|
||||
int nZero, int bias);
|
||||
int sqlite3BtreeFirst(BtCursor*, int *pRes);
|
||||
int sqlite3BtreeLast(BtCursor*, int *pRes);
|
||||
int sqlite3BtreeNext(BtCursor*, int *pRes);
|
||||
int sqlite3BtreeEof(BtCursor*);
|
||||
int sqlite3BtreeFlags(BtCursor*);
|
||||
int sqlite3BtreePrevious(BtCursor*, int *pRes);
|
||||
int sqlite3BtreeKeySize(BtCursor*, i64 *pSize);
|
||||
int sqlite3BtreeKey(BtCursor*, u32 offset, u32 amt, void*);
|
||||
sqlite3 *sqlite3BtreeCursorDb(const BtCursor*);
|
||||
const void *sqlite3BtreeKeyFetch(BtCursor*, int *pAmt);
|
||||
const void *sqlite3BtreeDataFetch(BtCursor*, int *pAmt);
|
||||
int sqlite3BtreeDataSize(BtCursor*, u32 *pSize);
|
||||
int sqlite3BtreeData(BtCursor*, u32 offset, u32 amt, void*);
|
||||
void sqlite3BtreeSetCachedRowid(BtCursor*, sqlite3_int64);
|
||||
sqlite3_int64 sqlite3BtreeGetCachedRowid(BtCursor*);
|
||||
|
||||
char *sqlite3BtreeIntegrityCheck(Btree*, int *aRoot, int nRoot, int, int*);
|
||||
struct Pager *sqlite3BtreePager(Btree*);
|
||||
|
||||
int sqlite3BtreePutData(BtCursor*, u32 offset, u32 amt, void*);
|
||||
void sqlite3BtreeCacheOverflow(BtCursor *);
|
||||
void sqlite3BtreeClearCursor(BtCursor *);
|
||||
|
||||
#ifndef SQLITE_OMIT_BTREECOUNT
|
||||
int sqlite3BtreeCount(BtCursor *, i64 *);
|
||||
#endif
|
||||
|
||||
#ifdef SQLITE_TEST
|
||||
int sqlite3BtreeCursorInfo(BtCursor*, int*, int);
|
||||
void sqlite3BtreeCursorList(Btree*);
|
||||
#endif
|
||||
|
||||
/*
|
||||
** If we are not using shared cache, then there is no need to
|
||||
** use mutexes to access the BtShared structures. So make the
|
||||
** Enter and Leave procedures no-ops.
|
||||
*/
|
||||
#ifndef SQLITE_OMIT_SHARED_CACHE
|
||||
void sqlite3BtreeEnter(Btree*);
|
||||
void sqlite3BtreeEnterAll(sqlite3*);
|
||||
#else
|
||||
# define sqlite3BtreeEnter(X)
|
||||
# define sqlite3BtreeEnterAll(X)
|
||||
#endif
|
||||
|
||||
#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE
|
||||
void sqlite3BtreeLeave(Btree*);
|
||||
void sqlite3BtreeEnterCursor(BtCursor*);
|
||||
void sqlite3BtreeLeaveCursor(BtCursor*);
|
||||
void sqlite3BtreeLeaveAll(sqlite3*);
|
||||
void sqlite3BtreeMutexArrayEnter(BtreeMutexArray*);
|
||||
void sqlite3BtreeMutexArrayLeave(BtreeMutexArray*);
|
||||
void sqlite3BtreeMutexArrayInsert(BtreeMutexArray*, Btree*);
|
||||
#ifndef NDEBUG
|
||||
/* These routines are used inside assert() statements only. */
|
||||
int sqlite3BtreeHoldsMutex(Btree*);
|
||||
int sqlite3BtreeHoldsAllMutexes(sqlite3*);
|
||||
#endif
|
||||
#else
|
||||
|
||||
# define sqlite3BtreeLeave(X)
|
||||
# define sqlite3BtreeEnterCursor(X)
|
||||
# define sqlite3BtreeLeaveCursor(X)
|
||||
# define sqlite3BtreeLeaveAll(X)
|
||||
# define sqlite3BtreeMutexArrayEnter(X)
|
||||
# define sqlite3BtreeMutexArrayLeave(X)
|
||||
# define sqlite3BtreeMutexArrayInsert(X,Y)
|
||||
|
||||
# define sqlite3BtreeHoldsMutex(X) 1
|
||||
# define sqlite3BtreeHoldsAllMutexes(X) 1
|
||||
#endif
|
||||
|
||||
|
||||
#endif /* _BTREE_H_ */
|
641
btreeInt.h
641
btreeInt.h
|
@ -1,641 +0,0 @@
|
|||
/*
|
||||
** 2004 April 6
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** $Id: btreeInt.h,v 1.46 2009/03/20 14:18:52 danielk1977 Exp $
|
||||
**
|
||||
** This file implements a external (disk-based) database using BTrees.
|
||||
** For a detailed discussion of BTrees, refer to
|
||||
**
|
||||
** Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3:
|
||||
** "Sorting And Searching", pages 473-480. Addison-Wesley
|
||||
** Publishing Company, Reading, Massachusetts.
|
||||
**
|
||||
** The basic idea is that each page of the file contains N database
|
||||
** entries and N+1 pointers to subpages.
|
||||
**
|
||||
** ----------------------------------------------------------------
|
||||
** | Ptr(0) | Key(0) | Ptr(1) | Key(1) | ... | Key(N-1) | Ptr(N) |
|
||||
** ----------------------------------------------------------------
|
||||
**
|
||||
** All of the keys on the page that Ptr(0) points to have values less
|
||||
** than Key(0). All of the keys on page Ptr(1) and its subpages have
|
||||
** values greater than Key(0) and less than Key(1). All of the keys
|
||||
** on Ptr(N) and its subpages have values greater than Key(N-1). And
|
||||
** so forth.
|
||||
**
|
||||
** Finding a particular key requires reading O(log(M)) pages from the
|
||||
** disk where M is the number of entries in the tree.
|
||||
**
|
||||
** In this implementation, a single file can hold one or more separate
|
||||
** BTrees. Each BTree is identified by the index of its root page. The
|
||||
** key and data for any entry are combined to form the "payload". A
|
||||
** fixed amount of payload can be carried directly on the database
|
||||
** page. If the payload is larger than the preset amount then surplus
|
||||
** bytes are stored on overflow pages. The payload for an entry
|
||||
** and the preceding pointer are combined to form a "Cell". Each
|
||||
** page has a small header which contains the Ptr(N) pointer and other
|
||||
** information such as the size of key and data.
|
||||
**
|
||||
** FORMAT DETAILS
|
||||
**
|
||||
** The file is divided into pages. The first page is called page 1,
|
||||
** the second is page 2, and so forth. A page number of zero indicates
|
||||
** "no such page". The page size can be anything between 512 and 65536.
|
||||
** Each page can be either a btree page, a freelist page or an overflow
|
||||
** page.
|
||||
**
|
||||
** The first page is always a btree page. The first 100 bytes of the first
|
||||
** page contain a special header (the "file header") that describes the file.
|
||||
** The format of the file header is as follows:
|
||||
**
|
||||
** OFFSET SIZE DESCRIPTION
|
||||
** 0 16 Header string: "SQLite format 3\000"
|
||||
** 16 2 Page size in bytes.
|
||||
** 18 1 File format write version
|
||||
** 19 1 File format read version
|
||||
** 20 1 Bytes of unused space at the end of each page
|
||||
** 21 1 Max embedded payload fraction
|
||||
** 22 1 Min embedded payload fraction
|
||||
** 23 1 Min leaf payload fraction
|
||||
** 24 4 File change counter
|
||||
** 28 4 Reserved for future use
|
||||
** 32 4 First freelist page
|
||||
** 36 4 Number of freelist pages in the file
|
||||
** 40 60 15 4-byte meta values passed to higher layers
|
||||
**
|
||||
** All of the integer values are big-endian (most significant byte first).
|
||||
**
|
||||
** The file change counter is incremented when the database is changed
|
||||
** This counter allows other processes to know when the file has changed
|
||||
** and thus when they need to flush their cache.
|
||||
**
|
||||
** The max embedded payload fraction is the amount of the total usable
|
||||
** space in a page that can be consumed by a single cell for standard
|
||||
** B-tree (non-LEAFDATA) tables. A value of 255 means 100%. The default
|
||||
** is to limit the maximum cell size so that at least 4 cells will fit
|
||||
** on one page. Thus the default max embedded payload fraction is 64.
|
||||
**
|
||||
** If the payload for a cell is larger than the max payload, then extra
|
||||
** payload is spilled to overflow pages. Once an overflow page is allocated,
|
||||
** as many bytes as possible are moved into the overflow pages without letting
|
||||
** the cell size drop below the min embedded payload fraction.
|
||||
**
|
||||
** The min leaf payload fraction is like the min embedded payload fraction
|
||||
** except that it applies to leaf nodes in a LEAFDATA tree. The maximum
|
||||
** payload fraction for a LEAFDATA tree is always 100% (or 255) and it
|
||||
** not specified in the header.
|
||||
**
|
||||
** Each btree pages is divided into three sections: The header, the
|
||||
** cell pointer array, and the cell content area. Page 1 also has a 100-byte
|
||||
** file header that occurs before the page header.
|
||||
**
|
||||
** |----------------|
|
||||
** | file header | 100 bytes. Page 1 only.
|
||||
** |----------------|
|
||||
** | page header | 8 bytes for leaves. 12 bytes for interior nodes
|
||||
** |----------------|
|
||||
** | cell pointer | | 2 bytes per cell. Sorted order.
|
||||
** | array | | Grows downward
|
||||
** | | v
|
||||
** |----------------|
|
||||
** | unallocated |
|
||||
** | space |
|
||||
** |----------------| ^ Grows upwards
|
||||
** | cell content | | Arbitrary order interspersed with freeblocks.
|
||||
** | area | | and free space fragments.
|
||||
** |----------------|
|
||||
**
|
||||
** The page headers looks like this:
|
||||
**
|
||||
** OFFSET SIZE DESCRIPTION
|
||||
** 0 1 Flags. 1: intkey, 2: zerodata, 4: leafdata, 8: leaf
|
||||
** 1 2 byte offset to the first freeblock
|
||||
** 3 2 number of cells on this page
|
||||
** 5 2 first byte of the cell content area
|
||||
** 7 1 number of fragmented free bytes
|
||||
** 8 4 Right child (the Ptr(N) value). Omitted on leaves.
|
||||
**
|
||||
** The flags define the format of this btree page. The leaf flag means that
|
||||
** this page has no children. The zerodata flag means that this page carries
|
||||
** only keys and no data. The intkey flag means that the key is a integer
|
||||
** which is stored in the key size entry of the cell header rather than in
|
||||
** the payload area.
|
||||
**
|
||||
** The cell pointer array begins on the first byte after the page header.
|
||||
** The cell pointer array contains zero or more 2-byte numbers which are
|
||||
** offsets from the beginning of the page to the cell content in the cell
|
||||
** content area. The cell pointers occur in sorted order. The system strives
|
||||
** to keep free space after the last cell pointer so that new cells can
|
||||
** be easily added without having to defragment the page.
|
||||
**
|
||||
** Cell content is stored at the very end of the page and grows toward the
|
||||
** beginning of the page.
|
||||
**
|
||||
** Unused space within the cell content area is collected into a linked list of
|
||||
** freeblocks. Each freeblock is at least 4 bytes in size. The byte offset
|
||||
** to the first freeblock is given in the header. Freeblocks occur in
|
||||
** increasing order. Because a freeblock must be at least 4 bytes in size,
|
||||
** any group of 3 or fewer unused bytes in the cell content area cannot
|
||||
** exist on the freeblock chain. A group of 3 or fewer free bytes is called
|
||||
** a fragment. The total number of bytes in all fragments is recorded.
|
||||
** in the page header at offset 7.
|
||||
**
|
||||
** SIZE DESCRIPTION
|
||||
** 2 Byte offset of the next freeblock
|
||||
** 2 Bytes in this freeblock
|
||||
**
|
||||
** Cells are of variable length. Cells are stored in the cell content area at
|
||||
** the end of the page. Pointers to the cells are in the cell pointer array
|
||||
** that immediately follows the page header. Cells is not necessarily
|
||||
** contiguous or in order, but cell pointers are contiguous and in order.
|
||||
**
|
||||
** Cell content makes use of variable length integers. A variable
|
||||
** length integer is 1 to 9 bytes where the lower 7 bits of each
|
||||
** byte are used. The integer consists of all bytes that have bit 8 set and
|
||||
** the first byte with bit 8 clear. The most significant byte of the integer
|
||||
** appears first. A variable-length integer may not be more than 9 bytes long.
|
||||
** As a special case, all 8 bytes of the 9th byte are used as data. This
|
||||
** allows a 64-bit integer to be encoded in 9 bytes.
|
||||
**
|
||||
** 0x00 becomes 0x00000000
|
||||
** 0x7f becomes 0x0000007f
|
||||
** 0x81 0x00 becomes 0x00000080
|
||||
** 0x82 0x00 becomes 0x00000100
|
||||
** 0x80 0x7f becomes 0x0000007f
|
||||
** 0x8a 0x91 0xd1 0xac 0x78 becomes 0x12345678
|
||||
** 0x81 0x81 0x81 0x81 0x01 becomes 0x10204081
|
||||
**
|
||||
** Variable length integers are used for rowids and to hold the number of
|
||||
** bytes of key and data in a btree cell.
|
||||
**
|
||||
** The content of a cell looks like this:
|
||||
**
|
||||
** SIZE DESCRIPTION
|
||||
** 4 Page number of the left child. Omitted if leaf flag is set.
|
||||
** var Number of bytes of data. Omitted if the zerodata flag is set.
|
||||
** var Number of bytes of key. Or the key itself if intkey flag is set.
|
||||
** * Payload
|
||||
** 4 First page of the overflow chain. Omitted if no overflow
|
||||
**
|
||||
** Overflow pages form a linked list. Each page except the last is completely
|
||||
** filled with data (pagesize - 4 bytes). The last page can have as little
|
||||
** as 1 byte of data.
|
||||
**
|
||||
** SIZE DESCRIPTION
|
||||
** 4 Page number of next overflow page
|
||||
** * Data
|
||||
**
|
||||
** Freelist pages come in two subtypes: trunk pages and leaf pages. The
|
||||
** file header points to the first in a linked list of trunk page. Each trunk
|
||||
** page points to multiple leaf pages. The content of a leaf page is
|
||||
** unspecified. A trunk page looks like this:
|
||||
**
|
||||
** SIZE DESCRIPTION
|
||||
** 4 Page number of next trunk page
|
||||
** 4 Number of leaf pointers on this page
|
||||
** * zero or more pages numbers of leaves
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
|
||||
/* The following value is the maximum cell size assuming a maximum page
|
||||
** size give above.
|
||||
*/
|
||||
#define MX_CELL_SIZE(pBt) (pBt->pageSize-8)
|
||||
|
||||
/* The maximum number of cells on a single page of the database. This
|
||||
** assumes a minimum cell size of 6 bytes (4 bytes for the cell itself
|
||||
** plus 2 bytes for the index to the cell in the page header). Such
|
||||
** small cells will be rare, but they are possible.
|
||||
*/
|
||||
#define MX_CELL(pBt) ((pBt->pageSize-8)/6)
|
||||
|
||||
/* Forward declarations */
|
||||
typedef struct MemPage MemPage;
|
||||
typedef struct BtLock BtLock;
|
||||
|
||||
/*
|
||||
** This is a magic string that appears at the beginning of every
|
||||
** SQLite database in order to identify the file as a real database.
|
||||
**
|
||||
** You can change this value at compile-time by specifying a
|
||||
** -DSQLITE_FILE_HEADER="..." on the compiler command-line. The
|
||||
** header must be exactly 16 bytes including the zero-terminator so
|
||||
** the string itself should be 15 characters long. If you change
|
||||
** the header, then your custom library will not be able to read
|
||||
** databases generated by the standard tools and the standard tools
|
||||
** will not be able to read databases created by your custom library.
|
||||
*/
|
||||
#ifndef SQLITE_FILE_HEADER /* 123456789 123456 */
|
||||
# define SQLITE_FILE_HEADER "SQLite format 3"
|
||||
#endif
|
||||
|
||||
/*
|
||||
** Page type flags. An ORed combination of these flags appear as the
|
||||
** first byte of on-disk image of every BTree page.
|
||||
*/
|
||||
#define PTF_INTKEY 0x01
|
||||
#define PTF_ZERODATA 0x02
|
||||
#define PTF_LEAFDATA 0x04
|
||||
#define PTF_LEAF 0x08
|
||||
|
||||
/*
|
||||
** As each page of the file is loaded into memory, an instance of the following
|
||||
** structure is appended and initialized to zero. This structure stores
|
||||
** information about the page that is decoded from the raw file page.
|
||||
**
|
||||
** The pParent field points back to the parent page. This allows us to
|
||||
** walk up the BTree from any leaf to the root. Care must be taken to
|
||||
** unref() the parent page pointer when this page is no longer referenced.
|
||||
** The pageDestructor() routine handles that chore.
|
||||
**
|
||||
** Access to all fields of this structure is controlled by the mutex
|
||||
** stored in MemPage.pBt->mutex.
|
||||
*/
|
||||
struct MemPage {
|
||||
u8 isInit; /* True if previously initialized. MUST BE FIRST! */
|
||||
u8 nOverflow; /* Number of overflow cell bodies in aCell[] */
|
||||
u8 intKey; /* True if intkey flag is set */
|
||||
u8 leaf; /* True if leaf flag is set */
|
||||
u8 hasData; /* True if this page stores data */
|
||||
u8 hdrOffset; /* 100 for page 1. 0 otherwise */
|
||||
u8 childPtrSize; /* 0 if leaf==1. 4 if leaf==0 */
|
||||
u16 maxLocal; /* Copy of BtShared.maxLocal or BtShared.maxLeaf */
|
||||
u16 minLocal; /* Copy of BtShared.minLocal or BtShared.minLeaf */
|
||||
u16 cellOffset; /* Index in aData of first cell pointer */
|
||||
u16 nFree; /* Number of free bytes on the page */
|
||||
u16 nCell; /* Number of cells on this page, local and ovfl */
|
||||
u16 maskPage; /* Mask for page offset */
|
||||
struct _OvflCell { /* Cells that will not fit on aData[] */
|
||||
u8 *pCell; /* Pointers to the body of the overflow cell */
|
||||
u16 idx; /* Insert this cell before idx-th non-overflow cell */
|
||||
} aOvfl[5];
|
||||
BtShared *pBt; /* Pointer to BtShared that this page is part of */
|
||||
u8 *aData; /* Pointer to disk image of the page data */
|
||||
DbPage *pDbPage; /* Pager page handle */
|
||||
Pgno pgno; /* Page number for this page */
|
||||
};
|
||||
|
||||
/*
|
||||
** The in-memory image of a disk page has the auxiliary information appended
|
||||
** to the end. EXTRA_SIZE is the number of bytes of space needed to hold
|
||||
** that extra information.
|
||||
*/
|
||||
#define EXTRA_SIZE sizeof(MemPage)
|
||||
|
||||
/* A Btree handle
|
||||
**
|
||||
** A database connection contains a pointer to an instance of
|
||||
** this object for every database file that it has open. This structure
|
||||
** is opaque to the database connection. The database connection cannot
|
||||
** see the internals of this structure and only deals with pointers to
|
||||
** this structure.
|
||||
**
|
||||
** For some database files, the same underlying database cache might be
|
||||
** shared between multiple connections. In that case, each contection
|
||||
** has it own pointer to this object. But each instance of this object
|
||||
** points to the same BtShared object. The database cache and the
|
||||
** schema associated with the database file are all contained within
|
||||
** the BtShared object.
|
||||
**
|
||||
** All fields in this structure are accessed under sqlite3.mutex.
|
||||
** The pBt pointer itself may not be changed while there exists cursors
|
||||
** in the referenced BtShared that point back to this Btree since those
|
||||
** cursors have to do go through this Btree to find their BtShared and
|
||||
** they often do so without holding sqlite3.mutex.
|
||||
*/
|
||||
struct Btree {
|
||||
sqlite3 *db; /* The database connection holding this btree */
|
||||
BtShared *pBt; /* Sharable content of this btree */
|
||||
u8 inTrans; /* TRANS_NONE, TRANS_READ or TRANS_WRITE */
|
||||
u8 sharable; /* True if we can share pBt with another db */
|
||||
u8 locked; /* True if db currently has pBt locked */
|
||||
int wantToLock; /* Number of nested calls to sqlite3BtreeEnter() */
|
||||
int nBackup; /* Number of backup operations reading this btree */
|
||||
Btree *pNext; /* List of other sharable Btrees from the same db */
|
||||
Btree *pPrev; /* Back pointer of the same list */
|
||||
};
|
||||
|
||||
/*
|
||||
** Btree.inTrans may take one of the following values.
|
||||
**
|
||||
** If the shared-data extension is enabled, there may be multiple users
|
||||
** of the Btree structure. At most one of these may open a write transaction,
|
||||
** but any number may have active read transactions.
|
||||
*/
|
||||
#define TRANS_NONE 0
|
||||
#define TRANS_READ 1
|
||||
#define TRANS_WRITE 2
|
||||
|
||||
/*
|
||||
** An instance of this object represents a single database file.
|
||||
**
|
||||
** A single database file can be in use as the same time by two
|
||||
** or more database connections. When two or more connections are
|
||||
** sharing the same database file, each connection has it own
|
||||
** private Btree object for the file and each of those Btrees points
|
||||
** to this one BtShared object. BtShared.nRef is the number of
|
||||
** connections currently sharing this database file.
|
||||
**
|
||||
** Fields in this structure are accessed under the BtShared.mutex
|
||||
** mutex, except for nRef and pNext which are accessed under the
|
||||
** global SQLITE_MUTEX_STATIC_MASTER mutex. The pPager field
|
||||
** may not be modified once it is initially set as long as nRef>0.
|
||||
** The pSchema field may be set once under BtShared.mutex and
|
||||
** thereafter is unchanged as long as nRef>0.
|
||||
**
|
||||
** isPending:
|
||||
**
|
||||
** If a BtShared client fails to obtain a write-lock on a database
|
||||
** table (because there exists one or more read-locks on the table),
|
||||
** the shared-cache enters 'pending-lock' state and isPending is
|
||||
** set to true.
|
||||
**
|
||||
** The shared-cache leaves the 'pending lock' state when either of
|
||||
** the following occur:
|
||||
**
|
||||
** 1) The current writer (BtShared.pWriter) concludes its transaction, OR
|
||||
** 2) The number of locks held by other connections drops to zero.
|
||||
**
|
||||
** while in the 'pending-lock' state, no connection may start a new
|
||||
** transaction.
|
||||
**
|
||||
** This feature is included to help prevent writer-starvation.
|
||||
*/
|
||||
struct BtShared {
|
||||
Pager *pPager; /* The page cache */
|
||||
sqlite3 *db; /* Database connection currently using this Btree */
|
||||
BtCursor *pCursor; /* A list of all open cursors */
|
||||
MemPage *pPage1; /* First page of the database */
|
||||
u8 readOnly; /* True if the underlying file is readonly */
|
||||
u8 pageSizeFixed; /* True if the page size can no longer be changed */
|
||||
#ifndef SQLITE_OMIT_AUTOVACUUM
|
||||
u8 autoVacuum; /* True if auto-vacuum is enabled */
|
||||
u8 incrVacuum; /* True if incr-vacuum is enabled */
|
||||
#endif
|
||||
u16 pageSize; /* Total number of bytes on a page */
|
||||
u16 usableSize; /* Number of usable bytes on each page */
|
||||
u16 maxLocal; /* Maximum local payload in non-LEAFDATA tables */
|
||||
u16 minLocal; /* Minimum local payload in non-LEAFDATA tables */
|
||||
u16 maxLeaf; /* Maximum local payload in a LEAFDATA table */
|
||||
u16 minLeaf; /* Minimum local payload in a LEAFDATA table */
|
||||
u8 inTransaction; /* Transaction state */
|
||||
int nTransaction; /* Number of open transactions (read + write) */
|
||||
void *pSchema; /* Pointer to space allocated by sqlite3BtreeSchema() */
|
||||
void (*xFreeSchema)(void*); /* Destructor for BtShared.pSchema */
|
||||
sqlite3_mutex *mutex; /* Non-recursive mutex required to access this struct */
|
||||
Bitvec *pHasContent; /* Set of pages moved to free-list this transaction */
|
||||
#ifndef SQLITE_OMIT_SHARED_CACHE
|
||||
int nRef; /* Number of references to this structure */
|
||||
BtShared *pNext; /* Next on a list of sharable BtShared structs */
|
||||
BtLock *pLock; /* List of locks held on this shared-btree struct */
|
||||
Btree *pWriter; /* Btree with currently open write transaction */
|
||||
u8 isExclusive; /* True if pWriter has an EXCLUSIVE lock on the db */
|
||||
u8 isPending; /* If waiting for read-locks to clear */
|
||||
#endif
|
||||
u8 *pTmpSpace; /* BtShared.pageSize bytes of space for tmp use */
|
||||
};
|
||||
|
||||
/*
|
||||
** An instance of the following structure is used to hold information
|
||||
** about a cell. The parseCellPtr() function fills in this structure
|
||||
** based on information extract from the raw disk page.
|
||||
*/
|
||||
typedef struct CellInfo CellInfo;
|
||||
struct CellInfo {
|
||||
u8 *pCell; /* Pointer to the start of cell content */
|
||||
i64 nKey; /* The key for INTKEY tables, or number of bytes in key */
|
||||
u32 nData; /* Number of bytes of data */
|
||||
u32 nPayload; /* Total amount of payload */
|
||||
u16 nHeader; /* Size of the cell content header in bytes */
|
||||
u16 nLocal; /* Amount of payload held locally */
|
||||
u16 iOverflow; /* Offset to overflow page number. Zero if no overflow */
|
||||
u16 nSize; /* Size of the cell content on the main b-tree page */
|
||||
};
|
||||
|
||||
/*
|
||||
** Maximum depth of an SQLite B-Tree structure. Any B-Tree deeper than
|
||||
** this will be declared corrupt. This value is calculated based on a
|
||||
** maximum database size of 2^31 pages a minimum fanout of 2 for a
|
||||
** root-node and 3 for all other internal nodes.
|
||||
**
|
||||
** If a tree that appears to be taller than this is encountered, it is
|
||||
** assumed that the database is corrupt.
|
||||
*/
|
||||
#define BTCURSOR_MAX_DEPTH 20
|
||||
|
||||
/*
|
||||
** A cursor is a pointer to a particular entry within a particular
|
||||
** b-tree within a database file.
|
||||
**
|
||||
** The entry is identified by its MemPage and the index in
|
||||
** MemPage.aCell[] of the entry.
|
||||
**
|
||||
** When a single database file can shared by two more database connections,
|
||||
** but cursors cannot be shared. Each cursor is associated with a
|
||||
** particular database connection identified BtCursor.pBtree.db.
|
||||
**
|
||||
** Fields in this structure are accessed under the BtShared.mutex
|
||||
** found at self->pBt->mutex.
|
||||
*/
|
||||
struct BtCursor {
|
||||
Btree *pBtree; /* The Btree to which this cursor belongs */
|
||||
BtShared *pBt; /* The BtShared this cursor points to */
|
||||
BtCursor *pNext, *pPrev; /* Forms a linked list of all cursors */
|
||||
struct KeyInfo *pKeyInfo; /* Argument passed to comparison function */
|
||||
Pgno pgnoRoot; /* The root page of this tree */
|
||||
sqlite3_int64 cachedRowid; /* Next rowid cache. 0 means not valid */
|
||||
CellInfo info; /* A parse of the cell we are pointing at */
|
||||
u8 wrFlag; /* True if writable */
|
||||
u8 atLast; /* Cursor pointing to the last entry */
|
||||
u8 validNKey; /* True if info.nKey is valid */
|
||||
u8 eState; /* One of the CURSOR_XXX constants (see below) */
|
||||
void *pKey; /* Saved key that was cursor's last known position */
|
||||
i64 nKey; /* Size of pKey, or last integer key */
|
||||
int skip; /* (skip<0) -> Prev() is a no-op. (skip>0) -> Next() is */
|
||||
#ifndef SQLITE_OMIT_INCRBLOB
|
||||
u8 isIncrblobHandle; /* True if this cursor is an incr. io handle */
|
||||
Pgno *aOverflow; /* Cache of overflow page locations */
|
||||
#endif
|
||||
#ifndef NDEBUG
|
||||
u8 pagesShuffled; /* True if Btree pages are rearranged by balance()*/
|
||||
#endif
|
||||
i16 iPage; /* Index of current page in apPage */
|
||||
MemPage *apPage[BTCURSOR_MAX_DEPTH]; /* Pages from root to current page */
|
||||
u16 aiIdx[BTCURSOR_MAX_DEPTH]; /* Current index in apPage[i] */
|
||||
};
|
||||
|
||||
/*
|
||||
** Potential values for BtCursor.eState.
|
||||
**
|
||||
** CURSOR_VALID:
|
||||
** Cursor points to a valid entry. getPayload() etc. may be called.
|
||||
**
|
||||
** CURSOR_INVALID:
|
||||
** Cursor does not point to a valid entry. This can happen (for example)
|
||||
** because the table is empty or because BtreeCursorFirst() has not been
|
||||
** called.
|
||||
**
|
||||
** CURSOR_REQUIRESEEK:
|
||||
** The table that this cursor was opened on still exists, but has been
|
||||
** modified since the cursor was last used. The cursor position is saved
|
||||
** in variables BtCursor.pKey and BtCursor.nKey. When a cursor is in
|
||||
** this state, restoreCursorPosition() can be called to attempt to
|
||||
** seek the cursor to the saved position.
|
||||
**
|
||||
** CURSOR_FAULT:
|
||||
** A unrecoverable error (an I/O error or a malloc failure) has occurred
|
||||
** on a different connection that shares the BtShared cache with this
|
||||
** cursor. The error has left the cache in an inconsistent state.
|
||||
** Do nothing else with this cursor. Any attempt to use the cursor
|
||||
** should return the error code stored in BtCursor.skip
|
||||
*/
|
||||
#define CURSOR_INVALID 0
|
||||
#define CURSOR_VALID 1
|
||||
#define CURSOR_REQUIRESEEK 2
|
||||
#define CURSOR_FAULT 3
|
||||
|
||||
/*
|
||||
** The database page the PENDING_BYTE occupies. This page is never used.
|
||||
*/
|
||||
# define PENDING_BYTE_PAGE(pBt) PAGER_MJ_PGNO(pBt)
|
||||
|
||||
/*
|
||||
** A linked list of the following structures is stored at BtShared.pLock.
|
||||
** Locks are added (or upgraded from READ_LOCK to WRITE_LOCK) when a cursor
|
||||
** is opened on the table with root page BtShared.iTable. Locks are removed
|
||||
** from this list when a transaction is committed or rolled back, or when
|
||||
** a btree handle is closed.
|
||||
*/
|
||||
struct BtLock {
|
||||
Btree *pBtree; /* Btree handle holding this lock */
|
||||
Pgno iTable; /* Root page of table */
|
||||
u8 eLock; /* READ_LOCK or WRITE_LOCK */
|
||||
BtLock *pNext; /* Next in BtShared.pLock list */
|
||||
};
|
||||
|
||||
/* Candidate values for BtLock.eLock */
|
||||
#define READ_LOCK 1
|
||||
#define WRITE_LOCK 2
|
||||
|
||||
/*
|
||||
** These macros define the location of the pointer-map entry for a
|
||||
** database page. The first argument to each is the number of usable
|
||||
** bytes on each page of the database (often 1024). The second is the
|
||||
** page number to look up in the pointer map.
|
||||
**
|
||||
** PTRMAP_PAGENO returns the database page number of the pointer-map
|
||||
** page that stores the required pointer. PTRMAP_PTROFFSET returns
|
||||
** the offset of the requested map entry.
|
||||
**
|
||||
** If the pgno argument passed to PTRMAP_PAGENO is a pointer-map page,
|
||||
** then pgno is returned. So (pgno==PTRMAP_PAGENO(pgsz, pgno)) can be
|
||||
** used to test if pgno is a pointer-map page. PTRMAP_ISPAGE implements
|
||||
** this test.
|
||||
*/
|
||||
#define PTRMAP_PAGENO(pBt, pgno) ptrmapPageno(pBt, pgno)
|
||||
#define PTRMAP_PTROFFSET(pgptrmap, pgno) (5*(pgno-pgptrmap-1))
|
||||
#define PTRMAP_ISPAGE(pBt, pgno) (PTRMAP_PAGENO((pBt),(pgno))==(pgno))
|
||||
|
||||
/*
|
||||
** The pointer map is a lookup table that identifies the parent page for
|
||||
** each child page in the database file. The parent page is the page that
|
||||
** contains a pointer to the child. Every page in the database contains
|
||||
** 0 or 1 parent pages. (In this context 'database page' refers
|
||||
** to any page that is not part of the pointer map itself.) Each pointer map
|
||||
** entry consists of a single byte 'type' and a 4 byte parent page number.
|
||||
** The PTRMAP_XXX identifiers below are the valid types.
|
||||
**
|
||||
** The purpose of the pointer map is to facility moving pages from one
|
||||
** position in the file to another as part of autovacuum. When a page
|
||||
** is moved, the pointer in its parent must be updated to point to the
|
||||
** new location. The pointer map is used to locate the parent page quickly.
|
||||
**
|
||||
** PTRMAP_ROOTPAGE: The database page is a root-page. The page-number is not
|
||||
** used in this case.
|
||||
**
|
||||
** PTRMAP_FREEPAGE: The database page is an unused (free) page. The page-number
|
||||
** is not used in this case.
|
||||
**
|
||||
** PTRMAP_OVERFLOW1: The database page is the first page in a list of
|
||||
** overflow pages. The page number identifies the page that
|
||||
** contains the cell with a pointer to this overflow page.
|
||||
**
|
||||
** PTRMAP_OVERFLOW2: The database page is the second or later page in a list of
|
||||
** overflow pages. The page-number identifies the previous
|
||||
** page in the overflow page list.
|
||||
**
|
||||
** PTRMAP_BTREE: The database page is a non-root btree page. The page number
|
||||
** identifies the parent page in the btree.
|
||||
*/
|
||||
#define PTRMAP_ROOTPAGE 1
|
||||
#define PTRMAP_FREEPAGE 2
|
||||
#define PTRMAP_OVERFLOW1 3
|
||||
#define PTRMAP_OVERFLOW2 4
|
||||
#define PTRMAP_BTREE 5
|
||||
|
||||
/* A bunch of assert() statements to check the transaction state variables
|
||||
** of handle p (type Btree*) are internally consistent.
|
||||
*/
|
||||
#define btreeIntegrity(p) \
|
||||
assert( p->pBt->inTransaction!=TRANS_NONE || p->pBt->nTransaction==0 ); \
|
||||
assert( p->pBt->inTransaction>=p->inTrans );
|
||||
|
||||
|
||||
/*
|
||||
** The ISAUTOVACUUM macro is used within balance_nonroot() to determine
|
||||
** if the database supports auto-vacuum or not. Because it is used
|
||||
** within an expression that is an argument to another macro
|
||||
** (sqliteMallocRaw), it is not possible to use conditional compilation.
|
||||
** So, this macro is defined instead.
|
||||
*/
|
||||
#ifndef SQLITE_OMIT_AUTOVACUUM
|
||||
#define ISAUTOVACUUM (pBt->autoVacuum)
|
||||
#else
|
||||
#define ISAUTOVACUUM 0
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
** This structure is passed around through all the sanity checking routines
|
||||
** in order to keep track of some global state information.
|
||||
*/
|
||||
typedef struct IntegrityCk IntegrityCk;
|
||||
struct IntegrityCk {
|
||||
BtShared *pBt; /* The tree being checked out */
|
||||
Pager *pPager; /* The associated pager. Also accessible by pBt->pPager */
|
||||
Pgno nPage; /* Number of pages in the database */
|
||||
int *anRef; /* Number of times each page is referenced */
|
||||
int mxErr; /* Stop accumulating errors when this reaches zero */
|
||||
int nErr; /* Number of messages written to zErrMsg so far */
|
||||
int mallocFailed; /* A memory allocation error has occurred */
|
||||
StrAccum errMsg; /* Accumulate the error message text here */
|
||||
};
|
||||
|
||||
/*
|
||||
** Read or write a two- and four-byte big-endian integer values.
|
||||
*/
|
||||
#define get2byte(x) ((x)[0]<<8 | (x)[1])
|
||||
#define put2byte(p,v) ((p)[0] = (u8)((v)>>8), (p)[1] = (u8)(v))
|
||||
#define get4byte sqlite3Get4byte
|
||||
#define put4byte sqlite3Put4byte
|
||||
|
||||
/*
|
||||
** Internal routines that should be accessed by the btree layer only.
|
||||
*/
|
||||
int sqlite3BtreeGetPage(BtShared*, Pgno, MemPage**, int);
|
||||
int sqlite3BtreeInitPage(MemPage *pPage);
|
||||
void sqlite3BtreeParseCellPtr(MemPage*, u8*, CellInfo*);
|
||||
void sqlite3BtreeParseCell(MemPage*, int, CellInfo*);
|
||||
int sqlite3BtreeRestoreCursorPosition(BtCursor *pCur);
|
||||
void sqlite3BtreeGetTempCursor(BtCursor *pCur, BtCursor *pTempCur);
|
||||
void sqlite3BtreeReleaseTempCursor(BtCursor *pCur);
|
||||
void sqlite3BtreeMoveToParent(BtCursor *pCur);
|
455
callback.c
455
callback.c
|
@ -1,455 +0,0 @@
|
|||
/*
|
||||
** 2005 May 23
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
**
|
||||
** This file contains functions used to access the internal hash tables
|
||||
** of user defined functions and collation sequences.
|
||||
**
|
||||
** $Id: callback.c,v 1.37 2009/03/24 15:08:10 drh Exp $
|
||||
*/
|
||||
|
||||
#include "sqliteInt.h"
|
||||
|
||||
/*
|
||||
** Invoke the 'collation needed' callback to request a collation sequence
|
||||
** in the database text encoding of name zName, length nName.
|
||||
** If the collation sequence
|
||||
*/
|
||||
static void callCollNeeded(sqlite3 *db, const char *zName, int nName){
|
||||
assert( !db->xCollNeeded || !db->xCollNeeded16 );
|
||||
if( nName<0 ) nName = sqlite3Strlen(db, zName);
|
||||
if( db->xCollNeeded ){
|
||||
char *zExternal = sqlite3DbStrNDup(db, zName, nName);
|
||||
if( !zExternal ) return;
|
||||
db->xCollNeeded(db->pCollNeededArg, db, (int)ENC(db), zExternal);
|
||||
sqlite3DbFree(db, zExternal);
|
||||
}
|
||||
#ifndef SQLITE_OMIT_UTF16
|
||||
if( db->xCollNeeded16 ){
|
||||
char const *zExternal;
|
||||
sqlite3_value *pTmp = sqlite3ValueNew(db);
|
||||
sqlite3ValueSetStr(pTmp, nName, zName, SQLITE_UTF8, SQLITE_STATIC);
|
||||
zExternal = sqlite3ValueText(pTmp, SQLITE_UTF16NATIVE);
|
||||
if( zExternal ){
|
||||
db->xCollNeeded16(db->pCollNeededArg, db, (int)ENC(db), zExternal);
|
||||
}
|
||||
sqlite3ValueFree(pTmp);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
/*
|
||||
** This routine is called if the collation factory fails to deliver a
|
||||
** collation function in the best encoding but there may be other versions
|
||||
** of this collation function (for other text encodings) available. Use one
|
||||
** of these instead if they exist. Avoid a UTF-8 <-> UTF-16 conversion if
|
||||
** possible.
|
||||
*/
|
||||
static int synthCollSeq(sqlite3 *db, CollSeq *pColl){
|
||||
CollSeq *pColl2;
|
||||
char *z = pColl->zName;
|
||||
int n = sqlite3Strlen30(z);
|
||||
int i;
|
||||
static const u8 aEnc[] = { SQLITE_UTF16BE, SQLITE_UTF16LE, SQLITE_UTF8 };
|
||||
for(i=0; i<3; i++){
|
||||
pColl2 = sqlite3FindCollSeq(db, aEnc[i], z, n, 0);
|
||||
if( pColl2->xCmp!=0 ){
|
||||
memcpy(pColl, pColl2, sizeof(CollSeq));
|
||||
pColl->xDel = 0; /* Do not copy the destructor */
|
||||
return SQLITE_OK;
|
||||
}
|
||||
}
|
||||
return SQLITE_ERROR;
|
||||
}
|
||||
|
||||
/*
|
||||
** This function is responsible for invoking the collation factory callback
|
||||
** or substituting a collation sequence of a different encoding when the
|
||||
** requested collation sequence is not available in the database native
|
||||
** encoding.
|
||||
**
|
||||
** If it is not NULL, then pColl must point to the database native encoding
|
||||
** collation sequence with name zName, length nName.
|
||||
**
|
||||
** The return value is either the collation sequence to be used in database
|
||||
** db for collation type name zName, length nName, or NULL, if no collation
|
||||
** sequence can be found.
|
||||
*/
|
||||
CollSeq *sqlite3GetCollSeq(
|
||||
sqlite3* db,
|
||||
CollSeq *pColl,
|
||||
const char *zName,
|
||||
int nName
|
||||
){
|
||||
CollSeq *p;
|
||||
|
||||
p = pColl;
|
||||
if( !p ){
|
||||
p = sqlite3FindCollSeq(db, ENC(db), zName, nName, 0);
|
||||
}
|
||||
if( !p || !p->xCmp ){
|
||||
/* No collation sequence of this type for this encoding is registered.
|
||||
** Call the collation factory to see if it can supply us with one.
|
||||
*/
|
||||
callCollNeeded(db, zName, nName);
|
||||
p = sqlite3FindCollSeq(db, ENC(db), zName, nName, 0);
|
||||
}
|
||||
if( p && !p->xCmp && synthCollSeq(db, p) ){
|
||||
p = 0;
|
||||
}
|
||||
assert( !p || p->xCmp );
|
||||
return p;
|
||||
}
|
||||
|
||||
/*
|
||||
** This routine is called on a collation sequence before it is used to
|
||||
** check that it is defined. An undefined collation sequence exists when
|
||||
** a database is loaded that contains references to collation sequences
|
||||
** that have not been defined by sqlite3_create_collation() etc.
|
||||
**
|
||||
** If required, this routine calls the 'collation needed' callback to
|
||||
** request a definition of the collating sequence. If this doesn't work,
|
||||
** an equivalent collating sequence that uses a text encoding different
|
||||
** from the main database is substituted, if one is available.
|
||||
*/
|
||||
int sqlite3CheckCollSeq(Parse *pParse, CollSeq *pColl){
|
||||
if( pColl ){
|
||||
const char *zName = pColl->zName;
|
||||
CollSeq *p = sqlite3GetCollSeq(pParse->db, pColl, zName, -1);
|
||||
if( !p ){
|
||||
if( pParse->nErr==0 ){
|
||||
sqlite3ErrorMsg(pParse, "no such collation sequence: %s", zName);
|
||||
}
|
||||
pParse->nErr++;
|
||||
return SQLITE_ERROR;
|
||||
}
|
||||
assert( p==pColl );
|
||||
}
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*
|
||||
** Locate and return an entry from the db.aCollSeq hash table. If the entry
|
||||
** specified by zName and nName is not found and parameter 'create' is
|
||||
** true, then create a new entry. Otherwise return NULL.
|
||||
**
|
||||
** Each pointer stored in the sqlite3.aCollSeq hash table contains an
|
||||
** array of three CollSeq structures. The first is the collation sequence
|
||||
** prefferred for UTF-8, the second UTF-16le, and the third UTF-16be.
|
||||
**
|
||||
** Stored immediately after the three collation sequences is a copy of
|
||||
** the collation sequence name. A pointer to this string is stored in
|
||||
** each collation sequence structure.
|
||||
*/
|
||||
static CollSeq *findCollSeqEntry(
|
||||
sqlite3 *db,
|
||||
const char *zName,
|
||||
int nName,
|
||||
int create
|
||||
){
|
||||
CollSeq *pColl;
|
||||
if( nName<0 ) nName = sqlite3Strlen(db, zName);
|
||||
pColl = sqlite3HashFind(&db->aCollSeq, zName, nName);
|
||||
|
||||
if( 0==pColl && create ){
|
||||
pColl = sqlite3DbMallocZero(db, 3*sizeof(*pColl) + nName + 1 );
|
||||
if( pColl ){
|
||||
CollSeq *pDel = 0;
|
||||
pColl[0].zName = (char*)&pColl[3];
|
||||
pColl[0].enc = SQLITE_UTF8;
|
||||
pColl[1].zName = (char*)&pColl[3];
|
||||
pColl[1].enc = SQLITE_UTF16LE;
|
||||
pColl[2].zName = (char*)&pColl[3];
|
||||
pColl[2].enc = SQLITE_UTF16BE;
|
||||
memcpy(pColl[0].zName, zName, nName);
|
||||
pColl[0].zName[nName] = 0;
|
||||
pDel = sqlite3HashInsert(&db->aCollSeq, pColl[0].zName, nName, pColl);
|
||||
|
||||
/* If a malloc() failure occurred in sqlite3HashInsert(), it will
|
||||
** return the pColl pointer to be deleted (because it wasn't added
|
||||
** to the hash table).
|
||||
*/
|
||||
assert( pDel==0 || pDel==pColl );
|
||||
if( pDel!=0 ){
|
||||
db->mallocFailed = 1;
|
||||
sqlite3DbFree(db, pDel);
|
||||
pColl = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
return pColl;
|
||||
}
|
||||
|
||||
/*
|
||||
** Parameter zName points to a UTF-8 encoded string nName bytes long.
|
||||
** Return the CollSeq* pointer for the collation sequence named zName
|
||||
** for the encoding 'enc' from the database 'db'.
|
||||
**
|
||||
** If the entry specified is not found and 'create' is true, then create a
|
||||
** new entry. Otherwise return NULL.
|
||||
**
|
||||
** A separate function sqlite3LocateCollSeq() is a wrapper around
|
||||
** this routine. sqlite3LocateCollSeq() invokes the collation factory
|
||||
** if necessary and generates an error message if the collating sequence
|
||||
** cannot be found.
|
||||
*/
|
||||
CollSeq *sqlite3FindCollSeq(
|
||||
sqlite3 *db,
|
||||
u8 enc,
|
||||
const char *zName,
|
||||
int nName,
|
||||
int create
|
||||
){
|
||||
CollSeq *pColl;
|
||||
if( zName ){
|
||||
pColl = findCollSeqEntry(db, zName, nName, create);
|
||||
}else{
|
||||
pColl = db->pDfltColl;
|
||||
}
|
||||
assert( SQLITE_UTF8==1 && SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
|
||||
assert( enc>=SQLITE_UTF8 && enc<=SQLITE_UTF16BE );
|
||||
if( pColl ) pColl += enc-1;
|
||||
return pColl;
|
||||
}
|
||||
|
||||
/* During the search for the best function definition, this procedure
|
||||
** is called to test how well the function passed as the first argument
|
||||
** matches the request for a function with nArg arguments in a system
|
||||
** that uses encoding enc. The value returned indicates how well the
|
||||
** request is matched. A higher value indicates a better match.
|
||||
**
|
||||
** The returned value is always between 0 and 6, as follows:
|
||||
**
|
||||
** 0: Not a match, or if nArg<0 and the function is has no implementation.
|
||||
** 1: A variable arguments function that prefers UTF-8 when a UTF-16
|
||||
** encoding is requested, or vice versa.
|
||||
** 2: A variable arguments function that uses UTF-16BE when UTF-16LE is
|
||||
** requested, or vice versa.
|
||||
** 3: A variable arguments function using the same text encoding.
|
||||
** 4: A function with the exact number of arguments requested that
|
||||
** prefers UTF-8 when a UTF-16 encoding is requested, or vice versa.
|
||||
** 5: A function with the exact number of arguments requested that
|
||||
** prefers UTF-16LE when UTF-16BE is requested, or vice versa.
|
||||
** 6: An exact match.
|
||||
**
|
||||
*/
|
||||
static int matchQuality(FuncDef *p, int nArg, u8 enc){
|
||||
int match = 0;
|
||||
if( p->nArg==-1 || p->nArg==nArg
|
||||
|| (nArg==-1 && (p->xFunc!=0 || p->xStep!=0))
|
||||
){
|
||||
match = 1;
|
||||
if( p->nArg==nArg || nArg==-1 ){
|
||||
match = 4;
|
||||
}
|
||||
if( enc==p->iPrefEnc ){
|
||||
match += 2;
|
||||
}
|
||||
else if( (enc==SQLITE_UTF16LE && p->iPrefEnc==SQLITE_UTF16BE) ||
|
||||
(enc==SQLITE_UTF16BE && p->iPrefEnc==SQLITE_UTF16LE) ){
|
||||
match += 1;
|
||||
}
|
||||
}
|
||||
return match;
|
||||
}
|
||||
|
||||
/*
|
||||
** Search a FuncDefHash for a function with the given name. Return
|
||||
** a pointer to the matching FuncDef if found, or 0 if there is no match.
|
||||
*/
|
||||
static FuncDef *functionSearch(
|
||||
FuncDefHash *pHash, /* Hash table to search */
|
||||
int h, /* Hash of the name */
|
||||
const char *zFunc, /* Name of function */
|
||||
int nFunc /* Number of bytes in zFunc */
|
||||
){
|
||||
FuncDef *p;
|
||||
for(p=pHash->a[h]; p; p=p->pHash){
|
||||
if( sqlite3StrNICmp(p->zName, zFunc, nFunc)==0 && p->zName[nFunc]==0 ){
|
||||
return p;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
** Insert a new FuncDef into a FuncDefHash hash table.
|
||||
*/
|
||||
void sqlite3FuncDefInsert(
|
||||
FuncDefHash *pHash, /* The hash table into which to insert */
|
||||
FuncDef *pDef /* The function definition to insert */
|
||||
){
|
||||
FuncDef *pOther;
|
||||
int nName = sqlite3Strlen30(pDef->zName);
|
||||
u8 c1 = (u8)pDef->zName[0];
|
||||
int h = (sqlite3UpperToLower[c1] + nName) % ArraySize(pHash->a);
|
||||
pOther = functionSearch(pHash, h, pDef->zName, nName);
|
||||
if( pOther ){
|
||||
pDef->pNext = pOther->pNext;
|
||||
pOther->pNext = pDef;
|
||||
}else{
|
||||
pDef->pNext = 0;
|
||||
pDef->pHash = pHash->a[h];
|
||||
pHash->a[h] = pDef;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*
|
||||
** Locate a user function given a name, a number of arguments and a flag
|
||||
** indicating whether the function prefers UTF-16 over UTF-8. Return a
|
||||
** pointer to the FuncDef structure that defines that function, or return
|
||||
** NULL if the function does not exist.
|
||||
**
|
||||
** If the createFlag argument is true, then a new (blank) FuncDef
|
||||
** structure is created and liked into the "db" structure if a
|
||||
** no matching function previously existed. When createFlag is true
|
||||
** and the nArg parameter is -1, then only a function that accepts
|
||||
** any number of arguments will be returned.
|
||||
**
|
||||
** If createFlag is false and nArg is -1, then the first valid
|
||||
** function found is returned. A function is valid if either xFunc
|
||||
** or xStep is non-zero.
|
||||
**
|
||||
** If createFlag is false, then a function with the required name and
|
||||
** number of arguments may be returned even if the eTextRep flag does not
|
||||
** match that requested.
|
||||
*/
|
||||
FuncDef *sqlite3FindFunction(
|
||||
sqlite3 *db, /* An open database */
|
||||
const char *zName, /* Name of the function. Not null-terminated */
|
||||
int nName, /* Number of characters in the name */
|
||||
int nArg, /* Number of arguments. -1 means any number */
|
||||
u8 enc, /* Preferred text encoding */
|
||||
int createFlag /* Create new entry if true and does not otherwise exist */
|
||||
){
|
||||
FuncDef *p; /* Iterator variable */
|
||||
FuncDef *pBest = 0; /* Best match found so far */
|
||||
int bestScore = 0; /* Score of best match */
|
||||
int h; /* Hash value */
|
||||
|
||||
|
||||
assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
|
||||
if( nArg<-1 ) nArg = -1;
|
||||
h = (sqlite3UpperToLower[(u8)zName[0]] + nName) % ArraySize(db->aFunc.a);
|
||||
|
||||
/* First search for a match amongst the application-defined functions.
|
||||
*/
|
||||
p = functionSearch(&db->aFunc, h, zName, nName);
|
||||
while( p ){
|
||||
int score = matchQuality(p, nArg, enc);
|
||||
if( score>bestScore ){
|
||||
pBest = p;
|
||||
bestScore = score;
|
||||
}
|
||||
p = p->pNext;
|
||||
}
|
||||
|
||||
/* If no match is found, search the built-in functions.
|
||||
**
|
||||
** Except, if createFlag is true, that means that we are trying to
|
||||
** install a new function. Whatever FuncDef structure is returned will
|
||||
** have fields overwritten with new information appropriate for the
|
||||
** new function. But the FuncDefs for built-in functions are read-only.
|
||||
** So we must not search for built-ins when creating a new function.
|
||||
*/
|
||||
if( !createFlag && !pBest ){
|
||||
FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions);
|
||||
p = functionSearch(pHash, h, zName, nName);
|
||||
while( p ){
|
||||
int score = matchQuality(p, nArg, enc);
|
||||
if( score>bestScore ){
|
||||
pBest = p;
|
||||
bestScore = score;
|
||||
}
|
||||
p = p->pNext;
|
||||
}
|
||||
}
|
||||
|
||||
/* If the createFlag parameter is true and the search did not reveal an
|
||||
** exact match for the name, number of arguments and encoding, then add a
|
||||
** new entry to the hash table and return it.
|
||||
*/
|
||||
if( createFlag && (bestScore<6 || pBest->nArg!=nArg) &&
|
||||
(pBest = sqlite3DbMallocZero(db, sizeof(*pBest)+nName+1))!=0 ){
|
||||
pBest->zName = (char *)&pBest[1];
|
||||
pBest->nArg = (u16)nArg;
|
||||
pBest->iPrefEnc = enc;
|
||||
memcpy(pBest->zName, zName, nName);
|
||||
pBest->zName[nName] = 0;
|
||||
sqlite3FuncDefInsert(&db->aFunc, pBest);
|
||||
}
|
||||
|
||||
if( pBest && (pBest->xStep || pBest->xFunc || createFlag) ){
|
||||
return pBest;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
** Free all resources held by the schema structure. The void* argument points
|
||||
** at a Schema struct. This function does not call sqlite3DbFree(db, ) on the
|
||||
** pointer itself, it just cleans up subsiduary resources (i.e. the contents
|
||||
** of the schema hash tables).
|
||||
**
|
||||
** The Schema.cache_size variable is not cleared.
|
||||
*/
|
||||
void sqlite3SchemaFree(void *p){
|
||||
Hash temp1;
|
||||
Hash temp2;
|
||||
HashElem *pElem;
|
||||
Schema *pSchema = (Schema *)p;
|
||||
|
||||
temp1 = pSchema->tblHash;
|
||||
temp2 = pSchema->trigHash;
|
||||
sqlite3HashInit(&pSchema->trigHash, 0);
|
||||
sqlite3HashClear(&pSchema->aFKey);
|
||||
sqlite3HashClear(&pSchema->idxHash);
|
||||
for(pElem=sqliteHashFirst(&temp2); pElem; pElem=sqliteHashNext(pElem)){
|
||||
sqlite3DeleteTrigger(0, (Trigger*)sqliteHashData(pElem));
|
||||
}
|
||||
sqlite3HashClear(&temp2);
|
||||
sqlite3HashInit(&pSchema->tblHash, 0);
|
||||
for(pElem=sqliteHashFirst(&temp1); pElem; pElem=sqliteHashNext(pElem)){
|
||||
Table *pTab = sqliteHashData(pElem);
|
||||
assert( pTab->dbMem==0 );
|
||||
sqlite3DeleteTable(pTab);
|
||||
}
|
||||
sqlite3HashClear(&temp1);
|
||||
pSchema->pSeqTab = 0;
|
||||
pSchema->flags &= ~DB_SchemaLoaded;
|
||||
}
|
||||
|
||||
/*
|
||||
** Find and return the schema associated with a BTree. Create
|
||||
** a new one if necessary.
|
||||
*/
|
||||
Schema *sqlite3SchemaGet(sqlite3 *db, Btree *pBt){
|
||||
Schema * p;
|
||||
if( pBt ){
|
||||
p = (Schema *)sqlite3BtreeSchema(pBt, sizeof(Schema), sqlite3SchemaFree);
|
||||
}else{
|
||||
p = (Schema *)sqlite3MallocZero(sizeof(Schema));
|
||||
}
|
||||
if( !p ){
|
||||
db->mallocFailed = 1;
|
||||
}else if ( 0==p->file_format ){
|
||||
sqlite3HashInit(&p->tblHash, 0);
|
||||
sqlite3HashInit(&p->idxHash, 0);
|
||||
sqlite3HashInit(&p->trigHash, 0);
|
||||
sqlite3HashInit(&p->aFKey, 1);
|
||||
p->enc = SQLITE_UTF8;
|
||||
}
|
||||
return p;
|
||||
}
|
277
complete.c
277
complete.c
|
@ -1,277 +0,0 @@
|
|||
/*
|
||||
** 2001 September 15
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** An tokenizer for SQL
|
||||
**
|
||||
** This file contains C code that implements the sqlite3_complete() API.
|
||||
** This code used to be part of the tokenizer.c source file. But by
|
||||
** separating it out, the code will be automatically omitted from
|
||||
** static links that do not use it.
|
||||
**
|
||||
** $Id: complete.c,v 1.7 2008/06/13 18:24:27 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
#ifndef SQLITE_OMIT_COMPLETE
|
||||
|
||||
/*
|
||||
** This is defined in tokenize.c. We just have to import the definition.
|
||||
*/
|
||||
#ifndef SQLITE_AMALGAMATION
|
||||
#ifdef SQLITE_ASCII
|
||||
extern const char sqlite3IsAsciiIdChar[];
|
||||
#define IdChar(C) (((c=C)&0x80)!=0 || (c>0x1f && sqlite3IsAsciiIdChar[c-0x20]))
|
||||
#endif
|
||||
#ifdef SQLITE_EBCDIC
|
||||
extern const char sqlite3IsEbcdicIdChar[];
|
||||
#define IdChar(C) (((c=C)>=0x42 && sqlite3IsEbcdicIdChar[c-0x40]))
|
||||
#endif
|
||||
#endif /* SQLITE_AMALGAMATION */
|
||||
|
||||
|
||||
/*
|
||||
** Token types used by the sqlite3_complete() routine. See the header
|
||||
** comments on that procedure for additional information.
|
||||
*/
|
||||
#define tkSEMI 0
|
||||
#define tkWS 1
|
||||
#define tkOTHER 2
|
||||
#define tkEXPLAIN 3
|
||||
#define tkCREATE 4
|
||||
#define tkTEMP 5
|
||||
#define tkTRIGGER 6
|
||||
#define tkEND 7
|
||||
|
||||
/*
|
||||
** Return TRUE if the given SQL string ends in a semicolon.
|
||||
**
|
||||
** Special handling is require for CREATE TRIGGER statements.
|
||||
** Whenever the CREATE TRIGGER keywords are seen, the statement
|
||||
** must end with ";END;".
|
||||
**
|
||||
** This implementation uses a state machine with 7 states:
|
||||
**
|
||||
** (0) START At the beginning or end of an SQL statement. This routine
|
||||
** returns 1 if it ends in the START state and 0 if it ends
|
||||
** in any other state.
|
||||
**
|
||||
** (1) NORMAL We are in the middle of statement which ends with a single
|
||||
** semicolon.
|
||||
**
|
||||
** (2) EXPLAIN The keyword EXPLAIN has been seen at the beginning of
|
||||
** a statement.
|
||||
**
|
||||
** (3) CREATE The keyword CREATE has been seen at the beginning of a
|
||||
** statement, possibly preceeded by EXPLAIN and/or followed by
|
||||
** TEMP or TEMPORARY
|
||||
**
|
||||
** (4) TRIGGER We are in the middle of a trigger definition that must be
|
||||
** ended by a semicolon, the keyword END, and another semicolon.
|
||||
**
|
||||
** (5) SEMI We've seen the first semicolon in the ";END;" that occurs at
|
||||
** the end of a trigger definition.
|
||||
**
|
||||
** (6) END We've seen the ";END" of the ";END;" that occurs at the end
|
||||
** of a trigger difinition.
|
||||
**
|
||||
** Transitions between states above are determined by tokens extracted
|
||||
** from the input. The following tokens are significant:
|
||||
**
|
||||
** (0) tkSEMI A semicolon.
|
||||
** (1) tkWS Whitespace
|
||||
** (2) tkOTHER Any other SQL token.
|
||||
** (3) tkEXPLAIN The "explain" keyword.
|
||||
** (4) tkCREATE The "create" keyword.
|
||||
** (5) tkTEMP The "temp" or "temporary" keyword.
|
||||
** (6) tkTRIGGER The "trigger" keyword.
|
||||
** (7) tkEND The "end" keyword.
|
||||
**
|
||||
** Whitespace never causes a state transition and is always ignored.
|
||||
**
|
||||
** If we compile with SQLITE_OMIT_TRIGGER, all of the computation needed
|
||||
** to recognize the end of a trigger can be omitted. All we have to do
|
||||
** is look for a semicolon that is not part of an string or comment.
|
||||
*/
|
||||
int sqlite3_complete(const char *zSql){
|
||||
u8 state = 0; /* Current state, using numbers defined in header comment */
|
||||
u8 token; /* Value of the next token */
|
||||
|
||||
#ifndef SQLITE_OMIT_TRIGGER
|
||||
/* A complex statement machine used to detect the end of a CREATE TRIGGER
|
||||
** statement. This is the normal case.
|
||||
*/
|
||||
static const u8 trans[7][8] = {
|
||||
/* Token: */
|
||||
/* State: ** SEMI WS OTHER EXPLAIN CREATE TEMP TRIGGER END */
|
||||
/* 0 START: */ { 0, 0, 1, 2, 3, 1, 1, 1, },
|
||||
/* 1 NORMAL: */ { 0, 1, 1, 1, 1, 1, 1, 1, },
|
||||
/* 2 EXPLAIN: */ { 0, 2, 1, 1, 3, 1, 1, 1, },
|
||||
/* 3 CREATE: */ { 0, 3, 1, 1, 1, 3, 4, 1, },
|
||||
/* 4 TRIGGER: */ { 5, 4, 4, 4, 4, 4, 4, 4, },
|
||||
/* 5 SEMI: */ { 5, 5, 4, 4, 4, 4, 4, 6, },
|
||||
/* 6 END: */ { 0, 6, 4, 4, 4, 4, 4, 4, },
|
||||
};
|
||||
#else
|
||||
/* If triggers are not suppored by this compile then the statement machine
|
||||
** used to detect the end of a statement is much simplier
|
||||
*/
|
||||
static const u8 trans[2][3] = {
|
||||
/* Token: */
|
||||
/* State: ** SEMI WS OTHER */
|
||||
/* 0 START: */ { 0, 0, 1, },
|
||||
/* 1 NORMAL: */ { 0, 1, 1, },
|
||||
};
|
||||
#endif /* SQLITE_OMIT_TRIGGER */
|
||||
|
||||
while( *zSql ){
|
||||
switch( *zSql ){
|
||||
case ';': { /* A semicolon */
|
||||
token = tkSEMI;
|
||||
break;
|
||||
}
|
||||
case ' ':
|
||||
case '\r':
|
||||
case '\t':
|
||||
case '\n':
|
||||
case '\f': { /* White space is ignored */
|
||||
token = tkWS;
|
||||
break;
|
||||
}
|
||||
case '/': { /* C-style comments */
|
||||
if( zSql[1]!='*' ){
|
||||
token = tkOTHER;
|
||||
break;
|
||||
}
|
||||
zSql += 2;
|
||||
while( zSql[0] && (zSql[0]!='*' || zSql[1]!='/') ){ zSql++; }
|
||||
if( zSql[0]==0 ) return 0;
|
||||
zSql++;
|
||||
token = tkWS;
|
||||
break;
|
||||
}
|
||||
case '-': { /* SQL-style comments from "--" to end of line */
|
||||
if( zSql[1]!='-' ){
|
||||
token = tkOTHER;
|
||||
break;
|
||||
}
|
||||
while( *zSql && *zSql!='\n' ){ zSql++; }
|
||||
if( *zSql==0 ) return state==0;
|
||||
token = tkWS;
|
||||
break;
|
||||
}
|
||||
case '[': { /* Microsoft-style identifiers in [...] */
|
||||
zSql++;
|
||||
while( *zSql && *zSql!=']' ){ zSql++; }
|
||||
if( *zSql==0 ) return 0;
|
||||
token = tkOTHER;
|
||||
break;
|
||||
}
|
||||
case '`': /* Grave-accent quoted symbols used by MySQL */
|
||||
case '"': /* single- and double-quoted strings */
|
||||
case '\'': {
|
||||
int c = *zSql;
|
||||
zSql++;
|
||||
while( *zSql && *zSql!=c ){ zSql++; }
|
||||
if( *zSql==0 ) return 0;
|
||||
token = tkOTHER;
|
||||
break;
|
||||
}
|
||||
default: {
|
||||
int c;
|
||||
if( IdChar((u8)*zSql) ){
|
||||
/* Keywords and unquoted identifiers */
|
||||
int nId;
|
||||
for(nId=1; IdChar(zSql[nId]); nId++){}
|
||||
#ifdef SQLITE_OMIT_TRIGGER
|
||||
token = tkOTHER;
|
||||
#else
|
||||
switch( *zSql ){
|
||||
case 'c': case 'C': {
|
||||
if( nId==6 && sqlite3StrNICmp(zSql, "create", 6)==0 ){
|
||||
token = tkCREATE;
|
||||
}else{
|
||||
token = tkOTHER;
|
||||
}
|
||||
break;
|
||||
}
|
||||
case 't': case 'T': {
|
||||
if( nId==7 && sqlite3StrNICmp(zSql, "trigger", 7)==0 ){
|
||||
token = tkTRIGGER;
|
||||
}else if( nId==4 && sqlite3StrNICmp(zSql, "temp", 4)==0 ){
|
||||
token = tkTEMP;
|
||||
}else if( nId==9 && sqlite3StrNICmp(zSql, "temporary", 9)==0 ){
|
||||
token = tkTEMP;
|
||||
}else{
|
||||
token = tkOTHER;
|
||||
}
|
||||
break;
|
||||
}
|
||||
case 'e': case 'E': {
|
||||
if( nId==3 && sqlite3StrNICmp(zSql, "end", 3)==0 ){
|
||||
token = tkEND;
|
||||
}else
|
||||
#ifndef SQLITE_OMIT_EXPLAIN
|
||||
if( nId==7 && sqlite3StrNICmp(zSql, "explain", 7)==0 ){
|
||||
token = tkEXPLAIN;
|
||||
}else
|
||||
#endif
|
||||
{
|
||||
token = tkOTHER;
|
||||
}
|
||||
break;
|
||||
}
|
||||
default: {
|
||||
token = tkOTHER;
|
||||
break;
|
||||
}
|
||||
}
|
||||
#endif /* SQLITE_OMIT_TRIGGER */
|
||||
zSql += nId-1;
|
||||
}else{
|
||||
/* Operators and special symbols */
|
||||
token = tkOTHER;
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
state = trans[state][token];
|
||||
zSql++;
|
||||
}
|
||||
return state==0;
|
||||
}
|
||||
|
||||
#ifndef SQLITE_OMIT_UTF16
|
||||
/*
|
||||
** This routine is the same as the sqlite3_complete() routine described
|
||||
** above, except that the parameter is required to be UTF-16 encoded, not
|
||||
** UTF-8.
|
||||
*/
|
||||
int sqlite3_complete16(const void *zSql){
|
||||
sqlite3_value *pVal;
|
||||
char const *zSql8;
|
||||
int rc = SQLITE_NOMEM;
|
||||
|
||||
#ifndef SQLITE_OMIT_AUTOINIT
|
||||
rc = sqlite3_initialize();
|
||||
if( rc ) return rc;
|
||||
#endif
|
||||
pVal = sqlite3ValueNew(0);
|
||||
sqlite3ValueSetStr(pVal, -1, zSql, SQLITE_UTF16NATIVE, SQLITE_STATIC);
|
||||
zSql8 = sqlite3ValueText(pVal, SQLITE_UTF8);
|
||||
if( zSql8 ){
|
||||
rc = sqlite3_complete(zSql8);
|
||||
}else{
|
||||
rc = SQLITE_NOMEM;
|
||||
}
|
||||
sqlite3ValueFree(pVal);
|
||||
return sqlite3ApiExit(0, rc);
|
||||
}
|
||||
#endif /* SQLITE_OMIT_UTF16 */
|
||||
#endif /* SQLITE_OMIT_COMPLETE */
|
631
delete.c
631
delete.c
|
@ -1,631 +0,0 @@
|
|||
/*
|
||||
** 2001 September 15
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This file contains C code routines that are called by the parser
|
||||
** in order to generate code for DELETE FROM statements.
|
||||
**
|
||||
** $Id: delete.c,v 1.198 2009/03/05 03:48:07 shane Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
/*
|
||||
** Look up every table that is named in pSrc. If any table is not found,
|
||||
** add an error message to pParse->zErrMsg and return NULL. If all tables
|
||||
** are found, return a pointer to the last table.
|
||||
*/
|
||||
Table *sqlite3SrcListLookup(Parse *pParse, SrcList *pSrc){
|
||||
struct SrcList_item *pItem = pSrc->a;
|
||||
Table *pTab;
|
||||
assert( pItem && pSrc->nSrc==1 );
|
||||
pTab = sqlite3LocateTable(pParse, 0, pItem->zName, pItem->zDatabase);
|
||||
sqlite3DeleteTable(pItem->pTab);
|
||||
pItem->pTab = pTab;
|
||||
if( pTab ){
|
||||
pTab->nRef++;
|
||||
}
|
||||
if( sqlite3IndexedByLookup(pParse, pItem) ){
|
||||
pTab = 0;
|
||||
}
|
||||
return pTab;
|
||||
}
|
||||
|
||||
/*
|
||||
** Check to make sure the given table is writable. If it is not
|
||||
** writable, generate an error message and return 1. If it is
|
||||
** writable return 0;
|
||||
*/
|
||||
int sqlite3IsReadOnly(Parse *pParse, Table *pTab, int viewOk){
|
||||
if( ((pTab->tabFlags & TF_Readonly)!=0
|
||||
&& (pParse->db->flags & SQLITE_WriteSchema)==0
|
||||
&& pParse->nested==0)
|
||||
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
||||
|| (pTab->pMod && pTab->pMod->pModule->xUpdate==0)
|
||||
#endif
|
||||
){
|
||||
sqlite3ErrorMsg(pParse, "table %s may not be modified", pTab->zName);
|
||||
return 1;
|
||||
}
|
||||
#ifndef SQLITE_OMIT_VIEW
|
||||
if( !viewOk && pTab->pSelect ){
|
||||
sqlite3ErrorMsg(pParse,"cannot modify %s because it is a view",pTab->zName);
|
||||
return 1;
|
||||
}
|
||||
#endif
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
** Generate code that will open a table for reading.
|
||||
*/
|
||||
void sqlite3OpenTable(
|
||||
Parse *p, /* Generate code into this VDBE */
|
||||
int iCur, /* The cursor number of the table */
|
||||
int iDb, /* The database index in sqlite3.aDb[] */
|
||||
Table *pTab, /* The table to be opened */
|
||||
int opcode /* OP_OpenRead or OP_OpenWrite */
|
||||
){
|
||||
Vdbe *v;
|
||||
if( IsVirtual(pTab) ) return;
|
||||
v = sqlite3GetVdbe(p);
|
||||
assert( opcode==OP_OpenWrite || opcode==OP_OpenRead );
|
||||
sqlite3TableLock(p, iDb, pTab->tnum, (opcode==OP_OpenWrite)?1:0, pTab->zName);
|
||||
sqlite3VdbeAddOp3(v, opcode, iCur, pTab->tnum, iDb);
|
||||
sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(pTab->nCol), P4_INT32);
|
||||
VdbeComment((v, "%s", pTab->zName));
|
||||
}
|
||||
|
||||
|
||||
#if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
|
||||
/*
|
||||
** Evaluate a view and store its result in an ephemeral table. The
|
||||
** pWhere argument is an optional WHERE clause that restricts the
|
||||
** set of rows in the view that are to be added to the ephemeral table.
|
||||
*/
|
||||
void sqlite3MaterializeView(
|
||||
Parse *pParse, /* Parsing context */
|
||||
Table *pView, /* View definition */
|
||||
Expr *pWhere, /* Optional WHERE clause to be added */
|
||||
int iCur /* Cursor number for ephemerial table */
|
||||
){
|
||||
SelectDest dest;
|
||||
Select *pDup;
|
||||
sqlite3 *db = pParse->db;
|
||||
|
||||
pDup = sqlite3SelectDup(db, pView->pSelect, 0);
|
||||
if( pWhere ){
|
||||
SrcList *pFrom;
|
||||
Token viewName;
|
||||
|
||||
pWhere = sqlite3ExprDup(db, pWhere, 0);
|
||||
viewName.z = (u8*)pView->zName;
|
||||
viewName.n = (unsigned int)sqlite3Strlen30((const char*)viewName.z);
|
||||
pFrom = sqlite3SrcListAppendFromTerm(pParse, 0, 0, 0, &viewName, pDup, 0,0);
|
||||
pDup = sqlite3SelectNew(pParse, 0, pFrom, pWhere, 0, 0, 0, 0, 0, 0);
|
||||
}
|
||||
sqlite3SelectDestInit(&dest, SRT_EphemTab, iCur);
|
||||
sqlite3Select(pParse, pDup, &dest);
|
||||
sqlite3SelectDelete(db, pDup);
|
||||
}
|
||||
#endif /* !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) */
|
||||
|
||||
#if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY)
|
||||
/*
|
||||
** Generate an expression tree to implement the WHERE, ORDER BY,
|
||||
** and LIMIT/OFFSET portion of DELETE and UPDATE statements.
|
||||
**
|
||||
** DELETE FROM table_wxyz WHERE a<5 ORDER BY a LIMIT 1;
|
||||
** \__________________________/
|
||||
** pLimitWhere (pInClause)
|
||||
*/
|
||||
Expr *sqlite3LimitWhere(
|
||||
Parse *pParse, /* The parser context */
|
||||
SrcList *pSrc, /* the FROM clause -- which tables to scan */
|
||||
Expr *pWhere, /* The WHERE clause. May be null */
|
||||
ExprList *pOrderBy, /* The ORDER BY clause. May be null */
|
||||
Expr *pLimit, /* The LIMIT clause. May be null */
|
||||
Expr *pOffset, /* The OFFSET clause. May be null */
|
||||
char *zStmtType /* Either DELETE or UPDATE. For error messages. */
|
||||
){
|
||||
Expr *pWhereRowid = NULL; /* WHERE rowid .. */
|
||||
Expr *pInClause = NULL; /* WHERE rowid IN ( select ) */
|
||||
Expr *pSelectRowid = NULL; /* SELECT rowid ... */
|
||||
ExprList *pEList = NULL; /* Expression list contaning only pSelectRowid */
|
||||
SrcList *pSelectSrc = NULL; /* SELECT rowid FROM x ... (dup of pSrc) */
|
||||
Select *pSelect = NULL; /* Complete SELECT tree */
|
||||
|
||||
/* Check that there isn't an ORDER BY without a LIMIT clause.
|
||||
*/
|
||||
if( pOrderBy && (pLimit == 0) ) {
|
||||
sqlite3ErrorMsg(pParse, "ORDER BY without LIMIT on %s", zStmtType);
|
||||
pParse->parseError = 1;
|
||||
goto limit_where_cleanup_2;
|
||||
}
|
||||
|
||||
/* We only need to generate a select expression if there
|
||||
** is a limit/offset term to enforce.
|
||||
*/
|
||||
if( pLimit == 0 ) {
|
||||
/* if pLimit is null, pOffset will always be null as well. */
|
||||
assert( pOffset == 0 );
|
||||
return pWhere;
|
||||
}
|
||||
|
||||
/* Generate a select expression tree to enforce the limit/offset
|
||||
** term for the DELETE or UPDATE statement. For example:
|
||||
** DELETE FROM table_a WHERE col1=1 ORDER BY col2 LIMIT 1 OFFSET 1
|
||||
** becomes:
|
||||
** DELETE FROM table_a WHERE rowid IN (
|
||||
** SELECT rowid FROM table_a WHERE col1=1 ORDER BY col2 LIMIT 1 OFFSET 1
|
||||
** );
|
||||
*/
|
||||
|
||||
pSelectRowid = sqlite3Expr(pParse->db, TK_ROW, 0, 0, 0);
|
||||
if( pSelectRowid == 0 ) goto limit_where_cleanup_2;
|
||||
pEList = sqlite3ExprListAppend(pParse, 0, pSelectRowid, 0);
|
||||
if( pEList == 0 ) goto limit_where_cleanup_2;
|
||||
|
||||
/* duplicate the FROM clause as it is needed by both the DELETE/UPDATE tree
|
||||
** and the SELECT subtree. */
|
||||
pSelectSrc = sqlite3SrcListDup(pParse->db, pSrc, 0);
|
||||
if( pSelectSrc == 0 ) {
|
||||
sqlite3ExprListDelete(pParse->db, pEList);
|
||||
goto limit_where_cleanup_2;
|
||||
}
|
||||
|
||||
/* generate the SELECT expression tree. */
|
||||
pSelect = sqlite3SelectNew(pParse,pEList,pSelectSrc,pWhere,0,0,
|
||||
pOrderBy,0,pLimit,pOffset);
|
||||
if( pSelect == 0 ) return 0;
|
||||
|
||||
/* now generate the new WHERE rowid IN clause for the DELETE/UDPATE */
|
||||
pWhereRowid = sqlite3Expr(pParse->db, TK_ROW, 0, 0, 0);
|
||||
if( pWhereRowid == 0 ) goto limit_where_cleanup_1;
|
||||
pInClause = sqlite3PExpr(pParse, TK_IN, pWhereRowid, 0, 0);
|
||||
if( pInClause == 0 ) goto limit_where_cleanup_1;
|
||||
|
||||
pInClause->x.pSelect = pSelect;
|
||||
pInClause->flags |= EP_xIsSelect;
|
||||
sqlite3ExprSetHeight(pParse, pInClause);
|
||||
return pInClause;
|
||||
|
||||
/* something went wrong. clean up anything allocated. */
|
||||
limit_where_cleanup_1:
|
||||
sqlite3SelectDelete(pParse->db, pSelect);
|
||||
return 0;
|
||||
|
||||
limit_where_cleanup_2:
|
||||
sqlite3ExprDelete(pParse->db, pWhere);
|
||||
sqlite3ExprListDelete(pParse->db, pOrderBy);
|
||||
sqlite3ExprDelete(pParse->db, pLimit);
|
||||
sqlite3ExprDelete(pParse->db, pOffset);
|
||||
return 0;
|
||||
}
|
||||
#endif /* defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) */
|
||||
|
||||
/*
|
||||
** Generate code for a DELETE FROM statement.
|
||||
**
|
||||
** DELETE FROM table_wxyz WHERE a<5 AND b NOT NULL;
|
||||
** \________/ \________________/
|
||||
** pTabList pWhere
|
||||
*/
|
||||
void sqlite3DeleteFrom(
|
||||
Parse *pParse, /* The parser context */
|
||||
SrcList *pTabList, /* The table from which we should delete things */
|
||||
Expr *pWhere /* The WHERE clause. May be null */
|
||||
){
|
||||
Vdbe *v; /* The virtual database engine */
|
||||
Table *pTab; /* The table from which records will be deleted */
|
||||
const char *zDb; /* Name of database holding pTab */
|
||||
int end, addr = 0; /* A couple addresses of generated code */
|
||||
int i; /* Loop counter */
|
||||
WhereInfo *pWInfo; /* Information about the WHERE clause */
|
||||
Index *pIdx; /* For looping over indices of the table */
|
||||
int iCur; /* VDBE Cursor number for pTab */
|
||||
sqlite3 *db; /* Main database structure */
|
||||
AuthContext sContext; /* Authorization context */
|
||||
int oldIdx = -1; /* Cursor for the OLD table of AFTER triggers */
|
||||
NameContext sNC; /* Name context to resolve expressions in */
|
||||
int iDb; /* Database number */
|
||||
int memCnt = -1; /* Memory cell used for change counting */
|
||||
int rcauth; /* Value returned by authorization callback */
|
||||
|
||||
#ifndef SQLITE_OMIT_TRIGGER
|
||||
int isView; /* True if attempting to delete from a view */
|
||||
Trigger *pTrigger; /* List of table triggers, if required */
|
||||
#endif
|
||||
int iBeginAfterTrigger = 0; /* Address of after trigger program */
|
||||
int iEndAfterTrigger = 0; /* Exit of after trigger program */
|
||||
int iBeginBeforeTrigger = 0; /* Address of before trigger program */
|
||||
int iEndBeforeTrigger = 0; /* Exit of before trigger program */
|
||||
u32 old_col_mask = 0; /* Mask of OLD.* columns in use */
|
||||
|
||||
sContext.pParse = 0;
|
||||
db = pParse->db;
|
||||
if( pParse->nErr || db->mallocFailed ){
|
||||
goto delete_from_cleanup;
|
||||
}
|
||||
assert( pTabList->nSrc==1 );
|
||||
|
||||
/* Locate the table which we want to delete. This table has to be
|
||||
** put in an SrcList structure because some of the subroutines we
|
||||
** will be calling are designed to work with multiple tables and expect
|
||||
** an SrcList* parameter instead of just a Table* parameter.
|
||||
*/
|
||||
pTab = sqlite3SrcListLookup(pParse, pTabList);
|
||||
if( pTab==0 ) goto delete_from_cleanup;
|
||||
|
||||
/* Figure out if we have any triggers and if the table being
|
||||
** deleted from is a view
|
||||
*/
|
||||
#ifndef SQLITE_OMIT_TRIGGER
|
||||
pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
|
||||
isView = pTab->pSelect!=0;
|
||||
#else
|
||||
# define pTrigger 0
|
||||
# define isView 0
|
||||
#endif
|
||||
#ifdef SQLITE_OMIT_VIEW
|
||||
# undef isView
|
||||
# define isView 0
|
||||
#endif
|
||||
|
||||
if( sqlite3IsReadOnly(pParse, pTab, (pTrigger?1:0)) ){
|
||||
goto delete_from_cleanup;
|
||||
}
|
||||
iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
|
||||
assert( iDb<db->nDb );
|
||||
zDb = db->aDb[iDb].zName;
|
||||
rcauth = sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb);
|
||||
assert( rcauth==SQLITE_OK || rcauth==SQLITE_DENY || rcauth==SQLITE_IGNORE );
|
||||
if( rcauth==SQLITE_DENY ){
|
||||
goto delete_from_cleanup;
|
||||
}
|
||||
assert(!isView || pTrigger);
|
||||
|
||||
/* If pTab is really a view, make sure it has been initialized.
|
||||
*/
|
||||
if( sqlite3ViewGetColumnNames(pParse, pTab) ){
|
||||
goto delete_from_cleanup;
|
||||
}
|
||||
|
||||
/* Allocate a cursor used to store the old.* data for a trigger.
|
||||
*/
|
||||
if( pTrigger ){
|
||||
oldIdx = pParse->nTab++;
|
||||
}
|
||||
|
||||
/* Assign cursor number to the table and all its indices.
|
||||
*/
|
||||
assert( pTabList->nSrc==1 );
|
||||
iCur = pTabList->a[0].iCursor = pParse->nTab++;
|
||||
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
||||
pParse->nTab++;
|
||||
}
|
||||
|
||||
/* Start the view context
|
||||
*/
|
||||
if( isView ){
|
||||
sqlite3AuthContextPush(pParse, &sContext, pTab->zName);
|
||||
}
|
||||
|
||||
/* Begin generating code.
|
||||
*/
|
||||
v = sqlite3GetVdbe(pParse);
|
||||
if( v==0 ){
|
||||
goto delete_from_cleanup;
|
||||
}
|
||||
if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
|
||||
sqlite3BeginWriteOperation(pParse, (pTrigger?1:0), iDb);
|
||||
|
||||
if( pTrigger ){
|
||||
int orconf = ((pParse->trigStack)?pParse->trigStack->orconf:OE_Default);
|
||||
int iGoto = sqlite3VdbeAddOp0(v, OP_Goto);
|
||||
addr = sqlite3VdbeMakeLabel(v);
|
||||
|
||||
iBeginBeforeTrigger = sqlite3VdbeCurrentAddr(v);
|
||||
(void)sqlite3CodeRowTrigger(pParse, pTrigger, TK_DELETE, 0,
|
||||
TRIGGER_BEFORE, pTab, -1, oldIdx, orconf, addr, &old_col_mask, 0);
|
||||
iEndBeforeTrigger = sqlite3VdbeAddOp0(v, OP_Goto);
|
||||
|
||||
iBeginAfterTrigger = sqlite3VdbeCurrentAddr(v);
|
||||
(void)sqlite3CodeRowTrigger(pParse, pTrigger, TK_DELETE, 0,
|
||||
TRIGGER_AFTER, pTab, -1, oldIdx, orconf, addr, &old_col_mask, 0);
|
||||
iEndAfterTrigger = sqlite3VdbeAddOp0(v, OP_Goto);
|
||||
|
||||
sqlite3VdbeJumpHere(v, iGoto);
|
||||
}
|
||||
|
||||
/* If we are trying to delete from a view, realize that view into
|
||||
** a ephemeral table.
|
||||
*/
|
||||
#if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
|
||||
if( isView ){
|
||||
sqlite3MaterializeView(pParse, pTab, pWhere, iCur);
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Resolve the column names in the WHERE clause.
|
||||
*/
|
||||
memset(&sNC, 0, sizeof(sNC));
|
||||
sNC.pParse = pParse;
|
||||
sNC.pSrcList = pTabList;
|
||||
if( sqlite3ResolveExprNames(&sNC, pWhere) ){
|
||||
goto delete_from_cleanup;
|
||||
}
|
||||
|
||||
/* Initialize the counter of the number of rows deleted, if
|
||||
** we are counting rows.
|
||||
*/
|
||||
if( db->flags & SQLITE_CountRows ){
|
||||
memCnt = ++pParse->nMem;
|
||||
sqlite3VdbeAddOp2(v, OP_Integer, 0, memCnt);
|
||||
}
|
||||
|
||||
#ifndef SQLITE_OMIT_TRUNCATE_OPTIMIZATION
|
||||
/* Special case: A DELETE without a WHERE clause deletes everything.
|
||||
** It is easier just to erase the whole table. Note, however, that
|
||||
** this means that the row change count will be incorrect.
|
||||
*/
|
||||
if( rcauth==SQLITE_OK && pWhere==0 && !pTrigger && !IsVirtual(pTab) ){
|
||||
assert( !isView );
|
||||
sqlite3VdbeAddOp3(v, OP_Clear, pTab->tnum, iDb, memCnt);
|
||||
if( !pParse->nested ){
|
||||
sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_STATIC);
|
||||
}
|
||||
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
||||
assert( pIdx->pSchema==pTab->pSchema );
|
||||
sqlite3VdbeAddOp2(v, OP_Clear, pIdx->tnum, iDb);
|
||||
}
|
||||
}else
|
||||
#endif /* SQLITE_OMIT_TRUNCATE_OPTIMIZATION */
|
||||
/* The usual case: There is a WHERE clause so we have to scan through
|
||||
** the table and pick which records to delete.
|
||||
*/
|
||||
{
|
||||
int iRowid = ++pParse->nMem; /* Used for storing rowid values. */
|
||||
int iRowSet = ++pParse->nMem; /* Register for rowset of rows to delete */
|
||||
|
||||
/* Collect rowids of every row to be deleted.
|
||||
*/
|
||||
sqlite3VdbeAddOp2(v, OP_Null, 0, iRowSet);
|
||||
pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0,
|
||||
WHERE_FILL_ROWSET, iRowSet);
|
||||
if( pWInfo==0 ) goto delete_from_cleanup;
|
||||
if( db->flags & SQLITE_CountRows ){
|
||||
sqlite3VdbeAddOp2(v, OP_AddImm, memCnt, 1);
|
||||
}
|
||||
sqlite3WhereEnd(pWInfo);
|
||||
|
||||
/* Open the pseudo-table used to store OLD if there are triggers.
|
||||
*/
|
||||
if( pTrigger ){
|
||||
sqlite3VdbeAddOp3(v, OP_OpenPseudo, oldIdx, 0, pTab->nCol);
|
||||
}
|
||||
|
||||
/* Delete every item whose key was written to the list during the
|
||||
** database scan. We have to delete items after the scan is complete
|
||||
** because deleting an item can change the scan order.
|
||||
*/
|
||||
end = sqlite3VdbeMakeLabel(v);
|
||||
|
||||
if( !isView ){
|
||||
/* Open cursors for the table we are deleting from and
|
||||
** all its indices.
|
||||
*/
|
||||
sqlite3OpenTableAndIndices(pParse, pTab, iCur, OP_OpenWrite);
|
||||
}
|
||||
|
||||
/* This is the beginning of the delete loop. If a trigger encounters
|
||||
** an IGNORE constraint, it jumps back to here.
|
||||
*/
|
||||
if( pTrigger ){
|
||||
sqlite3VdbeResolveLabel(v, addr);
|
||||
}
|
||||
addr = sqlite3VdbeAddOp3(v, OP_RowSetRead, iRowSet, end, iRowid);
|
||||
|
||||
if( pTrigger ){
|
||||
int iData = ++pParse->nMem; /* For storing row data of OLD table */
|
||||
|
||||
/* If the record is no longer present in the table, jump to the
|
||||
** next iteration of the loop through the contents of the fifo.
|
||||
*/
|
||||
sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addr, iRowid);
|
||||
|
||||
/* Populate the OLD.* pseudo-table */
|
||||
if( old_col_mask ){
|
||||
sqlite3VdbeAddOp2(v, OP_RowData, iCur, iData);
|
||||
}else{
|
||||
sqlite3VdbeAddOp2(v, OP_Null, 0, iData);
|
||||
}
|
||||
sqlite3VdbeAddOp3(v, OP_Insert, oldIdx, iData, iRowid);
|
||||
|
||||
/* Jump back and run the BEFORE triggers */
|
||||
sqlite3VdbeAddOp2(v, OP_Goto, 0, iBeginBeforeTrigger);
|
||||
sqlite3VdbeJumpHere(v, iEndBeforeTrigger);
|
||||
}
|
||||
|
||||
if( !isView ){
|
||||
/* Delete the row */
|
||||
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
||||
if( IsVirtual(pTab) ){
|
||||
const char *pVtab = (const char *)pTab->pVtab;
|
||||
sqlite3VtabMakeWritable(pParse, pTab);
|
||||
sqlite3VdbeAddOp4(v, OP_VUpdate, 0, 1, iRowid, pVtab, P4_VTAB);
|
||||
}else
|
||||
#endif
|
||||
{
|
||||
sqlite3GenerateRowDelete(pParse, pTab, iCur, iRowid, pParse->nested==0);
|
||||
}
|
||||
}
|
||||
|
||||
/* If there are row triggers, close all cursors then invoke
|
||||
** the AFTER triggers
|
||||
*/
|
||||
if( pTrigger ){
|
||||
/* Jump back and run the AFTER triggers */
|
||||
sqlite3VdbeAddOp2(v, OP_Goto, 0, iBeginAfterTrigger);
|
||||
sqlite3VdbeJumpHere(v, iEndAfterTrigger);
|
||||
}
|
||||
|
||||
/* End of the delete loop */
|
||||
sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
|
||||
sqlite3VdbeResolveLabel(v, end);
|
||||
|
||||
/* Close the cursors after the loop if there are no row triggers */
|
||||
if( !isView && !IsVirtual(pTab) ){
|
||||
for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){
|
||||
sqlite3VdbeAddOp2(v, OP_Close, iCur + i, pIdx->tnum);
|
||||
}
|
||||
sqlite3VdbeAddOp1(v, OP_Close, iCur);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Return the number of rows that were deleted. If this routine is
|
||||
** generating code because of a call to sqlite3NestedParse(), do not
|
||||
** invoke the callback function.
|
||||
*/
|
||||
if( db->flags & SQLITE_CountRows && pParse->nested==0 && !pParse->trigStack ){
|
||||
sqlite3VdbeAddOp2(v, OP_ResultRow, memCnt, 1);
|
||||
sqlite3VdbeSetNumCols(v, 1);
|
||||
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows deleted", SQLITE_STATIC);
|
||||
}
|
||||
|
||||
delete_from_cleanup:
|
||||
sqlite3AuthContextPop(&sContext);
|
||||
sqlite3SrcListDelete(db, pTabList);
|
||||
sqlite3ExprDelete(db, pWhere);
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
** This routine generates VDBE code that causes a single row of a
|
||||
** single table to be deleted.
|
||||
**
|
||||
** The VDBE must be in a particular state when this routine is called.
|
||||
** These are the requirements:
|
||||
**
|
||||
** 1. A read/write cursor pointing to pTab, the table containing the row
|
||||
** to be deleted, must be opened as cursor number "base".
|
||||
**
|
||||
** 2. Read/write cursors for all indices of pTab must be open as
|
||||
** cursor number base+i for the i-th index.
|
||||
**
|
||||
** 3. The record number of the row to be deleted must be stored in
|
||||
** memory cell iRowid.
|
||||
**
|
||||
** This routine pops the top of the stack to remove the record number
|
||||
** and then generates code to remove both the table record and all index
|
||||
** entries that point to that record.
|
||||
*/
|
||||
void sqlite3GenerateRowDelete(
|
||||
Parse *pParse, /* Parsing context */
|
||||
Table *pTab, /* Table containing the row to be deleted */
|
||||
int iCur, /* Cursor number for the table */
|
||||
int iRowid, /* Memory cell that contains the rowid to delete */
|
||||
int count /* Increment the row change counter */
|
||||
){
|
||||
int addr;
|
||||
Vdbe *v;
|
||||
|
||||
v = pParse->pVdbe;
|
||||
addr = sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, iRowid);
|
||||
sqlite3GenerateRowIndexDelete(pParse, pTab, iCur, 0);
|
||||
sqlite3VdbeAddOp2(v, OP_Delete, iCur, (count?OPFLAG_NCHANGE:0));
|
||||
if( count ){
|
||||
sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_STATIC);
|
||||
}
|
||||
sqlite3VdbeJumpHere(v, addr);
|
||||
}
|
||||
|
||||
/*
|
||||
** This routine generates VDBE code that causes the deletion of all
|
||||
** index entries associated with a single row of a single table.
|
||||
**
|
||||
** The VDBE must be in a particular state when this routine is called.
|
||||
** These are the requirements:
|
||||
**
|
||||
** 1. A read/write cursor pointing to pTab, the table containing the row
|
||||
** to be deleted, must be opened as cursor number "iCur".
|
||||
**
|
||||
** 2. Read/write cursors for all indices of pTab must be open as
|
||||
** cursor number iCur+i for the i-th index.
|
||||
**
|
||||
** 3. The "iCur" cursor must be pointing to the row that is to be
|
||||
** deleted.
|
||||
*/
|
||||
void sqlite3GenerateRowIndexDelete(
|
||||
Parse *pParse, /* Parsing and code generating context */
|
||||
Table *pTab, /* Table containing the row to be deleted */
|
||||
int iCur, /* Cursor number for the table */
|
||||
int *aRegIdx /* Only delete if aRegIdx!=0 && aRegIdx[i]>0 */
|
||||
){
|
||||
int i;
|
||||
Index *pIdx;
|
||||
int r1;
|
||||
|
||||
for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){
|
||||
if( aRegIdx!=0 && aRegIdx[i-1]==0 ) continue;
|
||||
r1 = sqlite3GenerateIndexKey(pParse, pIdx, iCur, 0, 0);
|
||||
sqlite3VdbeAddOp3(pParse->pVdbe, OP_IdxDelete, iCur+i, r1,pIdx->nColumn+1);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Generate code that will assemble an index key and put it in register
|
||||
** regOut. The key with be for index pIdx which is an index on pTab.
|
||||
** iCur is the index of a cursor open on the pTab table and pointing to
|
||||
** the entry that needs indexing.
|
||||
**
|
||||
** Return a register number which is the first in a block of
|
||||
** registers that holds the elements of the index key. The
|
||||
** block of registers has already been deallocated by the time
|
||||
** this routine returns.
|
||||
*/
|
||||
int sqlite3GenerateIndexKey(
|
||||
Parse *pParse, /* Parsing context */
|
||||
Index *pIdx, /* The index for which to generate a key */
|
||||
int iCur, /* Cursor number for the pIdx->pTable table */
|
||||
int regOut, /* Write the new index key to this register */
|
||||
int doMakeRec /* Run the OP_MakeRecord instruction if true */
|
||||
){
|
||||
Vdbe *v = pParse->pVdbe;
|
||||
int j;
|
||||
Table *pTab = pIdx->pTable;
|
||||
int regBase;
|
||||
int nCol;
|
||||
|
||||
nCol = pIdx->nColumn;
|
||||
regBase = sqlite3GetTempRange(pParse, nCol+1);
|
||||
sqlite3VdbeAddOp2(v, OP_Rowid, iCur, regBase+nCol);
|
||||
for(j=0; j<nCol; j++){
|
||||
int idx = pIdx->aiColumn[j];
|
||||
if( idx==pTab->iPKey ){
|
||||
sqlite3VdbeAddOp2(v, OP_SCopy, regBase+nCol, regBase+j);
|
||||
}else{
|
||||
sqlite3VdbeAddOp3(v, OP_Column, iCur, idx, regBase+j);
|
||||
sqlite3ColumnDefault(v, pTab, idx);
|
||||
}
|
||||
}
|
||||
if( doMakeRec ){
|
||||
sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol+1, regOut);
|
||||
sqlite3IndexAffinityStr(v, pIdx);
|
||||
sqlite3ExprCacheAffinityChange(pParse, regBase, nCol+1);
|
||||
}
|
||||
sqlite3ReleaseTempRange(pParse, regBase, nCol+1);
|
||||
return regBase;
|
||||
}
|
||||
|
||||
/* Make sure "isView" gets undefined in case this file becomes part of
|
||||
** the amalgamation - so that subsequent files do not see isView as a
|
||||
** macro. */
|
||||
#undef isView
|
91
fault.c
91
fault.c
|
@ -1,91 +0,0 @@
|
|||
/*
|
||||
** 2008 Jan 22
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
**
|
||||
** $Id: fault.c,v 1.11 2008/09/02 00:52:52 drh Exp $
|
||||
*/
|
||||
|
||||
/*
|
||||
** This file contains code to support the concept of "benign"
|
||||
** malloc failures (when the xMalloc() or xRealloc() method of the
|
||||
** sqlite3_mem_methods structure fails to allocate a block of memory
|
||||
** and returns 0).
|
||||
**
|
||||
** Most malloc failures are non-benign. After they occur, SQLite
|
||||
** abandons the current operation and returns an error code (usually
|
||||
** SQLITE_NOMEM) to the user. However, sometimes a fault is not necessarily
|
||||
** fatal. For example, if a malloc fails while resizing a hash table, this
|
||||
** is completely recoverable simply by not carrying out the resize. The
|
||||
** hash table will continue to function normally. So a malloc failure
|
||||
** during a hash table resize is a benign fault.
|
||||
*/
|
||||
|
||||
#include "sqliteInt.h"
|
||||
|
||||
#ifndef SQLITE_OMIT_BUILTIN_TEST
|
||||
|
||||
/*
|
||||
** Global variables.
|
||||
*/
|
||||
typedef struct BenignMallocHooks BenignMallocHooks;
|
||||
static SQLITE_WSD struct BenignMallocHooks {
|
||||
void (*xBenignBegin)(void);
|
||||
void (*xBenignEnd)(void);
|
||||
} sqlite3Hooks = { 0, 0 };
|
||||
|
||||
/* The "wsdHooks" macro will resolve to the appropriate BenignMallocHooks
|
||||
** structure. If writable static data is unsupported on the target,
|
||||
** we have to locate the state vector at run-time. In the more common
|
||||
** case where writable static data is supported, wsdHooks can refer directly
|
||||
** to the "sqlite3Hooks" state vector declared above.
|
||||
*/
|
||||
#ifdef SQLITE_OMIT_WSD
|
||||
# define wsdHooksInit \
|
||||
BenignMallocHooks *x = &GLOBAL(BenignMallocHooks,sqlite3Hooks)
|
||||
# define wsdHooks x[0]
|
||||
#else
|
||||
# define wsdHooksInit
|
||||
# define wsdHooks sqlite3Hooks
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
** Register hooks to call when sqlite3BeginBenignMalloc() and
|
||||
** sqlite3EndBenignMalloc() are called, respectively.
|
||||
*/
|
||||
void sqlite3BenignMallocHooks(
|
||||
void (*xBenignBegin)(void),
|
||||
void (*xBenignEnd)(void)
|
||||
){
|
||||
wsdHooksInit;
|
||||
wsdHooks.xBenignBegin = xBenignBegin;
|
||||
wsdHooks.xBenignEnd = xBenignEnd;
|
||||
}
|
||||
|
||||
/*
|
||||
** This (sqlite3EndBenignMalloc()) is called by SQLite code to indicate that
|
||||
** subsequent malloc failures are benign. A call to sqlite3EndBenignMalloc()
|
||||
** indicates that subsequent malloc failures are non-benign.
|
||||
*/
|
||||
void sqlite3BeginBenignMalloc(void){
|
||||
wsdHooksInit;
|
||||
if( wsdHooks.xBenignBegin ){
|
||||
wsdHooks.xBenignBegin();
|
||||
}
|
||||
}
|
||||
void sqlite3EndBenignMalloc(void){
|
||||
wsdHooksInit;
|
||||
if( wsdHooks.xBenignEnd ){
|
||||
wsdHooks.xBenignEnd();
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* #ifndef SQLITE_OMIT_BUILTIN_TEST */
|
26
fts3.h
26
fts3.h
|
@ -1,26 +0,0 @@
|
|||
/*
|
||||
** 2006 Oct 10
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
******************************************************************************
|
||||
**
|
||||
** This header file is used by programs that want to link against the
|
||||
** FTS3 library. All it does is declare the sqlite3Fts3Init() interface.
|
||||
*/
|
||||
#include "sqlite3.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif /* __cplusplus */
|
||||
|
||||
int sqlite3Fts3Init(sqlite3 *db);
|
||||
|
||||
#ifdef __cplusplus
|
||||
} /* extern "C" */
|
||||
#endif /* __cplusplus */
|
894
fts3_expr.c
894
fts3_expr.c
|
@ -1,894 +0,0 @@
|
|||
/*
|
||||
** 2008 Nov 28
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
******************************************************************************
|
||||
**
|
||||
** This module contains code that implements a parser for fts3 query strings
|
||||
** (the right-hand argument to the MATCH operator). Because the supported
|
||||
** syntax is relatively simple, the whole tokenizer/parser system is
|
||||
** hand-coded. The public interface to this module is declared in source
|
||||
** code file "fts3_expr.h".
|
||||
*/
|
||||
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
|
||||
|
||||
/*
|
||||
** By default, this module parses the legacy syntax that has been
|
||||
** traditionally used by fts3. Or, if SQLITE_ENABLE_FTS3_PARENTHESIS
|
||||
** is defined, then it uses the new syntax. The differences between
|
||||
** the new and the old syntaxes are:
|
||||
**
|
||||
** a) The new syntax supports parenthesis. The old does not.
|
||||
**
|
||||
** b) The new syntax supports the AND and NOT operators. The old does not.
|
||||
**
|
||||
** c) The old syntax supports the "-" token qualifier. This is not
|
||||
** supported by the new syntax (it is replaced by the NOT operator).
|
||||
**
|
||||
** d) When using the old syntax, the OR operator has a greater precedence
|
||||
** than an implicit AND. When using the new, both implicity and explicit
|
||||
** AND operators have a higher precedence than OR.
|
||||
**
|
||||
** If compiled with SQLITE_TEST defined, then this module exports the
|
||||
** symbol "int sqlite3_fts3_enable_parentheses". Setting this variable
|
||||
** to zero causes the module to use the old syntax. If it is set to
|
||||
** non-zero the new syntax is activated. This is so both syntaxes can
|
||||
** be tested using a single build of testfixture.
|
||||
*/
|
||||
#ifdef SQLITE_TEST
|
||||
int sqlite3_fts3_enable_parentheses = 0;
|
||||
#else
|
||||
# ifdef SQLITE_ENABLE_FTS3_PARENTHESIS
|
||||
# define sqlite3_fts3_enable_parentheses 1
|
||||
# else
|
||||
# define sqlite3_fts3_enable_parentheses 0
|
||||
# endif
|
||||
#endif
|
||||
|
||||
/*
|
||||
** Default span for NEAR operators.
|
||||
*/
|
||||
#define SQLITE_FTS3_DEFAULT_NEAR_PARAM 10
|
||||
|
||||
#include "fts3_expr.h"
|
||||
#include "sqlite3.h"
|
||||
#include <ctype.h>
|
||||
#include <string.h>
|
||||
#include <assert.h>
|
||||
|
||||
typedef struct ParseContext ParseContext;
|
||||
struct ParseContext {
|
||||
sqlite3_tokenizer *pTokenizer; /* Tokenizer module */
|
||||
const char **azCol; /* Array of column names for fts3 table */
|
||||
int nCol; /* Number of entries in azCol[] */
|
||||
int iDefaultCol; /* Default column to query */
|
||||
sqlite3_context *pCtx; /* Write error message here */
|
||||
int nNest; /* Number of nested brackets */
|
||||
};
|
||||
|
||||
/*
|
||||
** This function is equivalent to the standard isspace() function.
|
||||
**
|
||||
** The standard isspace() can be awkward to use safely, because although it
|
||||
** is defined to accept an argument of type int, its behaviour when passed
|
||||
** an integer that falls outside of the range of the unsigned char type
|
||||
** is undefined (and sometimes, "undefined" means segfault). This wrapper
|
||||
** is defined to accept an argument of type char, and always returns 0 for
|
||||
** any values that fall outside of the range of the unsigned char type (i.e.
|
||||
** negative values).
|
||||
*/
|
||||
static int fts3isspace(char c){
|
||||
return (c&0x80)==0 ? isspace(c) : 0;
|
||||
}
|
||||
|
||||
/*
|
||||
** Extract the next token from buffer z (length n) using the tokenizer
|
||||
** and other information (column names etc.) in pParse. Create an Fts3Expr
|
||||
** structure of type FTSQUERY_PHRASE containing a phrase consisting of this
|
||||
** single token and set *ppExpr to point to it. If the end of the buffer is
|
||||
** reached before a token is found, set *ppExpr to zero. It is the
|
||||
** responsibility of the caller to eventually deallocate the allocated
|
||||
** Fts3Expr structure (if any) by passing it to sqlite3_free().
|
||||
**
|
||||
** Return SQLITE_OK if successful, or SQLITE_NOMEM if a memory allocation
|
||||
** fails.
|
||||
*/
|
||||
static int getNextToken(
|
||||
ParseContext *pParse, /* fts3 query parse context */
|
||||
int iCol, /* Value for Fts3Phrase.iColumn */
|
||||
const char *z, int n, /* Input string */
|
||||
Fts3Expr **ppExpr, /* OUT: expression */
|
||||
int *pnConsumed /* OUT: Number of bytes consumed */
|
||||
){
|
||||
sqlite3_tokenizer *pTokenizer = pParse->pTokenizer;
|
||||
sqlite3_tokenizer_module const *pModule = pTokenizer->pModule;
|
||||
int rc;
|
||||
sqlite3_tokenizer_cursor *pCursor;
|
||||
Fts3Expr *pRet = 0;
|
||||
int nConsumed = 0;
|
||||
|
||||
rc = pModule->xOpen(pTokenizer, z, n, &pCursor);
|
||||
if( rc==SQLITE_OK ){
|
||||
const char *zToken;
|
||||
int nToken, iStart, iEnd, iPosition;
|
||||
int nByte; /* total space to allocate */
|
||||
|
||||
pCursor->pTokenizer = pTokenizer;
|
||||
rc = pModule->xNext(pCursor, &zToken, &nToken, &iStart, &iEnd, &iPosition);
|
||||
|
||||
if( rc==SQLITE_OK ){
|
||||
nByte = sizeof(Fts3Expr) + sizeof(Fts3Phrase) + nToken;
|
||||
pRet = (Fts3Expr *)sqlite3_malloc(nByte);
|
||||
if( !pRet ){
|
||||
rc = SQLITE_NOMEM;
|
||||
}else{
|
||||
memset(pRet, 0, nByte);
|
||||
pRet->eType = FTSQUERY_PHRASE;
|
||||
pRet->pPhrase = (Fts3Phrase *)&pRet[1];
|
||||
pRet->pPhrase->nToken = 1;
|
||||
pRet->pPhrase->iColumn = iCol;
|
||||
pRet->pPhrase->aToken[0].n = nToken;
|
||||
pRet->pPhrase->aToken[0].z = (char *)&pRet->pPhrase[1];
|
||||
memcpy(pRet->pPhrase->aToken[0].z, zToken, nToken);
|
||||
|
||||
if( iEnd<n && z[iEnd]=='*' ){
|
||||
pRet->pPhrase->aToken[0].isPrefix = 1;
|
||||
iEnd++;
|
||||
}
|
||||
if( !sqlite3_fts3_enable_parentheses && iStart>0 && z[iStart-1]=='-' ){
|
||||
pRet->pPhrase->isNot = 1;
|
||||
}
|
||||
}
|
||||
nConsumed = iEnd;
|
||||
}
|
||||
|
||||
pModule->xClose(pCursor);
|
||||
}
|
||||
|
||||
*pnConsumed = nConsumed;
|
||||
*ppExpr = pRet;
|
||||
return rc;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** Enlarge a memory allocation. If an out-of-memory allocation occurs,
|
||||
** then free the old allocation.
|
||||
*/
|
||||
void *fts3ReallocOrFree(void *pOrig, int nNew){
|
||||
void *pRet = sqlite3_realloc(pOrig, nNew);
|
||||
if( !pRet ){
|
||||
sqlite3_free(pOrig);
|
||||
}
|
||||
return pRet;
|
||||
}
|
||||
|
||||
/*
|
||||
** Buffer zInput, length nInput, contains the contents of a quoted string
|
||||
** that appeared as part of an fts3 query expression. Neither quote character
|
||||
** is included in the buffer. This function attempts to tokenize the entire
|
||||
** input buffer and create an Fts3Expr structure of type FTSQUERY_PHRASE
|
||||
** containing the results.
|
||||
**
|
||||
** If successful, SQLITE_OK is returned and *ppExpr set to point at the
|
||||
** allocated Fts3Expr structure. Otherwise, either SQLITE_NOMEM (out of memory
|
||||
** error) or SQLITE_ERROR (tokenization error) is returned and *ppExpr set
|
||||
** to 0.
|
||||
*/
|
||||
static int getNextString(
|
||||
ParseContext *pParse, /* fts3 query parse context */
|
||||
const char *zInput, int nInput, /* Input string */
|
||||
Fts3Expr **ppExpr /* OUT: expression */
|
||||
){
|
||||
sqlite3_tokenizer *pTokenizer = pParse->pTokenizer;
|
||||
sqlite3_tokenizer_module const *pModule = pTokenizer->pModule;
|
||||
int rc;
|
||||
Fts3Expr *p = 0;
|
||||
sqlite3_tokenizer_cursor *pCursor = 0;
|
||||
char *zTemp = 0;
|
||||
int nTemp = 0;
|
||||
|
||||
rc = pModule->xOpen(pTokenizer, zInput, nInput, &pCursor);
|
||||
if( rc==SQLITE_OK ){
|
||||
int ii;
|
||||
pCursor->pTokenizer = pTokenizer;
|
||||
for(ii=0; rc==SQLITE_OK; ii++){
|
||||
const char *zToken;
|
||||
int nToken, iBegin, iEnd, iPos;
|
||||
rc = pModule->xNext(pCursor, &zToken, &nToken, &iBegin, &iEnd, &iPos);
|
||||
if( rc==SQLITE_OK ){
|
||||
int nByte = sizeof(Fts3Expr) + sizeof(Fts3Phrase);
|
||||
p = fts3ReallocOrFree(p, nByte+ii*sizeof(struct PhraseToken));
|
||||
zTemp = fts3ReallocOrFree(zTemp, nTemp + nToken);
|
||||
if( !p || !zTemp ){
|
||||
goto no_mem;
|
||||
}
|
||||
if( ii==0 ){
|
||||
memset(p, 0, nByte);
|
||||
p->pPhrase = (Fts3Phrase *)&p[1];
|
||||
}
|
||||
p->pPhrase = (Fts3Phrase *)&p[1];
|
||||
p->pPhrase->nToken = ii+1;
|
||||
p->pPhrase->aToken[ii].n = nToken;
|
||||
memcpy(&zTemp[nTemp], zToken, nToken);
|
||||
nTemp += nToken;
|
||||
if( iEnd<nInput && zInput[iEnd]=='*' ){
|
||||
p->pPhrase->aToken[ii].isPrefix = 1;
|
||||
}else{
|
||||
p->pPhrase->aToken[ii].isPrefix = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pModule->xClose(pCursor);
|
||||
pCursor = 0;
|
||||
}
|
||||
|
||||
if( rc==SQLITE_DONE ){
|
||||
int jj;
|
||||
char *zNew;
|
||||
int nNew = 0;
|
||||
int nByte = sizeof(Fts3Expr) + sizeof(Fts3Phrase);
|
||||
nByte += (p?(p->pPhrase->nToken-1):0) * sizeof(struct PhraseToken);
|
||||
p = fts3ReallocOrFree(p, nByte + nTemp);
|
||||
if( !p ){
|
||||
goto no_mem;
|
||||
}
|
||||
if( zTemp ){
|
||||
zNew = &(((char *)p)[nByte]);
|
||||
memcpy(zNew, zTemp, nTemp);
|
||||
}else{
|
||||
memset(p, 0, nByte+nTemp);
|
||||
}
|
||||
p->pPhrase = (Fts3Phrase *)&p[1];
|
||||
for(jj=0; jj<p->pPhrase->nToken; jj++){
|
||||
p->pPhrase->aToken[jj].z = &zNew[nNew];
|
||||
nNew += p->pPhrase->aToken[jj].n;
|
||||
}
|
||||
sqlite3_free(zTemp);
|
||||
p->eType = FTSQUERY_PHRASE;
|
||||
p->pPhrase->iColumn = pParse->iDefaultCol;
|
||||
rc = SQLITE_OK;
|
||||
}
|
||||
|
||||
*ppExpr = p;
|
||||
return rc;
|
||||
no_mem:
|
||||
|
||||
if( pCursor ){
|
||||
pModule->xClose(pCursor);
|
||||
}
|
||||
sqlite3_free(zTemp);
|
||||
sqlite3_free(p);
|
||||
*ppExpr = 0;
|
||||
return SQLITE_NOMEM;
|
||||
}
|
||||
|
||||
/*
|
||||
** Function getNextNode(), which is called by fts3ExprParse(), may itself
|
||||
** call fts3ExprParse(). So this forward declaration is required.
|
||||
*/
|
||||
static int fts3ExprParse(ParseContext *, const char *, int, Fts3Expr **, int *);
|
||||
|
||||
/*
|
||||
** The output variable *ppExpr is populated with an allocated Fts3Expr
|
||||
** structure, or set to 0 if the end of the input buffer is reached.
|
||||
**
|
||||
** Returns an SQLite error code. SQLITE_OK if everything works, SQLITE_NOMEM
|
||||
** if a malloc failure occurs, or SQLITE_ERROR if a parse error is encountered.
|
||||
** If SQLITE_ERROR is returned, pContext is populated with an error message.
|
||||
*/
|
||||
static int getNextNode(
|
||||
ParseContext *pParse, /* fts3 query parse context */
|
||||
const char *z, int n, /* Input string */
|
||||
Fts3Expr **ppExpr, /* OUT: expression */
|
||||
int *pnConsumed /* OUT: Number of bytes consumed */
|
||||
){
|
||||
static const struct Fts3Keyword {
|
||||
char z[4]; /* Keyword text */
|
||||
unsigned char n; /* Length of the keyword */
|
||||
unsigned char parenOnly; /* Only valid in paren mode */
|
||||
unsigned char eType; /* Keyword code */
|
||||
} aKeyword[] = {
|
||||
{ "OR" , 2, 0, FTSQUERY_OR },
|
||||
{ "AND", 3, 1, FTSQUERY_AND },
|
||||
{ "NOT", 3, 1, FTSQUERY_NOT },
|
||||
{ "NEAR", 4, 0, FTSQUERY_NEAR }
|
||||
};
|
||||
int ii;
|
||||
int iCol;
|
||||
int iColLen;
|
||||
int rc;
|
||||
Fts3Expr *pRet = 0;
|
||||
|
||||
const char *zInput = z;
|
||||
int nInput = n;
|
||||
|
||||
/* Skip over any whitespace before checking for a keyword, an open or
|
||||
** close bracket, or a quoted string.
|
||||
*/
|
||||
while( nInput>0 && fts3isspace(*zInput) ){
|
||||
nInput--;
|
||||
zInput++;
|
||||
}
|
||||
if( nInput==0 ){
|
||||
return SQLITE_DONE;
|
||||
}
|
||||
|
||||
/* See if we are dealing with a keyword. */
|
||||
for(ii=0; ii<(int)(sizeof(aKeyword)/sizeof(struct Fts3Keyword)); ii++){
|
||||
const struct Fts3Keyword *pKey = &aKeyword[ii];
|
||||
|
||||
if( (pKey->parenOnly & ~sqlite3_fts3_enable_parentheses)!=0 ){
|
||||
continue;
|
||||
}
|
||||
|
||||
if( nInput>=pKey->n && 0==memcmp(zInput, pKey->z, pKey->n) ){
|
||||
int nNear = SQLITE_FTS3_DEFAULT_NEAR_PARAM;
|
||||
int nKey = pKey->n;
|
||||
char cNext;
|
||||
|
||||
/* If this is a "NEAR" keyword, check for an explicit nearness. */
|
||||
if( pKey->eType==FTSQUERY_NEAR ){
|
||||
assert( nKey==4 );
|
||||
if( zInput[4]=='/' && zInput[5]>='0' && zInput[5]<='9' ){
|
||||
nNear = 0;
|
||||
for(nKey=5; zInput[nKey]>='0' && zInput[nKey]<='9'; nKey++){
|
||||
nNear = nNear * 10 + (zInput[nKey] - '0');
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* At this point this is probably a keyword. But for that to be true,
|
||||
** the next byte must contain either whitespace, an open or close
|
||||
** parenthesis, a quote character, or EOF.
|
||||
*/
|
||||
cNext = zInput[nKey];
|
||||
if( fts3isspace(cNext)
|
||||
|| cNext=='"' || cNext=='(' || cNext==')' || cNext==0
|
||||
){
|
||||
pRet = (Fts3Expr *)sqlite3_malloc(sizeof(Fts3Expr));
|
||||
memset(pRet, 0, sizeof(Fts3Expr));
|
||||
pRet->eType = pKey->eType;
|
||||
pRet->nNear = nNear;
|
||||
*ppExpr = pRet;
|
||||
*pnConsumed = (zInput - z) + nKey;
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/* Turns out that wasn't a keyword after all. This happens if the
|
||||
** user has supplied a token such as "ORacle". Continue.
|
||||
*/
|
||||
}
|
||||
}
|
||||
|
||||
/* Check for an open bracket. */
|
||||
if( sqlite3_fts3_enable_parentheses ){
|
||||
if( *zInput=='(' ){
|
||||
int nConsumed;
|
||||
int rc;
|
||||
pParse->nNest++;
|
||||
rc = fts3ExprParse(pParse, &zInput[1], nInput-1, ppExpr, &nConsumed);
|
||||
if( rc==SQLITE_OK && !*ppExpr ){
|
||||
rc = SQLITE_DONE;
|
||||
}
|
||||
*pnConsumed = (zInput - z) + 1 + nConsumed;
|
||||
return rc;
|
||||
}
|
||||
|
||||
/* Check for a close bracket. */
|
||||
if( *zInput==')' ){
|
||||
pParse->nNest--;
|
||||
*pnConsumed = (zInput - z) + 1;
|
||||
return SQLITE_DONE;
|
||||
}
|
||||
}
|
||||
|
||||
/* See if we are dealing with a quoted phrase. If this is the case, then
|
||||
** search for the closing quote and pass the whole string to getNextString()
|
||||
** for processing. This is easy to do, as fts3 has no syntax for escaping
|
||||
** a quote character embedded in a string.
|
||||
*/
|
||||
if( *zInput=='"' ){
|
||||
for(ii=1; ii<nInput && zInput[ii]!='"'; ii++);
|
||||
*pnConsumed = (zInput - z) + ii + 1;
|
||||
if( ii==nInput ){
|
||||
return SQLITE_ERROR;
|
||||
}
|
||||
return getNextString(pParse, &zInput[1], ii-1, ppExpr);
|
||||
}
|
||||
|
||||
|
||||
/* If control flows to this point, this must be a regular token, or
|
||||
** the end of the input. Read a regular token using the sqlite3_tokenizer
|
||||
** interface. Before doing so, figure out if there is an explicit
|
||||
** column specifier for the token.
|
||||
**
|
||||
** TODO: Strangely, it is not possible to associate a column specifier
|
||||
** with a quoted phrase, only with a single token. Not sure if this was
|
||||
** an implementation artifact or an intentional decision when fts3 was
|
||||
** first implemented. Whichever it was, this module duplicates the
|
||||
** limitation.
|
||||
*/
|
||||
iCol = pParse->iDefaultCol;
|
||||
iColLen = 0;
|
||||
for(ii=0; ii<pParse->nCol; ii++){
|
||||
const char *zStr = pParse->azCol[ii];
|
||||
int nStr = strlen(zStr);
|
||||
if( nInput>nStr && zInput[nStr]==':' && memcmp(zStr, zInput, nStr)==0 ){
|
||||
iCol = ii;
|
||||
iColLen = ((zInput - z) + nStr + 1);
|
||||
break;
|
||||
}
|
||||
}
|
||||
rc = getNextToken(pParse, iCol, &z[iColLen], n-iColLen, ppExpr, pnConsumed);
|
||||
*pnConsumed += iColLen;
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** The argument is an Fts3Expr structure for a binary operator (any type
|
||||
** except an FTSQUERY_PHRASE). Return an integer value representing the
|
||||
** precedence of the operator. Lower values have a higher precedence (i.e.
|
||||
** group more tightly). For example, in the C language, the == operator
|
||||
** groups more tightly than ||, and would therefore have a higher precedence.
|
||||
**
|
||||
** When using the new fts3 query syntax (when SQLITE_ENABLE_FTS3_PARENTHESIS
|
||||
** is defined), the order of the operators in precedence from highest to
|
||||
** lowest is:
|
||||
**
|
||||
** NEAR
|
||||
** NOT
|
||||
** AND (including implicit ANDs)
|
||||
** OR
|
||||
**
|
||||
** Note that when using the old query syntax, the OR operator has a higher
|
||||
** precedence than the AND operator.
|
||||
*/
|
||||
static int opPrecedence(Fts3Expr *p){
|
||||
assert( p->eType!=FTSQUERY_PHRASE );
|
||||
if( sqlite3_fts3_enable_parentheses ){
|
||||
return p->eType;
|
||||
}else if( p->eType==FTSQUERY_NEAR ){
|
||||
return 1;
|
||||
}else if( p->eType==FTSQUERY_OR ){
|
||||
return 2;
|
||||
}
|
||||
assert( p->eType==FTSQUERY_AND );
|
||||
return 3;
|
||||
}
|
||||
|
||||
/*
|
||||
** Argument ppHead contains a pointer to the current head of a query
|
||||
** expression tree being parsed. pPrev is the expression node most recently
|
||||
** inserted into the tree. This function adds pNew, which is always a binary
|
||||
** operator node, into the expression tree based on the relative precedence
|
||||
** of pNew and the existing nodes of the tree. This may result in the head
|
||||
** of the tree changing, in which case *ppHead is set to the new root node.
|
||||
*/
|
||||
static void insertBinaryOperator(
|
||||
Fts3Expr **ppHead, /* Pointer to the root node of a tree */
|
||||
Fts3Expr *pPrev, /* Node most recently inserted into the tree */
|
||||
Fts3Expr *pNew /* New binary node to insert into expression tree */
|
||||
){
|
||||
Fts3Expr *pSplit = pPrev;
|
||||
while( pSplit->pParent && opPrecedence(pSplit->pParent)<=opPrecedence(pNew) ){
|
||||
pSplit = pSplit->pParent;
|
||||
}
|
||||
|
||||
if( pSplit->pParent ){
|
||||
assert( pSplit->pParent->pRight==pSplit );
|
||||
pSplit->pParent->pRight = pNew;
|
||||
pNew->pParent = pSplit->pParent;
|
||||
}else{
|
||||
*ppHead = pNew;
|
||||
}
|
||||
pNew->pLeft = pSplit;
|
||||
pSplit->pParent = pNew;
|
||||
}
|
||||
|
||||
/*
|
||||
** Parse the fts3 query expression found in buffer z, length n. This function
|
||||
** returns either when the end of the buffer is reached or an unmatched
|
||||
** closing bracket - ')' - is encountered.
|
||||
**
|
||||
** If successful, SQLITE_OK is returned, *ppExpr is set to point to the
|
||||
** parsed form of the expression and *pnConsumed is set to the number of
|
||||
** bytes read from buffer z. Otherwise, *ppExpr is set to 0 and SQLITE_NOMEM
|
||||
** (out of memory error) or SQLITE_ERROR (parse error) is returned.
|
||||
*/
|
||||
static int fts3ExprParse(
|
||||
ParseContext *pParse, /* fts3 query parse context */
|
||||
const char *z, int n, /* Text of MATCH query */
|
||||
Fts3Expr **ppExpr, /* OUT: Parsed query structure */
|
||||
int *pnConsumed /* OUT: Number of bytes consumed */
|
||||
){
|
||||
Fts3Expr *pRet = 0;
|
||||
Fts3Expr *pPrev = 0;
|
||||
Fts3Expr *pNotBranch = 0; /* Only used in legacy parse mode */
|
||||
int nIn = n;
|
||||
const char *zIn = z;
|
||||
int rc = SQLITE_OK;
|
||||
int isRequirePhrase = 1;
|
||||
|
||||
while( rc==SQLITE_OK ){
|
||||
Fts3Expr *p = 0;
|
||||
int nByte = 0;
|
||||
rc = getNextNode(pParse, zIn, nIn, &p, &nByte);
|
||||
if( rc==SQLITE_OK ){
|
||||
int isPhrase;
|
||||
|
||||
if( !sqlite3_fts3_enable_parentheses
|
||||
&& p->eType==FTSQUERY_PHRASE && p->pPhrase->isNot
|
||||
){
|
||||
/* Create an implicit NOT operator. */
|
||||
Fts3Expr *pNot = sqlite3_malloc(sizeof(Fts3Expr));
|
||||
if( !pNot ){
|
||||
sqlite3Fts3ExprFree(p);
|
||||
rc = SQLITE_NOMEM;
|
||||
goto exprparse_out;
|
||||
}
|
||||
memset(pNot, 0, sizeof(Fts3Expr));
|
||||
pNot->eType = FTSQUERY_NOT;
|
||||
pNot->pRight = p;
|
||||
if( pNotBranch ){
|
||||
pNotBranch->pLeft = p;
|
||||
pNot->pRight = pNotBranch;
|
||||
}
|
||||
pNotBranch = pNot;
|
||||
}else{
|
||||
int eType = p->eType;
|
||||
assert( eType!=FTSQUERY_PHRASE || !p->pPhrase->isNot );
|
||||
isPhrase = (eType==FTSQUERY_PHRASE || p->pLeft);
|
||||
|
||||
/* The isRequirePhrase variable is set to true if a phrase or
|
||||
** an expression contained in parenthesis is required. If a
|
||||
** binary operator (AND, OR, NOT or NEAR) is encounted when
|
||||
** isRequirePhrase is set, this is a syntax error.
|
||||
*/
|
||||
if( !isPhrase && isRequirePhrase ){
|
||||
sqlite3Fts3ExprFree(p);
|
||||
rc = SQLITE_ERROR;
|
||||
goto exprparse_out;
|
||||
}
|
||||
|
||||
if( isPhrase && !isRequirePhrase ){
|
||||
/* Insert an implicit AND operator. */
|
||||
Fts3Expr *pAnd;
|
||||
assert( pRet && pPrev );
|
||||
pAnd = sqlite3_malloc(sizeof(Fts3Expr));
|
||||
if( !pAnd ){
|
||||
sqlite3Fts3ExprFree(p);
|
||||
rc = SQLITE_NOMEM;
|
||||
goto exprparse_out;
|
||||
}
|
||||
memset(pAnd, 0, sizeof(Fts3Expr));
|
||||
pAnd->eType = FTSQUERY_AND;
|
||||
insertBinaryOperator(&pRet, pPrev, pAnd);
|
||||
pPrev = pAnd;
|
||||
}
|
||||
|
||||
/* This test catches attempts to make either operand of a NEAR
|
||||
** operator something other than a phrase. For example, either of
|
||||
** the following:
|
||||
**
|
||||
** (bracketed expression) NEAR phrase
|
||||
** phrase NEAR (bracketed expression)
|
||||
**
|
||||
** Return an error in either case.
|
||||
*/
|
||||
if( pPrev && (
|
||||
(eType==FTSQUERY_NEAR && !isPhrase && pPrev->eType!=FTSQUERY_PHRASE)
|
||||
|| (eType!=FTSQUERY_PHRASE && isPhrase && pPrev->eType==FTSQUERY_NEAR)
|
||||
)){
|
||||
sqlite3Fts3ExprFree(p);
|
||||
rc = SQLITE_ERROR;
|
||||
goto exprparse_out;
|
||||
}
|
||||
|
||||
if( isPhrase ){
|
||||
if( pRet ){
|
||||
assert( pPrev && pPrev->pLeft && pPrev->pRight==0 );
|
||||
pPrev->pRight = p;
|
||||
p->pParent = pPrev;
|
||||
}else{
|
||||
pRet = p;
|
||||
}
|
||||
}else{
|
||||
insertBinaryOperator(&pRet, pPrev, p);
|
||||
}
|
||||
isRequirePhrase = !isPhrase;
|
||||
}
|
||||
assert( nByte>0 );
|
||||
}
|
||||
assert( rc!=SQLITE_OK || (nByte>0 && nByte<=nIn) );
|
||||
nIn -= nByte;
|
||||
zIn += nByte;
|
||||
pPrev = p;
|
||||
}
|
||||
|
||||
if( rc==SQLITE_DONE && pRet && isRequirePhrase ){
|
||||
rc = SQLITE_ERROR;
|
||||
}
|
||||
|
||||
if( rc==SQLITE_DONE ){
|
||||
rc = SQLITE_OK;
|
||||
if( !sqlite3_fts3_enable_parentheses && pNotBranch ){
|
||||
if( !pRet ){
|
||||
rc = SQLITE_ERROR;
|
||||
}else{
|
||||
pNotBranch->pLeft = pRet;
|
||||
pRet = pNotBranch;
|
||||
}
|
||||
}
|
||||
}
|
||||
*pnConsumed = n - nIn;
|
||||
|
||||
exprparse_out:
|
||||
if( rc!=SQLITE_OK ){
|
||||
sqlite3Fts3ExprFree(pRet);
|
||||
sqlite3Fts3ExprFree(pNotBranch);
|
||||
pRet = 0;
|
||||
}
|
||||
*ppExpr = pRet;
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** Parameters z and n contain a pointer to and length of a buffer containing
|
||||
** an fts3 query expression, respectively. This function attempts to parse the
|
||||
** query expression and create a tree of Fts3Expr structures representing the
|
||||
** parsed expression. If successful, *ppExpr is set to point to the head
|
||||
** of the parsed expression tree and SQLITE_OK is returned. If an error
|
||||
** occurs, either SQLITE_NOMEM (out-of-memory error) or SQLITE_ERROR (parse
|
||||
** error) is returned and *ppExpr is set to 0.
|
||||
**
|
||||
** If parameter n is a negative number, then z is assumed to point to a
|
||||
** nul-terminated string and the length is determined using strlen().
|
||||
**
|
||||
** The first parameter, pTokenizer, is passed the fts3 tokenizer module to
|
||||
** use to normalize query tokens while parsing the expression. The azCol[]
|
||||
** array, which is assumed to contain nCol entries, should contain the names
|
||||
** of each column in the target fts3 table, in order from left to right.
|
||||
** Column names must be nul-terminated strings.
|
||||
**
|
||||
** The iDefaultCol parameter should be passed the index of the table column
|
||||
** that appears on the left-hand-side of the MATCH operator (the default
|
||||
** column to match against for tokens for which a column name is not explicitly
|
||||
** specified as part of the query string), or -1 if tokens may by default
|
||||
** match any table column.
|
||||
*/
|
||||
int sqlite3Fts3ExprParse(
|
||||
sqlite3_tokenizer *pTokenizer, /* Tokenizer module */
|
||||
char **azCol, /* Array of column names for fts3 table */
|
||||
int nCol, /* Number of entries in azCol[] */
|
||||
int iDefaultCol, /* Default column to query */
|
||||
const char *z, int n, /* Text of MATCH query */
|
||||
Fts3Expr **ppExpr /* OUT: Parsed query structure */
|
||||
){
|
||||
int nParsed;
|
||||
int rc;
|
||||
ParseContext sParse;
|
||||
sParse.pTokenizer = pTokenizer;
|
||||
sParse.azCol = (const char **)azCol;
|
||||
sParse.nCol = nCol;
|
||||
sParse.iDefaultCol = iDefaultCol;
|
||||
sParse.nNest = 0;
|
||||
if( z==0 ){
|
||||
*ppExpr = 0;
|
||||
return SQLITE_OK;
|
||||
}
|
||||
if( n<0 ){
|
||||
n = strlen(z);
|
||||
}
|
||||
rc = fts3ExprParse(&sParse, z, n, ppExpr, &nParsed);
|
||||
|
||||
/* Check for mismatched parenthesis */
|
||||
if( rc==SQLITE_OK && sParse.nNest ){
|
||||
rc = SQLITE_ERROR;
|
||||
sqlite3Fts3ExprFree(*ppExpr);
|
||||
*ppExpr = 0;
|
||||
}
|
||||
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** Free a parsed fts3 query expression allocated by sqlite3Fts3ExprParse().
|
||||
*/
|
||||
void sqlite3Fts3ExprFree(Fts3Expr *p){
|
||||
if( p ){
|
||||
sqlite3Fts3ExprFree(p->pLeft);
|
||||
sqlite3Fts3ExprFree(p->pRight);
|
||||
sqlite3_free(p);
|
||||
}
|
||||
}
|
||||
|
||||
/****************************************************************************
|
||||
*****************************************************************************
|
||||
** Everything after this point is just test code.
|
||||
*/
|
||||
|
||||
#ifdef SQLITE_TEST
|
||||
|
||||
#include <stdio.h>
|
||||
|
||||
/*
|
||||
** Function to query the hash-table of tokenizers (see README.tokenizers).
|
||||
*/
|
||||
static int queryTestTokenizer(
|
||||
sqlite3 *db,
|
||||
const char *zName,
|
||||
const sqlite3_tokenizer_module **pp
|
||||
){
|
||||
int rc;
|
||||
sqlite3_stmt *pStmt;
|
||||
const char zSql[] = "SELECT fts3_tokenizer(?)";
|
||||
|
||||
*pp = 0;
|
||||
rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
|
||||
if( rc!=SQLITE_OK ){
|
||||
return rc;
|
||||
}
|
||||
|
||||
sqlite3_bind_text(pStmt, 1, zName, -1, SQLITE_STATIC);
|
||||
if( SQLITE_ROW==sqlite3_step(pStmt) ){
|
||||
if( sqlite3_column_type(pStmt, 0)==SQLITE_BLOB ){
|
||||
memcpy(pp, sqlite3_column_blob(pStmt, 0), sizeof(*pp));
|
||||
}
|
||||
}
|
||||
|
||||
return sqlite3_finalize(pStmt);
|
||||
}
|
||||
|
||||
/*
|
||||
** This function is part of the test interface for the query parser. It
|
||||
** writes a text representation of the query expression pExpr into the
|
||||
** buffer pointed to by argument zBuf. It is assumed that zBuf is large
|
||||
** enough to store the required text representation.
|
||||
*/
|
||||
static void exprToString(Fts3Expr *pExpr, char *zBuf){
|
||||
switch( pExpr->eType ){
|
||||
case FTSQUERY_PHRASE: {
|
||||
Fts3Phrase *pPhrase = pExpr->pPhrase;
|
||||
int i;
|
||||
zBuf += sprintf(zBuf, "PHRASE %d %d", pPhrase->iColumn, pPhrase->isNot);
|
||||
for(i=0; i<pPhrase->nToken; i++){
|
||||
zBuf += sprintf(zBuf," %.*s",pPhrase->aToken[i].n,pPhrase->aToken[i].z);
|
||||
zBuf += sprintf(zBuf,"%s", (pPhrase->aToken[i].isPrefix?"+":""));
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
case FTSQUERY_NEAR:
|
||||
zBuf += sprintf(zBuf, "NEAR/%d ", pExpr->nNear);
|
||||
break;
|
||||
case FTSQUERY_NOT:
|
||||
zBuf += sprintf(zBuf, "NOT ");
|
||||
break;
|
||||
case FTSQUERY_AND:
|
||||
zBuf += sprintf(zBuf, "AND ");
|
||||
break;
|
||||
case FTSQUERY_OR:
|
||||
zBuf += sprintf(zBuf, "OR ");
|
||||
break;
|
||||
}
|
||||
|
||||
zBuf += sprintf(zBuf, "{");
|
||||
exprToString(pExpr->pLeft, zBuf);
|
||||
zBuf += strlen(zBuf);
|
||||
zBuf += sprintf(zBuf, "} ");
|
||||
|
||||
zBuf += sprintf(zBuf, "{");
|
||||
exprToString(pExpr->pRight, zBuf);
|
||||
zBuf += strlen(zBuf);
|
||||
zBuf += sprintf(zBuf, "}");
|
||||
}
|
||||
|
||||
/*
|
||||
** This is the implementation of a scalar SQL function used to test the
|
||||
** expression parser. It should be called as follows:
|
||||
**
|
||||
** fts3_exprtest(<tokenizer>, <expr>, <column 1>, ...);
|
||||
**
|
||||
** The first argument, <tokenizer>, is the name of the fts3 tokenizer used
|
||||
** to parse the query expression (see README.tokenizers). The second argument
|
||||
** is the query expression to parse. Each subsequent argument is the name
|
||||
** of a column of the fts3 table that the query expression may refer to.
|
||||
** For example:
|
||||
**
|
||||
** SELECT fts3_exprtest('simple', 'Bill col2:Bloggs', 'col1', 'col2');
|
||||
*/
|
||||
static void fts3ExprTest(
|
||||
sqlite3_context *context,
|
||||
int argc,
|
||||
sqlite3_value **argv
|
||||
){
|
||||
sqlite3_tokenizer_module const *pModule = 0;
|
||||
sqlite3_tokenizer *pTokenizer = 0;
|
||||
int rc;
|
||||
char **azCol = 0;
|
||||
const char *zExpr;
|
||||
int nExpr;
|
||||
int nCol;
|
||||
int ii;
|
||||
Fts3Expr *pExpr;
|
||||
sqlite3 *db = sqlite3_context_db_handle(context);
|
||||
|
||||
if( argc<3 ){
|
||||
sqlite3_result_error(context,
|
||||
"Usage: fts3_exprtest(tokenizer, expr, col1, ...", -1
|
||||
);
|
||||
return;
|
||||
}
|
||||
|
||||
rc = queryTestTokenizer(db,
|
||||
(const char *)sqlite3_value_text(argv[0]), &pModule);
|
||||
if( rc==SQLITE_NOMEM ){
|
||||
sqlite3_result_error_nomem(context);
|
||||
goto exprtest_out;
|
||||
}else if( !pModule ){
|
||||
sqlite3_result_error(context, "No such tokenizer module", -1);
|
||||
goto exprtest_out;
|
||||
}
|
||||
|
||||
rc = pModule->xCreate(0, 0, &pTokenizer);
|
||||
assert( rc==SQLITE_NOMEM || rc==SQLITE_OK );
|
||||
if( rc==SQLITE_NOMEM ){
|
||||
sqlite3_result_error_nomem(context);
|
||||
goto exprtest_out;
|
||||
}
|
||||
pTokenizer->pModule = pModule;
|
||||
|
||||
zExpr = (const char *)sqlite3_value_text(argv[1]);
|
||||
nExpr = sqlite3_value_bytes(argv[1]);
|
||||
nCol = argc-2;
|
||||
azCol = (char **)sqlite3_malloc(nCol*sizeof(char *));
|
||||
if( !azCol ){
|
||||
sqlite3_result_error_nomem(context);
|
||||
goto exprtest_out;
|
||||
}
|
||||
for(ii=0; ii<nCol; ii++){
|
||||
azCol[ii] = (char *)sqlite3_value_text(argv[ii+2]);
|
||||
}
|
||||
|
||||
rc = sqlite3Fts3ExprParse(
|
||||
pTokenizer, azCol, nCol, nCol, zExpr, nExpr, &pExpr
|
||||
);
|
||||
if( rc==SQLITE_NOMEM ){
|
||||
sqlite3_result_error_nomem(context);
|
||||
goto exprtest_out;
|
||||
}else if( rc==SQLITE_OK ){
|
||||
char zBuf[4096];
|
||||
exprToString(pExpr, zBuf);
|
||||
sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
|
||||
sqlite3Fts3ExprFree(pExpr);
|
||||
}else{
|
||||
sqlite3_result_error(context, "Error parsing expression", -1);
|
||||
}
|
||||
|
||||
exprtest_out:
|
||||
if( pModule && pTokenizer ){
|
||||
rc = pModule->xDestroy(pTokenizer);
|
||||
}
|
||||
sqlite3_free(azCol);
|
||||
}
|
||||
|
||||
/*
|
||||
** Register the query expression parser test function fts3_exprtest()
|
||||
** with database connection db.
|
||||
*/
|
||||
void sqlite3Fts3ExprInitTestInterface(sqlite3* db){
|
||||
sqlite3_create_function(
|
||||
db, "fts3_exprtest", -1, SQLITE_UTF8, 0, fts3ExprTest, 0, 0
|
||||
);
|
||||
}
|
||||
|
||||
#endif
|
||||
#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
|
96
fts3_expr.h
96
fts3_expr.h
|
@ -1,96 +0,0 @@
|
|||
/*
|
||||
** 2008 Nov 28
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
******************************************************************************
|
||||
**
|
||||
*/
|
||||
|
||||
#include "fts3_tokenizer.h"
|
||||
#include "sqlite3.h"
|
||||
|
||||
/*
|
||||
** The following describes the syntax supported by the fts3 MATCH
|
||||
** operator in a similar format to that used by the lemon parser
|
||||
** generator. This module does not use actually lemon, it uses a
|
||||
** custom parser.
|
||||
**
|
||||
** query ::= andexpr (OR andexpr)*.
|
||||
**
|
||||
** andexpr ::= notexpr (AND? notexpr)*.
|
||||
**
|
||||
** notexpr ::= nearexpr (NOT nearexpr|-TOKEN)*.
|
||||
** notexpr ::= LP query RP.
|
||||
**
|
||||
** nearexpr ::= phrase (NEAR distance_opt nearexpr)*.
|
||||
**
|
||||
** distance_opt ::= .
|
||||
** distance_opt ::= / INTEGER.
|
||||
**
|
||||
** phrase ::= TOKEN.
|
||||
** phrase ::= COLUMN:TOKEN.
|
||||
** phrase ::= "TOKEN TOKEN TOKEN...".
|
||||
*/
|
||||
|
||||
typedef struct Fts3Expr Fts3Expr;
|
||||
typedef struct Fts3Phrase Fts3Phrase;
|
||||
|
||||
/*
|
||||
** A "phrase" is a sequence of one or more tokens that must match in
|
||||
** sequence. A single token is the base case and the most common case.
|
||||
** For a sequence of tokens contained in "...", nToken will be the number
|
||||
** of tokens in the string.
|
||||
*/
|
||||
struct Fts3Phrase {
|
||||
int nToken; /* Number of tokens in the phrase */
|
||||
int iColumn; /* Index of column this phrase must match */
|
||||
int isNot; /* Phrase prefixed by unary not (-) operator */
|
||||
struct PhraseToken {
|
||||
char *z; /* Text of the token */
|
||||
int n; /* Number of bytes in buffer pointed to by z */
|
||||
int isPrefix; /* True if token ends in with a "*" character */
|
||||
} aToken[1]; /* One entry for each token in the phrase */
|
||||
};
|
||||
|
||||
/*
|
||||
** A tree of these objects forms the RHS of a MATCH operator.
|
||||
*/
|
||||
struct Fts3Expr {
|
||||
int eType; /* One of the FTSQUERY_XXX values defined below */
|
||||
int nNear; /* Valid if eType==FTSQUERY_NEAR */
|
||||
Fts3Expr *pParent; /* pParent->pLeft==this or pParent->pRight==this */
|
||||
Fts3Expr *pLeft; /* Left operand */
|
||||
Fts3Expr *pRight; /* Right operand */
|
||||
Fts3Phrase *pPhrase; /* Valid if eType==FTSQUERY_PHRASE */
|
||||
};
|
||||
|
||||
int sqlite3Fts3ExprParse(sqlite3_tokenizer *, char **, int, int,
|
||||
const char *, int, Fts3Expr **);
|
||||
void sqlite3Fts3ExprFree(Fts3Expr *);
|
||||
|
||||
/*
|
||||
** Candidate values for Fts3Query.eType. Note that the order of the first
|
||||
** four values is in order of precedence when parsing expressions. For
|
||||
** example, the following:
|
||||
**
|
||||
** "a OR b AND c NOT d NEAR e"
|
||||
**
|
||||
** is equivalent to:
|
||||
**
|
||||
** "a OR (b AND (c NOT (d NEAR e)))"
|
||||
*/
|
||||
#define FTSQUERY_NEAR 1
|
||||
#define FTSQUERY_NOT 2
|
||||
#define FTSQUERY_AND 3
|
||||
#define FTSQUERY_OR 4
|
||||
#define FTSQUERY_PHRASE 5
|
||||
|
||||
#ifdef SQLITE_TEST
|
||||
void sqlite3Fts3ExprInitTestInterface(sqlite3 *db);
|
||||
#endif
|
373
fts3_hash.c
373
fts3_hash.c
|
@ -1,373 +0,0 @@
|
|||
/*
|
||||
** 2001 September 22
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This is the implementation of generic hash-tables used in SQLite.
|
||||
** We've modified it slightly to serve as a standalone hash table
|
||||
** implementation for the full-text indexing module.
|
||||
*/
|
||||
|
||||
/*
|
||||
** The code in this file is only compiled if:
|
||||
**
|
||||
** * The FTS3 module is being built as an extension
|
||||
** (in which case SQLITE_CORE is not defined), or
|
||||
**
|
||||
** * The FTS3 module is being built into the core of
|
||||
** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
|
||||
*/
|
||||
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
|
||||
|
||||
#include <assert.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "sqlite3.h"
|
||||
#include "fts3_hash.h"
|
||||
|
||||
/*
|
||||
** Malloc and Free functions
|
||||
*/
|
||||
static void *fts3HashMalloc(int n){
|
||||
void *p = sqlite3_malloc(n);
|
||||
if( p ){
|
||||
memset(p, 0, n);
|
||||
}
|
||||
return p;
|
||||
}
|
||||
static void fts3HashFree(void *p){
|
||||
sqlite3_free(p);
|
||||
}
|
||||
|
||||
/* Turn bulk memory into a hash table object by initializing the
|
||||
** fields of the Hash structure.
|
||||
**
|
||||
** "pNew" is a pointer to the hash table that is to be initialized.
|
||||
** keyClass is one of the constants
|
||||
** FTS3_HASH_BINARY or FTS3_HASH_STRING. The value of keyClass
|
||||
** determines what kind of key the hash table will use. "copyKey" is
|
||||
** true if the hash table should make its own private copy of keys and
|
||||
** false if it should just use the supplied pointer.
|
||||
*/
|
||||
void sqlite3Fts3HashInit(fts3Hash *pNew, int keyClass, int copyKey){
|
||||
assert( pNew!=0 );
|
||||
assert( keyClass>=FTS3_HASH_STRING && keyClass<=FTS3_HASH_BINARY );
|
||||
pNew->keyClass = keyClass;
|
||||
pNew->copyKey = copyKey;
|
||||
pNew->first = 0;
|
||||
pNew->count = 0;
|
||||
pNew->htsize = 0;
|
||||
pNew->ht = 0;
|
||||
}
|
||||
|
||||
/* Remove all entries from a hash table. Reclaim all memory.
|
||||
** Call this routine to delete a hash table or to reset a hash table
|
||||
** to the empty state.
|
||||
*/
|
||||
void sqlite3Fts3HashClear(fts3Hash *pH){
|
||||
fts3HashElem *elem; /* For looping over all elements of the table */
|
||||
|
||||
assert( pH!=0 );
|
||||
elem = pH->first;
|
||||
pH->first = 0;
|
||||
fts3HashFree(pH->ht);
|
||||
pH->ht = 0;
|
||||
pH->htsize = 0;
|
||||
while( elem ){
|
||||
fts3HashElem *next_elem = elem->next;
|
||||
if( pH->copyKey && elem->pKey ){
|
||||
fts3HashFree(elem->pKey);
|
||||
}
|
||||
fts3HashFree(elem);
|
||||
elem = next_elem;
|
||||
}
|
||||
pH->count = 0;
|
||||
}
|
||||
|
||||
/*
|
||||
** Hash and comparison functions when the mode is FTS3_HASH_STRING
|
||||
*/
|
||||
static int fts3StrHash(const void *pKey, int nKey){
|
||||
const char *z = (const char *)pKey;
|
||||
int h = 0;
|
||||
if( nKey<=0 ) nKey = (int) strlen(z);
|
||||
while( nKey > 0 ){
|
||||
h = (h<<3) ^ h ^ *z++;
|
||||
nKey--;
|
||||
}
|
||||
return h & 0x7fffffff;
|
||||
}
|
||||
static int fts3StrCompare(const void *pKey1, int n1, const void *pKey2, int n2){
|
||||
if( n1!=n2 ) return 1;
|
||||
return strncmp((const char*)pKey1,(const char*)pKey2,n1);
|
||||
}
|
||||
|
||||
/*
|
||||
** Hash and comparison functions when the mode is FTS3_HASH_BINARY
|
||||
*/
|
||||
static int fts3BinHash(const void *pKey, int nKey){
|
||||
int h = 0;
|
||||
const char *z = (const char *)pKey;
|
||||
while( nKey-- > 0 ){
|
||||
h = (h<<3) ^ h ^ *(z++);
|
||||
}
|
||||
return h & 0x7fffffff;
|
||||
}
|
||||
static int fts3BinCompare(const void *pKey1, int n1, const void *pKey2, int n2){
|
||||
if( n1!=n2 ) return 1;
|
||||
return memcmp(pKey1,pKey2,n1);
|
||||
}
|
||||
|
||||
/*
|
||||
** Return a pointer to the appropriate hash function given the key class.
|
||||
**
|
||||
** The C syntax in this function definition may be unfamilar to some
|
||||
** programmers, so we provide the following additional explanation:
|
||||
**
|
||||
** The name of the function is "ftsHashFunction". The function takes a
|
||||
** single parameter "keyClass". The return value of ftsHashFunction()
|
||||
** is a pointer to another function. Specifically, the return value
|
||||
** of ftsHashFunction() is a pointer to a function that takes two parameters
|
||||
** with types "const void*" and "int" and returns an "int".
|
||||
*/
|
||||
static int (*ftsHashFunction(int keyClass))(const void*,int){
|
||||
if( keyClass==FTS3_HASH_STRING ){
|
||||
return &fts3StrHash;
|
||||
}else{
|
||||
assert( keyClass==FTS3_HASH_BINARY );
|
||||
return &fts3BinHash;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Return a pointer to the appropriate hash function given the key class.
|
||||
**
|
||||
** For help in interpreted the obscure C code in the function definition,
|
||||
** see the header comment on the previous function.
|
||||
*/
|
||||
static int (*ftsCompareFunction(int keyClass))(const void*,int,const void*,int){
|
||||
if( keyClass==FTS3_HASH_STRING ){
|
||||
return &fts3StrCompare;
|
||||
}else{
|
||||
assert( keyClass==FTS3_HASH_BINARY );
|
||||
return &fts3BinCompare;
|
||||
}
|
||||
}
|
||||
|
||||
/* Link an element into the hash table
|
||||
*/
|
||||
static void fts3HashInsertElement(
|
||||
fts3Hash *pH, /* The complete hash table */
|
||||
struct _fts3ht *pEntry, /* The entry into which pNew is inserted */
|
||||
fts3HashElem *pNew /* The element to be inserted */
|
||||
){
|
||||
fts3HashElem *pHead; /* First element already in pEntry */
|
||||
pHead = pEntry->chain;
|
||||
if( pHead ){
|
||||
pNew->next = pHead;
|
||||
pNew->prev = pHead->prev;
|
||||
if( pHead->prev ){ pHead->prev->next = pNew; }
|
||||
else { pH->first = pNew; }
|
||||
pHead->prev = pNew;
|
||||
}else{
|
||||
pNew->next = pH->first;
|
||||
if( pH->first ){ pH->first->prev = pNew; }
|
||||
pNew->prev = 0;
|
||||
pH->first = pNew;
|
||||
}
|
||||
pEntry->count++;
|
||||
pEntry->chain = pNew;
|
||||
}
|
||||
|
||||
|
||||
/* Resize the hash table so that it cantains "new_size" buckets.
|
||||
** "new_size" must be a power of 2. The hash table might fail
|
||||
** to resize if sqliteMalloc() fails.
|
||||
*/
|
||||
static void fts3Rehash(fts3Hash *pH, int new_size){
|
||||
struct _fts3ht *new_ht; /* The new hash table */
|
||||
fts3HashElem *elem, *next_elem; /* For looping over existing elements */
|
||||
int (*xHash)(const void*,int); /* The hash function */
|
||||
|
||||
assert( (new_size & (new_size-1))==0 );
|
||||
new_ht = (struct _fts3ht *)fts3HashMalloc( new_size*sizeof(struct _fts3ht) );
|
||||
if( new_ht==0 ) return;
|
||||
fts3HashFree(pH->ht);
|
||||
pH->ht = new_ht;
|
||||
pH->htsize = new_size;
|
||||
xHash = ftsHashFunction(pH->keyClass);
|
||||
for(elem=pH->first, pH->first=0; elem; elem = next_elem){
|
||||
int h = (*xHash)(elem->pKey, elem->nKey) & (new_size-1);
|
||||
next_elem = elem->next;
|
||||
fts3HashInsertElement(pH, &new_ht[h], elem);
|
||||
}
|
||||
}
|
||||
|
||||
/* This function (for internal use only) locates an element in an
|
||||
** hash table that matches the given key. The hash for this key has
|
||||
** already been computed and is passed as the 4th parameter.
|
||||
*/
|
||||
static fts3HashElem *fts3FindElementByHash(
|
||||
const fts3Hash *pH, /* The pH to be searched */
|
||||
const void *pKey, /* The key we are searching for */
|
||||
int nKey,
|
||||
int h /* The hash for this key. */
|
||||
){
|
||||
fts3HashElem *elem; /* Used to loop thru the element list */
|
||||
int count; /* Number of elements left to test */
|
||||
int (*xCompare)(const void*,int,const void*,int); /* comparison function */
|
||||
|
||||
if( pH->ht ){
|
||||
struct _fts3ht *pEntry = &pH->ht[h];
|
||||
elem = pEntry->chain;
|
||||
count = pEntry->count;
|
||||
xCompare = ftsCompareFunction(pH->keyClass);
|
||||
while( count-- && elem ){
|
||||
if( (*xCompare)(elem->pKey,elem->nKey,pKey,nKey)==0 ){
|
||||
return elem;
|
||||
}
|
||||
elem = elem->next;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Remove a single entry from the hash table given a pointer to that
|
||||
** element and a hash on the element's key.
|
||||
*/
|
||||
static void fts3RemoveElementByHash(
|
||||
fts3Hash *pH, /* The pH containing "elem" */
|
||||
fts3HashElem* elem, /* The element to be removed from the pH */
|
||||
int h /* Hash value for the element */
|
||||
){
|
||||
struct _fts3ht *pEntry;
|
||||
if( elem->prev ){
|
||||
elem->prev->next = elem->next;
|
||||
}else{
|
||||
pH->first = elem->next;
|
||||
}
|
||||
if( elem->next ){
|
||||
elem->next->prev = elem->prev;
|
||||
}
|
||||
pEntry = &pH->ht[h];
|
||||
if( pEntry->chain==elem ){
|
||||
pEntry->chain = elem->next;
|
||||
}
|
||||
pEntry->count--;
|
||||
if( pEntry->count<=0 ){
|
||||
pEntry->chain = 0;
|
||||
}
|
||||
if( pH->copyKey && elem->pKey ){
|
||||
fts3HashFree(elem->pKey);
|
||||
}
|
||||
fts3HashFree( elem );
|
||||
pH->count--;
|
||||
if( pH->count<=0 ){
|
||||
assert( pH->first==0 );
|
||||
assert( pH->count==0 );
|
||||
fts3HashClear(pH);
|
||||
}
|
||||
}
|
||||
|
||||
/* Attempt to locate an element of the hash table pH with a key
|
||||
** that matches pKey,nKey. Return the data for this element if it is
|
||||
** found, or NULL if there is no match.
|
||||
*/
|
||||
void *sqlite3Fts3HashFind(const fts3Hash *pH, const void *pKey, int nKey){
|
||||
int h; /* A hash on key */
|
||||
fts3HashElem *elem; /* The element that matches key */
|
||||
int (*xHash)(const void*,int); /* The hash function */
|
||||
|
||||
if( pH==0 || pH->ht==0 ) return 0;
|
||||
xHash = ftsHashFunction(pH->keyClass);
|
||||
assert( xHash!=0 );
|
||||
h = (*xHash)(pKey,nKey);
|
||||
assert( (pH->htsize & (pH->htsize-1))==0 );
|
||||
elem = fts3FindElementByHash(pH,pKey,nKey, h & (pH->htsize-1));
|
||||
return elem ? elem->data : 0;
|
||||
}
|
||||
|
||||
/* Insert an element into the hash table pH. The key is pKey,nKey
|
||||
** and the data is "data".
|
||||
**
|
||||
** If no element exists with a matching key, then a new
|
||||
** element is created. A copy of the key is made if the copyKey
|
||||
** flag is set. NULL is returned.
|
||||
**
|
||||
** If another element already exists with the same key, then the
|
||||
** new data replaces the old data and the old data is returned.
|
||||
** The key is not copied in this instance. If a malloc fails, then
|
||||
** the new data is returned and the hash table is unchanged.
|
||||
**
|
||||
** If the "data" parameter to this function is NULL, then the
|
||||
** element corresponding to "key" is removed from the hash table.
|
||||
*/
|
||||
void *sqlite3Fts3HashInsert(
|
||||
fts3Hash *pH, /* The hash table to insert into */
|
||||
const void *pKey, /* The key */
|
||||
int nKey, /* Number of bytes in the key */
|
||||
void *data /* The data */
|
||||
){
|
||||
int hraw; /* Raw hash value of the key */
|
||||
int h; /* the hash of the key modulo hash table size */
|
||||
fts3HashElem *elem; /* Used to loop thru the element list */
|
||||
fts3HashElem *new_elem; /* New element added to the pH */
|
||||
int (*xHash)(const void*,int); /* The hash function */
|
||||
|
||||
assert( pH!=0 );
|
||||
xHash = ftsHashFunction(pH->keyClass);
|
||||
assert( xHash!=0 );
|
||||
hraw = (*xHash)(pKey, nKey);
|
||||
assert( (pH->htsize & (pH->htsize-1))==0 );
|
||||
h = hraw & (pH->htsize-1);
|
||||
elem = fts3FindElementByHash(pH,pKey,nKey,h);
|
||||
if( elem ){
|
||||
void *old_data = elem->data;
|
||||
if( data==0 ){
|
||||
fts3RemoveElementByHash(pH,elem,h);
|
||||
}else{
|
||||
elem->data = data;
|
||||
}
|
||||
return old_data;
|
||||
}
|
||||
if( data==0 ) return 0;
|
||||
if( pH->htsize==0 ){
|
||||
fts3Rehash(pH,8);
|
||||
if( pH->htsize==0 ){
|
||||
pH->count = 0;
|
||||
return data;
|
||||
}
|
||||
}
|
||||
new_elem = (fts3HashElem*)fts3HashMalloc( sizeof(fts3HashElem) );
|
||||
if( new_elem==0 ) return data;
|
||||
if( pH->copyKey && pKey!=0 ){
|
||||
new_elem->pKey = fts3HashMalloc( nKey );
|
||||
if( new_elem->pKey==0 ){
|
||||
fts3HashFree(new_elem);
|
||||
return data;
|
||||
}
|
||||
memcpy((void*)new_elem->pKey, pKey, nKey);
|
||||
}else{
|
||||
new_elem->pKey = (void*)pKey;
|
||||
}
|
||||
new_elem->nKey = nKey;
|
||||
pH->count++;
|
||||
if( pH->count > pH->htsize ){
|
||||
fts3Rehash(pH,pH->htsize*2);
|
||||
}
|
||||
assert( pH->htsize>0 );
|
||||
assert( (pH->htsize & (pH->htsize-1))==0 );
|
||||
h = hraw & (pH->htsize-1);
|
||||
fts3HashInsertElement(pH, &pH->ht[h], new_elem);
|
||||
new_elem->data = data;
|
||||
return 0;
|
||||
}
|
||||
|
||||
#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
|
110
fts3_hash.h
110
fts3_hash.h
|
@ -1,110 +0,0 @@
|
|||
/*
|
||||
** 2001 September 22
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This is the header file for the generic hash-table implemenation
|
||||
** used in SQLite. We've modified it slightly to serve as a standalone
|
||||
** hash table implementation for the full-text indexing module.
|
||||
**
|
||||
*/
|
||||
#ifndef _FTS3_HASH_H_
|
||||
#define _FTS3_HASH_H_
|
||||
|
||||
/* Forward declarations of structures. */
|
||||
typedef struct fts3Hash fts3Hash;
|
||||
typedef struct fts3HashElem fts3HashElem;
|
||||
|
||||
/* A complete hash table is an instance of the following structure.
|
||||
** The internals of this structure are intended to be opaque -- client
|
||||
** code should not attempt to access or modify the fields of this structure
|
||||
** directly. Change this structure only by using the routines below.
|
||||
** However, many of the "procedures" and "functions" for modifying and
|
||||
** accessing this structure are really macros, so we can't really make
|
||||
** this structure opaque.
|
||||
*/
|
||||
struct fts3Hash {
|
||||
char keyClass; /* HASH_INT, _POINTER, _STRING, _BINARY */
|
||||
char copyKey; /* True if copy of key made on insert */
|
||||
int count; /* Number of entries in this table */
|
||||
fts3HashElem *first; /* The first element of the array */
|
||||
int htsize; /* Number of buckets in the hash table */
|
||||
struct _fts3ht { /* the hash table */
|
||||
int count; /* Number of entries with this hash */
|
||||
fts3HashElem *chain; /* Pointer to first entry with this hash */
|
||||
} *ht;
|
||||
};
|
||||
|
||||
/* Each element in the hash table is an instance of the following
|
||||
** structure. All elements are stored on a single doubly-linked list.
|
||||
**
|
||||
** Again, this structure is intended to be opaque, but it can't really
|
||||
** be opaque because it is used by macros.
|
||||
*/
|
||||
struct fts3HashElem {
|
||||
fts3HashElem *next, *prev; /* Next and previous elements in the table */
|
||||
void *data; /* Data associated with this element */
|
||||
void *pKey; int nKey; /* Key associated with this element */
|
||||
};
|
||||
|
||||
/*
|
||||
** There are 2 different modes of operation for a hash table:
|
||||
**
|
||||
** FTS3_HASH_STRING pKey points to a string that is nKey bytes long
|
||||
** (including the null-terminator, if any). Case
|
||||
** is respected in comparisons.
|
||||
**
|
||||
** FTS3_HASH_BINARY pKey points to binary data nKey bytes long.
|
||||
** memcmp() is used to compare keys.
|
||||
**
|
||||
** A copy of the key is made if the copyKey parameter to fts3HashInit is 1.
|
||||
*/
|
||||
#define FTS3_HASH_STRING 1
|
||||
#define FTS3_HASH_BINARY 2
|
||||
|
||||
/*
|
||||
** Access routines. To delete, insert a NULL pointer.
|
||||
*/
|
||||
void sqlite3Fts3HashInit(fts3Hash*, int keytype, int copyKey);
|
||||
void *sqlite3Fts3HashInsert(fts3Hash*, const void *pKey, int nKey, void *pData);
|
||||
void *sqlite3Fts3HashFind(const fts3Hash*, const void *pKey, int nKey);
|
||||
void sqlite3Fts3HashClear(fts3Hash*);
|
||||
|
||||
/*
|
||||
** Shorthand for the functions above
|
||||
*/
|
||||
#define fts3HashInit sqlite3Fts3HashInit
|
||||
#define fts3HashInsert sqlite3Fts3HashInsert
|
||||
#define fts3HashFind sqlite3Fts3HashFind
|
||||
#define fts3HashClear sqlite3Fts3HashClear
|
||||
|
||||
/*
|
||||
** Macros for looping over all elements of a hash table. The idiom is
|
||||
** like this:
|
||||
**
|
||||
** fts3Hash h;
|
||||
** fts3HashElem *p;
|
||||
** ...
|
||||
** for(p=fts3HashFirst(&h); p; p=fts3HashNext(p)){
|
||||
** SomeStructure *pData = fts3HashData(p);
|
||||
** // do something with pData
|
||||
** }
|
||||
*/
|
||||
#define fts3HashFirst(H) ((H)->first)
|
||||
#define fts3HashNext(E) ((E)->next)
|
||||
#define fts3HashData(E) ((E)->data)
|
||||
#define fts3HashKey(E) ((E)->pKey)
|
||||
#define fts3HashKeysize(E) ((E)->nKey)
|
||||
|
||||
/*
|
||||
** Number of entries in a hash table
|
||||
*/
|
||||
#define fts3HashCount(H) ((H)->count)
|
||||
|
||||
#endif /* _FTS3_HASH_H_ */
|
260
fts3_icu.c
260
fts3_icu.c
|
@ -1,260 +0,0 @@
|
|||
/*
|
||||
** 2007 June 22
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This file implements a tokenizer for fts3 based on the ICU library.
|
||||
**
|
||||
** $Id: fts3_icu.c,v 1.3 2008/09/01 18:34:20 danielk1977 Exp $
|
||||
*/
|
||||
|
||||
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
|
||||
#ifdef SQLITE_ENABLE_ICU
|
||||
|
||||
#include <assert.h>
|
||||
#include <string.h>
|
||||
#include "fts3_tokenizer.h"
|
||||
|
||||
#include <unicode/ubrk.h>
|
||||
#include <unicode/ucol.h>
|
||||
#include <unicode/ustring.h>
|
||||
#include <unicode/utf16.h>
|
||||
|
||||
typedef struct IcuTokenizer IcuTokenizer;
|
||||
typedef struct IcuCursor IcuCursor;
|
||||
|
||||
struct IcuTokenizer {
|
||||
sqlite3_tokenizer base;
|
||||
char *zLocale;
|
||||
};
|
||||
|
||||
struct IcuCursor {
|
||||
sqlite3_tokenizer_cursor base;
|
||||
|
||||
UBreakIterator *pIter; /* ICU break-iterator object */
|
||||
int nChar; /* Number of UChar elements in pInput */
|
||||
UChar *aChar; /* Copy of input using utf-16 encoding */
|
||||
int *aOffset; /* Offsets of each character in utf-8 input */
|
||||
|
||||
int nBuffer;
|
||||
char *zBuffer;
|
||||
|
||||
int iToken;
|
||||
};
|
||||
|
||||
/*
|
||||
** Create a new tokenizer instance.
|
||||
*/
|
||||
static int icuCreate(
|
||||
int argc, /* Number of entries in argv[] */
|
||||
const char * const *argv, /* Tokenizer creation arguments */
|
||||
sqlite3_tokenizer **ppTokenizer /* OUT: Created tokenizer */
|
||||
){
|
||||
IcuTokenizer *p;
|
||||
int n = 0;
|
||||
|
||||
if( argc>0 ){
|
||||
n = strlen(argv[0])+1;
|
||||
}
|
||||
p = (IcuTokenizer *)sqlite3_malloc(sizeof(IcuTokenizer)+n);
|
||||
if( !p ){
|
||||
return SQLITE_NOMEM;
|
||||
}
|
||||
memset(p, 0, sizeof(IcuTokenizer));
|
||||
|
||||
if( n ){
|
||||
p->zLocale = (char *)&p[1];
|
||||
memcpy(p->zLocale, argv[0], n);
|
||||
}
|
||||
|
||||
*ppTokenizer = (sqlite3_tokenizer *)p;
|
||||
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Destroy a tokenizer
|
||||
*/
|
||||
static int icuDestroy(sqlite3_tokenizer *pTokenizer){
|
||||
IcuTokenizer *p = (IcuTokenizer *)pTokenizer;
|
||||
sqlite3_free(p);
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Prepare to begin tokenizing a particular string. The input
|
||||
** string to be tokenized is pInput[0..nBytes-1]. A cursor
|
||||
** used to incrementally tokenize this string is returned in
|
||||
** *ppCursor.
|
||||
*/
|
||||
static int icuOpen(
|
||||
sqlite3_tokenizer *pTokenizer, /* The tokenizer */
|
||||
const char *zInput, /* Input string */
|
||||
int nInput, /* Length of zInput in bytes */
|
||||
sqlite3_tokenizer_cursor **ppCursor /* OUT: Tokenization cursor */
|
||||
){
|
||||
IcuTokenizer *p = (IcuTokenizer *)pTokenizer;
|
||||
IcuCursor *pCsr;
|
||||
|
||||
const int32_t opt = U_FOLD_CASE_DEFAULT;
|
||||
UErrorCode status = U_ZERO_ERROR;
|
||||
int nChar;
|
||||
|
||||
UChar32 c;
|
||||
int iInput = 0;
|
||||
int iOut = 0;
|
||||
|
||||
*ppCursor = 0;
|
||||
|
||||
if( nInput<0 ){
|
||||
nInput = strlen(zInput);
|
||||
}
|
||||
nChar = nInput+1;
|
||||
pCsr = (IcuCursor *)sqlite3_malloc(
|
||||
sizeof(IcuCursor) + /* IcuCursor */
|
||||
nChar * sizeof(UChar) + /* IcuCursor.aChar[] */
|
||||
(nChar+1) * sizeof(int) /* IcuCursor.aOffset[] */
|
||||
);
|
||||
if( !pCsr ){
|
||||
return SQLITE_NOMEM;
|
||||
}
|
||||
memset(pCsr, 0, sizeof(IcuCursor));
|
||||
pCsr->aChar = (UChar *)&pCsr[1];
|
||||
pCsr->aOffset = (int *)&pCsr->aChar[nChar];
|
||||
|
||||
pCsr->aOffset[iOut] = iInput;
|
||||
U8_NEXT(zInput, iInput, nInput, c);
|
||||
while( c>0 ){
|
||||
int isError = 0;
|
||||
c = u_foldCase(c, opt);
|
||||
U16_APPEND(pCsr->aChar, iOut, nChar, c, isError);
|
||||
if( isError ){
|
||||
sqlite3_free(pCsr);
|
||||
return SQLITE_ERROR;
|
||||
}
|
||||
pCsr->aOffset[iOut] = iInput;
|
||||
|
||||
if( iInput<nInput ){
|
||||
U8_NEXT(zInput, iInput, nInput, c);
|
||||
}else{
|
||||
c = 0;
|
||||
}
|
||||
}
|
||||
|
||||
pCsr->pIter = ubrk_open(UBRK_WORD, p->zLocale, pCsr->aChar, iOut, &status);
|
||||
if( !U_SUCCESS(status) ){
|
||||
sqlite3_free(pCsr);
|
||||
return SQLITE_ERROR;
|
||||
}
|
||||
pCsr->nChar = iOut;
|
||||
|
||||
ubrk_first(pCsr->pIter);
|
||||
*ppCursor = (sqlite3_tokenizer_cursor *)pCsr;
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Close a tokenization cursor previously opened by a call to icuOpen().
|
||||
*/
|
||||
static int icuClose(sqlite3_tokenizer_cursor *pCursor){
|
||||
IcuCursor *pCsr = (IcuCursor *)pCursor;
|
||||
ubrk_close(pCsr->pIter);
|
||||
sqlite3_free(pCsr->zBuffer);
|
||||
sqlite3_free(pCsr);
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Extract the next token from a tokenization cursor.
|
||||
*/
|
||||
static int icuNext(
|
||||
sqlite3_tokenizer_cursor *pCursor, /* Cursor returned by simpleOpen */
|
||||
const char **ppToken, /* OUT: *ppToken is the token text */
|
||||
int *pnBytes, /* OUT: Number of bytes in token */
|
||||
int *piStartOffset, /* OUT: Starting offset of token */
|
||||
int *piEndOffset, /* OUT: Ending offset of token */
|
||||
int *piPosition /* OUT: Position integer of token */
|
||||
){
|
||||
IcuCursor *pCsr = (IcuCursor *)pCursor;
|
||||
|
||||
int iStart = 0;
|
||||
int iEnd = 0;
|
||||
int nByte = 0;
|
||||
|
||||
while( iStart==iEnd ){
|
||||
UChar32 c;
|
||||
|
||||
iStart = ubrk_current(pCsr->pIter);
|
||||
iEnd = ubrk_next(pCsr->pIter);
|
||||
if( iEnd==UBRK_DONE ){
|
||||
return SQLITE_DONE;
|
||||
}
|
||||
|
||||
while( iStart<iEnd ){
|
||||
int iWhite = iStart;
|
||||
U8_NEXT(pCsr->aChar, iWhite, pCsr->nChar, c);
|
||||
if( u_isspace(c) ){
|
||||
iStart = iWhite;
|
||||
}else{
|
||||
break;
|
||||
}
|
||||
}
|
||||
assert(iStart<=iEnd);
|
||||
}
|
||||
|
||||
do {
|
||||
UErrorCode status = U_ZERO_ERROR;
|
||||
if( nByte ){
|
||||
char *zNew = sqlite3_realloc(pCsr->zBuffer, nByte);
|
||||
if( !zNew ){
|
||||
return SQLITE_NOMEM;
|
||||
}
|
||||
pCsr->zBuffer = zNew;
|
||||
pCsr->nBuffer = nByte;
|
||||
}
|
||||
|
||||
u_strToUTF8(
|
||||
pCsr->zBuffer, pCsr->nBuffer, &nByte, /* Output vars */
|
||||
&pCsr->aChar[iStart], iEnd-iStart, /* Input vars */
|
||||
&status /* Output success/failure */
|
||||
);
|
||||
} while( nByte>pCsr->nBuffer );
|
||||
|
||||
*ppToken = pCsr->zBuffer;
|
||||
*pnBytes = nByte;
|
||||
*piStartOffset = pCsr->aOffset[iStart];
|
||||
*piEndOffset = pCsr->aOffset[iEnd];
|
||||
*piPosition = pCsr->iToken++;
|
||||
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** The set of routines that implement the simple tokenizer
|
||||
*/
|
||||
static const sqlite3_tokenizer_module icuTokenizerModule = {
|
||||
0, /* iVersion */
|
||||
icuCreate, /* xCreate */
|
||||
icuDestroy, /* xCreate */
|
||||
icuOpen, /* xOpen */
|
||||
icuClose, /* xClose */
|
||||
icuNext, /* xNext */
|
||||
};
|
||||
|
||||
/*
|
||||
** Set *ppModule to point at the implementation of the ICU tokenizer.
|
||||
*/
|
||||
void sqlite3Fts3IcuTokenizerModule(
|
||||
sqlite3_tokenizer_module const**ppModule
|
||||
){
|
||||
*ppModule = &icuTokenizerModule;
|
||||
}
|
||||
|
||||
#endif /* defined(SQLITE_ENABLE_ICU) */
|
||||
#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
|
642
fts3_porter.c
642
fts3_porter.c
|
@ -1,642 +0,0 @@
|
|||
/*
|
||||
** 2006 September 30
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** Implementation of the full-text-search tokenizer that implements
|
||||
** a Porter stemmer.
|
||||
*/
|
||||
|
||||
/*
|
||||
** The code in this file is only compiled if:
|
||||
**
|
||||
** * The FTS3 module is being built as an extension
|
||||
** (in which case SQLITE_CORE is not defined), or
|
||||
**
|
||||
** * The FTS3 module is being built into the core of
|
||||
** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
|
||||
*/
|
||||
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
|
||||
|
||||
|
||||
#include <assert.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <ctype.h>
|
||||
|
||||
#include "fts3_tokenizer.h"
|
||||
|
||||
/*
|
||||
** Class derived from sqlite3_tokenizer
|
||||
*/
|
||||
typedef struct porter_tokenizer {
|
||||
sqlite3_tokenizer base; /* Base class */
|
||||
} porter_tokenizer;
|
||||
|
||||
/*
|
||||
** Class derived from sqlit3_tokenizer_cursor
|
||||
*/
|
||||
typedef struct porter_tokenizer_cursor {
|
||||
sqlite3_tokenizer_cursor base;
|
||||
const char *zInput; /* input we are tokenizing */
|
||||
int nInput; /* size of the input */
|
||||
int iOffset; /* current position in zInput */
|
||||
int iToken; /* index of next token to be returned */
|
||||
char *zToken; /* storage for current token */
|
||||
int nAllocated; /* space allocated to zToken buffer */
|
||||
} porter_tokenizer_cursor;
|
||||
|
||||
|
||||
/* Forward declaration */
|
||||
static const sqlite3_tokenizer_module porterTokenizerModule;
|
||||
|
||||
|
||||
/*
|
||||
** Create a new tokenizer instance.
|
||||
*/
|
||||
static int porterCreate(
|
||||
int argc, const char * const *argv,
|
||||
sqlite3_tokenizer **ppTokenizer
|
||||
){
|
||||
porter_tokenizer *t;
|
||||
t = (porter_tokenizer *) sqlite3_malloc(sizeof(*t));
|
||||
if( t==NULL ) return SQLITE_NOMEM;
|
||||
memset(t, 0, sizeof(*t));
|
||||
*ppTokenizer = &t->base;
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Destroy a tokenizer
|
||||
*/
|
||||
static int porterDestroy(sqlite3_tokenizer *pTokenizer){
|
||||
sqlite3_free(pTokenizer);
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Prepare to begin tokenizing a particular string. The input
|
||||
** string to be tokenized is zInput[0..nInput-1]. A cursor
|
||||
** used to incrementally tokenize this string is returned in
|
||||
** *ppCursor.
|
||||
*/
|
||||
static int porterOpen(
|
||||
sqlite3_tokenizer *pTokenizer, /* The tokenizer */
|
||||
const char *zInput, int nInput, /* String to be tokenized */
|
||||
sqlite3_tokenizer_cursor **ppCursor /* OUT: Tokenization cursor */
|
||||
){
|
||||
porter_tokenizer_cursor *c;
|
||||
|
||||
c = (porter_tokenizer_cursor *) sqlite3_malloc(sizeof(*c));
|
||||
if( c==NULL ) return SQLITE_NOMEM;
|
||||
|
||||
c->zInput = zInput;
|
||||
if( zInput==0 ){
|
||||
c->nInput = 0;
|
||||
}else if( nInput<0 ){
|
||||
c->nInput = (int)strlen(zInput);
|
||||
}else{
|
||||
c->nInput = nInput;
|
||||
}
|
||||
c->iOffset = 0; /* start tokenizing at the beginning */
|
||||
c->iToken = 0;
|
||||
c->zToken = NULL; /* no space allocated, yet. */
|
||||
c->nAllocated = 0;
|
||||
|
||||
*ppCursor = &c->base;
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Close a tokenization cursor previously opened by a call to
|
||||
** porterOpen() above.
|
||||
*/
|
||||
static int porterClose(sqlite3_tokenizer_cursor *pCursor){
|
||||
porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor;
|
||||
sqlite3_free(c->zToken);
|
||||
sqlite3_free(c);
|
||||
return SQLITE_OK;
|
||||
}
|
||||
/*
|
||||
** Vowel or consonant
|
||||
*/
|
||||
static const char cType[] = {
|
||||
0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0,
|
||||
1, 1, 1, 2, 1
|
||||
};
|
||||
|
||||
/*
|
||||
** isConsonant() and isVowel() determine if their first character in
|
||||
** the string they point to is a consonant or a vowel, according
|
||||
** to Porter ruls.
|
||||
**
|
||||
** A consonate is any letter other than 'a', 'e', 'i', 'o', or 'u'.
|
||||
** 'Y' is a consonant unless it follows another consonant,
|
||||
** in which case it is a vowel.
|
||||
**
|
||||
** In these routine, the letters are in reverse order. So the 'y' rule
|
||||
** is that 'y' is a consonant unless it is followed by another
|
||||
** consonent.
|
||||
*/
|
||||
static int isVowel(const char*);
|
||||
static int isConsonant(const char *z){
|
||||
int j;
|
||||
char x = *z;
|
||||
if( x==0 ) return 0;
|
||||
assert( x>='a' && x<='z' );
|
||||
j = cType[x-'a'];
|
||||
if( j<2 ) return j;
|
||||
return z[1]==0 || isVowel(z + 1);
|
||||
}
|
||||
static int isVowel(const char *z){
|
||||
int j;
|
||||
char x = *z;
|
||||
if( x==0 ) return 0;
|
||||
assert( x>='a' && x<='z' );
|
||||
j = cType[x-'a'];
|
||||
if( j<2 ) return 1-j;
|
||||
return isConsonant(z + 1);
|
||||
}
|
||||
|
||||
/*
|
||||
** Let any sequence of one or more vowels be represented by V and let
|
||||
** C be sequence of one or more consonants. Then every word can be
|
||||
** represented as:
|
||||
**
|
||||
** [C] (VC){m} [V]
|
||||
**
|
||||
** In prose: A word is an optional consonant followed by zero or
|
||||
** vowel-consonant pairs followed by an optional vowel. "m" is the
|
||||
** number of vowel consonant pairs. This routine computes the value
|
||||
** of m for the first i bytes of a word.
|
||||
**
|
||||
** Return true if the m-value for z is 1 or more. In other words,
|
||||
** return true if z contains at least one vowel that is followed
|
||||
** by a consonant.
|
||||
**
|
||||
** In this routine z[] is in reverse order. So we are really looking
|
||||
** for an instance of of a consonant followed by a vowel.
|
||||
*/
|
||||
static int m_gt_0(const char *z){
|
||||
while( isVowel(z) ){ z++; }
|
||||
if( *z==0 ) return 0;
|
||||
while( isConsonant(z) ){ z++; }
|
||||
return *z!=0;
|
||||
}
|
||||
|
||||
/* Like mgt0 above except we are looking for a value of m which is
|
||||
** exactly 1
|
||||
*/
|
||||
static int m_eq_1(const char *z){
|
||||
while( isVowel(z) ){ z++; }
|
||||
if( *z==0 ) return 0;
|
||||
while( isConsonant(z) ){ z++; }
|
||||
if( *z==0 ) return 0;
|
||||
while( isVowel(z) ){ z++; }
|
||||
if( *z==0 ) return 1;
|
||||
while( isConsonant(z) ){ z++; }
|
||||
return *z==0;
|
||||
}
|
||||
|
||||
/* Like mgt0 above except we are looking for a value of m>1 instead
|
||||
** or m>0
|
||||
*/
|
||||
static int m_gt_1(const char *z){
|
||||
while( isVowel(z) ){ z++; }
|
||||
if( *z==0 ) return 0;
|
||||
while( isConsonant(z) ){ z++; }
|
||||
if( *z==0 ) return 0;
|
||||
while( isVowel(z) ){ z++; }
|
||||
if( *z==0 ) return 0;
|
||||
while( isConsonant(z) ){ z++; }
|
||||
return *z!=0;
|
||||
}
|
||||
|
||||
/*
|
||||
** Return TRUE if there is a vowel anywhere within z[0..n-1]
|
||||
*/
|
||||
static int hasVowel(const char *z){
|
||||
while( isConsonant(z) ){ z++; }
|
||||
return *z!=0;
|
||||
}
|
||||
|
||||
/*
|
||||
** Return TRUE if the word ends in a double consonant.
|
||||
**
|
||||
** The text is reversed here. So we are really looking at
|
||||
** the first two characters of z[].
|
||||
*/
|
||||
static int doubleConsonant(const char *z){
|
||||
return isConsonant(z) && z[0]==z[1] && isConsonant(z+1);
|
||||
}
|
||||
|
||||
/*
|
||||
** Return TRUE if the word ends with three letters which
|
||||
** are consonant-vowel-consonent and where the final consonant
|
||||
** is not 'w', 'x', or 'y'.
|
||||
**
|
||||
** The word is reversed here. So we are really checking the
|
||||
** first three letters and the first one cannot be in [wxy].
|
||||
*/
|
||||
static int star_oh(const char *z){
|
||||
return
|
||||
z[0]!=0 && isConsonant(z) &&
|
||||
z[0]!='w' && z[0]!='x' && z[0]!='y' &&
|
||||
z[1]!=0 && isVowel(z+1) &&
|
||||
z[2]!=0 && isConsonant(z+2);
|
||||
}
|
||||
|
||||
/*
|
||||
** If the word ends with zFrom and xCond() is true for the stem
|
||||
** of the word that preceeds the zFrom ending, then change the
|
||||
** ending to zTo.
|
||||
**
|
||||
** The input word *pz and zFrom are both in reverse order. zTo
|
||||
** is in normal order.
|
||||
**
|
||||
** Return TRUE if zFrom matches. Return FALSE if zFrom does not
|
||||
** match. Not that TRUE is returned even if xCond() fails and
|
||||
** no substitution occurs.
|
||||
*/
|
||||
static int stem(
|
||||
char **pz, /* The word being stemmed (Reversed) */
|
||||
const char *zFrom, /* If the ending matches this... (Reversed) */
|
||||
const char *zTo, /* ... change the ending to this (not reversed) */
|
||||
int (*xCond)(const char*) /* Condition that must be true */
|
||||
){
|
||||
char *z = *pz;
|
||||
while( *zFrom && *zFrom==*z ){ z++; zFrom++; }
|
||||
if( *zFrom!=0 ) return 0;
|
||||
if( xCond && !xCond(z) ) return 1;
|
||||
while( *zTo ){
|
||||
*(--z) = *(zTo++);
|
||||
}
|
||||
*pz = z;
|
||||
return 1;
|
||||
}
|
||||
|
||||
/*
|
||||
** This is the fallback stemmer used when the porter stemmer is
|
||||
** inappropriate. The input word is copied into the output with
|
||||
** US-ASCII case folding. If the input word is too long (more
|
||||
** than 20 bytes if it contains no digits or more than 6 bytes if
|
||||
** it contains digits) then word is truncated to 20 or 6 bytes
|
||||
** by taking 10 or 3 bytes from the beginning and end.
|
||||
*/
|
||||
static void copy_stemmer(const char *zIn, int nIn, char *zOut, int *pnOut){
|
||||
int i, mx, j;
|
||||
int hasDigit = 0;
|
||||
for(i=0; i<nIn; i++){
|
||||
int c = zIn[i];
|
||||
if( c>='A' && c<='Z' ){
|
||||
zOut[i] = c - 'A' + 'a';
|
||||
}else{
|
||||
if( c>='0' && c<='9' ) hasDigit = 1;
|
||||
zOut[i] = c;
|
||||
}
|
||||
}
|
||||
mx = hasDigit ? 3 : 10;
|
||||
if( nIn>mx*2 ){
|
||||
for(j=mx, i=nIn-mx; i<nIn; i++, j++){
|
||||
zOut[j] = zOut[i];
|
||||
}
|
||||
i = j;
|
||||
}
|
||||
zOut[i] = 0;
|
||||
*pnOut = i;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** Stem the input word zIn[0..nIn-1]. Store the output in zOut.
|
||||
** zOut is at least big enough to hold nIn bytes. Write the actual
|
||||
** size of the output word (exclusive of the '\0' terminator) into *pnOut.
|
||||
**
|
||||
** Any upper-case characters in the US-ASCII character set ([A-Z])
|
||||
** are converted to lower case. Upper-case UTF characters are
|
||||
** unchanged.
|
||||
**
|
||||
** Words that are longer than about 20 bytes are stemmed by retaining
|
||||
** a few bytes from the beginning and the end of the word. If the
|
||||
** word contains digits, 3 bytes are taken from the beginning and
|
||||
** 3 bytes from the end. For long words without digits, 10 bytes
|
||||
** are taken from each end. US-ASCII case folding still applies.
|
||||
**
|
||||
** If the input word contains not digits but does characters not
|
||||
** in [a-zA-Z] then no stemming is attempted and this routine just
|
||||
** copies the input into the input into the output with US-ASCII
|
||||
** case folding.
|
||||
**
|
||||
** Stemming never increases the length of the word. So there is
|
||||
** no chance of overflowing the zOut buffer.
|
||||
*/
|
||||
static void porter_stemmer(const char *zIn, int nIn, char *zOut, int *pnOut){
|
||||
int i, j, c;
|
||||
char zReverse[28];
|
||||
char *z, *z2;
|
||||
if( nIn<3 || nIn>=sizeof(zReverse)-7 ){
|
||||
/* The word is too big or too small for the porter stemmer.
|
||||
** Fallback to the copy stemmer */
|
||||
copy_stemmer(zIn, nIn, zOut, pnOut);
|
||||
return;
|
||||
}
|
||||
for(i=0, j=sizeof(zReverse)-6; i<nIn; i++, j--){
|
||||
c = zIn[i];
|
||||
if( c>='A' && c<='Z' ){
|
||||
zReverse[j] = c + 'a' - 'A';
|
||||
}else if( c>='a' && c<='z' ){
|
||||
zReverse[j] = c;
|
||||
}else{
|
||||
/* The use of a character not in [a-zA-Z] means that we fallback
|
||||
** to the copy stemmer */
|
||||
copy_stemmer(zIn, nIn, zOut, pnOut);
|
||||
return;
|
||||
}
|
||||
}
|
||||
memset(&zReverse[sizeof(zReverse)-5], 0, 5);
|
||||
z = &zReverse[j+1];
|
||||
|
||||
|
||||
/* Step 1a */
|
||||
if( z[0]=='s' ){
|
||||
if(
|
||||
!stem(&z, "sess", "ss", 0) &&
|
||||
!stem(&z, "sei", "i", 0) &&
|
||||
!stem(&z, "ss", "ss", 0)
|
||||
){
|
||||
z++;
|
||||
}
|
||||
}
|
||||
|
||||
/* Step 1b */
|
||||
z2 = z;
|
||||
if( stem(&z, "dee", "ee", m_gt_0) ){
|
||||
/* Do nothing. The work was all in the test */
|
||||
}else if(
|
||||
(stem(&z, "gni", "", hasVowel) || stem(&z, "de", "", hasVowel))
|
||||
&& z!=z2
|
||||
){
|
||||
if( stem(&z, "ta", "ate", 0) ||
|
||||
stem(&z, "lb", "ble", 0) ||
|
||||
stem(&z, "zi", "ize", 0) ){
|
||||
/* Do nothing. The work was all in the test */
|
||||
}else if( doubleConsonant(z) && (*z!='l' && *z!='s' && *z!='z') ){
|
||||
z++;
|
||||
}else if( m_eq_1(z) && star_oh(z) ){
|
||||
*(--z) = 'e';
|
||||
}
|
||||
}
|
||||
|
||||
/* Step 1c */
|
||||
if( z[0]=='y' && hasVowel(z+1) ){
|
||||
z[0] = 'i';
|
||||
}
|
||||
|
||||
/* Step 2 */
|
||||
switch( z[1] ){
|
||||
case 'a':
|
||||
stem(&z, "lanoita", "ate", m_gt_0) ||
|
||||
stem(&z, "lanoit", "tion", m_gt_0);
|
||||
break;
|
||||
case 'c':
|
||||
stem(&z, "icne", "ence", m_gt_0) ||
|
||||
stem(&z, "icna", "ance", m_gt_0);
|
||||
break;
|
||||
case 'e':
|
||||
stem(&z, "rezi", "ize", m_gt_0);
|
||||
break;
|
||||
case 'g':
|
||||
stem(&z, "igol", "log", m_gt_0);
|
||||
break;
|
||||
case 'l':
|
||||
stem(&z, "ilb", "ble", m_gt_0) ||
|
||||
stem(&z, "illa", "al", m_gt_0) ||
|
||||
stem(&z, "iltne", "ent", m_gt_0) ||
|
||||
stem(&z, "ile", "e", m_gt_0) ||
|
||||
stem(&z, "ilsuo", "ous", m_gt_0);
|
||||
break;
|
||||
case 'o':
|
||||
stem(&z, "noitazi", "ize", m_gt_0) ||
|
||||
stem(&z, "noita", "ate", m_gt_0) ||
|
||||
stem(&z, "rota", "ate", m_gt_0);
|
||||
break;
|
||||
case 's':
|
||||
stem(&z, "msila", "al", m_gt_0) ||
|
||||
stem(&z, "ssenevi", "ive", m_gt_0) ||
|
||||
stem(&z, "ssenluf", "ful", m_gt_0) ||
|
||||
stem(&z, "ssensuo", "ous", m_gt_0);
|
||||
break;
|
||||
case 't':
|
||||
stem(&z, "itila", "al", m_gt_0) ||
|
||||
stem(&z, "itivi", "ive", m_gt_0) ||
|
||||
stem(&z, "itilib", "ble", m_gt_0);
|
||||
break;
|
||||
}
|
||||
|
||||
/* Step 3 */
|
||||
switch( z[0] ){
|
||||
case 'e':
|
||||
stem(&z, "etaci", "ic", m_gt_0) ||
|
||||
stem(&z, "evita", "", m_gt_0) ||
|
||||
stem(&z, "ezila", "al", m_gt_0);
|
||||
break;
|
||||
case 'i':
|
||||
stem(&z, "itici", "ic", m_gt_0);
|
||||
break;
|
||||
case 'l':
|
||||
stem(&z, "laci", "ic", m_gt_0) ||
|
||||
stem(&z, "luf", "", m_gt_0);
|
||||
break;
|
||||
case 's':
|
||||
stem(&z, "ssen", "", m_gt_0);
|
||||
break;
|
||||
}
|
||||
|
||||
/* Step 4 */
|
||||
switch( z[1] ){
|
||||
case 'a':
|
||||
if( z[0]=='l' && m_gt_1(z+2) ){
|
||||
z += 2;
|
||||
}
|
||||
break;
|
||||
case 'c':
|
||||
if( z[0]=='e' && z[2]=='n' && (z[3]=='a' || z[3]=='e') && m_gt_1(z+4) ){
|
||||
z += 4;
|
||||
}
|
||||
break;
|
||||
case 'e':
|
||||
if( z[0]=='r' && m_gt_1(z+2) ){
|
||||
z += 2;
|
||||
}
|
||||
break;
|
||||
case 'i':
|
||||
if( z[0]=='c' && m_gt_1(z+2) ){
|
||||
z += 2;
|
||||
}
|
||||
break;
|
||||
case 'l':
|
||||
if( z[0]=='e' && z[2]=='b' && (z[3]=='a' || z[3]=='i') && m_gt_1(z+4) ){
|
||||
z += 4;
|
||||
}
|
||||
break;
|
||||
case 'n':
|
||||
if( z[0]=='t' ){
|
||||
if( z[2]=='a' ){
|
||||
if( m_gt_1(z+3) ){
|
||||
z += 3;
|
||||
}
|
||||
}else if( z[2]=='e' ){
|
||||
stem(&z, "tneme", "", m_gt_1) ||
|
||||
stem(&z, "tnem", "", m_gt_1) ||
|
||||
stem(&z, "tne", "", m_gt_1);
|
||||
}
|
||||
}
|
||||
break;
|
||||
case 'o':
|
||||
if( z[0]=='u' ){
|
||||
if( m_gt_1(z+2) ){
|
||||
z += 2;
|
||||
}
|
||||
}else if( z[3]=='s' || z[3]=='t' ){
|
||||
stem(&z, "noi", "", m_gt_1);
|
||||
}
|
||||
break;
|
||||
case 's':
|
||||
if( z[0]=='m' && z[2]=='i' && m_gt_1(z+3) ){
|
||||
z += 3;
|
||||
}
|
||||
break;
|
||||
case 't':
|
||||
stem(&z, "eta", "", m_gt_1) ||
|
||||
stem(&z, "iti", "", m_gt_1);
|
||||
break;
|
||||
case 'u':
|
||||
if( z[0]=='s' && z[2]=='o' && m_gt_1(z+3) ){
|
||||
z += 3;
|
||||
}
|
||||
break;
|
||||
case 'v':
|
||||
case 'z':
|
||||
if( z[0]=='e' && z[2]=='i' && m_gt_1(z+3) ){
|
||||
z += 3;
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
/* Step 5a */
|
||||
if( z[0]=='e' ){
|
||||
if( m_gt_1(z+1) ){
|
||||
z++;
|
||||
}else if( m_eq_1(z+1) && !star_oh(z+1) ){
|
||||
z++;
|
||||
}
|
||||
}
|
||||
|
||||
/* Step 5b */
|
||||
if( m_gt_1(z) && z[0]=='l' && z[1]=='l' ){
|
||||
z++;
|
||||
}
|
||||
|
||||
/* z[] is now the stemmed word in reverse order. Flip it back
|
||||
** around into forward order and return.
|
||||
*/
|
||||
*pnOut = i = strlen(z);
|
||||
zOut[i] = 0;
|
||||
while( *z ){
|
||||
zOut[--i] = *(z++);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Characters that can be part of a token. We assume any character
|
||||
** whose value is greater than 0x80 (any UTF character) can be
|
||||
** part of a token. In other words, delimiters all must have
|
||||
** values of 0x7f or lower.
|
||||
*/
|
||||
static const char porterIdChar[] = {
|
||||
/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */
|
||||
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */
|
||||
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */
|
||||
};
|
||||
#define isDelim(C) (((ch=C)&0x80)==0 && (ch<0x30 || !porterIdChar[ch-0x30]))
|
||||
|
||||
/*
|
||||
** Extract the next token from a tokenization cursor. The cursor must
|
||||
** have been opened by a prior call to porterOpen().
|
||||
*/
|
||||
static int porterNext(
|
||||
sqlite3_tokenizer_cursor *pCursor, /* Cursor returned by porterOpen */
|
||||
const char **pzToken, /* OUT: *pzToken is the token text */
|
||||
int *pnBytes, /* OUT: Number of bytes in token */
|
||||
int *piStartOffset, /* OUT: Starting offset of token */
|
||||
int *piEndOffset, /* OUT: Ending offset of token */
|
||||
int *piPosition /* OUT: Position integer of token */
|
||||
){
|
||||
porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor;
|
||||
const char *z = c->zInput;
|
||||
|
||||
while( c->iOffset<c->nInput ){
|
||||
int iStartOffset, ch;
|
||||
|
||||
/* Scan past delimiter characters */
|
||||
while( c->iOffset<c->nInput && isDelim(z[c->iOffset]) ){
|
||||
c->iOffset++;
|
||||
}
|
||||
|
||||
/* Count non-delimiter characters. */
|
||||
iStartOffset = c->iOffset;
|
||||
while( c->iOffset<c->nInput && !isDelim(z[c->iOffset]) ){
|
||||
c->iOffset++;
|
||||
}
|
||||
|
||||
if( c->iOffset>iStartOffset ){
|
||||
int n = c->iOffset-iStartOffset;
|
||||
if( n>c->nAllocated ){
|
||||
c->nAllocated = n+20;
|
||||
c->zToken = sqlite3_realloc(c->zToken, c->nAllocated);
|
||||
if( c->zToken==NULL ) return SQLITE_NOMEM;
|
||||
}
|
||||
porter_stemmer(&z[iStartOffset], n, c->zToken, pnBytes);
|
||||
*pzToken = c->zToken;
|
||||
*piStartOffset = iStartOffset;
|
||||
*piEndOffset = c->iOffset;
|
||||
*piPosition = c->iToken++;
|
||||
return SQLITE_OK;
|
||||
}
|
||||
}
|
||||
return SQLITE_DONE;
|
||||
}
|
||||
|
||||
/*
|
||||
** The set of routines that implement the porter-stemmer tokenizer
|
||||
*/
|
||||
static const sqlite3_tokenizer_module porterTokenizerModule = {
|
||||
0,
|
||||
porterCreate,
|
||||
porterDestroy,
|
||||
porterOpen,
|
||||
porterClose,
|
||||
porterNext,
|
||||
};
|
||||
|
||||
/*
|
||||
** Allocate a new porter tokenizer. Return a pointer to the new
|
||||
** tokenizer in *ppModule
|
||||
*/
|
||||
void sqlite3Fts3PorterTokenizerModule(
|
||||
sqlite3_tokenizer_module const**ppModule
|
||||
){
|
||||
*ppModule = &porterTokenizerModule;
|
||||
}
|
||||
|
||||
#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
|
371
fts3_tokenizer.c
371
fts3_tokenizer.c
|
@ -1,371 +0,0 @@
|
|||
/*
|
||||
** 2007 June 22
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
******************************************************************************
|
||||
**
|
||||
** This is part of an SQLite module implementing full-text search.
|
||||
** This particular file implements the generic tokenizer interface.
|
||||
*/
|
||||
|
||||
/*
|
||||
** The code in this file is only compiled if:
|
||||
**
|
||||
** * The FTS3 module is being built as an extension
|
||||
** (in which case SQLITE_CORE is not defined), or
|
||||
**
|
||||
** * The FTS3 module is being built into the core of
|
||||
** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
|
||||
*/
|
||||
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
|
||||
|
||||
#include "sqlite3ext.h"
|
||||
#ifndef SQLITE_CORE
|
||||
SQLITE_EXTENSION_INIT1
|
||||
#endif
|
||||
|
||||
#include "fts3_hash.h"
|
||||
#include "fts3_tokenizer.h"
|
||||
#include <assert.h>
|
||||
|
||||
/*
|
||||
** Implementation of the SQL scalar function for accessing the underlying
|
||||
** hash table. This function may be called as follows:
|
||||
**
|
||||
** SELECT <function-name>(<key-name>);
|
||||
** SELECT <function-name>(<key-name>, <pointer>);
|
||||
**
|
||||
** where <function-name> is the name passed as the second argument
|
||||
** to the sqlite3Fts3InitHashTable() function (e.g. 'fts3_tokenizer').
|
||||
**
|
||||
** If the <pointer> argument is specified, it must be a blob value
|
||||
** containing a pointer to be stored as the hash data corresponding
|
||||
** to the string <key-name>. If <pointer> is not specified, then
|
||||
** the string <key-name> must already exist in the has table. Otherwise,
|
||||
** an error is returned.
|
||||
**
|
||||
** Whether or not the <pointer> argument is specified, the value returned
|
||||
** is a blob containing the pointer stored as the hash data corresponding
|
||||
** to string <key-name> (after the hash-table is updated, if applicable).
|
||||
*/
|
||||
static void scalarFunc(
|
||||
sqlite3_context *context,
|
||||
int argc,
|
||||
sqlite3_value **argv
|
||||
){
|
||||
fts3Hash *pHash;
|
||||
void *pPtr = 0;
|
||||
const unsigned char *zName;
|
||||
int nName;
|
||||
|
||||
assert( argc==1 || argc==2 );
|
||||
|
||||
pHash = (fts3Hash *)sqlite3_user_data(context);
|
||||
|
||||
zName = sqlite3_value_text(argv[0]);
|
||||
nName = sqlite3_value_bytes(argv[0])+1;
|
||||
|
||||
if( argc==2 ){
|
||||
void *pOld;
|
||||
int n = sqlite3_value_bytes(argv[1]);
|
||||
if( n!=sizeof(pPtr) ){
|
||||
sqlite3_result_error(context, "argument type mismatch", -1);
|
||||
return;
|
||||
}
|
||||
pPtr = *(void **)sqlite3_value_blob(argv[1]);
|
||||
pOld = sqlite3Fts3HashInsert(pHash, (void *)zName, nName, pPtr);
|
||||
if( pOld==pPtr ){
|
||||
sqlite3_result_error(context, "out of memory", -1);
|
||||
return;
|
||||
}
|
||||
}else{
|
||||
pPtr = sqlite3Fts3HashFind(pHash, zName, nName);
|
||||
if( !pPtr ){
|
||||
char *zErr = sqlite3_mprintf("unknown tokenizer: %s", zName);
|
||||
sqlite3_result_error(context, zErr, -1);
|
||||
sqlite3_free(zErr);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
sqlite3_result_blob(context, (void *)&pPtr, sizeof(pPtr), SQLITE_TRANSIENT);
|
||||
}
|
||||
|
||||
#ifdef SQLITE_TEST
|
||||
|
||||
#include <tcl.h>
|
||||
#include <string.h>
|
||||
|
||||
/*
|
||||
** Implementation of a special SQL scalar function for testing tokenizers
|
||||
** designed to be used in concert with the Tcl testing framework. This
|
||||
** function must be called with two arguments:
|
||||
**
|
||||
** SELECT <function-name>(<key-name>, <input-string>);
|
||||
** SELECT <function-name>(<key-name>, <pointer>);
|
||||
**
|
||||
** where <function-name> is the name passed as the second argument
|
||||
** to the sqlite3Fts3InitHashTable() function (e.g. 'fts3_tokenizer')
|
||||
** concatenated with the string '_test' (e.g. 'fts3_tokenizer_test').
|
||||
**
|
||||
** The return value is a string that may be interpreted as a Tcl
|
||||
** list. For each token in the <input-string>, three elements are
|
||||
** added to the returned list. The first is the token position, the
|
||||
** second is the token text (folded, stemmed, etc.) and the third is the
|
||||
** substring of <input-string> associated with the token. For example,
|
||||
** using the built-in "simple" tokenizer:
|
||||
**
|
||||
** SELECT fts_tokenizer_test('simple', 'I don't see how');
|
||||
**
|
||||
** will return the string:
|
||||
**
|
||||
** "{0 i I 1 dont don't 2 see see 3 how how}"
|
||||
**
|
||||
*/
|
||||
static void testFunc(
|
||||
sqlite3_context *context,
|
||||
int argc,
|
||||
sqlite3_value **argv
|
||||
){
|
||||
fts3Hash *pHash;
|
||||
sqlite3_tokenizer_module *p;
|
||||
sqlite3_tokenizer *pTokenizer = 0;
|
||||
sqlite3_tokenizer_cursor *pCsr = 0;
|
||||
|
||||
const char *zErr = 0;
|
||||
|
||||
const char *zName;
|
||||
int nName;
|
||||
const char *zInput;
|
||||
int nInput;
|
||||
|
||||
const char *zArg = 0;
|
||||
|
||||
const char *zToken;
|
||||
int nToken;
|
||||
int iStart;
|
||||
int iEnd;
|
||||
int iPos;
|
||||
|
||||
Tcl_Obj *pRet;
|
||||
|
||||
assert( argc==2 || argc==3 );
|
||||
|
||||
nName = sqlite3_value_bytes(argv[0]);
|
||||
zName = (const char *)sqlite3_value_text(argv[0]);
|
||||
nInput = sqlite3_value_bytes(argv[argc-1]);
|
||||
zInput = (const char *)sqlite3_value_text(argv[argc-1]);
|
||||
|
||||
if( argc==3 ){
|
||||
zArg = (const char *)sqlite3_value_text(argv[1]);
|
||||
}
|
||||
|
||||
pHash = (fts3Hash *)sqlite3_user_data(context);
|
||||
p = (sqlite3_tokenizer_module *)sqlite3Fts3HashFind(pHash, zName, nName+1);
|
||||
|
||||
if( !p ){
|
||||
char *zErr = sqlite3_mprintf("unknown tokenizer: %s", zName);
|
||||
sqlite3_result_error(context, zErr, -1);
|
||||
sqlite3_free(zErr);
|
||||
return;
|
||||
}
|
||||
|
||||
pRet = Tcl_NewObj();
|
||||
Tcl_IncrRefCount(pRet);
|
||||
|
||||
if( SQLITE_OK!=p->xCreate(zArg ? 1 : 0, &zArg, &pTokenizer) ){
|
||||
zErr = "error in xCreate()";
|
||||
goto finish;
|
||||
}
|
||||
pTokenizer->pModule = p;
|
||||
if( SQLITE_OK!=p->xOpen(pTokenizer, zInput, nInput, &pCsr) ){
|
||||
zErr = "error in xOpen()";
|
||||
goto finish;
|
||||
}
|
||||
pCsr->pTokenizer = pTokenizer;
|
||||
|
||||
while( SQLITE_OK==p->xNext(pCsr, &zToken, &nToken, &iStart, &iEnd, &iPos) ){
|
||||
Tcl_ListObjAppendElement(0, pRet, Tcl_NewIntObj(iPos));
|
||||
Tcl_ListObjAppendElement(0, pRet, Tcl_NewStringObj(zToken, nToken));
|
||||
zToken = &zInput[iStart];
|
||||
nToken = iEnd-iStart;
|
||||
Tcl_ListObjAppendElement(0, pRet, Tcl_NewStringObj(zToken, nToken));
|
||||
}
|
||||
|
||||
if( SQLITE_OK!=p->xClose(pCsr) ){
|
||||
zErr = "error in xClose()";
|
||||
goto finish;
|
||||
}
|
||||
if( SQLITE_OK!=p->xDestroy(pTokenizer) ){
|
||||
zErr = "error in xDestroy()";
|
||||
goto finish;
|
||||
}
|
||||
|
||||
finish:
|
||||
if( zErr ){
|
||||
sqlite3_result_error(context, zErr, -1);
|
||||
}else{
|
||||
sqlite3_result_text(context, Tcl_GetString(pRet), -1, SQLITE_TRANSIENT);
|
||||
}
|
||||
Tcl_DecrRefCount(pRet);
|
||||
}
|
||||
|
||||
static
|
||||
int registerTokenizer(
|
||||
sqlite3 *db,
|
||||
char *zName,
|
||||
const sqlite3_tokenizer_module *p
|
||||
){
|
||||
int rc;
|
||||
sqlite3_stmt *pStmt;
|
||||
const char zSql[] = "SELECT fts3_tokenizer(?, ?)";
|
||||
|
||||
rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
|
||||
if( rc!=SQLITE_OK ){
|
||||
return rc;
|
||||
}
|
||||
|
||||
sqlite3_bind_text(pStmt, 1, zName, -1, SQLITE_STATIC);
|
||||
sqlite3_bind_blob(pStmt, 2, &p, sizeof(p), SQLITE_STATIC);
|
||||
sqlite3_step(pStmt);
|
||||
|
||||
return sqlite3_finalize(pStmt);
|
||||
}
|
||||
|
||||
static
|
||||
int queryTokenizer(
|
||||
sqlite3 *db,
|
||||
char *zName,
|
||||
const sqlite3_tokenizer_module **pp
|
||||
){
|
||||
int rc;
|
||||
sqlite3_stmt *pStmt;
|
||||
const char zSql[] = "SELECT fts3_tokenizer(?)";
|
||||
|
||||
*pp = 0;
|
||||
rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
|
||||
if( rc!=SQLITE_OK ){
|
||||
return rc;
|
||||
}
|
||||
|
||||
sqlite3_bind_text(pStmt, 1, zName, -1, SQLITE_STATIC);
|
||||
if( SQLITE_ROW==sqlite3_step(pStmt) ){
|
||||
if( sqlite3_column_type(pStmt, 0)==SQLITE_BLOB ){
|
||||
memcpy(pp, sqlite3_column_blob(pStmt, 0), sizeof(*pp));
|
||||
}
|
||||
}
|
||||
|
||||
return sqlite3_finalize(pStmt);
|
||||
}
|
||||
|
||||
void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule);
|
||||
|
||||
/*
|
||||
** Implementation of the scalar function fts3_tokenizer_internal_test().
|
||||
** This function is used for testing only, it is not included in the
|
||||
** build unless SQLITE_TEST is defined.
|
||||
**
|
||||
** The purpose of this is to test that the fts3_tokenizer() function
|
||||
** can be used as designed by the C-code in the queryTokenizer and
|
||||
** registerTokenizer() functions above. These two functions are repeated
|
||||
** in the README.tokenizer file as an example, so it is important to
|
||||
** test them.
|
||||
**
|
||||
** To run the tests, evaluate the fts3_tokenizer_internal_test() scalar
|
||||
** function with no arguments. An assert() will fail if a problem is
|
||||
** detected. i.e.:
|
||||
**
|
||||
** SELECT fts3_tokenizer_internal_test();
|
||||
**
|
||||
*/
|
||||
static void intTestFunc(
|
||||
sqlite3_context *context,
|
||||
int argc,
|
||||
sqlite3_value **argv
|
||||
){
|
||||
int rc;
|
||||
const sqlite3_tokenizer_module *p1;
|
||||
const sqlite3_tokenizer_module *p2;
|
||||
sqlite3 *db = (sqlite3 *)sqlite3_user_data(context);
|
||||
|
||||
/* Test the query function */
|
||||
sqlite3Fts3SimpleTokenizerModule(&p1);
|
||||
rc = queryTokenizer(db, "simple", &p2);
|
||||
assert( rc==SQLITE_OK );
|
||||
assert( p1==p2 );
|
||||
rc = queryTokenizer(db, "nosuchtokenizer", &p2);
|
||||
assert( rc==SQLITE_ERROR );
|
||||
assert( p2==0 );
|
||||
assert( 0==strcmp(sqlite3_errmsg(db), "unknown tokenizer: nosuchtokenizer") );
|
||||
|
||||
/* Test the storage function */
|
||||
rc = registerTokenizer(db, "nosuchtokenizer", p1);
|
||||
assert( rc==SQLITE_OK );
|
||||
rc = queryTokenizer(db, "nosuchtokenizer", &p2);
|
||||
assert( rc==SQLITE_OK );
|
||||
assert( p2==p1 );
|
||||
|
||||
sqlite3_result_text(context, "ok", -1, SQLITE_STATIC);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/*
|
||||
** Set up SQL objects in database db used to access the contents of
|
||||
** the hash table pointed to by argument pHash. The hash table must
|
||||
** been initialised to use string keys, and to take a private copy
|
||||
** of the key when a value is inserted. i.e. by a call similar to:
|
||||
**
|
||||
** sqlite3Fts3HashInit(pHash, FTS3_HASH_STRING, 1);
|
||||
**
|
||||
** This function adds a scalar function (see header comment above
|
||||
** scalarFunc() in this file for details) and, if ENABLE_TABLE is
|
||||
** defined at compilation time, a temporary virtual table (see header
|
||||
** comment above struct HashTableVtab) to the database schema. Both
|
||||
** provide read/write access to the contents of *pHash.
|
||||
**
|
||||
** The third argument to this function, zName, is used as the name
|
||||
** of both the scalar and, if created, the virtual table.
|
||||
*/
|
||||
int sqlite3Fts3InitHashTable(
|
||||
sqlite3 *db,
|
||||
fts3Hash *pHash,
|
||||
const char *zName
|
||||
){
|
||||
int rc = SQLITE_OK;
|
||||
void *p = (void *)pHash;
|
||||
const int any = SQLITE_ANY;
|
||||
char *zTest = 0;
|
||||
char *zTest2 = 0;
|
||||
|
||||
#ifdef SQLITE_TEST
|
||||
void *pdb = (void *)db;
|
||||
zTest = sqlite3_mprintf("%s_test", zName);
|
||||
zTest2 = sqlite3_mprintf("%s_internal_test", zName);
|
||||
if( !zTest || !zTest2 ){
|
||||
rc = SQLITE_NOMEM;
|
||||
}
|
||||
#endif
|
||||
|
||||
if( rc!=SQLITE_OK
|
||||
|| (rc = sqlite3_create_function(db, zName, 1, any, p, scalarFunc, 0, 0))
|
||||
|| (rc = sqlite3_create_function(db, zName, 2, any, p, scalarFunc, 0, 0))
|
||||
#ifdef SQLITE_TEST
|
||||
|| (rc = sqlite3_create_function(db, zTest, 2, any, p, testFunc, 0, 0))
|
||||
|| (rc = sqlite3_create_function(db, zTest, 3, any, p, testFunc, 0, 0))
|
||||
|| (rc = sqlite3_create_function(db, zTest2, 0, any, pdb, intTestFunc, 0, 0))
|
||||
#endif
|
||||
);
|
||||
|
||||
sqlite3_free(zTest);
|
||||
sqlite3_free(zTest2);
|
||||
return rc;
|
||||
}
|
||||
|
||||
#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
|
148
fts3_tokenizer.h
148
fts3_tokenizer.h
|
@ -1,148 +0,0 @@
|
|||
/*
|
||||
** 2006 July 10
|
||||
**
|
||||
** The author disclaims copyright to this source code.
|
||||
**
|
||||
*************************************************************************
|
||||
** Defines the interface to tokenizers used by fulltext-search. There
|
||||
** are three basic components:
|
||||
**
|
||||
** sqlite3_tokenizer_module is a singleton defining the tokenizer
|
||||
** interface functions. This is essentially the class structure for
|
||||
** tokenizers.
|
||||
**
|
||||
** sqlite3_tokenizer is used to define a particular tokenizer, perhaps
|
||||
** including customization information defined at creation time.
|
||||
**
|
||||
** sqlite3_tokenizer_cursor is generated by a tokenizer to generate
|
||||
** tokens from a particular input.
|
||||
*/
|
||||
#ifndef _FTS3_TOKENIZER_H_
|
||||
#define _FTS3_TOKENIZER_H_
|
||||
|
||||
/* TODO(shess) Only used for SQLITE_OK and SQLITE_DONE at this time.
|
||||
** If tokenizers are to be allowed to call sqlite3_*() functions, then
|
||||
** we will need a way to register the API consistently.
|
||||
*/
|
||||
#include "sqlite3.h"
|
||||
|
||||
/*
|
||||
** Structures used by the tokenizer interface. When a new tokenizer
|
||||
** implementation is registered, the caller provides a pointer to
|
||||
** an sqlite3_tokenizer_module containing pointers to the callback
|
||||
** functions that make up an implementation.
|
||||
**
|
||||
** When an fts3 table is created, it passes any arguments passed to
|
||||
** the tokenizer clause of the CREATE VIRTUAL TABLE statement to the
|
||||
** sqlite3_tokenizer_module.xCreate() function of the requested tokenizer
|
||||
** implementation. The xCreate() function in turn returns an
|
||||
** sqlite3_tokenizer structure representing the specific tokenizer to
|
||||
** be used for the fts3 table (customized by the tokenizer clause arguments).
|
||||
**
|
||||
** To tokenize an input buffer, the sqlite3_tokenizer_module.xOpen()
|
||||
** method is called. It returns an sqlite3_tokenizer_cursor object
|
||||
** that may be used to tokenize a specific input buffer based on
|
||||
** the tokenization rules supplied by a specific sqlite3_tokenizer
|
||||
** object.
|
||||
*/
|
||||
typedef struct sqlite3_tokenizer_module sqlite3_tokenizer_module;
|
||||
typedef struct sqlite3_tokenizer sqlite3_tokenizer;
|
||||
typedef struct sqlite3_tokenizer_cursor sqlite3_tokenizer_cursor;
|
||||
|
||||
struct sqlite3_tokenizer_module {
|
||||
|
||||
/*
|
||||
** Structure version. Should always be set to 0.
|
||||
*/
|
||||
int iVersion;
|
||||
|
||||
/*
|
||||
** Create a new tokenizer. The values in the argv[] array are the
|
||||
** arguments passed to the "tokenizer" clause of the CREATE VIRTUAL
|
||||
** TABLE statement that created the fts3 table. For example, if
|
||||
** the following SQL is executed:
|
||||
**
|
||||
** CREATE .. USING fts3( ... , tokenizer <tokenizer-name> arg1 arg2)
|
||||
**
|
||||
** then argc is set to 2, and the argv[] array contains pointers
|
||||
** to the strings "arg1" and "arg2".
|
||||
**
|
||||
** This method should return either SQLITE_OK (0), or an SQLite error
|
||||
** code. If SQLITE_OK is returned, then *ppTokenizer should be set
|
||||
** to point at the newly created tokenizer structure. The generic
|
||||
** sqlite3_tokenizer.pModule variable should not be initialised by
|
||||
** this callback. The caller will do so.
|
||||
*/
|
||||
int (*xCreate)(
|
||||
int argc, /* Size of argv array */
|
||||
const char *const*argv, /* Tokenizer argument strings */
|
||||
sqlite3_tokenizer **ppTokenizer /* OUT: Created tokenizer */
|
||||
);
|
||||
|
||||
/*
|
||||
** Destroy an existing tokenizer. The fts3 module calls this method
|
||||
** exactly once for each successful call to xCreate().
|
||||
*/
|
||||
int (*xDestroy)(sqlite3_tokenizer *pTokenizer);
|
||||
|
||||
/*
|
||||
** Create a tokenizer cursor to tokenize an input buffer. The caller
|
||||
** is responsible for ensuring that the input buffer remains valid
|
||||
** until the cursor is closed (using the xClose() method).
|
||||
*/
|
||||
int (*xOpen)(
|
||||
sqlite3_tokenizer *pTokenizer, /* Tokenizer object */
|
||||
const char *pInput, int nBytes, /* Input buffer */
|
||||
sqlite3_tokenizer_cursor **ppCursor /* OUT: Created tokenizer cursor */
|
||||
);
|
||||
|
||||
/*
|
||||
** Destroy an existing tokenizer cursor. The fts3 module calls this
|
||||
** method exactly once for each successful call to xOpen().
|
||||
*/
|
||||
int (*xClose)(sqlite3_tokenizer_cursor *pCursor);
|
||||
|
||||
/*
|
||||
** Retrieve the next token from the tokenizer cursor pCursor. This
|
||||
** method should either return SQLITE_OK and set the values of the
|
||||
** "OUT" variables identified below, or SQLITE_DONE to indicate that
|
||||
** the end of the buffer has been reached, or an SQLite error code.
|
||||
**
|
||||
** *ppToken should be set to point at a buffer containing the
|
||||
** normalized version of the token (i.e. after any case-folding and/or
|
||||
** stemming has been performed). *pnBytes should be set to the length
|
||||
** of this buffer in bytes. The input text that generated the token is
|
||||
** identified by the byte offsets returned in *piStartOffset and
|
||||
** *piEndOffset. *piStartOffset should be set to the index of the first
|
||||
** byte of the token in the input buffer. *piEndOffset should be set
|
||||
** to the index of the first byte just past the end of the token in
|
||||
** the input buffer.
|
||||
**
|
||||
** The buffer *ppToken is set to point at is managed by the tokenizer
|
||||
** implementation. It is only required to be valid until the next call
|
||||
** to xNext() or xClose().
|
||||
*/
|
||||
/* TODO(shess) current implementation requires pInput to be
|
||||
** nul-terminated. This should either be fixed, or pInput/nBytes
|
||||
** should be converted to zInput.
|
||||
*/
|
||||
int (*xNext)(
|
||||
sqlite3_tokenizer_cursor *pCursor, /* Tokenizer cursor */
|
||||
const char **ppToken, int *pnBytes, /* OUT: Normalized text for token */
|
||||
int *piStartOffset, /* OUT: Byte offset of token in input buffer */
|
||||
int *piEndOffset, /* OUT: Byte offset of end of token in input buffer */
|
||||
int *piPosition /* OUT: Number of tokens returned before this one */
|
||||
);
|
||||
};
|
||||
|
||||
struct sqlite3_tokenizer {
|
||||
const sqlite3_tokenizer_module *pModule; /* The module for this tokenizer */
|
||||
/* Tokenizer implementations will typically add additional fields */
|
||||
};
|
||||
|
||||
struct sqlite3_tokenizer_cursor {
|
||||
sqlite3_tokenizer *pTokenizer; /* Tokenizer for this cursor. */
|
||||
/* Tokenizer implementations will typically add additional fields */
|
||||
};
|
||||
|
||||
#endif /* _FTS3_TOKENIZER_H_ */
|
|
@ -1,230 +0,0 @@
|
|||
/*
|
||||
** 2006 Oct 10
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
******************************************************************************
|
||||
**
|
||||
** Implementation of the "simple" full-text-search tokenizer.
|
||||
*/
|
||||
|
||||
/*
|
||||
** The code in this file is only compiled if:
|
||||
**
|
||||
** * The FTS3 module is being built as an extension
|
||||
** (in which case SQLITE_CORE is not defined), or
|
||||
**
|
||||
** * The FTS3 module is being built into the core of
|
||||
** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
|
||||
*/
|
||||
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
|
||||
|
||||
|
||||
#include <assert.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <ctype.h>
|
||||
|
||||
#include "fts3_tokenizer.h"
|
||||
|
||||
typedef struct simple_tokenizer {
|
||||
sqlite3_tokenizer base;
|
||||
char delim[128]; /* flag ASCII delimiters */
|
||||
} simple_tokenizer;
|
||||
|
||||
typedef struct simple_tokenizer_cursor {
|
||||
sqlite3_tokenizer_cursor base;
|
||||
const char *pInput; /* input we are tokenizing */
|
||||
int nBytes; /* size of the input */
|
||||
int iOffset; /* current position in pInput */
|
||||
int iToken; /* index of next token to be returned */
|
||||
char *pToken; /* storage for current token */
|
||||
int nTokenAllocated; /* space allocated to zToken buffer */
|
||||
} simple_tokenizer_cursor;
|
||||
|
||||
|
||||
/* Forward declaration */
|
||||
static const sqlite3_tokenizer_module simpleTokenizerModule;
|
||||
|
||||
static int simpleDelim(simple_tokenizer *t, unsigned char c){
|
||||
return c<0x80 && t->delim[c];
|
||||
}
|
||||
|
||||
/*
|
||||
** Create a new tokenizer instance.
|
||||
*/
|
||||
static int simpleCreate(
|
||||
int argc, const char * const *argv,
|
||||
sqlite3_tokenizer **ppTokenizer
|
||||
){
|
||||
simple_tokenizer *t;
|
||||
|
||||
t = (simple_tokenizer *) sqlite3_malloc(sizeof(*t));
|
||||
if( t==NULL ) return SQLITE_NOMEM;
|
||||
memset(t, 0, sizeof(*t));
|
||||
|
||||
/* TODO(shess) Delimiters need to remain the same from run to run,
|
||||
** else we need to reindex. One solution would be a meta-table to
|
||||
** track such information in the database, then we'd only want this
|
||||
** information on the initial create.
|
||||
*/
|
||||
if( argc>1 ){
|
||||
int i, n = strlen(argv[1]);
|
||||
for(i=0; i<n; i++){
|
||||
unsigned char ch = argv[1][i];
|
||||
/* We explicitly don't support UTF-8 delimiters for now. */
|
||||
if( ch>=0x80 ){
|
||||
sqlite3_free(t);
|
||||
return SQLITE_ERROR;
|
||||
}
|
||||
t->delim[ch] = 1;
|
||||
}
|
||||
} else {
|
||||
/* Mark non-alphanumeric ASCII characters as delimiters */
|
||||
int i;
|
||||
for(i=1; i<0x80; i++){
|
||||
t->delim[i] = !isalnum(i);
|
||||
}
|
||||
}
|
||||
|
||||
*ppTokenizer = &t->base;
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Destroy a tokenizer
|
||||
*/
|
||||
static int simpleDestroy(sqlite3_tokenizer *pTokenizer){
|
||||
sqlite3_free(pTokenizer);
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Prepare to begin tokenizing a particular string. The input
|
||||
** string to be tokenized is pInput[0..nBytes-1]. A cursor
|
||||
** used to incrementally tokenize this string is returned in
|
||||
** *ppCursor.
|
||||
*/
|
||||
static int simpleOpen(
|
||||
sqlite3_tokenizer *pTokenizer, /* The tokenizer */
|
||||
const char *pInput, int nBytes, /* String to be tokenized */
|
||||
sqlite3_tokenizer_cursor **ppCursor /* OUT: Tokenization cursor */
|
||||
){
|
||||
simple_tokenizer_cursor *c;
|
||||
|
||||
c = (simple_tokenizer_cursor *) sqlite3_malloc(sizeof(*c));
|
||||
if( c==NULL ) return SQLITE_NOMEM;
|
||||
|
||||
c->pInput = pInput;
|
||||
if( pInput==0 ){
|
||||
c->nBytes = 0;
|
||||
}else if( nBytes<0 ){
|
||||
c->nBytes = (int)strlen(pInput);
|
||||
}else{
|
||||
c->nBytes = nBytes;
|
||||
}
|
||||
c->iOffset = 0; /* start tokenizing at the beginning */
|
||||
c->iToken = 0;
|
||||
c->pToken = NULL; /* no space allocated, yet. */
|
||||
c->nTokenAllocated = 0;
|
||||
|
||||
*ppCursor = &c->base;
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Close a tokenization cursor previously opened by a call to
|
||||
** simpleOpen() above.
|
||||
*/
|
||||
static int simpleClose(sqlite3_tokenizer_cursor *pCursor){
|
||||
simple_tokenizer_cursor *c = (simple_tokenizer_cursor *) pCursor;
|
||||
sqlite3_free(c->pToken);
|
||||
sqlite3_free(c);
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Extract the next token from a tokenization cursor. The cursor must
|
||||
** have been opened by a prior call to simpleOpen().
|
||||
*/
|
||||
static int simpleNext(
|
||||
sqlite3_tokenizer_cursor *pCursor, /* Cursor returned by simpleOpen */
|
||||
const char **ppToken, /* OUT: *ppToken is the token text */
|
||||
int *pnBytes, /* OUT: Number of bytes in token */
|
||||
int *piStartOffset, /* OUT: Starting offset of token */
|
||||
int *piEndOffset, /* OUT: Ending offset of token */
|
||||
int *piPosition /* OUT: Position integer of token */
|
||||
){
|
||||
simple_tokenizer_cursor *c = (simple_tokenizer_cursor *) pCursor;
|
||||
simple_tokenizer *t = (simple_tokenizer *) pCursor->pTokenizer;
|
||||
unsigned char *p = (unsigned char *)c->pInput;
|
||||
|
||||
while( c->iOffset<c->nBytes ){
|
||||
int iStartOffset;
|
||||
|
||||
/* Scan past delimiter characters */
|
||||
while( c->iOffset<c->nBytes && simpleDelim(t, p[c->iOffset]) ){
|
||||
c->iOffset++;
|
||||
}
|
||||
|
||||
/* Count non-delimiter characters. */
|
||||
iStartOffset = c->iOffset;
|
||||
while( c->iOffset<c->nBytes && !simpleDelim(t, p[c->iOffset]) ){
|
||||
c->iOffset++;
|
||||
}
|
||||
|
||||
if( c->iOffset>iStartOffset ){
|
||||
int i, n = c->iOffset-iStartOffset;
|
||||
if( n>c->nTokenAllocated ){
|
||||
c->nTokenAllocated = n+20;
|
||||
c->pToken = sqlite3_realloc(c->pToken, c->nTokenAllocated);
|
||||
if( c->pToken==NULL ) return SQLITE_NOMEM;
|
||||
}
|
||||
for(i=0; i<n; i++){
|
||||
/* TODO(shess) This needs expansion to handle UTF-8
|
||||
** case-insensitivity.
|
||||
*/
|
||||
unsigned char ch = p[iStartOffset+i];
|
||||
c->pToken[i] = ch<0x80 ? tolower(ch) : ch;
|
||||
}
|
||||
*ppToken = c->pToken;
|
||||
*pnBytes = n;
|
||||
*piStartOffset = iStartOffset;
|
||||
*piEndOffset = c->iOffset;
|
||||
*piPosition = c->iToken++;
|
||||
|
||||
return SQLITE_OK;
|
||||
}
|
||||
}
|
||||
return SQLITE_DONE;
|
||||
}
|
||||
|
||||
/*
|
||||
** The set of routines that implement the simple tokenizer
|
||||
*/
|
||||
static const sqlite3_tokenizer_module simpleTokenizerModule = {
|
||||
0,
|
||||
simpleCreate,
|
||||
simpleDestroy,
|
||||
simpleOpen,
|
||||
simpleClose,
|
||||
simpleNext,
|
||||
};
|
||||
|
||||
/*
|
||||
** Allocate a new simple tokenizer. Return a pointer to the new
|
||||
** tokenizer in *ppModule
|
||||
*/
|
||||
void sqlite3Fts3SimpleTokenizerModule(
|
||||
sqlite3_tokenizer_module const**ppModule
|
||||
){
|
||||
*ppModule = &simpleTokenizerModule;
|
||||
}
|
||||
|
||||
#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
|
190
global.c
190
global.c
|
@ -1,190 +0,0 @@
|
|||
/*
|
||||
** 2008 June 13
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
**
|
||||
** This file contains definitions of global variables and contants.
|
||||
**
|
||||
** $Id: global.c,v 1.12 2009/02/05 16:31:46 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
|
||||
/* An array to map all upper-case characters into their corresponding
|
||||
** lower-case character.
|
||||
**
|
||||
** SQLite only considers US-ASCII (or EBCDIC) characters. We do not
|
||||
** handle case conversions for the UTF character set since the tables
|
||||
** involved are nearly as big or bigger than SQLite itself.
|
||||
*/
|
||||
const unsigned char sqlite3UpperToLower[] = {
|
||||
#ifdef SQLITE_ASCII
|
||||
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
|
||||
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
|
||||
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
|
||||
54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 97, 98, 99,100,101,102,103,
|
||||
104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,
|
||||
122, 91, 92, 93, 94, 95, 96, 97, 98, 99,100,101,102,103,104,105,106,107,
|
||||
108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,
|
||||
126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,
|
||||
144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,
|
||||
162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,
|
||||
180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,
|
||||
198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,
|
||||
216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,
|
||||
234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,
|
||||
252,253,254,255
|
||||
#endif
|
||||
#ifdef SQLITE_EBCDIC
|
||||
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, /* 0x */
|
||||
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, /* 1x */
|
||||
32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, /* 2x */
|
||||
48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, /* 3x */
|
||||
64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, /* 4x */
|
||||
80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, /* 5x */
|
||||
96, 97, 66, 67, 68, 69, 70, 71, 72, 73,106,107,108,109,110,111, /* 6x */
|
||||
112, 81, 82, 83, 84, 85, 86, 87, 88, 89,122,123,124,125,126,127, /* 7x */
|
||||
128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, /* 8x */
|
||||
144,145,146,147,148,149,150,151,152,153,154,155,156,157,156,159, /* 9x */
|
||||
160,161,162,163,164,165,166,167,168,169,170,171,140,141,142,175, /* Ax */
|
||||
176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191, /* Bx */
|
||||
192,129,130,131,132,133,134,135,136,137,202,203,204,205,206,207, /* Cx */
|
||||
208,145,146,147,148,149,150,151,152,153,218,219,220,221,222,223, /* Dx */
|
||||
224,225,162,163,164,165,166,167,168,169,232,203,204,205,206,207, /* Ex */
|
||||
239,240,241,242,243,244,245,246,247,248,249,219,220,221,222,255, /* Fx */
|
||||
#endif
|
||||
};
|
||||
|
||||
/*
|
||||
** The following 256 byte lookup table is used to support SQLites built-in
|
||||
** equivalents to the following standard library functions:
|
||||
**
|
||||
** isspace() 0x01
|
||||
** isalpha() 0x02
|
||||
** isdigit() 0x04
|
||||
** isalnum() 0x06
|
||||
** isxdigit() 0x08
|
||||
** toupper() 0x20
|
||||
**
|
||||
** Bit 0x20 is set if the mapped character requires translation to upper
|
||||
** case. i.e. if the character is a lower-case ASCII character.
|
||||
** If x is a lower-case ASCII character, then its upper-case equivalent
|
||||
** is (x - 0x20). Therefore toupper() can be implemented as:
|
||||
**
|
||||
** (x & ~(map[x]&0x20))
|
||||
**
|
||||
** Standard function tolower() is implemented using the sqlite3UpperToLower[]
|
||||
** array. tolower() is used more often than toupper() by SQLite.
|
||||
**
|
||||
** SQLite's versions are identical to the standard versions assuming a
|
||||
** locale of "C". They are implemented as macros in sqliteInt.h.
|
||||
*/
|
||||
#ifdef SQLITE_ASCII
|
||||
const unsigned char sqlite3CtypeMap[256] = {
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 00..07 ........ */
|
||||
0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x00, 0x00, /* 08..0f ........ */
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 10..17 ........ */
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 18..1f ........ */
|
||||
0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 20..27 !"#$%&' */
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 28..2f ()*+,-./ */
|
||||
0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, /* 30..37 01234567 */
|
||||
0x0c, 0x0c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 38..3f 89:;<=>? */
|
||||
|
||||
0x00, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x02, /* 40..47 @ABCDEFG */
|
||||
0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, /* 48..4f HIJKLMNO */
|
||||
0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, /* 50..57 PQRSTUVW */
|
||||
0x02, 0x02, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, /* 58..5f XYZ[\]^_ */
|
||||
0x00, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x22, /* 60..67 `abcdefg */
|
||||
0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, /* 68..6f hijklmno */
|
||||
0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, /* 70..77 pqrstuvw */
|
||||
0x22, 0x22, 0x22, 0x00, 0x00, 0x00, 0x00, 0x00, /* 78..7f xyz{|}~. */
|
||||
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 80..87 ........ */
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 88..8f ........ */
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 90..97 ........ */
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 98..9f ........ */
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* a0..a7 ........ */
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* a8..af ........ */
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* b0..b7 ........ */
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* b8..bf ........ */
|
||||
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* c0..c7 ........ */
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* c8..cf ........ */
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* d0..d7 ........ */
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* d8..df ........ */
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* e0..e7 ........ */
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* e8..ef ........ */
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* f0..f7 ........ */
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 /* f8..ff ........ */
|
||||
};
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
/*
|
||||
** The following singleton contains the global configuration for
|
||||
** the SQLite library.
|
||||
*/
|
||||
SQLITE_WSD struct Sqlite3Config sqlite3Config = {
|
||||
SQLITE_DEFAULT_MEMSTATUS, /* bMemstat */
|
||||
1, /* bCoreMutex */
|
||||
SQLITE_THREADSAFE==1, /* bFullMutex */
|
||||
0x7ffffffe, /* mxStrlen */
|
||||
100, /* szLookaside */
|
||||
500, /* nLookaside */
|
||||
{0,0,0,0,0,0,0,0}, /* m */
|
||||
{0,0,0,0,0,0,0,0,0}, /* mutex */
|
||||
{0,0,0,0,0,0,0,0,0,0,0}, /* pcache */
|
||||
(void*)0, /* pHeap */
|
||||
0, /* nHeap */
|
||||
0, 0, /* mnHeap, mxHeap */
|
||||
(void*)0, /* pScratch */
|
||||
0, /* szScratch */
|
||||
0, /* nScratch */
|
||||
(void*)0, /* pPage */
|
||||
0, /* szPage */
|
||||
0, /* nPage */
|
||||
0, /* mxParserStack */
|
||||
0, /* sharedCacheEnabled */
|
||||
/* All the rest need to always be zero */
|
||||
0, /* isInit */
|
||||
0, /* inProgress */
|
||||
0, /* isMallocInit */
|
||||
0, /* pInitMutex */
|
||||
0, /* nRefInitMutex */
|
||||
};
|
||||
|
||||
|
||||
/*
|
||||
** Hash table for global functions - functions common to all
|
||||
** database connections. After initialization, this table is
|
||||
** read-only.
|
||||
*/
|
||||
SQLITE_WSD FuncDefHash sqlite3GlobalFunctions;
|
||||
|
||||
/*
|
||||
** The value of the "pending" byte must be 0x40000000 (1 byte past the
|
||||
** 1-gibabyte boundary) in a compatible database. SQLite never uses
|
||||
** the database page that contains the pending byte. It never attempts
|
||||
** to read or write that page. The pending byte page is set assign
|
||||
** for use by the VFS layers as space for managing file locks.
|
||||
**
|
||||
** During testing, it is often desirable to move the pending byte to
|
||||
** a different position in the file. This allows code that has to
|
||||
** deal with the pending byte to run on files that are much smaller
|
||||
** than 1 GiB. The sqlite3_test_control() interface can be used to
|
||||
** move the pending byte.
|
||||
**
|
||||
** IMPORTANT: Changing the pending byte to any value other than
|
||||
** 0x40000000 results in an incompatible database file format!
|
||||
** Changing the pending byte during operating results in undefined
|
||||
** and dileterious behavior.
|
||||
*/
|
||||
int sqlite3PendingByte = 0x40000000;
|
303
hash.c
303
hash.c
|
@ -1,303 +0,0 @@
|
|||
/*
|
||||
** 2001 September 22
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This is the implementation of generic hash-tables
|
||||
** used in SQLite.
|
||||
**
|
||||
** $Id: hash.c,v 1.33 2009/01/09 01:12:28 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
#include <assert.h>
|
||||
|
||||
/* Turn bulk memory into a hash table object by initializing the
|
||||
** fields of the Hash structure.
|
||||
**
|
||||
** "pNew" is a pointer to the hash table that is to be initialized.
|
||||
** "copyKey" is true if the hash table should make its own private
|
||||
** copy of keys and false if it should just use the supplied pointer.
|
||||
*/
|
||||
void sqlite3HashInit(Hash *pNew, int copyKey){
|
||||
assert( pNew!=0 );
|
||||
pNew->copyKey = copyKey!=0;
|
||||
pNew->first = 0;
|
||||
pNew->count = 0;
|
||||
pNew->htsize = 0;
|
||||
pNew->ht = 0;
|
||||
}
|
||||
|
||||
/* Remove all entries from a hash table. Reclaim all memory.
|
||||
** Call this routine to delete a hash table or to reset a hash table
|
||||
** to the empty state.
|
||||
*/
|
||||
void sqlite3HashClear(Hash *pH){
|
||||
HashElem *elem; /* For looping over all elements of the table */
|
||||
|
||||
assert( pH!=0 );
|
||||
elem = pH->first;
|
||||
pH->first = 0;
|
||||
sqlite3_free(pH->ht);
|
||||
pH->ht = 0;
|
||||
pH->htsize = 0;
|
||||
while( elem ){
|
||||
HashElem *next_elem = elem->next;
|
||||
if( pH->copyKey ){
|
||||
sqlite3_free(elem->pKey);
|
||||
}
|
||||
sqlite3_free(elem);
|
||||
elem = next_elem;
|
||||
}
|
||||
pH->count = 0;
|
||||
}
|
||||
|
||||
/*
|
||||
** Hash and comparison functions when the mode is SQLITE_HASH_STRING
|
||||
*/
|
||||
static int strHash(const void *pKey, int nKey){
|
||||
const char *z = (const char *)pKey;
|
||||
int h = 0;
|
||||
if( nKey<=0 ) nKey = sqlite3Strlen30(z);
|
||||
while( nKey > 0 ){
|
||||
h = (h<<3) ^ h ^ sqlite3UpperToLower[(unsigned char)*z++];
|
||||
nKey--;
|
||||
}
|
||||
return h & 0x7fffffff;
|
||||
}
|
||||
static int strCompare(const void *pKey1, int n1, const void *pKey2, int n2){
|
||||
if( n1!=n2 ) return 1;
|
||||
return sqlite3StrNICmp((const char*)pKey1,(const char*)pKey2,n1);
|
||||
}
|
||||
|
||||
|
||||
/* Link an element into the hash table
|
||||
*/
|
||||
static void insertElement(
|
||||
Hash *pH, /* The complete hash table */
|
||||
struct _ht *pEntry, /* The entry into which pNew is inserted */
|
||||
HashElem *pNew /* The element to be inserted */
|
||||
){
|
||||
HashElem *pHead; /* First element already in pEntry */
|
||||
pHead = pEntry->chain;
|
||||
if( pHead ){
|
||||
pNew->next = pHead;
|
||||
pNew->prev = pHead->prev;
|
||||
if( pHead->prev ){ pHead->prev->next = pNew; }
|
||||
else { pH->first = pNew; }
|
||||
pHead->prev = pNew;
|
||||
}else{
|
||||
pNew->next = pH->first;
|
||||
if( pH->first ){ pH->first->prev = pNew; }
|
||||
pNew->prev = 0;
|
||||
pH->first = pNew;
|
||||
}
|
||||
pEntry->count++;
|
||||
pEntry->chain = pNew;
|
||||
}
|
||||
|
||||
|
||||
/* Resize the hash table so that it cantains "new_size" buckets.
|
||||
** "new_size" must be a power of 2. The hash table might fail
|
||||
** to resize if sqlite3_malloc() fails.
|
||||
*/
|
||||
static void rehash(Hash *pH, int new_size){
|
||||
struct _ht *new_ht; /* The new hash table */
|
||||
HashElem *elem, *next_elem; /* For looping over existing elements */
|
||||
|
||||
#ifdef SQLITE_MALLOC_SOFT_LIMIT
|
||||
if( new_size*sizeof(struct _ht)>SQLITE_MALLOC_SOFT_LIMIT ){
|
||||
new_size = SQLITE_MALLOC_SOFT_LIMIT/sizeof(struct _ht);
|
||||
}
|
||||
if( new_size==pH->htsize ) return;
|
||||
#endif
|
||||
|
||||
/* There is a call to sqlite3_malloc() inside rehash(). If there is
|
||||
** already an allocation at pH->ht, then if this malloc() fails it
|
||||
** is benign (since failing to resize a hash table is a performance
|
||||
** hit only, not a fatal error).
|
||||
*/
|
||||
if( pH->htsize>0 ) sqlite3BeginBenignMalloc();
|
||||
new_ht = (struct _ht *)sqlite3MallocZero( new_size*sizeof(struct _ht) );
|
||||
if( pH->htsize>0 ) sqlite3EndBenignMalloc();
|
||||
|
||||
if( new_ht==0 ) return;
|
||||
sqlite3_free(pH->ht);
|
||||
pH->ht = new_ht;
|
||||
pH->htsize = new_size;
|
||||
for(elem=pH->first, pH->first=0; elem; elem = next_elem){
|
||||
int h = strHash(elem->pKey, elem->nKey) & (new_size-1);
|
||||
next_elem = elem->next;
|
||||
insertElement(pH, &new_ht[h], elem);
|
||||
}
|
||||
}
|
||||
|
||||
/* This function (for internal use only) locates an element in an
|
||||
** hash table that matches the given key. The hash for this key has
|
||||
** already been computed and is passed as the 4th parameter.
|
||||
*/
|
||||
static HashElem *findElementGivenHash(
|
||||
const Hash *pH, /* The pH to be searched */
|
||||
const void *pKey, /* The key we are searching for */
|
||||
int nKey,
|
||||
int h /* The hash for this key. */
|
||||
){
|
||||
HashElem *elem; /* Used to loop thru the element list */
|
||||
int count; /* Number of elements left to test */
|
||||
|
||||
if( pH->ht ){
|
||||
struct _ht *pEntry = &pH->ht[h];
|
||||
elem = pEntry->chain;
|
||||
count = pEntry->count;
|
||||
while( count-- && elem ){
|
||||
if( strCompare(elem->pKey,elem->nKey,pKey,nKey)==0 ){
|
||||
return elem;
|
||||
}
|
||||
elem = elem->next;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Remove a single entry from the hash table given a pointer to that
|
||||
** element and a hash on the element's key.
|
||||
*/
|
||||
static void removeElementGivenHash(
|
||||
Hash *pH, /* The pH containing "elem" */
|
||||
HashElem* elem, /* The element to be removed from the pH */
|
||||
int h /* Hash value for the element */
|
||||
){
|
||||
struct _ht *pEntry;
|
||||
if( elem->prev ){
|
||||
elem->prev->next = elem->next;
|
||||
}else{
|
||||
pH->first = elem->next;
|
||||
}
|
||||
if( elem->next ){
|
||||
elem->next->prev = elem->prev;
|
||||
}
|
||||
pEntry = &pH->ht[h];
|
||||
if( pEntry->chain==elem ){
|
||||
pEntry->chain = elem->next;
|
||||
}
|
||||
pEntry->count--;
|
||||
if( pEntry->count<=0 ){
|
||||
pEntry->chain = 0;
|
||||
}
|
||||
if( pH->copyKey ){
|
||||
sqlite3_free(elem->pKey);
|
||||
}
|
||||
sqlite3_free( elem );
|
||||
pH->count--;
|
||||
if( pH->count<=0 ){
|
||||
assert( pH->first==0 );
|
||||
assert( pH->count==0 );
|
||||
sqlite3HashClear(pH);
|
||||
}
|
||||
}
|
||||
|
||||
/* Attempt to locate an element of the hash table pH with a key
|
||||
** that matches pKey,nKey. Return a pointer to the corresponding
|
||||
** HashElem structure for this element if it is found, or NULL
|
||||
** otherwise.
|
||||
*/
|
||||
HashElem *sqlite3HashFindElem(const Hash *pH, const void *pKey, int nKey){
|
||||
int h; /* A hash on key */
|
||||
HashElem *elem; /* The element that matches key */
|
||||
|
||||
if( pH==0 || pH->ht==0 ) return 0;
|
||||
h = strHash(pKey,nKey);
|
||||
elem = findElementGivenHash(pH,pKey,nKey, h % pH->htsize);
|
||||
return elem;
|
||||
}
|
||||
|
||||
/* Attempt to locate an element of the hash table pH with a key
|
||||
** that matches pKey,nKey. Return the data for this element if it is
|
||||
** found, or NULL if there is no match.
|
||||
*/
|
||||
void *sqlite3HashFind(const Hash *pH, const void *pKey, int nKey){
|
||||
HashElem *elem; /* The element that matches key */
|
||||
elem = sqlite3HashFindElem(pH, pKey, nKey);
|
||||
return elem ? elem->data : 0;
|
||||
}
|
||||
|
||||
/* Insert an element into the hash table pH. The key is pKey,nKey
|
||||
** and the data is "data".
|
||||
**
|
||||
** If no element exists with a matching key, then a new
|
||||
** element is created. A copy of the key is made if the copyKey
|
||||
** flag is set. NULL is returned.
|
||||
**
|
||||
** If another element already exists with the same key, then the
|
||||
** new data replaces the old data and the old data is returned.
|
||||
** The key is not copied in this instance. If a malloc fails, then
|
||||
** the new data is returned and the hash table is unchanged.
|
||||
**
|
||||
** If the "data" parameter to this function is NULL, then the
|
||||
** element corresponding to "key" is removed from the hash table.
|
||||
*/
|
||||
void *sqlite3HashInsert(Hash *pH, const void *pKey, int nKey, void *data){
|
||||
int hraw; /* Raw hash value of the key */
|
||||
int h; /* the hash of the key modulo hash table size */
|
||||
HashElem *elem; /* Used to loop thru the element list */
|
||||
HashElem *new_elem; /* New element added to the pH */
|
||||
|
||||
assert( pH!=0 );
|
||||
hraw = strHash(pKey, nKey);
|
||||
if( pH->htsize ){
|
||||
h = hraw % pH->htsize;
|
||||
elem = findElementGivenHash(pH,pKey,nKey,h);
|
||||
if( elem ){
|
||||
void *old_data = elem->data;
|
||||
if( data==0 ){
|
||||
removeElementGivenHash(pH,elem,h);
|
||||
}else{
|
||||
elem->data = data;
|
||||
if( !pH->copyKey ){
|
||||
elem->pKey = (void *)pKey;
|
||||
}
|
||||
assert(nKey==elem->nKey);
|
||||
}
|
||||
return old_data;
|
||||
}
|
||||
}
|
||||
if( data==0 ) return 0;
|
||||
new_elem = (HashElem*)sqlite3Malloc( sizeof(HashElem) );
|
||||
if( new_elem==0 ) return data;
|
||||
if( pH->copyKey && pKey!=0 ){
|
||||
new_elem->pKey = sqlite3Malloc( nKey );
|
||||
if( new_elem->pKey==0 ){
|
||||
sqlite3_free(new_elem);
|
||||
return data;
|
||||
}
|
||||
memcpy((void*)new_elem->pKey, pKey, nKey);
|
||||
}else{
|
||||
new_elem->pKey = (void*)pKey;
|
||||
}
|
||||
new_elem->nKey = nKey;
|
||||
pH->count++;
|
||||
if( pH->htsize==0 ){
|
||||
rehash(pH, 128/sizeof(pH->ht[0]));
|
||||
if( pH->htsize==0 ){
|
||||
pH->count = 0;
|
||||
if( pH->copyKey ){
|
||||
sqlite3_free(new_elem->pKey);
|
||||
}
|
||||
sqlite3_free(new_elem);
|
||||
return data;
|
||||
}
|
||||
}
|
||||
if( pH->count > pH->htsize ){
|
||||
rehash(pH,pH->htsize*2);
|
||||
}
|
||||
assert( pH->htsize>0 );
|
||||
h = hraw % pH->htsize;
|
||||
insertElement(pH, &pH->ht[h], new_elem);
|
||||
new_elem->data = data;
|
||||
return 0;
|
||||
}
|
87
hash.h
87
hash.h
|
@ -1,87 +0,0 @@
|
|||
/*
|
||||
** 2001 September 22
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This is the header file for the generic hash-table implemenation
|
||||
** used in SQLite.
|
||||
**
|
||||
** $Id: hash.h,v 1.12 2008/10/10 17:41:29 drh Exp $
|
||||
*/
|
||||
#ifndef _SQLITE_HASH_H_
|
||||
#define _SQLITE_HASH_H_
|
||||
|
||||
/* Forward declarations of structures. */
|
||||
typedef struct Hash Hash;
|
||||
typedef struct HashElem HashElem;
|
||||
|
||||
/* A complete hash table is an instance of the following structure.
|
||||
** The internals of this structure are intended to be opaque -- client
|
||||
** code should not attempt to access or modify the fields of this structure
|
||||
** directly. Change this structure only by using the routines below.
|
||||
** However, many of the "procedures" and "functions" for modifying and
|
||||
** accessing this structure are really macros, so we can't really make
|
||||
** this structure opaque.
|
||||
*/
|
||||
struct Hash {
|
||||
unsigned int copyKey: 1; /* True if copy of key made on insert */
|
||||
unsigned int htsize : 31; /* Number of buckets in the hash table */
|
||||
unsigned int count; /* Number of entries in this table */
|
||||
HashElem *first; /* The first element of the array */
|
||||
struct _ht { /* the hash table */
|
||||
int count; /* Number of entries with this hash */
|
||||
HashElem *chain; /* Pointer to first entry with this hash */
|
||||
} *ht;
|
||||
};
|
||||
|
||||
/* Each element in the hash table is an instance of the following
|
||||
** structure. All elements are stored on a single doubly-linked list.
|
||||
**
|
||||
** Again, this structure is intended to be opaque, but it can't really
|
||||
** be opaque because it is used by macros.
|
||||
*/
|
||||
struct HashElem {
|
||||
HashElem *next, *prev; /* Next and previous elements in the table */
|
||||
void *data; /* Data associated with this element */
|
||||
void *pKey; int nKey; /* Key associated with this element */
|
||||
};
|
||||
|
||||
/*
|
||||
** Access routines. To delete, insert a NULL pointer.
|
||||
*/
|
||||
void sqlite3HashInit(Hash*, int copyKey);
|
||||
void *sqlite3HashInsert(Hash*, const void *pKey, int nKey, void *pData);
|
||||
void *sqlite3HashFind(const Hash*, const void *pKey, int nKey);
|
||||
HashElem *sqlite3HashFindElem(const Hash*, const void *pKey, int nKey);
|
||||
void sqlite3HashClear(Hash*);
|
||||
|
||||
/*
|
||||
** Macros for looping over all elements of a hash table. The idiom is
|
||||
** like this:
|
||||
**
|
||||
** Hash h;
|
||||
** HashElem *p;
|
||||
** ...
|
||||
** for(p=sqliteHashFirst(&h); p; p=sqliteHashNext(p)){
|
||||
** SomeStructure *pData = sqliteHashData(p);
|
||||
** // do something with pData
|
||||
** }
|
||||
*/
|
||||
#define sqliteHashFirst(H) ((H)->first)
|
||||
#define sqliteHashNext(E) ((E)->next)
|
||||
#define sqliteHashData(E) ((E)->data)
|
||||
#define sqliteHashKey(E) ((E)->pKey)
|
||||
#define sqliteHashKeysize(E) ((E)->nKey)
|
||||
|
||||
/*
|
||||
** Number of entries in a hash table
|
||||
*/
|
||||
#define sqliteHashCount(H) ((H)->count)
|
||||
|
||||
#endif /* _SQLITE_HASH_H_ */
|
87
hwtime.h
87
hwtime.h
|
@ -1,87 +0,0 @@
|
|||
/*
|
||||
** 2008 May 27
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
******************************************************************************
|
||||
**
|
||||
** This file contains inline asm code for retrieving "high-performance"
|
||||
** counters for x86 class CPUs.
|
||||
**
|
||||
** $Id: hwtime.h,v 1.3 2008/08/01 14:33:15 shane Exp $
|
||||
*/
|
||||
#ifndef _HWTIME_H_
|
||||
#define _HWTIME_H_
|
||||
|
||||
/*
|
||||
** The following routine only works on pentium-class (or newer) processors.
|
||||
** It uses the RDTSC opcode to read the cycle count value out of the
|
||||
** processor and returns that value. This can be used for high-res
|
||||
** profiling.
|
||||
*/
|
||||
#if (defined(__GNUC__) || defined(_MSC_VER)) && \
|
||||
(defined(i386) || defined(__i386__) || defined(_M_IX86))
|
||||
|
||||
#if defined(__GNUC__)
|
||||
|
||||
__inline__ sqlite_uint64 sqlite3Hwtime(void){
|
||||
unsigned int lo, hi;
|
||||
__asm__ __volatile__ ("rdtsc" : "=a" (lo), "=d" (hi));
|
||||
return (sqlite_uint64)hi << 32 | lo;
|
||||
}
|
||||
|
||||
#elif defined(_MSC_VER)
|
||||
|
||||
__declspec(naked) __inline sqlite_uint64 __cdecl sqlite3Hwtime(void){
|
||||
__asm {
|
||||
rdtsc
|
||||
ret ; return value at EDX:EAX
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#elif (defined(__GNUC__) && defined(__x86_64__))
|
||||
|
||||
__inline__ sqlite_uint64 sqlite3Hwtime(void){
|
||||
unsigned long val;
|
||||
__asm__ __volatile__ ("rdtsc" : "=A" (val));
|
||||
return val;
|
||||
}
|
||||
|
||||
#elif (defined(__GNUC__) && defined(__ppc__))
|
||||
|
||||
__inline__ sqlite_uint64 sqlite3Hwtime(void){
|
||||
unsigned long long retval;
|
||||
unsigned long junk;
|
||||
__asm__ __volatile__ ("\n\
|
||||
1: mftbu %1\n\
|
||||
mftb %L0\n\
|
||||
mftbu %0\n\
|
||||
cmpw %0,%1\n\
|
||||
bne 1b"
|
||||
: "=r" (retval), "=r" (junk));
|
||||
return retval;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
#error Need implementation of sqlite3Hwtime() for your platform.
|
||||
|
||||
/*
|
||||
** To compile without implementing sqlite3Hwtime() for your platform,
|
||||
** you can remove the above #error and use the following
|
||||
** stub function. You will lose timing support for many
|
||||
** of the debugging and testing utilities, but it should at
|
||||
** least compile and run.
|
||||
*/
|
||||
sqlite_uint64 sqlite3Hwtime(void){ return ((sqlite_uint64)0); }
|
||||
|
||||
#endif
|
||||
|
||||
#endif /* !defined(_HWTIME_H_) */
|
240
journal.c
240
journal.c
|
@ -1,240 +0,0 @@
|
|||
/*
|
||||
** 2007 August 22
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
**
|
||||
** @(#) $Id: journal.c,v 1.9 2009/01/20 17:06:27 danielk1977 Exp $
|
||||
*/
|
||||
|
||||
#ifdef SQLITE_ENABLE_ATOMIC_WRITE
|
||||
|
||||
/*
|
||||
** This file implements a special kind of sqlite3_file object used
|
||||
** by SQLite to create journal files if the atomic-write optimization
|
||||
** is enabled.
|
||||
**
|
||||
** The distinctive characteristic of this sqlite3_file is that the
|
||||
** actual on disk file is created lazily. When the file is created,
|
||||
** the caller specifies a buffer size for an in-memory buffer to
|
||||
** be used to service read() and write() requests. The actual file
|
||||
** on disk is not created or populated until either:
|
||||
**
|
||||
** 1) The in-memory representation grows too large for the allocated
|
||||
** buffer, or
|
||||
** 2) The sqlite3JournalCreate() function is called.
|
||||
*/
|
||||
|
||||
#include "sqliteInt.h"
|
||||
|
||||
|
||||
/*
|
||||
** A JournalFile object is a subclass of sqlite3_file used by
|
||||
** as an open file handle for journal files.
|
||||
*/
|
||||
struct JournalFile {
|
||||
sqlite3_io_methods *pMethod; /* I/O methods on journal files */
|
||||
int nBuf; /* Size of zBuf[] in bytes */
|
||||
char *zBuf; /* Space to buffer journal writes */
|
||||
int iSize; /* Amount of zBuf[] currently used */
|
||||
int flags; /* xOpen flags */
|
||||
sqlite3_vfs *pVfs; /* The "real" underlying VFS */
|
||||
sqlite3_file *pReal; /* The "real" underlying file descriptor */
|
||||
const char *zJournal; /* Name of the journal file */
|
||||
};
|
||||
typedef struct JournalFile JournalFile;
|
||||
|
||||
/*
|
||||
** If it does not already exists, create and populate the on-disk file
|
||||
** for JournalFile p.
|
||||
*/
|
||||
static int createFile(JournalFile *p){
|
||||
int rc = SQLITE_OK;
|
||||
if( !p->pReal ){
|
||||
sqlite3_file *pReal = (sqlite3_file *)&p[1];
|
||||
rc = sqlite3OsOpen(p->pVfs, p->zJournal, pReal, p->flags, 0);
|
||||
if( rc==SQLITE_OK ){
|
||||
p->pReal = pReal;
|
||||
if( p->iSize>0 ){
|
||||
assert(p->iSize<=p->nBuf);
|
||||
rc = sqlite3OsWrite(p->pReal, p->zBuf, p->iSize, 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** Close the file.
|
||||
*/
|
||||
static int jrnlClose(sqlite3_file *pJfd){
|
||||
JournalFile *p = (JournalFile *)pJfd;
|
||||
if( p->pReal ){
|
||||
sqlite3OsClose(p->pReal);
|
||||
}
|
||||
sqlite3_free(p->zBuf);
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Read data from the file.
|
||||
*/
|
||||
static int jrnlRead(
|
||||
sqlite3_file *pJfd, /* The journal file from which to read */
|
||||
void *zBuf, /* Put the results here */
|
||||
int iAmt, /* Number of bytes to read */
|
||||
sqlite_int64 iOfst /* Begin reading at this offset */
|
||||
){
|
||||
int rc = SQLITE_OK;
|
||||
JournalFile *p = (JournalFile *)pJfd;
|
||||
if( p->pReal ){
|
||||
rc = sqlite3OsRead(p->pReal, zBuf, iAmt, iOfst);
|
||||
}else if( (iAmt+iOfst)>p->iSize ){
|
||||
rc = SQLITE_IOERR_SHORT_READ;
|
||||
}else{
|
||||
memcpy(zBuf, &p->zBuf[iOfst], iAmt);
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** Write data to the file.
|
||||
*/
|
||||
static int jrnlWrite(
|
||||
sqlite3_file *pJfd, /* The journal file into which to write */
|
||||
const void *zBuf, /* Take data to be written from here */
|
||||
int iAmt, /* Number of bytes to write */
|
||||
sqlite_int64 iOfst /* Begin writing at this offset into the file */
|
||||
){
|
||||
int rc = SQLITE_OK;
|
||||
JournalFile *p = (JournalFile *)pJfd;
|
||||
if( !p->pReal && (iOfst+iAmt)>p->nBuf ){
|
||||
rc = createFile(p);
|
||||
}
|
||||
if( rc==SQLITE_OK ){
|
||||
if( p->pReal ){
|
||||
rc = sqlite3OsWrite(p->pReal, zBuf, iAmt, iOfst);
|
||||
}else{
|
||||
memcpy(&p->zBuf[iOfst], zBuf, iAmt);
|
||||
if( p->iSize<(iOfst+iAmt) ){
|
||||
p->iSize = (iOfst+iAmt);
|
||||
}
|
||||
}
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** Truncate the file.
|
||||
*/
|
||||
static int jrnlTruncate(sqlite3_file *pJfd, sqlite_int64 size){
|
||||
int rc = SQLITE_OK;
|
||||
JournalFile *p = (JournalFile *)pJfd;
|
||||
if( p->pReal ){
|
||||
rc = sqlite3OsTruncate(p->pReal, size);
|
||||
}else if( size<p->iSize ){
|
||||
p->iSize = size;
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** Sync the file.
|
||||
*/
|
||||
static int jrnlSync(sqlite3_file *pJfd, int flags){
|
||||
int rc;
|
||||
JournalFile *p = (JournalFile *)pJfd;
|
||||
if( p->pReal ){
|
||||
rc = sqlite3OsSync(p->pReal, flags);
|
||||
}else{
|
||||
rc = SQLITE_OK;
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** Query the size of the file in bytes.
|
||||
*/
|
||||
static int jrnlFileSize(sqlite3_file *pJfd, sqlite_int64 *pSize){
|
||||
int rc = SQLITE_OK;
|
||||
JournalFile *p = (JournalFile *)pJfd;
|
||||
if( p->pReal ){
|
||||
rc = sqlite3OsFileSize(p->pReal, pSize);
|
||||
}else{
|
||||
*pSize = (sqlite_int64) p->iSize;
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** Table of methods for JournalFile sqlite3_file object.
|
||||
*/
|
||||
static struct sqlite3_io_methods JournalFileMethods = {
|
||||
1, /* iVersion */
|
||||
jrnlClose, /* xClose */
|
||||
jrnlRead, /* xRead */
|
||||
jrnlWrite, /* xWrite */
|
||||
jrnlTruncate, /* xTruncate */
|
||||
jrnlSync, /* xSync */
|
||||
jrnlFileSize, /* xFileSize */
|
||||
0, /* xLock */
|
||||
0, /* xUnlock */
|
||||
0, /* xCheckReservedLock */
|
||||
0, /* xFileControl */
|
||||
0, /* xSectorSize */
|
||||
0 /* xDeviceCharacteristics */
|
||||
};
|
||||
|
||||
/*
|
||||
** Open a journal file.
|
||||
*/
|
||||
int sqlite3JournalOpen(
|
||||
sqlite3_vfs *pVfs, /* The VFS to use for actual file I/O */
|
||||
const char *zName, /* Name of the journal file */
|
||||
sqlite3_file *pJfd, /* Preallocated, blank file handle */
|
||||
int flags, /* Opening flags */
|
||||
int nBuf /* Bytes buffered before opening the file */
|
||||
){
|
||||
JournalFile *p = (JournalFile *)pJfd;
|
||||
memset(p, 0, sqlite3JournalSize(pVfs));
|
||||
if( nBuf>0 ){
|
||||
p->zBuf = sqlite3MallocZero(nBuf);
|
||||
if( !p->zBuf ){
|
||||
return SQLITE_NOMEM;
|
||||
}
|
||||
}else{
|
||||
return sqlite3OsOpen(pVfs, zName, pJfd, flags, 0);
|
||||
}
|
||||
p->pMethod = &JournalFileMethods;
|
||||
p->nBuf = nBuf;
|
||||
p->flags = flags;
|
||||
p->zJournal = zName;
|
||||
p->pVfs = pVfs;
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** If the argument p points to a JournalFile structure, and the underlying
|
||||
** file has not yet been created, create it now.
|
||||
*/
|
||||
int sqlite3JournalCreate(sqlite3_file *p){
|
||||
if( p->pMethods!=&JournalFileMethods ){
|
||||
return SQLITE_OK;
|
||||
}
|
||||
return createFile((JournalFile *)p);
|
||||
}
|
||||
|
||||
/*
|
||||
** Return the number of bytes required to store a JournalFile that uses vfs
|
||||
** pVfs to create the underlying on-disk files.
|
||||
*/
|
||||
int sqlite3JournalSize(sqlite3_vfs *pVfs){
|
||||
return (pVfs->szOsFile+sizeof(JournalFile));
|
||||
}
|
||||
#endif
|
266
keywordhash.h
266
keywordhash.h
|
@ -1,266 +0,0 @@
|
|||
/***** This file contains automatically generated code ******
|
||||
**
|
||||
** The code in this file has been automatically generated by
|
||||
**
|
||||
** $Header: /sqlite/sqlite/tool/mkkeywordhash.c,v 1.37 2009/02/01 00:00:46 drh Exp $
|
||||
**
|
||||
** The code in this file implements a function that determines whether
|
||||
** or not a given identifier is really an SQL keyword. The same thing
|
||||
** might be implemented more directly using a hand-written hash table.
|
||||
** But by using this automatically generated code, the size of the code
|
||||
** is substantially reduced. This is important for embedded applications
|
||||
** on platforms with limited memory.
|
||||
*/
|
||||
/* Hash score: 171 */
|
||||
static int keywordCode(const char *z, int n){
|
||||
/* zText[] encodes 801 bytes of keywords in 541 bytes */
|
||||
/* REINDEXEDESCAPEACHECKEYBEFOREIGNOREGEXPLAINSTEADDATABASELECT */
|
||||
/* ABLEFTHENDEFERRABLELSEXCEPTRANSACTIONATURALTERAISEXCLUSIVE */
|
||||
/* XISTSAVEPOINTERSECTRIGGEREFERENCESCONSTRAINTOFFSETEMPORARY */
|
||||
/* UNIQUERYATTACHAVINGROUPDATEBEGINNERELEASEBETWEENOTNULLIKE */
|
||||
/* CASCADELETECASECOLLATECREATECURRENT_DATEDETACHIMMEDIATEJOIN */
|
||||
/* SERTMATCHPLANALYZEPRAGMABORTVALUESVIRTUALIMITWHENWHERENAME */
|
||||
/* AFTEREPLACEANDEFAULTAUTOINCREMENTCASTCOLUMNCOMMITCONFLICTCROSS */
|
||||
/* CURRENT_TIMESTAMPRIMARYDEFERREDISTINCTDROPFAILFROMFULLGLOBYIF */
|
||||
/* ISNULLORDERESTRICTOUTERIGHTROLLBACKROWUNIONUSINGVACUUMVIEW */
|
||||
/* INITIALLY */
|
||||
static const char zText[540] = {
|
||||
'R','E','I','N','D','E','X','E','D','E','S','C','A','P','E','A','C','H',
|
||||
'E','C','K','E','Y','B','E','F','O','R','E','I','G','N','O','R','E','G',
|
||||
'E','X','P','L','A','I','N','S','T','E','A','D','D','A','T','A','B','A',
|
||||
'S','E','L','E','C','T','A','B','L','E','F','T','H','E','N','D','E','F',
|
||||
'E','R','R','A','B','L','E','L','S','E','X','C','E','P','T','R','A','N',
|
||||
'S','A','C','T','I','O','N','A','T','U','R','A','L','T','E','R','A','I',
|
||||
'S','E','X','C','L','U','S','I','V','E','X','I','S','T','S','A','V','E',
|
||||
'P','O','I','N','T','E','R','S','E','C','T','R','I','G','G','E','R','E',
|
||||
'F','E','R','E','N','C','E','S','C','O','N','S','T','R','A','I','N','T',
|
||||
'O','F','F','S','E','T','E','M','P','O','R','A','R','Y','U','N','I','Q',
|
||||
'U','E','R','Y','A','T','T','A','C','H','A','V','I','N','G','R','O','U',
|
||||
'P','D','A','T','E','B','E','G','I','N','N','E','R','E','L','E','A','S',
|
||||
'E','B','E','T','W','E','E','N','O','T','N','U','L','L','I','K','E','C',
|
||||
'A','S','C','A','D','E','L','E','T','E','C','A','S','E','C','O','L','L',
|
||||
'A','T','E','C','R','E','A','T','E','C','U','R','R','E','N','T','_','D',
|
||||
'A','T','E','D','E','T','A','C','H','I','M','M','E','D','I','A','T','E',
|
||||
'J','O','I','N','S','E','R','T','M','A','T','C','H','P','L','A','N','A',
|
||||
'L','Y','Z','E','P','R','A','G','M','A','B','O','R','T','V','A','L','U',
|
||||
'E','S','V','I','R','T','U','A','L','I','M','I','T','W','H','E','N','W',
|
||||
'H','E','R','E','N','A','M','E','A','F','T','E','R','E','P','L','A','C',
|
||||
'E','A','N','D','E','F','A','U','L','T','A','U','T','O','I','N','C','R',
|
||||
'E','M','E','N','T','C','A','S','T','C','O','L','U','M','N','C','O','M',
|
||||
'M','I','T','C','O','N','F','L','I','C','T','C','R','O','S','S','C','U',
|
||||
'R','R','E','N','T','_','T','I','M','E','S','T','A','M','P','R','I','M',
|
||||
'A','R','Y','D','E','F','E','R','R','E','D','I','S','T','I','N','C','T',
|
||||
'D','R','O','P','F','A','I','L','F','R','O','M','F','U','L','L','G','L',
|
||||
'O','B','Y','I','F','I','S','N','U','L','L','O','R','D','E','R','E','S',
|
||||
'T','R','I','C','T','O','U','T','E','R','I','G','H','T','R','O','L','L',
|
||||
'B','A','C','K','R','O','W','U','N','I','O','N','U','S','I','N','G','V',
|
||||
'A','C','U','U','M','V','I','E','W','I','N','I','T','I','A','L','L','Y',
|
||||
};
|
||||
static const unsigned char aHash[127] = {
|
||||
70, 99, 112, 68, 0, 44, 0, 0, 76, 0, 71, 0, 0,
|
||||
41, 12, 72, 15, 0, 111, 79, 49, 106, 0, 19, 0, 0,
|
||||
116, 0, 114, 109, 0, 22, 87, 0, 9, 0, 0, 64, 65,
|
||||
0, 63, 6, 0, 47, 84, 96, 0, 113, 95, 0, 0, 43,
|
||||
0, 97, 24, 0, 17, 0, 117, 48, 23, 0, 5, 104, 25,
|
||||
90, 0, 0, 119, 100, 55, 118, 52, 7, 50, 0, 85, 0,
|
||||
94, 26, 0, 93, 0, 0, 0, 89, 86, 91, 82, 103, 14,
|
||||
38, 102, 0, 75, 0, 18, 83, 105, 31, 0, 115, 74, 107,
|
||||
56, 45, 78, 0, 0, 88, 39, 0, 110, 0, 35, 0, 0,
|
||||
28, 0, 80, 53, 58, 0, 20, 57, 0, 51,
|
||||
};
|
||||
static const unsigned char aNext[119] = {
|
||||
0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 2, 0, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 32, 0, 21, 0, 0, 0, 42, 3, 46, 0,
|
||||
0, 0, 0, 0, 29, 0, 37, 0, 0, 0, 1, 60, 0,
|
||||
0, 61, 0, 40, 0, 0, 0, 0, 0, 0, 0, 59, 0,
|
||||
0, 0, 0, 30, 54, 16, 33, 11, 0, 0, 0, 0, 0,
|
||||
0, 0, 10, 66, 73, 0, 8, 0, 98, 92, 0, 101, 0,
|
||||
81, 0, 69, 0, 0, 108, 27, 36, 67, 77, 0, 34, 62,
|
||||
0, 0,
|
||||
};
|
||||
static const unsigned char aLen[119] = {
|
||||
7, 7, 5, 4, 6, 4, 5, 3, 6, 3, 7, 6, 6,
|
||||
7, 7, 3, 8, 2, 6, 5, 4, 4, 3, 10, 4, 6,
|
||||
11, 2, 7, 5, 5, 9, 6, 9, 9, 7, 10, 10, 4,
|
||||
6, 2, 3, 9, 4, 2, 6, 5, 6, 6, 5, 6, 5,
|
||||
5, 7, 7, 3, 7, 4, 4, 7, 3, 6, 4, 7, 6,
|
||||
12, 6, 9, 4, 6, 5, 4, 7, 6, 5, 6, 7, 5,
|
||||
4, 5, 6, 5, 7, 3, 7, 13, 2, 2, 4, 6, 6,
|
||||
8, 5, 17, 12, 7, 8, 8, 2, 4, 4, 4, 4, 4,
|
||||
2, 2, 6, 5, 8, 5, 5, 8, 3, 5, 5, 6, 4,
|
||||
9, 3,
|
||||
};
|
||||
static const unsigned short int aOffset[119] = {
|
||||
0, 2, 2, 8, 9, 14, 16, 20, 23, 25, 25, 29, 33,
|
||||
36, 41, 46, 48, 53, 54, 59, 62, 65, 67, 69, 78, 81,
|
||||
86, 95, 96, 101, 105, 109, 117, 122, 128, 136, 142, 152, 159,
|
||||
162, 162, 165, 167, 167, 171, 176, 179, 184, 189, 194, 197, 203,
|
||||
206, 210, 217, 223, 223, 226, 229, 233, 234, 238, 244, 248, 255,
|
||||
261, 273, 279, 288, 290, 296, 301, 303, 310, 315, 320, 326, 332,
|
||||
337, 341, 344, 350, 354, 361, 363, 370, 372, 374, 383, 387, 393,
|
||||
399, 407, 412, 412, 428, 435, 442, 443, 450, 454, 458, 462, 466,
|
||||
469, 471, 473, 479, 483, 491, 495, 500, 508, 511, 516, 521, 527,
|
||||
531, 536,
|
||||
};
|
||||
static const unsigned char aCode[119] = {
|
||||
TK_REINDEX, TK_INDEXED, TK_INDEX, TK_DESC, TK_ESCAPE,
|
||||
TK_EACH, TK_CHECK, TK_KEY, TK_BEFORE, TK_FOR,
|
||||
TK_FOREIGN, TK_IGNORE, TK_LIKE_KW, TK_EXPLAIN, TK_INSTEAD,
|
||||
TK_ADD, TK_DATABASE, TK_AS, TK_SELECT, TK_TABLE,
|
||||
TK_JOIN_KW, TK_THEN, TK_END, TK_DEFERRABLE, TK_ELSE,
|
||||
TK_EXCEPT, TK_TRANSACTION,TK_ON, TK_JOIN_KW, TK_ALTER,
|
||||
TK_RAISE, TK_EXCLUSIVE, TK_EXISTS, TK_SAVEPOINT, TK_INTERSECT,
|
||||
TK_TRIGGER, TK_REFERENCES, TK_CONSTRAINT, TK_INTO, TK_OFFSET,
|
||||
TK_OF, TK_SET, TK_TEMP, TK_TEMP, TK_OR,
|
||||
TK_UNIQUE, TK_QUERY, TK_ATTACH, TK_HAVING, TK_GROUP,
|
||||
TK_UPDATE, TK_BEGIN, TK_JOIN_KW, TK_RELEASE, TK_BETWEEN,
|
||||
TK_NOT, TK_NOTNULL, TK_NULL, TK_LIKE_KW, TK_CASCADE,
|
||||
TK_ASC, TK_DELETE, TK_CASE, TK_COLLATE, TK_CREATE,
|
||||
TK_CTIME_KW, TK_DETACH, TK_IMMEDIATE, TK_JOIN, TK_INSERT,
|
||||
TK_MATCH, TK_PLAN, TK_ANALYZE, TK_PRAGMA, TK_ABORT,
|
||||
TK_VALUES, TK_VIRTUAL, TK_LIMIT, TK_WHEN, TK_WHERE,
|
||||
TK_RENAME, TK_AFTER, TK_REPLACE, TK_AND, TK_DEFAULT,
|
||||
TK_AUTOINCR, TK_TO, TK_IN, TK_CAST, TK_COLUMNKW,
|
||||
TK_COMMIT, TK_CONFLICT, TK_JOIN_KW, TK_CTIME_KW, TK_CTIME_KW,
|
||||
TK_PRIMARY, TK_DEFERRED, TK_DISTINCT, TK_IS, TK_DROP,
|
||||
TK_FAIL, TK_FROM, TK_JOIN_KW, TK_LIKE_KW, TK_BY,
|
||||
TK_IF, TK_ISNULL, TK_ORDER, TK_RESTRICT, TK_JOIN_KW,
|
||||
TK_JOIN_KW, TK_ROLLBACK, TK_ROW, TK_UNION, TK_USING,
|
||||
TK_VACUUM, TK_VIEW, TK_INITIALLY, TK_ALL,
|
||||
};
|
||||
int h, i;
|
||||
if( n<2 ) return TK_ID;
|
||||
h = ((charMap(z[0])*4) ^
|
||||
(charMap(z[n-1])*3) ^
|
||||
n) % 127;
|
||||
for(i=((int)aHash[h])-1; i>=0; i=((int)aNext[i])-1){
|
||||
if( aLen[i]==n && sqlite3StrNICmp(&zText[aOffset[i]],z,n)==0 ){
|
||||
testcase( i==0 ); /* TK_REINDEX */
|
||||
testcase( i==1 ); /* TK_INDEXED */
|
||||
testcase( i==2 ); /* TK_INDEX */
|
||||
testcase( i==3 ); /* TK_DESC */
|
||||
testcase( i==4 ); /* TK_ESCAPE */
|
||||
testcase( i==5 ); /* TK_EACH */
|
||||
testcase( i==6 ); /* TK_CHECK */
|
||||
testcase( i==7 ); /* TK_KEY */
|
||||
testcase( i==8 ); /* TK_BEFORE */
|
||||
testcase( i==9 ); /* TK_FOR */
|
||||
testcase( i==10 ); /* TK_FOREIGN */
|
||||
testcase( i==11 ); /* TK_IGNORE */
|
||||
testcase( i==12 ); /* TK_LIKE_KW */
|
||||
testcase( i==13 ); /* TK_EXPLAIN */
|
||||
testcase( i==14 ); /* TK_INSTEAD */
|
||||
testcase( i==15 ); /* TK_ADD */
|
||||
testcase( i==16 ); /* TK_DATABASE */
|
||||
testcase( i==17 ); /* TK_AS */
|
||||
testcase( i==18 ); /* TK_SELECT */
|
||||
testcase( i==19 ); /* TK_TABLE */
|
||||
testcase( i==20 ); /* TK_JOIN_KW */
|
||||
testcase( i==21 ); /* TK_THEN */
|
||||
testcase( i==22 ); /* TK_END */
|
||||
testcase( i==23 ); /* TK_DEFERRABLE */
|
||||
testcase( i==24 ); /* TK_ELSE */
|
||||
testcase( i==25 ); /* TK_EXCEPT */
|
||||
testcase( i==26 ); /* TK_TRANSACTION */
|
||||
testcase( i==27 ); /* TK_ON */
|
||||
testcase( i==28 ); /* TK_JOIN_KW */
|
||||
testcase( i==29 ); /* TK_ALTER */
|
||||
testcase( i==30 ); /* TK_RAISE */
|
||||
testcase( i==31 ); /* TK_EXCLUSIVE */
|
||||
testcase( i==32 ); /* TK_EXISTS */
|
||||
testcase( i==33 ); /* TK_SAVEPOINT */
|
||||
testcase( i==34 ); /* TK_INTERSECT */
|
||||
testcase( i==35 ); /* TK_TRIGGER */
|
||||
testcase( i==36 ); /* TK_REFERENCES */
|
||||
testcase( i==37 ); /* TK_CONSTRAINT */
|
||||
testcase( i==38 ); /* TK_INTO */
|
||||
testcase( i==39 ); /* TK_OFFSET */
|
||||
testcase( i==40 ); /* TK_OF */
|
||||
testcase( i==41 ); /* TK_SET */
|
||||
testcase( i==42 ); /* TK_TEMP */
|
||||
testcase( i==43 ); /* TK_TEMP */
|
||||
testcase( i==44 ); /* TK_OR */
|
||||
testcase( i==45 ); /* TK_UNIQUE */
|
||||
testcase( i==46 ); /* TK_QUERY */
|
||||
testcase( i==47 ); /* TK_ATTACH */
|
||||
testcase( i==48 ); /* TK_HAVING */
|
||||
testcase( i==49 ); /* TK_GROUP */
|
||||
testcase( i==50 ); /* TK_UPDATE */
|
||||
testcase( i==51 ); /* TK_BEGIN */
|
||||
testcase( i==52 ); /* TK_JOIN_KW */
|
||||
testcase( i==53 ); /* TK_RELEASE */
|
||||
testcase( i==54 ); /* TK_BETWEEN */
|
||||
testcase( i==55 ); /* TK_NOT */
|
||||
testcase( i==56 ); /* TK_NOTNULL */
|
||||
testcase( i==57 ); /* TK_NULL */
|
||||
testcase( i==58 ); /* TK_LIKE_KW */
|
||||
testcase( i==59 ); /* TK_CASCADE */
|
||||
testcase( i==60 ); /* TK_ASC */
|
||||
testcase( i==61 ); /* TK_DELETE */
|
||||
testcase( i==62 ); /* TK_CASE */
|
||||
testcase( i==63 ); /* TK_COLLATE */
|
||||
testcase( i==64 ); /* TK_CREATE */
|
||||
testcase( i==65 ); /* TK_CTIME_KW */
|
||||
testcase( i==66 ); /* TK_DETACH */
|
||||
testcase( i==67 ); /* TK_IMMEDIATE */
|
||||
testcase( i==68 ); /* TK_JOIN */
|
||||
testcase( i==69 ); /* TK_INSERT */
|
||||
testcase( i==70 ); /* TK_MATCH */
|
||||
testcase( i==71 ); /* TK_PLAN */
|
||||
testcase( i==72 ); /* TK_ANALYZE */
|
||||
testcase( i==73 ); /* TK_PRAGMA */
|
||||
testcase( i==74 ); /* TK_ABORT */
|
||||
testcase( i==75 ); /* TK_VALUES */
|
||||
testcase( i==76 ); /* TK_VIRTUAL */
|
||||
testcase( i==77 ); /* TK_LIMIT */
|
||||
testcase( i==78 ); /* TK_WHEN */
|
||||
testcase( i==79 ); /* TK_WHERE */
|
||||
testcase( i==80 ); /* TK_RENAME */
|
||||
testcase( i==81 ); /* TK_AFTER */
|
||||
testcase( i==82 ); /* TK_REPLACE */
|
||||
testcase( i==83 ); /* TK_AND */
|
||||
testcase( i==84 ); /* TK_DEFAULT */
|
||||
testcase( i==85 ); /* TK_AUTOINCR */
|
||||
testcase( i==86 ); /* TK_TO */
|
||||
testcase( i==87 ); /* TK_IN */
|
||||
testcase( i==88 ); /* TK_CAST */
|
||||
testcase( i==89 ); /* TK_COLUMNKW */
|
||||
testcase( i==90 ); /* TK_COMMIT */
|
||||
testcase( i==91 ); /* TK_CONFLICT */
|
||||
testcase( i==92 ); /* TK_JOIN_KW */
|
||||
testcase( i==93 ); /* TK_CTIME_KW */
|
||||
testcase( i==94 ); /* TK_CTIME_KW */
|
||||
testcase( i==95 ); /* TK_PRIMARY */
|
||||
testcase( i==96 ); /* TK_DEFERRED */
|
||||
testcase( i==97 ); /* TK_DISTINCT */
|
||||
testcase( i==98 ); /* TK_IS */
|
||||
testcase( i==99 ); /* TK_DROP */
|
||||
testcase( i==100 ); /* TK_FAIL */
|
||||
testcase( i==101 ); /* TK_FROM */
|
||||
testcase( i==102 ); /* TK_JOIN_KW */
|
||||
testcase( i==103 ); /* TK_LIKE_KW */
|
||||
testcase( i==104 ); /* TK_BY */
|
||||
testcase( i==105 ); /* TK_IF */
|
||||
testcase( i==106 ); /* TK_ISNULL */
|
||||
testcase( i==107 ); /* TK_ORDER */
|
||||
testcase( i==108 ); /* TK_RESTRICT */
|
||||
testcase( i==109 ); /* TK_JOIN_KW */
|
||||
testcase( i==110 ); /* TK_JOIN_KW */
|
||||
testcase( i==111 ); /* TK_ROLLBACK */
|
||||
testcase( i==112 ); /* TK_ROW */
|
||||
testcase( i==113 ); /* TK_UNION */
|
||||
testcase( i==114 ); /* TK_USING */
|
||||
testcase( i==115 ); /* TK_VACUUM */
|
||||
testcase( i==116 ); /* TK_VIEW */
|
||||
testcase( i==117 ); /* TK_INITIALLY */
|
||||
testcase( i==118 ); /* TK_ALL */
|
||||
return aCode[i];
|
||||
}
|
||||
}
|
||||
return TK_ID;
|
||||
}
|
||||
int sqlite3KeywordCode(const unsigned char *z, int n){
|
||||
return keywordCode((char*)z, n);
|
||||
}
|
145
legacy.c
145
legacy.c
|
@ -1,145 +0,0 @@
|
|||
/*
|
||||
** 2001 September 15
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** Main file for the SQLite library. The routines in this file
|
||||
** implement the programmer interface to the library. Routines in
|
||||
** other files are for internal use by SQLite and should not be
|
||||
** accessed by users of the library.
|
||||
**
|
||||
** $Id: legacy.c,v 1.32 2009/03/19 18:51:07 danielk1977 Exp $
|
||||
*/
|
||||
|
||||
#include "sqliteInt.h"
|
||||
|
||||
/*
|
||||
** Execute SQL code. Return one of the SQLITE_ success/failure
|
||||
** codes. Also write an error message into memory obtained from
|
||||
** malloc() and make *pzErrMsg point to that message.
|
||||
**
|
||||
** If the SQL is a query, then for each row in the query result
|
||||
** the xCallback() function is called. pArg becomes the first
|
||||
** argument to xCallback(). If xCallback=NULL then no callback
|
||||
** is invoked, even for queries.
|
||||
*/
|
||||
int sqlite3_exec(
|
||||
sqlite3 *db, /* The database on which the SQL executes */
|
||||
const char *zSql, /* The SQL to be executed */
|
||||
sqlite3_callback xCallback, /* Invoke this callback routine */
|
||||
void *pArg, /* First argument to xCallback() */
|
||||
char **pzErrMsg /* Write error messages here */
|
||||
){
|
||||
int rc = SQLITE_OK;
|
||||
const char *zLeftover;
|
||||
sqlite3_stmt *pStmt = 0;
|
||||
char **azCols = 0;
|
||||
|
||||
int nRetry = 0;
|
||||
int nCallback;
|
||||
|
||||
if( zSql==0 ) zSql = "";
|
||||
|
||||
sqlite3_mutex_enter(db->mutex);
|
||||
sqlite3Error(db, SQLITE_OK, 0);
|
||||
while( (rc==SQLITE_OK || (rc==SQLITE_SCHEMA && (++nRetry)<2)) && zSql[0] ){
|
||||
int nCol;
|
||||
char **azVals = 0;
|
||||
|
||||
pStmt = 0;
|
||||
rc = sqlite3_prepare(db, zSql, -1, &pStmt, &zLeftover);
|
||||
assert( rc==SQLITE_OK || pStmt==0 );
|
||||
if( rc!=SQLITE_OK ){
|
||||
continue;
|
||||
}
|
||||
if( !pStmt ){
|
||||
/* this happens for a comment or white-space */
|
||||
zSql = zLeftover;
|
||||
continue;
|
||||
}
|
||||
|
||||
nCallback = 0;
|
||||
nCol = sqlite3_column_count(pStmt);
|
||||
|
||||
while( 1 ){
|
||||
int i;
|
||||
rc = sqlite3_step(pStmt);
|
||||
|
||||
/* Invoke the callback function if required */
|
||||
if( xCallback && (SQLITE_ROW==rc ||
|
||||
(SQLITE_DONE==rc && !nCallback && db->flags&SQLITE_NullCallback)) ){
|
||||
if( 0==nCallback ){
|
||||
if( azCols==0 ){
|
||||
azCols = sqlite3DbMallocZero(db, 2*nCol*sizeof(const char*) + 1);
|
||||
if( azCols==0 ){
|
||||
goto exec_out;
|
||||
}
|
||||
}
|
||||
for(i=0; i<nCol; i++){
|
||||
azCols[i] = (char *)sqlite3_column_name(pStmt, i);
|
||||
/* sqlite3VdbeSetColName() installs column names as UTF8
|
||||
** strings so there is no way for sqlite3_column_name() to fail. */
|
||||
assert( azCols[i]!=0 );
|
||||
}
|
||||
nCallback++;
|
||||
}
|
||||
if( rc==SQLITE_ROW ){
|
||||
azVals = &azCols[nCol];
|
||||
for(i=0; i<nCol; i++){
|
||||
azVals[i] = (char *)sqlite3_column_text(pStmt, i);
|
||||
if( !azVals[i] && sqlite3_column_type(pStmt, i)!=SQLITE_NULL ){
|
||||
db->mallocFailed = 1;
|
||||
goto exec_out;
|
||||
}
|
||||
}
|
||||
}
|
||||
if( xCallback(pArg, nCol, azVals, azCols) ){
|
||||
rc = SQLITE_ABORT;
|
||||
sqlite3VdbeFinalize((Vdbe *)pStmt);
|
||||
pStmt = 0;
|
||||
sqlite3Error(db, SQLITE_ABORT, 0);
|
||||
goto exec_out;
|
||||
}
|
||||
}
|
||||
|
||||
if( rc!=SQLITE_ROW ){
|
||||
rc = sqlite3VdbeFinalize((Vdbe *)pStmt);
|
||||
pStmt = 0;
|
||||
if( rc!=SQLITE_SCHEMA ){
|
||||
nRetry = 0;
|
||||
zSql = zLeftover;
|
||||
while( sqlite3Isspace(zSql[0]) ) zSql++;
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
sqlite3DbFree(db, azCols);
|
||||
azCols = 0;
|
||||
}
|
||||
|
||||
exec_out:
|
||||
if( pStmt ) sqlite3VdbeFinalize((Vdbe *)pStmt);
|
||||
sqlite3DbFree(db, azCols);
|
||||
|
||||
rc = sqlite3ApiExit(db, rc);
|
||||
if( rc!=SQLITE_OK && rc==sqlite3_errcode(db) && pzErrMsg ){
|
||||
int nErrMsg = 1 + sqlite3Strlen30(sqlite3_errmsg(db));
|
||||
*pzErrMsg = sqlite3Malloc(nErrMsg);
|
||||
if( *pzErrMsg ){
|
||||
memcpy(*pzErrMsg, sqlite3_errmsg(db), nErrMsg);
|
||||
}
|
||||
}else if( pzErrMsg ){
|
||||
*pzErrMsg = 0;
|
||||
}
|
||||
|
||||
assert( (rc&db->errMask)==rc );
|
||||
sqlite3_mutex_leave(db->mutex);
|
||||
return rc;
|
||||
}
|
603
loadext.c
603
loadext.c
|
@ -1,603 +0,0 @@
|
|||
/*
|
||||
** 2006 June 7
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This file contains code used to dynamically load extensions into
|
||||
** the SQLite library.
|
||||
**
|
||||
** $Id: loadext.c,v 1.58 2009/01/20 16:53:40 danielk1977 Exp $
|
||||
*/
|
||||
|
||||
#ifndef SQLITE_CORE
|
||||
#define SQLITE_CORE 1 /* Disable the API redefinition in sqlite3ext.h */
|
||||
#endif
|
||||
#include "sqlite3ext.h"
|
||||
#include "sqliteInt.h"
|
||||
#include <string.h>
|
||||
|
||||
#ifndef SQLITE_OMIT_LOAD_EXTENSION
|
||||
|
||||
/*
|
||||
** Some API routines are omitted when various features are
|
||||
** excluded from a build of SQLite. Substitute a NULL pointer
|
||||
** for any missing APIs.
|
||||
*/
|
||||
#ifndef SQLITE_ENABLE_COLUMN_METADATA
|
||||
# define sqlite3_column_database_name 0
|
||||
# define sqlite3_column_database_name16 0
|
||||
# define sqlite3_column_table_name 0
|
||||
# define sqlite3_column_table_name16 0
|
||||
# define sqlite3_column_origin_name 0
|
||||
# define sqlite3_column_origin_name16 0
|
||||
# define sqlite3_table_column_metadata 0
|
||||
#endif
|
||||
|
||||
#ifdef SQLITE_OMIT_AUTHORIZATION
|
||||
# define sqlite3_set_authorizer 0
|
||||
#endif
|
||||
|
||||
#ifdef SQLITE_OMIT_UTF16
|
||||
# define sqlite3_bind_text16 0
|
||||
# define sqlite3_collation_needed16 0
|
||||
# define sqlite3_column_decltype16 0
|
||||
# define sqlite3_column_name16 0
|
||||
# define sqlite3_column_text16 0
|
||||
# define sqlite3_complete16 0
|
||||
# define sqlite3_create_collation16 0
|
||||
# define sqlite3_create_function16 0
|
||||
# define sqlite3_errmsg16 0
|
||||
# define sqlite3_open16 0
|
||||
# define sqlite3_prepare16 0
|
||||
# define sqlite3_prepare16_v2 0
|
||||
# define sqlite3_result_error16 0
|
||||
# define sqlite3_result_text16 0
|
||||
# define sqlite3_result_text16be 0
|
||||
# define sqlite3_result_text16le 0
|
||||
# define sqlite3_value_text16 0
|
||||
# define sqlite3_value_text16be 0
|
||||
# define sqlite3_value_text16le 0
|
||||
# define sqlite3_column_database_name16 0
|
||||
# define sqlite3_column_table_name16 0
|
||||
# define sqlite3_column_origin_name16 0
|
||||
#endif
|
||||
|
||||
#ifdef SQLITE_OMIT_COMPLETE
|
||||
# define sqlite3_complete 0
|
||||
# define sqlite3_complete16 0
|
||||
#endif
|
||||
|
||||
#ifdef SQLITE_OMIT_PROGRESS_CALLBACK
|
||||
# define sqlite3_progress_handler 0
|
||||
#endif
|
||||
|
||||
#ifdef SQLITE_OMIT_VIRTUALTABLE
|
||||
# define sqlite3_create_module 0
|
||||
# define sqlite3_create_module_v2 0
|
||||
# define sqlite3_declare_vtab 0
|
||||
#endif
|
||||
|
||||
#ifdef SQLITE_OMIT_SHARED_CACHE
|
||||
# define sqlite3_enable_shared_cache 0
|
||||
#endif
|
||||
|
||||
#ifdef SQLITE_OMIT_TRACE
|
||||
# define sqlite3_profile 0
|
||||
# define sqlite3_trace 0
|
||||
#endif
|
||||
|
||||
#ifdef SQLITE_OMIT_GET_TABLE
|
||||
# define sqlite3_free_table 0
|
||||
# define sqlite3_get_table 0
|
||||
#endif
|
||||
|
||||
#ifdef SQLITE_OMIT_INCRBLOB
|
||||
#define sqlite3_bind_zeroblob 0
|
||||
#define sqlite3_blob_bytes 0
|
||||
#define sqlite3_blob_close 0
|
||||
#define sqlite3_blob_open 0
|
||||
#define sqlite3_blob_read 0
|
||||
#define sqlite3_blob_write 0
|
||||
#endif
|
||||
|
||||
/*
|
||||
** The following structure contains pointers to all SQLite API routines.
|
||||
** A pointer to this structure is passed into extensions when they are
|
||||
** loaded so that the extension can make calls back into the SQLite
|
||||
** library.
|
||||
**
|
||||
** When adding new APIs, add them to the bottom of this structure
|
||||
** in order to preserve backwards compatibility.
|
||||
**
|
||||
** Extensions that use newer APIs should first call the
|
||||
** sqlite3_libversion_number() to make sure that the API they
|
||||
** intend to use is supported by the library. Extensions should
|
||||
** also check to make sure that the pointer to the function is
|
||||
** not NULL before calling it.
|
||||
*/
|
||||
static const sqlite3_api_routines sqlite3Apis = {
|
||||
sqlite3_aggregate_context,
|
||||
#ifndef SQLITE_OMIT_DEPRECATED
|
||||
sqlite3_aggregate_count,
|
||||
#else
|
||||
0,
|
||||
#endif
|
||||
sqlite3_bind_blob,
|
||||
sqlite3_bind_double,
|
||||
sqlite3_bind_int,
|
||||
sqlite3_bind_int64,
|
||||
sqlite3_bind_null,
|
||||
sqlite3_bind_parameter_count,
|
||||
sqlite3_bind_parameter_index,
|
||||
sqlite3_bind_parameter_name,
|
||||
sqlite3_bind_text,
|
||||
sqlite3_bind_text16,
|
||||
sqlite3_bind_value,
|
||||
sqlite3_busy_handler,
|
||||
sqlite3_busy_timeout,
|
||||
sqlite3_changes,
|
||||
sqlite3_close,
|
||||
sqlite3_collation_needed,
|
||||
sqlite3_collation_needed16,
|
||||
sqlite3_column_blob,
|
||||
sqlite3_column_bytes,
|
||||
sqlite3_column_bytes16,
|
||||
sqlite3_column_count,
|
||||
sqlite3_column_database_name,
|
||||
sqlite3_column_database_name16,
|
||||
sqlite3_column_decltype,
|
||||
sqlite3_column_decltype16,
|
||||
sqlite3_column_double,
|
||||
sqlite3_column_int,
|
||||
sqlite3_column_int64,
|
||||
sqlite3_column_name,
|
||||
sqlite3_column_name16,
|
||||
sqlite3_column_origin_name,
|
||||
sqlite3_column_origin_name16,
|
||||
sqlite3_column_table_name,
|
||||
sqlite3_column_table_name16,
|
||||
sqlite3_column_text,
|
||||
sqlite3_column_text16,
|
||||
sqlite3_column_type,
|
||||
sqlite3_column_value,
|
||||
sqlite3_commit_hook,
|
||||
sqlite3_complete,
|
||||
sqlite3_complete16,
|
||||
sqlite3_create_collation,
|
||||
sqlite3_create_collation16,
|
||||
sqlite3_create_function,
|
||||
sqlite3_create_function16,
|
||||
sqlite3_create_module,
|
||||
sqlite3_data_count,
|
||||
sqlite3_db_handle,
|
||||
sqlite3_declare_vtab,
|
||||
sqlite3_enable_shared_cache,
|
||||
sqlite3_errcode,
|
||||
sqlite3_errmsg,
|
||||
sqlite3_errmsg16,
|
||||
sqlite3_exec,
|
||||
#ifndef SQLITE_OMIT_DEPRECATED
|
||||
sqlite3_expired,
|
||||
#else
|
||||
0,
|
||||
#endif
|
||||
sqlite3_finalize,
|
||||
sqlite3_free,
|
||||
sqlite3_free_table,
|
||||
sqlite3_get_autocommit,
|
||||
sqlite3_get_auxdata,
|
||||
sqlite3_get_table,
|
||||
0, /* Was sqlite3_global_recover(), but that function is deprecated */
|
||||
sqlite3_interrupt,
|
||||
sqlite3_last_insert_rowid,
|
||||
sqlite3_libversion,
|
||||
sqlite3_libversion_number,
|
||||
sqlite3_malloc,
|
||||
sqlite3_mprintf,
|
||||
sqlite3_open,
|
||||
sqlite3_open16,
|
||||
sqlite3_prepare,
|
||||
sqlite3_prepare16,
|
||||
sqlite3_profile,
|
||||
sqlite3_progress_handler,
|
||||
sqlite3_realloc,
|
||||
sqlite3_reset,
|
||||
sqlite3_result_blob,
|
||||
sqlite3_result_double,
|
||||
sqlite3_result_error,
|
||||
sqlite3_result_error16,
|
||||
sqlite3_result_int,
|
||||
sqlite3_result_int64,
|
||||
sqlite3_result_null,
|
||||
sqlite3_result_text,
|
||||
sqlite3_result_text16,
|
||||
sqlite3_result_text16be,
|
||||
sqlite3_result_text16le,
|
||||
sqlite3_result_value,
|
||||
sqlite3_rollback_hook,
|
||||
sqlite3_set_authorizer,
|
||||
sqlite3_set_auxdata,
|
||||
sqlite3_snprintf,
|
||||
sqlite3_step,
|
||||
sqlite3_table_column_metadata,
|
||||
#ifndef SQLITE_OMIT_DEPRECATED
|
||||
sqlite3_thread_cleanup,
|
||||
#else
|
||||
0,
|
||||
#endif
|
||||
sqlite3_total_changes,
|
||||
sqlite3_trace,
|
||||
#ifndef SQLITE_OMIT_DEPRECATED
|
||||
sqlite3_transfer_bindings,
|
||||
#else
|
||||
0,
|
||||
#endif
|
||||
sqlite3_update_hook,
|
||||
sqlite3_user_data,
|
||||
sqlite3_value_blob,
|
||||
sqlite3_value_bytes,
|
||||
sqlite3_value_bytes16,
|
||||
sqlite3_value_double,
|
||||
sqlite3_value_int,
|
||||
sqlite3_value_int64,
|
||||
sqlite3_value_numeric_type,
|
||||
sqlite3_value_text,
|
||||
sqlite3_value_text16,
|
||||
sqlite3_value_text16be,
|
||||
sqlite3_value_text16le,
|
||||
sqlite3_value_type,
|
||||
sqlite3_vmprintf,
|
||||
/*
|
||||
** The original API set ends here. All extensions can call any
|
||||
** of the APIs above provided that the pointer is not NULL. But
|
||||
** before calling APIs that follow, extension should check the
|
||||
** sqlite3_libversion_number() to make sure they are dealing with
|
||||
** a library that is new enough to support that API.
|
||||
*************************************************************************
|
||||
*/
|
||||
sqlite3_overload_function,
|
||||
|
||||
/*
|
||||
** Added after 3.3.13
|
||||
*/
|
||||
sqlite3_prepare_v2,
|
||||
sqlite3_prepare16_v2,
|
||||
sqlite3_clear_bindings,
|
||||
|
||||
/*
|
||||
** Added for 3.4.1
|
||||
*/
|
||||
sqlite3_create_module_v2,
|
||||
|
||||
/*
|
||||
** Added for 3.5.0
|
||||
*/
|
||||
sqlite3_bind_zeroblob,
|
||||
sqlite3_blob_bytes,
|
||||
sqlite3_blob_close,
|
||||
sqlite3_blob_open,
|
||||
sqlite3_blob_read,
|
||||
sqlite3_blob_write,
|
||||
sqlite3_create_collation_v2,
|
||||
sqlite3_file_control,
|
||||
sqlite3_memory_highwater,
|
||||
sqlite3_memory_used,
|
||||
#ifdef SQLITE_MUTEX_OMIT
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
#else
|
||||
sqlite3_mutex_alloc,
|
||||
sqlite3_mutex_enter,
|
||||
sqlite3_mutex_free,
|
||||
sqlite3_mutex_leave,
|
||||
sqlite3_mutex_try,
|
||||
#endif
|
||||
sqlite3_open_v2,
|
||||
sqlite3_release_memory,
|
||||
sqlite3_result_error_nomem,
|
||||
sqlite3_result_error_toobig,
|
||||
sqlite3_sleep,
|
||||
sqlite3_soft_heap_limit,
|
||||
sqlite3_vfs_find,
|
||||
sqlite3_vfs_register,
|
||||
sqlite3_vfs_unregister,
|
||||
|
||||
/*
|
||||
** Added for 3.5.8
|
||||
*/
|
||||
sqlite3_threadsafe,
|
||||
sqlite3_result_zeroblob,
|
||||
sqlite3_result_error_code,
|
||||
sqlite3_test_control,
|
||||
sqlite3_randomness,
|
||||
sqlite3_context_db_handle,
|
||||
|
||||
/*
|
||||
** Added for 3.6.0
|
||||
*/
|
||||
sqlite3_extended_result_codes,
|
||||
sqlite3_limit,
|
||||
sqlite3_next_stmt,
|
||||
sqlite3_sql,
|
||||
sqlite3_status,
|
||||
};
|
||||
|
||||
/*
|
||||
** Attempt to load an SQLite extension library contained in the file
|
||||
** zFile. The entry point is zProc. zProc may be 0 in which case a
|
||||
** default entry point name (sqlite3_extension_init) is used. Use
|
||||
** of the default name is recommended.
|
||||
**
|
||||
** Return SQLITE_OK on success and SQLITE_ERROR if something goes wrong.
|
||||
**
|
||||
** If an error occurs and pzErrMsg is not 0, then fill *pzErrMsg with
|
||||
** error message text. The calling function should free this memory
|
||||
** by calling sqlite3DbFree(db, ).
|
||||
*/
|
||||
static int sqlite3LoadExtension(
|
||||
sqlite3 *db, /* Load the extension into this database connection */
|
||||
const char *zFile, /* Name of the shared library containing extension */
|
||||
const char *zProc, /* Entry point. Use "sqlite3_extension_init" if 0 */
|
||||
char **pzErrMsg /* Put error message here if not 0 */
|
||||
){
|
||||
sqlite3_vfs *pVfs = db->pVfs;
|
||||
void *handle;
|
||||
int (*xInit)(sqlite3*,char**,const sqlite3_api_routines*);
|
||||
char *zErrmsg = 0;
|
||||
void **aHandle;
|
||||
|
||||
/* Ticket #1863. To avoid a creating security problems for older
|
||||
** applications that relink against newer versions of SQLite, the
|
||||
** ability to run load_extension is turned off by default. One
|
||||
** must call sqlite3_enable_load_extension() to turn on extension
|
||||
** loading. Otherwise you get the following error.
|
||||
*/
|
||||
if( (db->flags & SQLITE_LoadExtension)==0 ){
|
||||
if( pzErrMsg ){
|
||||
*pzErrMsg = sqlite3_mprintf("not authorized");
|
||||
}
|
||||
return SQLITE_ERROR;
|
||||
}
|
||||
|
||||
if( zProc==0 ){
|
||||
zProc = "sqlite3_extension_init";
|
||||
}
|
||||
|
||||
handle = sqlite3OsDlOpen(pVfs, zFile);
|
||||
if( handle==0 ){
|
||||
if( pzErrMsg ){
|
||||
char zErr[256];
|
||||
zErr[sizeof(zErr)-1] = '\0';
|
||||
sqlite3_snprintf(sizeof(zErr)-1, zErr,
|
||||
"unable to open shared library [%s]", zFile);
|
||||
sqlite3OsDlError(pVfs, sizeof(zErr)-1, zErr);
|
||||
*pzErrMsg = sqlite3DbStrDup(0, zErr);
|
||||
}
|
||||
return SQLITE_ERROR;
|
||||
}
|
||||
xInit = (int(*)(sqlite3*,char**,const sqlite3_api_routines*))
|
||||
sqlite3OsDlSym(pVfs, handle, zProc);
|
||||
if( xInit==0 ){
|
||||
if( pzErrMsg ){
|
||||
char zErr[256];
|
||||
zErr[sizeof(zErr)-1] = '\0';
|
||||
sqlite3_snprintf(sizeof(zErr)-1, zErr,
|
||||
"no entry point [%s] in shared library [%s]", zProc,zFile);
|
||||
sqlite3OsDlError(pVfs, sizeof(zErr)-1, zErr);
|
||||
*pzErrMsg = sqlite3DbStrDup(0, zErr);
|
||||
sqlite3OsDlClose(pVfs, handle);
|
||||
}
|
||||
return SQLITE_ERROR;
|
||||
}else if( xInit(db, &zErrmsg, &sqlite3Apis) ){
|
||||
if( pzErrMsg ){
|
||||
*pzErrMsg = sqlite3_mprintf("error during initialization: %s", zErrmsg);
|
||||
}
|
||||
sqlite3_free(zErrmsg);
|
||||
sqlite3OsDlClose(pVfs, handle);
|
||||
return SQLITE_ERROR;
|
||||
}
|
||||
|
||||
/* Append the new shared library handle to the db->aExtension array. */
|
||||
aHandle = sqlite3DbMallocZero(db, sizeof(handle)*(db->nExtension+1));
|
||||
if( aHandle==0 ){
|
||||
return SQLITE_NOMEM;
|
||||
}
|
||||
if( db->nExtension>0 ){
|
||||
memcpy(aHandle, db->aExtension, sizeof(handle)*db->nExtension);
|
||||
}
|
||||
sqlite3DbFree(db, db->aExtension);
|
||||
db->aExtension = aHandle;
|
||||
|
||||
db->aExtension[db->nExtension++] = handle;
|
||||
return SQLITE_OK;
|
||||
}
|
||||
int sqlite3_load_extension(
|
||||
sqlite3 *db, /* Load the extension into this database connection */
|
||||
const char *zFile, /* Name of the shared library containing extension */
|
||||
const char *zProc, /* Entry point. Use "sqlite3_extension_init" if 0 */
|
||||
char **pzErrMsg /* Put error message here if not 0 */
|
||||
){
|
||||
int rc;
|
||||
sqlite3_mutex_enter(db->mutex);
|
||||
rc = sqlite3LoadExtension(db, zFile, zProc, pzErrMsg);
|
||||
sqlite3_mutex_leave(db->mutex);
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** Call this routine when the database connection is closing in order
|
||||
** to clean up loaded extensions
|
||||
*/
|
||||
void sqlite3CloseExtensions(sqlite3 *db){
|
||||
int i;
|
||||
assert( sqlite3_mutex_held(db->mutex) );
|
||||
for(i=0; i<db->nExtension; i++){
|
||||
sqlite3OsDlClose(db->pVfs, db->aExtension[i]);
|
||||
}
|
||||
sqlite3DbFree(db, db->aExtension);
|
||||
}
|
||||
|
||||
/*
|
||||
** Enable or disable extension loading. Extension loading is disabled by
|
||||
** default so as not to open security holes in older applications.
|
||||
*/
|
||||
int sqlite3_enable_load_extension(sqlite3 *db, int onoff){
|
||||
sqlite3_mutex_enter(db->mutex);
|
||||
if( onoff ){
|
||||
db->flags |= SQLITE_LoadExtension;
|
||||
}else{
|
||||
db->flags &= ~SQLITE_LoadExtension;
|
||||
}
|
||||
sqlite3_mutex_leave(db->mutex);
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
#endif /* SQLITE_OMIT_LOAD_EXTENSION */
|
||||
|
||||
/*
|
||||
** The auto-extension code added regardless of whether or not extension
|
||||
** loading is supported. We need a dummy sqlite3Apis pointer for that
|
||||
** code if regular extension loading is not available. This is that
|
||||
** dummy pointer.
|
||||
*/
|
||||
#ifdef SQLITE_OMIT_LOAD_EXTENSION
|
||||
static const sqlite3_api_routines sqlite3Apis = { 0 };
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
** The following object holds the list of automatically loaded
|
||||
** extensions.
|
||||
**
|
||||
** This list is shared across threads. The SQLITE_MUTEX_STATIC_MASTER
|
||||
** mutex must be held while accessing this list.
|
||||
*/
|
||||
typedef struct sqlite3AutoExtList sqlite3AutoExtList;
|
||||
static SQLITE_WSD struct sqlite3AutoExtList {
|
||||
int nExt; /* Number of entries in aExt[] */
|
||||
void (**aExt)(void); /* Pointers to the extension init functions */
|
||||
} sqlite3Autoext = { 0, 0 };
|
||||
|
||||
/* The "wsdAutoext" macro will resolve to the autoextension
|
||||
** state vector. If writable static data is unsupported on the target,
|
||||
** we have to locate the state vector at run-time. In the more common
|
||||
** case where writable static data is supported, wsdStat can refer directly
|
||||
** to the "sqlite3Autoext" state vector declared above.
|
||||
*/
|
||||
#ifdef SQLITE_OMIT_WSD
|
||||
# define wsdAutoextInit \
|
||||
sqlite3AutoExtList *x = &GLOBAL(sqlite3AutoExtList,sqlite3Autoext)
|
||||
# define wsdAutoext x[0]
|
||||
#else
|
||||
# define wsdAutoextInit
|
||||
# define wsdAutoext sqlite3Autoext
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
** Register a statically linked extension that is automatically
|
||||
** loaded by every new database connection.
|
||||
*/
|
||||
int sqlite3_auto_extension(void (*xInit)(void)){
|
||||
int rc = SQLITE_OK;
|
||||
#ifndef SQLITE_OMIT_AUTOINIT
|
||||
rc = sqlite3_initialize();
|
||||
if( rc ){
|
||||
return rc;
|
||||
}else
|
||||
#endif
|
||||
{
|
||||
int i;
|
||||
#if SQLITE_THREADSAFE
|
||||
sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
|
||||
#endif
|
||||
wsdAutoextInit;
|
||||
sqlite3_mutex_enter(mutex);
|
||||
for(i=0; i<wsdAutoext.nExt; i++){
|
||||
if( wsdAutoext.aExt[i]==xInit ) break;
|
||||
}
|
||||
if( i==wsdAutoext.nExt ){
|
||||
int nByte = (wsdAutoext.nExt+1)*sizeof(wsdAutoext.aExt[0]);
|
||||
void (**aNew)(void);
|
||||
aNew = sqlite3_realloc(wsdAutoext.aExt, nByte);
|
||||
if( aNew==0 ){
|
||||
rc = SQLITE_NOMEM;
|
||||
}else{
|
||||
wsdAutoext.aExt = aNew;
|
||||
wsdAutoext.aExt[wsdAutoext.nExt] = xInit;
|
||||
wsdAutoext.nExt++;
|
||||
}
|
||||
}
|
||||
sqlite3_mutex_leave(mutex);
|
||||
assert( (rc&0xff)==rc );
|
||||
return rc;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Reset the automatic extension loading mechanism.
|
||||
*/
|
||||
void sqlite3_reset_auto_extension(void){
|
||||
#ifndef SQLITE_OMIT_AUTOINIT
|
||||
if( sqlite3_initialize()==SQLITE_OK )
|
||||
#endif
|
||||
{
|
||||
#if SQLITE_THREADSAFE
|
||||
sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
|
||||
#endif
|
||||
wsdAutoextInit;
|
||||
sqlite3_mutex_enter(mutex);
|
||||
sqlite3_free(wsdAutoext.aExt);
|
||||
wsdAutoext.aExt = 0;
|
||||
wsdAutoext.nExt = 0;
|
||||
sqlite3_mutex_leave(mutex);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Load all automatic extensions.
|
||||
*/
|
||||
int sqlite3AutoLoadExtensions(sqlite3 *db){
|
||||
int i;
|
||||
int go = 1;
|
||||
int rc = SQLITE_OK;
|
||||
int (*xInit)(sqlite3*,char**,const sqlite3_api_routines*);
|
||||
|
||||
wsdAutoextInit;
|
||||
if( wsdAutoext.nExt==0 ){
|
||||
/* Common case: early out without every having to acquire a mutex */
|
||||
return SQLITE_OK;
|
||||
}
|
||||
for(i=0; go; i++){
|
||||
char *zErrmsg = 0;
|
||||
#if SQLITE_THREADSAFE
|
||||
sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
|
||||
#endif
|
||||
sqlite3_mutex_enter(mutex);
|
||||
if( i>=wsdAutoext.nExt ){
|
||||
xInit = 0;
|
||||
go = 0;
|
||||
}else{
|
||||
xInit = (int(*)(sqlite3*,char**,const sqlite3_api_routines*))
|
||||
wsdAutoext.aExt[i];
|
||||
}
|
||||
sqlite3_mutex_leave(mutex);
|
||||
if( xInit && xInit(db, &zErrmsg, &sqlite3Apis) ){
|
||||
sqlite3Error(db, SQLITE_ERROR,
|
||||
"automatic extension loading failed: %s", zErrmsg);
|
||||
go = 0;
|
||||
rc = SQLITE_ERROR;
|
||||
sqlite3_free(zErrmsg);
|
||||
}
|
||||
}
|
||||
return rc;
|
||||
}
|
718
malloc.c
718
malloc.c
|
@ -1,718 +0,0 @@
|
|||
/*
|
||||
** 2001 September 15
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
**
|
||||
** Memory allocation functions used throughout sqlite.
|
||||
**
|
||||
** $Id: malloc.c,v 1.61 2009/03/24 15:08:10 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
#include <stdarg.h>
|
||||
|
||||
/*
|
||||
** This routine runs when the memory allocator sees that the
|
||||
** total memory allocation is about to exceed the soft heap
|
||||
** limit.
|
||||
*/
|
||||
static void softHeapLimitEnforcer(
|
||||
void *NotUsed,
|
||||
sqlite3_int64 NotUsed2,
|
||||
int allocSize
|
||||
){
|
||||
UNUSED_PARAMETER2(NotUsed, NotUsed2);
|
||||
sqlite3_release_memory(allocSize);
|
||||
}
|
||||
|
||||
/*
|
||||
** Set the soft heap-size limit for the library. Passing a zero or
|
||||
** negative value indicates no limit.
|
||||
*/
|
||||
void sqlite3_soft_heap_limit(int n){
|
||||
sqlite3_uint64 iLimit;
|
||||
int overage;
|
||||
if( n<0 ){
|
||||
iLimit = 0;
|
||||
}else{
|
||||
iLimit = n;
|
||||
}
|
||||
sqlite3_initialize();
|
||||
if( iLimit>0 ){
|
||||
sqlite3MemoryAlarm(softHeapLimitEnforcer, 0, iLimit);
|
||||
}else{
|
||||
sqlite3MemoryAlarm(0, 0, 0);
|
||||
}
|
||||
overage = (int)(sqlite3_memory_used() - (i64)n);
|
||||
if( overage>0 ){
|
||||
sqlite3_release_memory(overage);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Attempt to release up to n bytes of non-essential memory currently
|
||||
** held by SQLite. An example of non-essential memory is memory used to
|
||||
** cache database pages that are not currently in use.
|
||||
*/
|
||||
int sqlite3_release_memory(int n){
|
||||
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
|
||||
int nRet = 0;
|
||||
#if 0
|
||||
nRet += sqlite3VdbeReleaseMemory(n);
|
||||
#endif
|
||||
nRet += sqlite3PcacheReleaseMemory(n-nRet);
|
||||
return nRet;
|
||||
#else
|
||||
UNUSED_PARAMETER(n);
|
||||
return SQLITE_OK;
|
||||
#endif
|
||||
}
|
||||
|
||||
/*
|
||||
** State information local to the memory allocation subsystem.
|
||||
*/
|
||||
static SQLITE_WSD struct Mem0Global {
|
||||
/* Number of free pages for scratch and page-cache memory */
|
||||
u32 nScratchFree;
|
||||
u32 nPageFree;
|
||||
|
||||
sqlite3_mutex *mutex; /* Mutex to serialize access */
|
||||
|
||||
/*
|
||||
** The alarm callback and its arguments. The mem0.mutex lock will
|
||||
** be held while the callback is running. Recursive calls into
|
||||
** the memory subsystem are allowed, but no new callbacks will be
|
||||
** issued. The alarmBusy variable is set to prevent recursive
|
||||
** callbacks.
|
||||
*/
|
||||
sqlite3_int64 alarmThreshold;
|
||||
void (*alarmCallback)(void*, sqlite3_int64,int);
|
||||
void *alarmArg;
|
||||
int alarmBusy;
|
||||
|
||||
/*
|
||||
** Pointers to the end of sqlite3GlobalConfig.pScratch and
|
||||
** sqlite3GlobalConfig.pPage to a block of memory that records
|
||||
** which pages are available.
|
||||
*/
|
||||
u32 *aScratchFree;
|
||||
u32 *aPageFree;
|
||||
} mem0 = { 62560955, 0, 0, 0, 0, 0, 0, 0, 0 };
|
||||
|
||||
#define mem0 GLOBAL(struct Mem0Global, mem0)
|
||||
|
||||
/*
|
||||
** Initialize the memory allocation subsystem.
|
||||
*/
|
||||
int sqlite3MallocInit(void){
|
||||
if( sqlite3GlobalConfig.m.xMalloc==0 ){
|
||||
sqlite3MemSetDefault();
|
||||
}
|
||||
memset(&mem0, 0, sizeof(mem0));
|
||||
if( sqlite3GlobalConfig.bCoreMutex ){
|
||||
mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
|
||||
}
|
||||
if( sqlite3GlobalConfig.pScratch && sqlite3GlobalConfig.szScratch>=100
|
||||
&& sqlite3GlobalConfig.nScratch>=0 ){
|
||||
int i;
|
||||
sqlite3GlobalConfig.szScratch = ROUNDDOWN8(sqlite3GlobalConfig.szScratch-4);
|
||||
mem0.aScratchFree = (u32*)&((char*)sqlite3GlobalConfig.pScratch)
|
||||
[sqlite3GlobalConfig.szScratch*sqlite3GlobalConfig.nScratch];
|
||||
for(i=0; i<sqlite3GlobalConfig.nScratch; i++){ mem0.aScratchFree[i] = i; }
|
||||
mem0.nScratchFree = sqlite3GlobalConfig.nScratch;
|
||||
}else{
|
||||
sqlite3GlobalConfig.pScratch = 0;
|
||||
sqlite3GlobalConfig.szScratch = 0;
|
||||
}
|
||||
if( sqlite3GlobalConfig.pPage && sqlite3GlobalConfig.szPage>=512
|
||||
&& sqlite3GlobalConfig.nPage>=1 ){
|
||||
int i;
|
||||
int overhead;
|
||||
int sz = ROUNDDOWN8(sqlite3GlobalConfig.szPage);
|
||||
int n = sqlite3GlobalConfig.nPage;
|
||||
overhead = (4*n + sz - 1)/sz;
|
||||
sqlite3GlobalConfig.nPage -= overhead;
|
||||
mem0.aPageFree = (u32*)&((char*)sqlite3GlobalConfig.pPage)
|
||||
[sqlite3GlobalConfig.szPage*sqlite3GlobalConfig.nPage];
|
||||
for(i=0; i<sqlite3GlobalConfig.nPage; i++){ mem0.aPageFree[i] = i; }
|
||||
mem0.nPageFree = sqlite3GlobalConfig.nPage;
|
||||
}else{
|
||||
sqlite3GlobalConfig.pPage = 0;
|
||||
sqlite3GlobalConfig.szPage = 0;
|
||||
}
|
||||
return sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData);
|
||||
}
|
||||
|
||||
/*
|
||||
** Deinitialize the memory allocation subsystem.
|
||||
*/
|
||||
void sqlite3MallocEnd(void){
|
||||
if( sqlite3GlobalConfig.m.xShutdown ){
|
||||
sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData);
|
||||
}
|
||||
memset(&mem0, 0, sizeof(mem0));
|
||||
}
|
||||
|
||||
/*
|
||||
** Return the amount of memory currently checked out.
|
||||
*/
|
||||
sqlite3_int64 sqlite3_memory_used(void){
|
||||
int n, mx;
|
||||
sqlite3_int64 res;
|
||||
sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, 0);
|
||||
res = (sqlite3_int64)n; /* Work around bug in Borland C. Ticket #3216 */
|
||||
return res;
|
||||
}
|
||||
|
||||
/*
|
||||
** Return the maximum amount of memory that has ever been
|
||||
** checked out since either the beginning of this process
|
||||
** or since the most recent reset.
|
||||
*/
|
||||
sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
|
||||
int n, mx;
|
||||
sqlite3_int64 res;
|
||||
sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, resetFlag);
|
||||
res = (sqlite3_int64)mx; /* Work around bug in Borland C. Ticket #3216 */
|
||||
return res;
|
||||
}
|
||||
|
||||
/*
|
||||
** Change the alarm callback
|
||||
*/
|
||||
int sqlite3MemoryAlarm(
|
||||
void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
|
||||
void *pArg,
|
||||
sqlite3_int64 iThreshold
|
||||
){
|
||||
sqlite3_mutex_enter(mem0.mutex);
|
||||
mem0.alarmCallback = xCallback;
|
||||
mem0.alarmArg = pArg;
|
||||
mem0.alarmThreshold = iThreshold;
|
||||
sqlite3_mutex_leave(mem0.mutex);
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
#ifndef SQLITE_OMIT_DEPRECATED
|
||||
/*
|
||||
** Deprecated external interface. Internal/core SQLite code
|
||||
** should call sqlite3MemoryAlarm.
|
||||
*/
|
||||
int sqlite3_memory_alarm(
|
||||
void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
|
||||
void *pArg,
|
||||
sqlite3_int64 iThreshold
|
||||
){
|
||||
return sqlite3MemoryAlarm(xCallback, pArg, iThreshold);
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
** Trigger the alarm
|
||||
*/
|
||||
static void sqlite3MallocAlarm(int nByte){
|
||||
void (*xCallback)(void*,sqlite3_int64,int);
|
||||
sqlite3_int64 nowUsed;
|
||||
void *pArg;
|
||||
if( mem0.alarmCallback==0 || mem0.alarmBusy ) return;
|
||||
mem0.alarmBusy = 1;
|
||||
xCallback = mem0.alarmCallback;
|
||||
nowUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
|
||||
pArg = mem0.alarmArg;
|
||||
sqlite3_mutex_leave(mem0.mutex);
|
||||
xCallback(pArg, nowUsed, nByte);
|
||||
sqlite3_mutex_enter(mem0.mutex);
|
||||
mem0.alarmBusy = 0;
|
||||
}
|
||||
|
||||
/*
|
||||
** Do a memory allocation with statistics and alarms. Assume the
|
||||
** lock is already held.
|
||||
*/
|
||||
static int mallocWithAlarm(int n, void **pp){
|
||||
int nFull;
|
||||
void *p;
|
||||
assert( sqlite3_mutex_held(mem0.mutex) );
|
||||
nFull = sqlite3GlobalConfig.m.xRoundup(n);
|
||||
sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n);
|
||||
if( mem0.alarmCallback!=0 ){
|
||||
int nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
|
||||
if( nUsed+nFull >= mem0.alarmThreshold ){
|
||||
sqlite3MallocAlarm(nFull);
|
||||
}
|
||||
}
|
||||
p = sqlite3GlobalConfig.m.xMalloc(nFull);
|
||||
if( p==0 && mem0.alarmCallback ){
|
||||
sqlite3MallocAlarm(nFull);
|
||||
p = sqlite3GlobalConfig.m.xMalloc(nFull);
|
||||
}
|
||||
if( p ){
|
||||
nFull = sqlite3MallocSize(p);
|
||||
sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nFull);
|
||||
}
|
||||
*pp = p;
|
||||
return nFull;
|
||||
}
|
||||
|
||||
/*
|
||||
** Allocate memory. This routine is like sqlite3_malloc() except that it
|
||||
** assumes the memory subsystem has already been initialized.
|
||||
*/
|
||||
void *sqlite3Malloc(int n){
|
||||
void *p;
|
||||
if( n<=0 || NEVER(n>=0x7fffff00) ){
|
||||
/* The NEVER(n>=0x7fffff00) term is added out of paranoia. We want to make
|
||||
** absolutely sure that there is nothing within SQLite that can cause a
|
||||
** memory allocation of a number of bytes which is near the maximum signed
|
||||
** integer value and thus cause an integer overflow inside of the xMalloc()
|
||||
** implementation. The n>=0x7fffff00 gives us 255 bytes of headroom. The
|
||||
** test should never be true because SQLITE_MAX_LENGTH should be much
|
||||
** less than 0x7fffff00 and it should catch large memory allocations
|
||||
** before they reach this point. */
|
||||
p = 0;
|
||||
}else if( sqlite3GlobalConfig.bMemstat ){
|
||||
sqlite3_mutex_enter(mem0.mutex);
|
||||
mallocWithAlarm(n, &p);
|
||||
sqlite3_mutex_leave(mem0.mutex);
|
||||
}else{
|
||||
p = sqlite3GlobalConfig.m.xMalloc(n);
|
||||
}
|
||||
return p;
|
||||
}
|
||||
|
||||
/*
|
||||
** This version of the memory allocation is for use by the application.
|
||||
** First make sure the memory subsystem is initialized, then do the
|
||||
** allocation.
|
||||
*/
|
||||
void *sqlite3_malloc(int n){
|
||||
#ifndef SQLITE_OMIT_AUTOINIT
|
||||
if( sqlite3_initialize() ) return 0;
|
||||
#endif
|
||||
return sqlite3Malloc(n);
|
||||
}
|
||||
|
||||
/*
|
||||
** Each thread may only have a single outstanding allocation from
|
||||
** xScratchMalloc(). We verify this constraint in the single-threaded
|
||||
** case by setting scratchAllocOut to 1 when an allocation
|
||||
** is outstanding clearing it when the allocation is freed.
|
||||
*/
|
||||
#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
|
||||
static int scratchAllocOut = 0;
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
** Allocate memory that is to be used and released right away.
|
||||
** This routine is similar to alloca() in that it is not intended
|
||||
** for situations where the memory might be held long-term. This
|
||||
** routine is intended to get memory to old large transient data
|
||||
** structures that would not normally fit on the stack of an
|
||||
** embedded processor.
|
||||
*/
|
||||
void *sqlite3ScratchMalloc(int n){
|
||||
void *p;
|
||||
assert( n>0 );
|
||||
|
||||
#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
|
||||
/* Verify that no more than one scratch allocation per thread
|
||||
** is outstanding at one time. (This is only checked in the
|
||||
** single-threaded case since checking in the multi-threaded case
|
||||
** would be much more complicated.) */
|
||||
assert( scratchAllocOut==0 );
|
||||
#endif
|
||||
|
||||
if( sqlite3GlobalConfig.szScratch<n ){
|
||||
goto scratch_overflow;
|
||||
}else{
|
||||
sqlite3_mutex_enter(mem0.mutex);
|
||||
if( mem0.nScratchFree==0 ){
|
||||
sqlite3_mutex_leave(mem0.mutex);
|
||||
goto scratch_overflow;
|
||||
}else{
|
||||
int i;
|
||||
i = mem0.aScratchFree[--mem0.nScratchFree];
|
||||
i *= sqlite3GlobalConfig.szScratch;
|
||||
sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, 1);
|
||||
sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
|
||||
sqlite3_mutex_leave(mem0.mutex);
|
||||
p = (void*)&((char*)sqlite3GlobalConfig.pScratch)[i];
|
||||
assert( (((u8*)p - (u8*)0) & 7)==0 );
|
||||
}
|
||||
}
|
||||
#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
|
||||
scratchAllocOut = p!=0;
|
||||
#endif
|
||||
|
||||
return p;
|
||||
|
||||
scratch_overflow:
|
||||
if( sqlite3GlobalConfig.bMemstat ){
|
||||
sqlite3_mutex_enter(mem0.mutex);
|
||||
sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
|
||||
n = mallocWithAlarm(n, &p);
|
||||
if( p ) sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, n);
|
||||
sqlite3_mutex_leave(mem0.mutex);
|
||||
}else{
|
||||
p = sqlite3GlobalConfig.m.xMalloc(n);
|
||||
}
|
||||
#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
|
||||
scratchAllocOut = p!=0;
|
||||
#endif
|
||||
return p;
|
||||
}
|
||||
void sqlite3ScratchFree(void *p){
|
||||
if( p ){
|
||||
|
||||
#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
|
||||
/* Verify that no more than one scratch allocation per thread
|
||||
** is outstanding at one time. (This is only checked in the
|
||||
** single-threaded case since checking in the multi-threaded case
|
||||
** would be much more complicated.) */
|
||||
assert( scratchAllocOut==1 );
|
||||
scratchAllocOut = 0;
|
||||
#endif
|
||||
|
||||
if( sqlite3GlobalConfig.pScratch==0
|
||||
|| p<sqlite3GlobalConfig.pScratch
|
||||
|| p>=(void*)mem0.aScratchFree ){
|
||||
if( sqlite3GlobalConfig.bMemstat ){
|
||||
int iSize = sqlite3MallocSize(p);
|
||||
sqlite3_mutex_enter(mem0.mutex);
|
||||
sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, -iSize);
|
||||
sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize);
|
||||
sqlite3GlobalConfig.m.xFree(p);
|
||||
sqlite3_mutex_leave(mem0.mutex);
|
||||
}else{
|
||||
sqlite3GlobalConfig.m.xFree(p);
|
||||
}
|
||||
}else{
|
||||
int i;
|
||||
i = (int)((u8*)p - (u8*)sqlite3GlobalConfig.pScratch);
|
||||
i /= sqlite3GlobalConfig.szScratch;
|
||||
assert( i>=0 && i<sqlite3GlobalConfig.nScratch );
|
||||
sqlite3_mutex_enter(mem0.mutex);
|
||||
assert( mem0.nScratchFree<(u32)sqlite3GlobalConfig.nScratch );
|
||||
mem0.aScratchFree[mem0.nScratchFree++] = i;
|
||||
sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, -1);
|
||||
sqlite3_mutex_leave(mem0.mutex);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** TRUE if p is a lookaside memory allocation from db
|
||||
*/
|
||||
#ifndef SQLITE_OMIT_LOOKASIDE
|
||||
static int isLookaside(sqlite3 *db, void *p){
|
||||
return db && p && p>=db->lookaside.pStart && p<db->lookaside.pEnd;
|
||||
}
|
||||
#else
|
||||
#define isLookaside(A,B) 0
|
||||
#endif
|
||||
|
||||
/*
|
||||
** Return the size of a memory allocation previously obtained from
|
||||
** sqlite3Malloc() or sqlite3_malloc().
|
||||
*/
|
||||
int sqlite3MallocSize(void *p){
|
||||
return sqlite3GlobalConfig.m.xSize(p);
|
||||
}
|
||||
int sqlite3DbMallocSize(sqlite3 *db, void *p){
|
||||
assert( db==0 || sqlite3_mutex_held(db->mutex) );
|
||||
if( p==0 ){
|
||||
return 0;
|
||||
}else if( isLookaside(db, p) ){
|
||||
return db->lookaside.sz;
|
||||
}else{
|
||||
return sqlite3GlobalConfig.m.xSize(p);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Free memory previously obtained from sqlite3Malloc().
|
||||
*/
|
||||
void sqlite3_free(void *p){
|
||||
if( p==0 ) return;
|
||||
if( sqlite3GlobalConfig.bMemstat ){
|
||||
sqlite3_mutex_enter(mem0.mutex);
|
||||
sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -sqlite3MallocSize(p));
|
||||
sqlite3GlobalConfig.m.xFree(p);
|
||||
sqlite3_mutex_leave(mem0.mutex);
|
||||
}else{
|
||||
sqlite3GlobalConfig.m.xFree(p);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Free memory that might be associated with a particular database
|
||||
** connection.
|
||||
*/
|
||||
void sqlite3DbFree(sqlite3 *db, void *p){
|
||||
assert( db==0 || sqlite3_mutex_held(db->mutex) );
|
||||
if( isLookaside(db, p) ){
|
||||
LookasideSlot *pBuf = (LookasideSlot*)p;
|
||||
pBuf->pNext = db->lookaside.pFree;
|
||||
db->lookaside.pFree = pBuf;
|
||||
db->lookaside.nOut--;
|
||||
}else{
|
||||
sqlite3_free(p);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Change the size of an existing memory allocation
|
||||
*/
|
||||
void *sqlite3Realloc(void *pOld, int nBytes){
|
||||
int nOld, nNew;
|
||||
void *pNew;
|
||||
if( pOld==0 ){
|
||||
return sqlite3Malloc(nBytes);
|
||||
}
|
||||
if( nBytes<=0 || NEVER(nBytes>=0x7fffff00) ){
|
||||
/* The NEVER(...) term is explained in comments on sqlite3Malloc() */
|
||||
sqlite3_free(pOld);
|
||||
return 0;
|
||||
}
|
||||
nOld = sqlite3MallocSize(pOld);
|
||||
if( sqlite3GlobalConfig.bMemstat ){
|
||||
sqlite3_mutex_enter(mem0.mutex);
|
||||
sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, nBytes);
|
||||
nNew = sqlite3GlobalConfig.m.xRoundup(nBytes);
|
||||
if( nOld==nNew ){
|
||||
pNew = pOld;
|
||||
}else{
|
||||
if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED)+nNew-nOld >=
|
||||
mem0.alarmThreshold ){
|
||||
sqlite3MallocAlarm(nNew-nOld);
|
||||
}
|
||||
pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
|
||||
if( pNew==0 && mem0.alarmCallback ){
|
||||
sqlite3MallocAlarm(nBytes);
|
||||
pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
|
||||
}
|
||||
if( pNew ){
|
||||
nNew = sqlite3MallocSize(pNew);
|
||||
sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nNew-nOld);
|
||||
}
|
||||
}
|
||||
sqlite3_mutex_leave(mem0.mutex);
|
||||
}else{
|
||||
pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nBytes);
|
||||
}
|
||||
return pNew;
|
||||
}
|
||||
|
||||
/*
|
||||
** The public interface to sqlite3Realloc. Make sure that the memory
|
||||
** subsystem is initialized prior to invoking sqliteRealloc.
|
||||
*/
|
||||
void *sqlite3_realloc(void *pOld, int n){
|
||||
#ifndef SQLITE_OMIT_AUTOINIT
|
||||
if( sqlite3_initialize() ) return 0;
|
||||
#endif
|
||||
return sqlite3Realloc(pOld, n);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** Allocate and zero memory.
|
||||
*/
|
||||
void *sqlite3MallocZero(int n){
|
||||
void *p = sqlite3Malloc(n);
|
||||
if( p ){
|
||||
memset(p, 0, n);
|
||||
}
|
||||
return p;
|
||||
}
|
||||
|
||||
/*
|
||||
** Allocate and zero memory. If the allocation fails, make
|
||||
** the mallocFailed flag in the connection pointer.
|
||||
*/
|
||||
void *sqlite3DbMallocZero(sqlite3 *db, int n){
|
||||
void *p = sqlite3DbMallocRaw(db, n);
|
||||
if( p ){
|
||||
memset(p, 0, n);
|
||||
}
|
||||
return p;
|
||||
}
|
||||
|
||||
/*
|
||||
** Allocate and zero memory. If the allocation fails, make
|
||||
** the mallocFailed flag in the connection pointer.
|
||||
**
|
||||
** If db!=0 and db->mallocFailed is true (indicating a prior malloc
|
||||
** failure on the same database connection) then always return 0.
|
||||
** Hence for a particular database connection, once malloc starts
|
||||
** failing, it fails consistently until mallocFailed is reset.
|
||||
** This is an important assumption. There are many places in the
|
||||
** code that do things like this:
|
||||
**
|
||||
** int *a = (int*)sqlite3DbMallocRaw(db, 100);
|
||||
** int *b = (int*)sqlite3DbMallocRaw(db, 200);
|
||||
** if( b ) a[10] = 9;
|
||||
**
|
||||
** In other words, if a subsequent malloc (ex: "b") worked, it is assumed
|
||||
** that all prior mallocs (ex: "a") worked too.
|
||||
*/
|
||||
void *sqlite3DbMallocRaw(sqlite3 *db, int n){
|
||||
void *p;
|
||||
assert( db==0 || sqlite3_mutex_held(db->mutex) );
|
||||
#ifndef SQLITE_OMIT_LOOKASIDE
|
||||
if( db ){
|
||||
LookasideSlot *pBuf;
|
||||
if( db->mallocFailed ){
|
||||
return 0;
|
||||
}
|
||||
if( db->lookaside.bEnabled && n<=db->lookaside.sz
|
||||
&& (pBuf = db->lookaside.pFree)!=0 ){
|
||||
db->lookaside.pFree = pBuf->pNext;
|
||||
db->lookaside.nOut++;
|
||||
if( db->lookaside.nOut>db->lookaside.mxOut ){
|
||||
db->lookaside.mxOut = db->lookaside.nOut;
|
||||
}
|
||||
return (void*)pBuf;
|
||||
}
|
||||
}
|
||||
#else
|
||||
if( db && db->mallocFailed ){
|
||||
return 0;
|
||||
}
|
||||
#endif
|
||||
p = sqlite3Malloc(n);
|
||||
if( !p && db ){
|
||||
db->mallocFailed = 1;
|
||||
}
|
||||
return p;
|
||||
}
|
||||
|
||||
/*
|
||||
** Resize the block of memory pointed to by p to n bytes. If the
|
||||
** resize fails, set the mallocFailed flag in the connection object.
|
||||
*/
|
||||
void *sqlite3DbRealloc(sqlite3 *db, void *p, int n){
|
||||
void *pNew = 0;
|
||||
assert( db!=0 );
|
||||
assert( sqlite3_mutex_held(db->mutex) );
|
||||
if( db->mallocFailed==0 ){
|
||||
if( p==0 ){
|
||||
return sqlite3DbMallocRaw(db, n);
|
||||
}
|
||||
if( isLookaside(db, p) ){
|
||||
if( n<=db->lookaside.sz ){
|
||||
return p;
|
||||
}
|
||||
pNew = sqlite3DbMallocRaw(db, n);
|
||||
if( pNew ){
|
||||
memcpy(pNew, p, db->lookaside.sz);
|
||||
sqlite3DbFree(db, p);
|
||||
}
|
||||
}else{
|
||||
pNew = sqlite3_realloc(p, n);
|
||||
if( !pNew ){
|
||||
db->mallocFailed = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
return pNew;
|
||||
}
|
||||
|
||||
/*
|
||||
** Attempt to reallocate p. If the reallocation fails, then free p
|
||||
** and set the mallocFailed flag in the database connection.
|
||||
*/
|
||||
void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, int n){
|
||||
void *pNew;
|
||||
pNew = sqlite3DbRealloc(db, p, n);
|
||||
if( !pNew ){
|
||||
sqlite3DbFree(db, p);
|
||||
}
|
||||
return pNew;
|
||||
}
|
||||
|
||||
/*
|
||||
** Make a copy of a string in memory obtained from sqliteMalloc(). These
|
||||
** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This
|
||||
** is because when memory debugging is turned on, these two functions are
|
||||
** called via macros that record the current file and line number in the
|
||||
** ThreadData structure.
|
||||
*/
|
||||
char *sqlite3DbStrDup(sqlite3 *db, const char *z){
|
||||
char *zNew;
|
||||
size_t n;
|
||||
if( z==0 ){
|
||||
return 0;
|
||||
}
|
||||
n = (db ? sqlite3Strlen(db, z) : sqlite3Strlen30(z))+1;
|
||||
assert( (n&0x7fffffff)==n );
|
||||
zNew = sqlite3DbMallocRaw(db, (int)n);
|
||||
if( zNew ){
|
||||
memcpy(zNew, z, n);
|
||||
}
|
||||
return zNew;
|
||||
}
|
||||
char *sqlite3DbStrNDup(sqlite3 *db, const char *z, int n){
|
||||
char *zNew;
|
||||
if( z==0 ){
|
||||
return 0;
|
||||
}
|
||||
assert( (n&0x7fffffff)==n );
|
||||
zNew = sqlite3DbMallocRaw(db, n+1);
|
||||
if( zNew ){
|
||||
memcpy(zNew, z, n);
|
||||
zNew[n] = 0;
|
||||
}
|
||||
return zNew;
|
||||
}
|
||||
|
||||
/*
|
||||
** Create a string from the zFromat argument and the va_list that follows.
|
||||
** Store the string in memory obtained from sqliteMalloc() and make *pz
|
||||
** point to that string.
|
||||
*/
|
||||
void sqlite3SetString(char **pz, sqlite3 *db, const char *zFormat, ...){
|
||||
va_list ap;
|
||||
char *z;
|
||||
|
||||
va_start(ap, zFormat);
|
||||
z = sqlite3VMPrintf(db, zFormat, ap);
|
||||
va_end(ap);
|
||||
sqlite3DbFree(db, *pz);
|
||||
*pz = z;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** This function must be called before exiting any API function (i.e.
|
||||
** returning control to the user) that has called sqlite3_malloc or
|
||||
** sqlite3_realloc.
|
||||
**
|
||||
** The returned value is normally a copy of the second argument to this
|
||||
** function. However, if a malloc() failure has occurred since the previous
|
||||
** invocation SQLITE_NOMEM is returned instead.
|
||||
**
|
||||
** If the first argument, db, is not NULL and a malloc() error has occurred,
|
||||
** then the connection error-code (the value returned by sqlite3_errcode())
|
||||
** is set to SQLITE_NOMEM.
|
||||
*/
|
||||
int sqlite3ApiExit(sqlite3* db, int rc){
|
||||
/* If the db handle is not NULL, then we must hold the connection handle
|
||||
** mutex here. Otherwise the read (and possible write) of db->mallocFailed
|
||||
** is unsafe, as is the call to sqlite3Error().
|
||||
*/
|
||||
assert( !db || sqlite3_mutex_held(db->mutex) );
|
||||
if( db && (db->mallocFailed || rc==SQLITE_IOERR_NOMEM) ){
|
||||
sqlite3Error(db, SQLITE_NOMEM, 0);
|
||||
db->mallocFailed = 0;
|
||||
rc = SQLITE_NOMEM;
|
||||
}
|
||||
return rc & (db ? db->errMask : 0xff);
|
||||
}
|
61
mem0.c
61
mem0.c
|
@ -1,61 +0,0 @@
|
|||
/*
|
||||
** 2008 October 28
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
**
|
||||
** This file contains a no-op memory allocation drivers for use when
|
||||
** SQLITE_ZERO_MALLOC is defined. The allocation drivers implemented
|
||||
** here always fail. SQLite will not operate with these drivers. These
|
||||
** are merely placeholders. Real drivers must be substituted using
|
||||
** sqlite3_config() before SQLite will operate.
|
||||
**
|
||||
** $Id: mem0.c,v 1.1 2008/10/28 18:58:20 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
/*
|
||||
** This version of the memory allocator is the default. It is
|
||||
** used when no other memory allocator is specified using compile-time
|
||||
** macros.
|
||||
*/
|
||||
#ifdef SQLITE_ZERO_MALLOC
|
||||
|
||||
/*
|
||||
** No-op versions of all memory allocation routines
|
||||
*/
|
||||
static void *sqlite3MemMalloc(int nByte){ return 0; }
|
||||
static void sqlite3MemFree(void *pPrior){ return; }
|
||||
static void *sqlite3MemRealloc(void *pPrior, int nByte){ return 0; }
|
||||
static int sqlite3MemSize(void *pPrior){ return 0; }
|
||||
static int sqlite3MemRoundup(int n){ return n; }
|
||||
static int sqlite3MemInit(void *NotUsed){ return SQLITE_OK; }
|
||||
static void sqlite3MemShutdown(void *NotUsed){ return; }
|
||||
|
||||
/*
|
||||
** This routine is the only routine in this file with external linkage.
|
||||
**
|
||||
** Populate the low-level memory allocation function pointers in
|
||||
** sqlite3GlobalConfig.m with pointers to the routines in this file.
|
||||
*/
|
||||
void sqlite3MemSetDefault(void){
|
||||
static const sqlite3_mem_methods defaultMethods = {
|
||||
sqlite3MemMalloc,
|
||||
sqlite3MemFree,
|
||||
sqlite3MemRealloc,
|
||||
sqlite3MemSize,
|
||||
sqlite3MemRoundup,
|
||||
sqlite3MemInit,
|
||||
sqlite3MemShutdown,
|
||||
0
|
||||
};
|
||||
sqlite3_config(SQLITE_CONFIG_MALLOC, &defaultMethods);
|
||||
}
|
||||
|
||||
#endif /* SQLITE_ZERO_MALLOC */
|
145
mem1.c
145
mem1.c
|
@ -1,145 +0,0 @@
|
|||
/*
|
||||
** 2007 August 14
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
**
|
||||
** This file contains low-level memory allocation drivers for when
|
||||
** SQLite will use the standard C-library malloc/realloc/free interface
|
||||
** to obtain the memory it needs.
|
||||
**
|
||||
** This file contains implementations of the low-level memory allocation
|
||||
** routines specified in the sqlite3_mem_methods object.
|
||||
**
|
||||
** $Id: mem1.c,v 1.30 2009/03/23 04:33:33 danielk1977 Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
/*
|
||||
** This version of the memory allocator is the default. It is
|
||||
** used when no other memory allocator is specified using compile-time
|
||||
** macros.
|
||||
*/
|
||||
#ifdef SQLITE_SYSTEM_MALLOC
|
||||
|
||||
/*
|
||||
** Like malloc(), but remember the size of the allocation
|
||||
** so that we can find it later using sqlite3MemSize().
|
||||
**
|
||||
** For this low-level routine, we are guaranteed that nByte>0 because
|
||||
** cases of nByte<=0 will be intercepted and dealt with by higher level
|
||||
** routines.
|
||||
*/
|
||||
static void *sqlite3MemMalloc(int nByte){
|
||||
sqlite3_int64 *p;
|
||||
assert( nByte>0 );
|
||||
nByte = ROUND8(nByte);
|
||||
p = malloc( nByte+8 );
|
||||
if( p ){
|
||||
p[0] = nByte;
|
||||
p++;
|
||||
}
|
||||
return (void *)p;
|
||||
}
|
||||
|
||||
/*
|
||||
** Like free() but works for allocations obtained from sqlite3MemMalloc()
|
||||
** or sqlite3MemRealloc().
|
||||
**
|
||||
** For this low-level routine, we already know that pPrior!=0 since
|
||||
** cases where pPrior==0 will have been intecepted and dealt with
|
||||
** by higher-level routines.
|
||||
*/
|
||||
static void sqlite3MemFree(void *pPrior){
|
||||
sqlite3_int64 *p = (sqlite3_int64*)pPrior;
|
||||
assert( pPrior!=0 );
|
||||
p--;
|
||||
free(p);
|
||||
}
|
||||
|
||||
/*
|
||||
** Like realloc(). Resize an allocation previously obtained from
|
||||
** sqlite3MemMalloc().
|
||||
**
|
||||
** For this low-level interface, we know that pPrior!=0. Cases where
|
||||
** pPrior==0 while have been intercepted by higher-level routine and
|
||||
** redirected to xMalloc. Similarly, we know that nByte>0 becauses
|
||||
** cases where nByte<=0 will have been intercepted by higher-level
|
||||
** routines and redirected to xFree.
|
||||
*/
|
||||
static void *sqlite3MemRealloc(void *pPrior, int nByte){
|
||||
sqlite3_int64 *p = (sqlite3_int64*)pPrior;
|
||||
assert( pPrior!=0 && nByte>0 );
|
||||
nByte = ROUND8(nByte);
|
||||
p = (sqlite3_int64*)pPrior;
|
||||
p--;
|
||||
p = realloc(p, nByte+8 );
|
||||
if( p ){
|
||||
p[0] = nByte;
|
||||
p++;
|
||||
}
|
||||
return (void*)p;
|
||||
}
|
||||
|
||||
/*
|
||||
** Report the allocated size of a prior return from xMalloc()
|
||||
** or xRealloc().
|
||||
*/
|
||||
static int sqlite3MemSize(void *pPrior){
|
||||
sqlite3_int64 *p;
|
||||
if( pPrior==0 ) return 0;
|
||||
p = (sqlite3_int64*)pPrior;
|
||||
p--;
|
||||
return (int)p[0];
|
||||
}
|
||||
|
||||
/*
|
||||
** Round up a request size to the next valid allocation size.
|
||||
*/
|
||||
static int sqlite3MemRoundup(int n){
|
||||
return ROUND8(n);
|
||||
}
|
||||
|
||||
/*
|
||||
** Initialize this module.
|
||||
*/
|
||||
static int sqlite3MemInit(void *NotUsed){
|
||||
UNUSED_PARAMETER(NotUsed);
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Deinitialize this module.
|
||||
*/
|
||||
static void sqlite3MemShutdown(void *NotUsed){
|
||||
UNUSED_PARAMETER(NotUsed);
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
** This routine is the only routine in this file with external linkage.
|
||||
**
|
||||
** Populate the low-level memory allocation function pointers in
|
||||
** sqlite3GlobalConfig.m with pointers to the routines in this file.
|
||||
*/
|
||||
void sqlite3MemSetDefault(void){
|
||||
static const sqlite3_mem_methods defaultMethods = {
|
||||
sqlite3MemMalloc,
|
||||
sqlite3MemFree,
|
||||
sqlite3MemRealloc,
|
||||
sqlite3MemSize,
|
||||
sqlite3MemRoundup,
|
||||
sqlite3MemInit,
|
||||
sqlite3MemShutdown,
|
||||
0
|
||||
};
|
||||
sqlite3_config(SQLITE_CONFIG_MALLOC, &defaultMethods);
|
||||
}
|
||||
|
||||
#endif /* SQLITE_SYSTEM_MALLOC */
|
444
mem2.c
444
mem2.c
|
@ -1,444 +0,0 @@
|
|||
/*
|
||||
** 2007 August 15
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
**
|
||||
** This file contains low-level memory allocation drivers for when
|
||||
** SQLite will use the standard C-library malloc/realloc/free interface
|
||||
** to obtain the memory it needs while adding lots of additional debugging
|
||||
** information to each allocation in order to help detect and fix memory
|
||||
** leaks and memory usage errors.
|
||||
**
|
||||
** This file contains implementations of the low-level memory allocation
|
||||
** routines specified in the sqlite3_mem_methods object.
|
||||
**
|
||||
** $Id: mem2.c,v 1.45 2009/03/23 04:33:33 danielk1977 Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
/*
|
||||
** This version of the memory allocator is used only if the
|
||||
** SQLITE_MEMDEBUG macro is defined
|
||||
*/
|
||||
#ifdef SQLITE_MEMDEBUG
|
||||
|
||||
/*
|
||||
** The backtrace functionality is only available with GLIBC
|
||||
*/
|
||||
#ifdef __GLIBC__
|
||||
extern int backtrace(void**,int);
|
||||
extern void backtrace_symbols_fd(void*const*,int,int);
|
||||
#else
|
||||
# define backtrace(A,B) 1
|
||||
# define backtrace_symbols_fd(A,B,C)
|
||||
#endif
|
||||
#include <stdio.h>
|
||||
|
||||
/*
|
||||
** Each memory allocation looks like this:
|
||||
**
|
||||
** ------------------------------------------------------------------------
|
||||
** | Title | backtrace pointers | MemBlockHdr | allocation | EndGuard |
|
||||
** ------------------------------------------------------------------------
|
||||
**
|
||||
** The application code sees only a pointer to the allocation. We have
|
||||
** to back up from the allocation pointer to find the MemBlockHdr. The
|
||||
** MemBlockHdr tells us the size of the allocation and the number of
|
||||
** backtrace pointers. There is also a guard word at the end of the
|
||||
** MemBlockHdr.
|
||||
*/
|
||||
struct MemBlockHdr {
|
||||
i64 iSize; /* Size of this allocation */
|
||||
struct MemBlockHdr *pNext, *pPrev; /* Linked list of all unfreed memory */
|
||||
char nBacktrace; /* Number of backtraces on this alloc */
|
||||
char nBacktraceSlots; /* Available backtrace slots */
|
||||
short nTitle; /* Bytes of title; includes '\0' */
|
||||
int iForeGuard; /* Guard word for sanity */
|
||||
};
|
||||
|
||||
/*
|
||||
** Guard words
|
||||
*/
|
||||
#define FOREGUARD 0x80F5E153
|
||||
#define REARGUARD 0xE4676B53
|
||||
|
||||
/*
|
||||
** Number of malloc size increments to track.
|
||||
*/
|
||||
#define NCSIZE 1000
|
||||
|
||||
/*
|
||||
** All of the static variables used by this module are collected
|
||||
** into a single structure named "mem". This is to keep the
|
||||
** static variables organized and to reduce namespace pollution
|
||||
** when this module is combined with other in the amalgamation.
|
||||
*/
|
||||
static struct {
|
||||
|
||||
/*
|
||||
** Mutex to control access to the memory allocation subsystem.
|
||||
*/
|
||||
sqlite3_mutex *mutex;
|
||||
|
||||
/*
|
||||
** Head and tail of a linked list of all outstanding allocations
|
||||
*/
|
||||
struct MemBlockHdr *pFirst;
|
||||
struct MemBlockHdr *pLast;
|
||||
|
||||
/*
|
||||
** The number of levels of backtrace to save in new allocations.
|
||||
*/
|
||||
int nBacktrace;
|
||||
void (*xBacktrace)(int, int, void **);
|
||||
|
||||
/*
|
||||
** Title text to insert in front of each block
|
||||
*/
|
||||
int nTitle; /* Bytes of zTitle to save. Includes '\0' and padding */
|
||||
char zTitle[100]; /* The title text */
|
||||
|
||||
/*
|
||||
** sqlite3MallocDisallow() increments the following counter.
|
||||
** sqlite3MallocAllow() decrements it.
|
||||
*/
|
||||
int disallow; /* Do not allow memory allocation */
|
||||
|
||||
/*
|
||||
** Gather statistics on the sizes of memory allocations.
|
||||
** nAlloc[i] is the number of allocation attempts of i*8
|
||||
** bytes. i==NCSIZE is the number of allocation attempts for
|
||||
** sizes more than NCSIZE*8 bytes.
|
||||
*/
|
||||
int nAlloc[NCSIZE]; /* Total number of allocations */
|
||||
int nCurrent[NCSIZE]; /* Current number of allocations */
|
||||
int mxCurrent[NCSIZE]; /* Highwater mark for nCurrent */
|
||||
|
||||
} mem;
|
||||
|
||||
|
||||
/*
|
||||
** Adjust memory usage statistics
|
||||
*/
|
||||
static void adjustStats(int iSize, int increment){
|
||||
int i = ROUND8(iSize)/8;
|
||||
if( i>NCSIZE-1 ){
|
||||
i = NCSIZE - 1;
|
||||
}
|
||||
if( increment>0 ){
|
||||
mem.nAlloc[i]++;
|
||||
mem.nCurrent[i]++;
|
||||
if( mem.nCurrent[i]>mem.mxCurrent[i] ){
|
||||
mem.mxCurrent[i] = mem.nCurrent[i];
|
||||
}
|
||||
}else{
|
||||
mem.nCurrent[i]--;
|
||||
assert( mem.nCurrent[i]>=0 );
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Given an allocation, find the MemBlockHdr for that allocation.
|
||||
**
|
||||
** This routine checks the guards at either end of the allocation and
|
||||
** if they are incorrect it asserts.
|
||||
*/
|
||||
static struct MemBlockHdr *sqlite3MemsysGetHeader(void *pAllocation){
|
||||
struct MemBlockHdr *p;
|
||||
int *pInt;
|
||||
u8 *pU8;
|
||||
int nReserve;
|
||||
|
||||
p = (struct MemBlockHdr*)pAllocation;
|
||||
p--;
|
||||
assert( p->iForeGuard==(int)FOREGUARD );
|
||||
nReserve = ROUND8(p->iSize);
|
||||
pInt = (int*)pAllocation;
|
||||
pU8 = (u8*)pAllocation;
|
||||
assert( pInt[nReserve/sizeof(int)]==(int)REARGUARD );
|
||||
/* This checks any of the "extra" bytes allocated due
|
||||
** to rounding up to an 8 byte boundary to ensure
|
||||
** they haven't been overwritten.
|
||||
*/
|
||||
while( nReserve-- > p->iSize ) assert( pU8[nReserve]==0x65 );
|
||||
return p;
|
||||
}
|
||||
|
||||
/*
|
||||
** Return the number of bytes currently allocated at address p.
|
||||
*/
|
||||
static int sqlite3MemSize(void *p){
|
||||
struct MemBlockHdr *pHdr;
|
||||
if( !p ){
|
||||
return 0;
|
||||
}
|
||||
pHdr = sqlite3MemsysGetHeader(p);
|
||||
return pHdr->iSize;
|
||||
}
|
||||
|
||||
/*
|
||||
** Initialize the memory allocation subsystem.
|
||||
*/
|
||||
static int sqlite3MemInit(void *NotUsed){
|
||||
UNUSED_PARAMETER(NotUsed);
|
||||
assert( (sizeof(struct MemBlockHdr)&7) == 0 );
|
||||
if( !sqlite3GlobalConfig.bMemstat ){
|
||||
/* If memory status is enabled, then the malloc.c wrapper will already
|
||||
** hold the STATIC_MEM mutex when the routines here are invoked. */
|
||||
mem.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
|
||||
}
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Deinitialize the memory allocation subsystem.
|
||||
*/
|
||||
static void sqlite3MemShutdown(void *NotUsed){
|
||||
UNUSED_PARAMETER(NotUsed);
|
||||
mem.mutex = 0;
|
||||
}
|
||||
|
||||
/*
|
||||
** Round up a request size to the next valid allocation size.
|
||||
*/
|
||||
static int sqlite3MemRoundup(int n){
|
||||
return ROUND8(n);
|
||||
}
|
||||
|
||||
/*
|
||||
** Allocate nByte bytes of memory.
|
||||
*/
|
||||
static void *sqlite3MemMalloc(int nByte){
|
||||
struct MemBlockHdr *pHdr;
|
||||
void **pBt;
|
||||
char *z;
|
||||
int *pInt;
|
||||
void *p = 0;
|
||||
int totalSize;
|
||||
int nReserve;
|
||||
sqlite3_mutex_enter(mem.mutex);
|
||||
assert( mem.disallow==0 );
|
||||
nReserve = ROUND8(nByte);
|
||||
totalSize = nReserve + sizeof(*pHdr) + sizeof(int) +
|
||||
mem.nBacktrace*sizeof(void*) + mem.nTitle;
|
||||
p = malloc(totalSize);
|
||||
if( p ){
|
||||
z = p;
|
||||
pBt = (void**)&z[mem.nTitle];
|
||||
pHdr = (struct MemBlockHdr*)&pBt[mem.nBacktrace];
|
||||
pHdr->pNext = 0;
|
||||
pHdr->pPrev = mem.pLast;
|
||||
if( mem.pLast ){
|
||||
mem.pLast->pNext = pHdr;
|
||||
}else{
|
||||
mem.pFirst = pHdr;
|
||||
}
|
||||
mem.pLast = pHdr;
|
||||
pHdr->iForeGuard = FOREGUARD;
|
||||
pHdr->nBacktraceSlots = mem.nBacktrace;
|
||||
pHdr->nTitle = mem.nTitle;
|
||||
if( mem.nBacktrace ){
|
||||
void *aAddr[40];
|
||||
pHdr->nBacktrace = backtrace(aAddr, mem.nBacktrace+1)-1;
|
||||
memcpy(pBt, &aAddr[1], pHdr->nBacktrace*sizeof(void*));
|
||||
assert(pBt[0]);
|
||||
if( mem.xBacktrace ){
|
||||
mem.xBacktrace(nByte, pHdr->nBacktrace-1, &aAddr[1]);
|
||||
}
|
||||
}else{
|
||||
pHdr->nBacktrace = 0;
|
||||
}
|
||||
if( mem.nTitle ){
|
||||
memcpy(z, mem.zTitle, mem.nTitle);
|
||||
}
|
||||
pHdr->iSize = nByte;
|
||||
adjustStats(nByte, +1);
|
||||
pInt = (int*)&pHdr[1];
|
||||
pInt[nReserve/sizeof(int)] = REARGUARD;
|
||||
memset(pInt, 0x65, nReserve);
|
||||
p = (void*)pInt;
|
||||
}
|
||||
sqlite3_mutex_leave(mem.mutex);
|
||||
return p;
|
||||
}
|
||||
|
||||
/*
|
||||
** Free memory.
|
||||
*/
|
||||
static void sqlite3MemFree(void *pPrior){
|
||||
struct MemBlockHdr *pHdr;
|
||||
void **pBt;
|
||||
char *z;
|
||||
assert( sqlite3GlobalConfig.bMemstat || mem.mutex!=0 );
|
||||
pHdr = sqlite3MemsysGetHeader(pPrior);
|
||||
pBt = (void**)pHdr;
|
||||
pBt -= pHdr->nBacktraceSlots;
|
||||
sqlite3_mutex_enter(mem.mutex);
|
||||
if( pHdr->pPrev ){
|
||||
assert( pHdr->pPrev->pNext==pHdr );
|
||||
pHdr->pPrev->pNext = pHdr->pNext;
|
||||
}else{
|
||||
assert( mem.pFirst==pHdr );
|
||||
mem.pFirst = pHdr->pNext;
|
||||
}
|
||||
if( pHdr->pNext ){
|
||||
assert( pHdr->pNext->pPrev==pHdr );
|
||||
pHdr->pNext->pPrev = pHdr->pPrev;
|
||||
}else{
|
||||
assert( mem.pLast==pHdr );
|
||||
mem.pLast = pHdr->pPrev;
|
||||
}
|
||||
z = (char*)pBt;
|
||||
z -= pHdr->nTitle;
|
||||
adjustStats(pHdr->iSize, -1);
|
||||
memset(z, 0x2b, sizeof(void*)*pHdr->nBacktraceSlots + sizeof(*pHdr) +
|
||||
pHdr->iSize + sizeof(int) + pHdr->nTitle);
|
||||
free(z);
|
||||
sqlite3_mutex_leave(mem.mutex);
|
||||
}
|
||||
|
||||
/*
|
||||
** Change the size of an existing memory allocation.
|
||||
**
|
||||
** For this debugging implementation, we *always* make a copy of the
|
||||
** allocation into a new place in memory. In this way, if the
|
||||
** higher level code is using pointer to the old allocation, it is
|
||||
** much more likely to break and we are much more liking to find
|
||||
** the error.
|
||||
*/
|
||||
static void *sqlite3MemRealloc(void *pPrior, int nByte){
|
||||
struct MemBlockHdr *pOldHdr;
|
||||
void *pNew;
|
||||
assert( mem.disallow==0 );
|
||||
pOldHdr = sqlite3MemsysGetHeader(pPrior);
|
||||
pNew = sqlite3MemMalloc(nByte);
|
||||
if( pNew ){
|
||||
memcpy(pNew, pPrior, nByte<pOldHdr->iSize ? nByte : pOldHdr->iSize);
|
||||
if( nByte>pOldHdr->iSize ){
|
||||
memset(&((char*)pNew)[pOldHdr->iSize], 0x2b, nByte - pOldHdr->iSize);
|
||||
}
|
||||
sqlite3MemFree(pPrior);
|
||||
}
|
||||
return pNew;
|
||||
}
|
||||
|
||||
/*
|
||||
** Populate the low-level memory allocation function pointers in
|
||||
** sqlite3GlobalConfig.m with pointers to the routines in this file.
|
||||
*/
|
||||
void sqlite3MemSetDefault(void){
|
||||
static const sqlite3_mem_methods defaultMethods = {
|
||||
sqlite3MemMalloc,
|
||||
sqlite3MemFree,
|
||||
sqlite3MemRealloc,
|
||||
sqlite3MemSize,
|
||||
sqlite3MemRoundup,
|
||||
sqlite3MemInit,
|
||||
sqlite3MemShutdown,
|
||||
0
|
||||
};
|
||||
sqlite3_config(SQLITE_CONFIG_MALLOC, &defaultMethods);
|
||||
}
|
||||
|
||||
/*
|
||||
** Set the number of backtrace levels kept for each allocation.
|
||||
** A value of zero turns off backtracing. The number is always rounded
|
||||
** up to a multiple of 2.
|
||||
*/
|
||||
void sqlite3MemdebugBacktrace(int depth){
|
||||
if( depth<0 ){ depth = 0; }
|
||||
if( depth>20 ){ depth = 20; }
|
||||
depth = (depth+1)&0xfe;
|
||||
mem.nBacktrace = depth;
|
||||
}
|
||||
|
||||
void sqlite3MemdebugBacktraceCallback(void (*xBacktrace)(int, int, void **)){
|
||||
mem.xBacktrace = xBacktrace;
|
||||
}
|
||||
|
||||
/*
|
||||
** Set the title string for subsequent allocations.
|
||||
*/
|
||||
void sqlite3MemdebugSettitle(const char *zTitle){
|
||||
unsigned int n = sqlite3Strlen30(zTitle) + 1;
|
||||
sqlite3_mutex_enter(mem.mutex);
|
||||
if( n>=sizeof(mem.zTitle) ) n = sizeof(mem.zTitle)-1;
|
||||
memcpy(mem.zTitle, zTitle, n);
|
||||
mem.zTitle[n] = 0;
|
||||
mem.nTitle = ROUND8(n);
|
||||
sqlite3_mutex_leave(mem.mutex);
|
||||
}
|
||||
|
||||
void sqlite3MemdebugSync(){
|
||||
struct MemBlockHdr *pHdr;
|
||||
for(pHdr=mem.pFirst; pHdr; pHdr=pHdr->pNext){
|
||||
void **pBt = (void**)pHdr;
|
||||
pBt -= pHdr->nBacktraceSlots;
|
||||
mem.xBacktrace(pHdr->iSize, pHdr->nBacktrace-1, &pBt[1]);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Open the file indicated and write a log of all unfreed memory
|
||||
** allocations into that log.
|
||||
*/
|
||||
void sqlite3MemdebugDump(const char *zFilename){
|
||||
FILE *out;
|
||||
struct MemBlockHdr *pHdr;
|
||||
void **pBt;
|
||||
int i;
|
||||
out = fopen(zFilename, "w");
|
||||
if( out==0 ){
|
||||
fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
|
||||
zFilename);
|
||||
return;
|
||||
}
|
||||
for(pHdr=mem.pFirst; pHdr; pHdr=pHdr->pNext){
|
||||
char *z = (char*)pHdr;
|
||||
z -= pHdr->nBacktraceSlots*sizeof(void*) + pHdr->nTitle;
|
||||
fprintf(out, "**** %lld bytes at %p from %s ****\n",
|
||||
pHdr->iSize, &pHdr[1], pHdr->nTitle ? z : "???");
|
||||
if( pHdr->nBacktrace ){
|
||||
fflush(out);
|
||||
pBt = (void**)pHdr;
|
||||
pBt -= pHdr->nBacktraceSlots;
|
||||
backtrace_symbols_fd(pBt, pHdr->nBacktrace, fileno(out));
|
||||
fprintf(out, "\n");
|
||||
}
|
||||
}
|
||||
fprintf(out, "COUNTS:\n");
|
||||
for(i=0; i<NCSIZE-1; i++){
|
||||
if( mem.nAlloc[i] ){
|
||||
fprintf(out, " %5d: %10d %10d %10d\n",
|
||||
i*8, mem.nAlloc[i], mem.nCurrent[i], mem.mxCurrent[i]);
|
||||
}
|
||||
}
|
||||
if( mem.nAlloc[NCSIZE-1] ){
|
||||
fprintf(out, " %5d: %10d %10d %10d\n",
|
||||
NCSIZE*8-8, mem.nAlloc[NCSIZE-1],
|
||||
mem.nCurrent[NCSIZE-1], mem.mxCurrent[NCSIZE-1]);
|
||||
}
|
||||
fclose(out);
|
||||
}
|
||||
|
||||
/*
|
||||
** Return the number of times sqlite3MemMalloc() has been called.
|
||||
*/
|
||||
int sqlite3MemdebugMallocCount(){
|
||||
int i;
|
||||
int nTotal = 0;
|
||||
for(i=0; i<NCSIZE; i++){
|
||||
nTotal += mem.nAlloc[i];
|
||||
}
|
||||
return nTotal;
|
||||
}
|
||||
|
||||
|
||||
#endif /* SQLITE_MEMDEBUG */
|
688
mem3.c
688
mem3.c
|
@ -1,688 +0,0 @@
|
|||
/*
|
||||
** 2007 October 14
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This file contains the C functions that implement a memory
|
||||
** allocation subsystem for use by SQLite.
|
||||
**
|
||||
** This version of the memory allocation subsystem omits all
|
||||
** use of malloc(). The SQLite user supplies a block of memory
|
||||
** before calling sqlite3_initialize() from which allocations
|
||||
** are made and returned by the xMalloc() and xRealloc()
|
||||
** implementations. Once sqlite3_initialize() has been called,
|
||||
** the amount of memory available to SQLite is fixed and cannot
|
||||
** be changed.
|
||||
**
|
||||
** This version of the memory allocation subsystem is included
|
||||
** in the build only if SQLITE_ENABLE_MEMSYS3 is defined.
|
||||
**
|
||||
** $Id: mem3.c,v 1.25 2008/11/19 16:52:44 danielk1977 Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
/*
|
||||
** This version of the memory allocator is only built into the library
|
||||
** SQLITE_ENABLE_MEMSYS3 is defined. Defining this symbol does not
|
||||
** mean that the library will use a memory-pool by default, just that
|
||||
** it is available. The mempool allocator is activated by calling
|
||||
** sqlite3_config().
|
||||
*/
|
||||
#ifdef SQLITE_ENABLE_MEMSYS3
|
||||
|
||||
/*
|
||||
** Maximum size (in Mem3Blocks) of a "small" chunk.
|
||||
*/
|
||||
#define MX_SMALL 10
|
||||
|
||||
|
||||
/*
|
||||
** Number of freelist hash slots
|
||||
*/
|
||||
#define N_HASH 61
|
||||
|
||||
/*
|
||||
** A memory allocation (also called a "chunk") consists of two or
|
||||
** more blocks where each block is 8 bytes. The first 8 bytes are
|
||||
** a header that is not returned to the user.
|
||||
**
|
||||
** A chunk is two or more blocks that is either checked out or
|
||||
** free. The first block has format u.hdr. u.hdr.size4x is 4 times the
|
||||
** size of the allocation in blocks if the allocation is free.
|
||||
** The u.hdr.size4x&1 bit is true if the chunk is checked out and
|
||||
** false if the chunk is on the freelist. The u.hdr.size4x&2 bit
|
||||
** is true if the previous chunk is checked out and false if the
|
||||
** previous chunk is free. The u.hdr.prevSize field is the size of
|
||||
** the previous chunk in blocks if the previous chunk is on the
|
||||
** freelist. If the previous chunk is checked out, then
|
||||
** u.hdr.prevSize can be part of the data for that chunk and should
|
||||
** not be read or written.
|
||||
**
|
||||
** We often identify a chunk by its index in mem3.aPool[]. When
|
||||
** this is done, the chunk index refers to the second block of
|
||||
** the chunk. In this way, the first chunk has an index of 1.
|
||||
** A chunk index of 0 means "no such chunk" and is the equivalent
|
||||
** of a NULL pointer.
|
||||
**
|
||||
** The second block of free chunks is of the form u.list. The
|
||||
** two fields form a double-linked list of chunks of related sizes.
|
||||
** Pointers to the head of the list are stored in mem3.aiSmall[]
|
||||
** for smaller chunks and mem3.aiHash[] for larger chunks.
|
||||
**
|
||||
** The second block of a chunk is user data if the chunk is checked
|
||||
** out. If a chunk is checked out, the user data may extend into
|
||||
** the u.hdr.prevSize value of the following chunk.
|
||||
*/
|
||||
typedef struct Mem3Block Mem3Block;
|
||||
struct Mem3Block {
|
||||
union {
|
||||
struct {
|
||||
u32 prevSize; /* Size of previous chunk in Mem3Block elements */
|
||||
u32 size4x; /* 4x the size of current chunk in Mem3Block elements */
|
||||
} hdr;
|
||||
struct {
|
||||
u32 next; /* Index in mem3.aPool[] of next free chunk */
|
||||
u32 prev; /* Index in mem3.aPool[] of previous free chunk */
|
||||
} list;
|
||||
} u;
|
||||
};
|
||||
|
||||
/*
|
||||
** All of the static variables used by this module are collected
|
||||
** into a single structure named "mem3". This is to keep the
|
||||
** static variables organized and to reduce namespace pollution
|
||||
** when this module is combined with other in the amalgamation.
|
||||
*/
|
||||
static SQLITE_WSD struct Mem3Global {
|
||||
/*
|
||||
** Memory available for allocation. nPool is the size of the array
|
||||
** (in Mem3Blocks) pointed to by aPool less 2.
|
||||
*/
|
||||
u32 nPool;
|
||||
Mem3Block *aPool;
|
||||
|
||||
/*
|
||||
** True if we are evaluating an out-of-memory callback.
|
||||
*/
|
||||
int alarmBusy;
|
||||
|
||||
/*
|
||||
** Mutex to control access to the memory allocation subsystem.
|
||||
*/
|
||||
sqlite3_mutex *mutex;
|
||||
|
||||
/*
|
||||
** The minimum amount of free space that we have seen.
|
||||
*/
|
||||
u32 mnMaster;
|
||||
|
||||
/*
|
||||
** iMaster is the index of the master chunk. Most new allocations
|
||||
** occur off of this chunk. szMaster is the size (in Mem3Blocks)
|
||||
** of the current master. iMaster is 0 if there is not master chunk.
|
||||
** The master chunk is not in either the aiHash[] or aiSmall[].
|
||||
*/
|
||||
u32 iMaster;
|
||||
u32 szMaster;
|
||||
|
||||
/*
|
||||
** Array of lists of free blocks according to the block size
|
||||
** for smaller chunks, or a hash on the block size for larger
|
||||
** chunks.
|
||||
*/
|
||||
u32 aiSmall[MX_SMALL-1]; /* For sizes 2 through MX_SMALL, inclusive */
|
||||
u32 aiHash[N_HASH]; /* For sizes MX_SMALL+1 and larger */
|
||||
} mem3 = { 97535575 };
|
||||
|
||||
#define mem3 GLOBAL(struct Mem3Global, mem3)
|
||||
|
||||
/*
|
||||
** Unlink the chunk at mem3.aPool[i] from list it is currently
|
||||
** on. *pRoot is the list that i is a member of.
|
||||
*/
|
||||
static void memsys3UnlinkFromList(u32 i, u32 *pRoot){
|
||||
u32 next = mem3.aPool[i].u.list.next;
|
||||
u32 prev = mem3.aPool[i].u.list.prev;
|
||||
assert( sqlite3_mutex_held(mem3.mutex) );
|
||||
if( prev==0 ){
|
||||
*pRoot = next;
|
||||
}else{
|
||||
mem3.aPool[prev].u.list.next = next;
|
||||
}
|
||||
if( next ){
|
||||
mem3.aPool[next].u.list.prev = prev;
|
||||
}
|
||||
mem3.aPool[i].u.list.next = 0;
|
||||
mem3.aPool[i].u.list.prev = 0;
|
||||
}
|
||||
|
||||
/*
|
||||
** Unlink the chunk at index i from
|
||||
** whatever list is currently a member of.
|
||||
*/
|
||||
static void memsys3Unlink(u32 i){
|
||||
u32 size, hash;
|
||||
assert( sqlite3_mutex_held(mem3.mutex) );
|
||||
assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 );
|
||||
assert( i>=1 );
|
||||
size = mem3.aPool[i-1].u.hdr.size4x/4;
|
||||
assert( size==mem3.aPool[i+size-1].u.hdr.prevSize );
|
||||
assert( size>=2 );
|
||||
if( size <= MX_SMALL ){
|
||||
memsys3UnlinkFromList(i, &mem3.aiSmall[size-2]);
|
||||
}else{
|
||||
hash = size % N_HASH;
|
||||
memsys3UnlinkFromList(i, &mem3.aiHash[hash]);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Link the chunk at mem3.aPool[i] so that is on the list rooted
|
||||
** at *pRoot.
|
||||
*/
|
||||
static void memsys3LinkIntoList(u32 i, u32 *pRoot){
|
||||
assert( sqlite3_mutex_held(mem3.mutex) );
|
||||
mem3.aPool[i].u.list.next = *pRoot;
|
||||
mem3.aPool[i].u.list.prev = 0;
|
||||
if( *pRoot ){
|
||||
mem3.aPool[*pRoot].u.list.prev = i;
|
||||
}
|
||||
*pRoot = i;
|
||||
}
|
||||
|
||||
/*
|
||||
** Link the chunk at index i into either the appropriate
|
||||
** small chunk list, or into the large chunk hash table.
|
||||
*/
|
||||
static void memsys3Link(u32 i){
|
||||
u32 size, hash;
|
||||
assert( sqlite3_mutex_held(mem3.mutex) );
|
||||
assert( i>=1 );
|
||||
assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 );
|
||||
size = mem3.aPool[i-1].u.hdr.size4x/4;
|
||||
assert( size==mem3.aPool[i+size-1].u.hdr.prevSize );
|
||||
assert( size>=2 );
|
||||
if( size <= MX_SMALL ){
|
||||
memsys3LinkIntoList(i, &mem3.aiSmall[size-2]);
|
||||
}else{
|
||||
hash = size % N_HASH;
|
||||
memsys3LinkIntoList(i, &mem3.aiHash[hash]);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** If the STATIC_MEM mutex is not already held, obtain it now. The mutex
|
||||
** will already be held (obtained by code in malloc.c) if
|
||||
** sqlite3GlobalConfig.bMemStat is true.
|
||||
*/
|
||||
static void memsys3Enter(void){
|
||||
if( sqlite3GlobalConfig.bMemstat==0 && mem3.mutex==0 ){
|
||||
mem3.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
|
||||
}
|
||||
sqlite3_mutex_enter(mem3.mutex);
|
||||
}
|
||||
static void memsys3Leave(void){
|
||||
sqlite3_mutex_leave(mem3.mutex);
|
||||
}
|
||||
|
||||
/*
|
||||
** Called when we are unable to satisfy an allocation of nBytes.
|
||||
*/
|
||||
static void memsys3OutOfMemory(int nByte){
|
||||
if( !mem3.alarmBusy ){
|
||||
mem3.alarmBusy = 1;
|
||||
assert( sqlite3_mutex_held(mem3.mutex) );
|
||||
sqlite3_mutex_leave(mem3.mutex);
|
||||
sqlite3_release_memory(nByte);
|
||||
sqlite3_mutex_enter(mem3.mutex);
|
||||
mem3.alarmBusy = 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** Chunk i is a free chunk that has been unlinked. Adjust its
|
||||
** size parameters for check-out and return a pointer to the
|
||||
** user portion of the chunk.
|
||||
*/
|
||||
static void *memsys3Checkout(u32 i, u32 nBlock){
|
||||
u32 x;
|
||||
assert( sqlite3_mutex_held(mem3.mutex) );
|
||||
assert( i>=1 );
|
||||
assert( mem3.aPool[i-1].u.hdr.size4x/4==nBlock );
|
||||
assert( mem3.aPool[i+nBlock-1].u.hdr.prevSize==nBlock );
|
||||
x = mem3.aPool[i-1].u.hdr.size4x;
|
||||
mem3.aPool[i-1].u.hdr.size4x = nBlock*4 | 1 | (x&2);
|
||||
mem3.aPool[i+nBlock-1].u.hdr.prevSize = nBlock;
|
||||
mem3.aPool[i+nBlock-1].u.hdr.size4x |= 2;
|
||||
return &mem3.aPool[i];
|
||||
}
|
||||
|
||||
/*
|
||||
** Carve a piece off of the end of the mem3.iMaster free chunk.
|
||||
** Return a pointer to the new allocation. Or, if the master chunk
|
||||
** is not large enough, return 0.
|
||||
*/
|
||||
static void *memsys3FromMaster(u32 nBlock){
|
||||
assert( sqlite3_mutex_held(mem3.mutex) );
|
||||
assert( mem3.szMaster>=nBlock );
|
||||
if( nBlock>=mem3.szMaster-1 ){
|
||||
/* Use the entire master */
|
||||
void *p = memsys3Checkout(mem3.iMaster, mem3.szMaster);
|
||||
mem3.iMaster = 0;
|
||||
mem3.szMaster = 0;
|
||||
mem3.mnMaster = 0;
|
||||
return p;
|
||||
}else{
|
||||
/* Split the master block. Return the tail. */
|
||||
u32 newi, x;
|
||||
newi = mem3.iMaster + mem3.szMaster - nBlock;
|
||||
assert( newi > mem3.iMaster+1 );
|
||||
mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = nBlock;
|
||||
mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x |= 2;
|
||||
mem3.aPool[newi-1].u.hdr.size4x = nBlock*4 + 1;
|
||||
mem3.szMaster -= nBlock;
|
||||
mem3.aPool[newi-1].u.hdr.prevSize = mem3.szMaster;
|
||||
x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2;
|
||||
mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x;
|
||||
if( mem3.szMaster < mem3.mnMaster ){
|
||||
mem3.mnMaster = mem3.szMaster;
|
||||
}
|
||||
return (void*)&mem3.aPool[newi];
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** *pRoot is the head of a list of free chunks of the same size
|
||||
** or same size hash. In other words, *pRoot is an entry in either
|
||||
** mem3.aiSmall[] or mem3.aiHash[].
|
||||
**
|
||||
** This routine examines all entries on the given list and tries
|
||||
** to coalesce each entries with adjacent free chunks.
|
||||
**
|
||||
** If it sees a chunk that is larger than mem3.iMaster, it replaces
|
||||
** the current mem3.iMaster with the new larger chunk. In order for
|
||||
** this mem3.iMaster replacement to work, the master chunk must be
|
||||
** linked into the hash tables. That is not the normal state of
|
||||
** affairs, of course. The calling routine must link the master
|
||||
** chunk before invoking this routine, then must unlink the (possibly
|
||||
** changed) master chunk once this routine has finished.
|
||||
*/
|
||||
static void memsys3Merge(u32 *pRoot){
|
||||
u32 iNext, prev, size, i, x;
|
||||
|
||||
assert( sqlite3_mutex_held(mem3.mutex) );
|
||||
for(i=*pRoot; i>0; i=iNext){
|
||||
iNext = mem3.aPool[i].u.list.next;
|
||||
size = mem3.aPool[i-1].u.hdr.size4x;
|
||||
assert( (size&1)==0 );
|
||||
if( (size&2)==0 ){
|
||||
memsys3UnlinkFromList(i, pRoot);
|
||||
assert( i > mem3.aPool[i-1].u.hdr.prevSize );
|
||||
prev = i - mem3.aPool[i-1].u.hdr.prevSize;
|
||||
if( prev==iNext ){
|
||||
iNext = mem3.aPool[prev].u.list.next;
|
||||
}
|
||||
memsys3Unlink(prev);
|
||||
size = i + size/4 - prev;
|
||||
x = mem3.aPool[prev-1].u.hdr.size4x & 2;
|
||||
mem3.aPool[prev-1].u.hdr.size4x = size*4 | x;
|
||||
mem3.aPool[prev+size-1].u.hdr.prevSize = size;
|
||||
memsys3Link(prev);
|
||||
i = prev;
|
||||
}else{
|
||||
size /= 4;
|
||||
}
|
||||
if( size>mem3.szMaster ){
|
||||
mem3.iMaster = i;
|
||||
mem3.szMaster = size;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Return a block of memory of at least nBytes in size.
|
||||
** Return NULL if unable.
|
||||
**
|
||||
** This function assumes that the necessary mutexes, if any, are
|
||||
** already held by the caller. Hence "Unsafe".
|
||||
*/
|
||||
static void *memsys3MallocUnsafe(int nByte){
|
||||
u32 i;
|
||||
u32 nBlock;
|
||||
u32 toFree;
|
||||
|
||||
assert( sqlite3_mutex_held(mem3.mutex) );
|
||||
assert( sizeof(Mem3Block)==8 );
|
||||
if( nByte<=12 ){
|
||||
nBlock = 2;
|
||||
}else{
|
||||
nBlock = (nByte + 11)/8;
|
||||
}
|
||||
assert( nBlock>=2 );
|
||||
|
||||
/* STEP 1:
|
||||
** Look for an entry of the correct size in either the small
|
||||
** chunk table or in the large chunk hash table. This is
|
||||
** successful most of the time (about 9 times out of 10).
|
||||
*/
|
||||
if( nBlock <= MX_SMALL ){
|
||||
i = mem3.aiSmall[nBlock-2];
|
||||
if( i>0 ){
|
||||
memsys3UnlinkFromList(i, &mem3.aiSmall[nBlock-2]);
|
||||
return memsys3Checkout(i, nBlock);
|
||||
}
|
||||
}else{
|
||||
int hash = nBlock % N_HASH;
|
||||
for(i=mem3.aiHash[hash]; i>0; i=mem3.aPool[i].u.list.next){
|
||||
if( mem3.aPool[i-1].u.hdr.size4x/4==nBlock ){
|
||||
memsys3UnlinkFromList(i, &mem3.aiHash[hash]);
|
||||
return memsys3Checkout(i, nBlock);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* STEP 2:
|
||||
** Try to satisfy the allocation by carving a piece off of the end
|
||||
** of the master chunk. This step usually works if step 1 fails.
|
||||
*/
|
||||
if( mem3.szMaster>=nBlock ){
|
||||
return memsys3FromMaster(nBlock);
|
||||
}
|
||||
|
||||
|
||||
/* STEP 3:
|
||||
** Loop through the entire memory pool. Coalesce adjacent free
|
||||
** chunks. Recompute the master chunk as the largest free chunk.
|
||||
** Then try again to satisfy the allocation by carving a piece off
|
||||
** of the end of the master chunk. This step happens very
|
||||
** rarely (we hope!)
|
||||
*/
|
||||
for(toFree=nBlock*16; toFree<(mem3.nPool*16); toFree *= 2){
|
||||
memsys3OutOfMemory(toFree);
|
||||
if( mem3.iMaster ){
|
||||
memsys3Link(mem3.iMaster);
|
||||
mem3.iMaster = 0;
|
||||
mem3.szMaster = 0;
|
||||
}
|
||||
for(i=0; i<N_HASH; i++){
|
||||
memsys3Merge(&mem3.aiHash[i]);
|
||||
}
|
||||
for(i=0; i<MX_SMALL-1; i++){
|
||||
memsys3Merge(&mem3.aiSmall[i]);
|
||||
}
|
||||
if( mem3.szMaster ){
|
||||
memsys3Unlink(mem3.iMaster);
|
||||
if( mem3.szMaster>=nBlock ){
|
||||
return memsys3FromMaster(nBlock);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* If none of the above worked, then we fail. */
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
** Free an outstanding memory allocation.
|
||||
**
|
||||
** This function assumes that the necessary mutexes, if any, are
|
||||
** already held by the caller. Hence "Unsafe".
|
||||
*/
|
||||
void memsys3FreeUnsafe(void *pOld){
|
||||
Mem3Block *p = (Mem3Block*)pOld;
|
||||
int i;
|
||||
u32 size, x;
|
||||
assert( sqlite3_mutex_held(mem3.mutex) );
|
||||
assert( p>mem3.aPool && p<&mem3.aPool[mem3.nPool] );
|
||||
i = p - mem3.aPool;
|
||||
assert( (mem3.aPool[i-1].u.hdr.size4x&1)==1 );
|
||||
size = mem3.aPool[i-1].u.hdr.size4x/4;
|
||||
assert( i+size<=mem3.nPool+1 );
|
||||
mem3.aPool[i-1].u.hdr.size4x &= ~1;
|
||||
mem3.aPool[i+size-1].u.hdr.prevSize = size;
|
||||
mem3.aPool[i+size-1].u.hdr.size4x &= ~2;
|
||||
memsys3Link(i);
|
||||
|
||||
/* Try to expand the master using the newly freed chunk */
|
||||
if( mem3.iMaster ){
|
||||
while( (mem3.aPool[mem3.iMaster-1].u.hdr.size4x&2)==0 ){
|
||||
size = mem3.aPool[mem3.iMaster-1].u.hdr.prevSize;
|
||||
mem3.iMaster -= size;
|
||||
mem3.szMaster += size;
|
||||
memsys3Unlink(mem3.iMaster);
|
||||
x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2;
|
||||
mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x;
|
||||
mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = mem3.szMaster;
|
||||
}
|
||||
x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2;
|
||||
while( (mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x&1)==0 ){
|
||||
memsys3Unlink(mem3.iMaster+mem3.szMaster);
|
||||
mem3.szMaster += mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x/4;
|
||||
mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x;
|
||||
mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = mem3.szMaster;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Return the size of an outstanding allocation, in bytes. The
|
||||
** size returned omits the 8-byte header overhead. This only
|
||||
** works for chunks that are currently checked out.
|
||||
*/
|
||||
static int memsys3Size(void *p){
|
||||
Mem3Block *pBlock;
|
||||
if( p==0 ) return 0;
|
||||
pBlock = (Mem3Block*)p;
|
||||
assert( (pBlock[-1].u.hdr.size4x&1)!=0 );
|
||||
return (pBlock[-1].u.hdr.size4x&~3)*2 - 4;
|
||||
}
|
||||
|
||||
/*
|
||||
** Round up a request size to the next valid allocation size.
|
||||
*/
|
||||
static int memsys3Roundup(int n){
|
||||
if( n<=12 ){
|
||||
return 12;
|
||||
}else{
|
||||
return ((n+11)&~7) - 4;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Allocate nBytes of memory.
|
||||
*/
|
||||
static void *memsys3Malloc(int nBytes){
|
||||
sqlite3_int64 *p;
|
||||
assert( nBytes>0 ); /* malloc.c filters out 0 byte requests */
|
||||
memsys3Enter();
|
||||
p = memsys3MallocUnsafe(nBytes);
|
||||
memsys3Leave();
|
||||
return (void*)p;
|
||||
}
|
||||
|
||||
/*
|
||||
** Free memory.
|
||||
*/
|
||||
void memsys3Free(void *pPrior){
|
||||
assert( pPrior );
|
||||
memsys3Enter();
|
||||
memsys3FreeUnsafe(pPrior);
|
||||
memsys3Leave();
|
||||
}
|
||||
|
||||
/*
|
||||
** Change the size of an existing memory allocation
|
||||
*/
|
||||
void *memsys3Realloc(void *pPrior, int nBytes){
|
||||
int nOld;
|
||||
void *p;
|
||||
if( pPrior==0 ){
|
||||
return sqlite3_malloc(nBytes);
|
||||
}
|
||||
if( nBytes<=0 ){
|
||||
sqlite3_free(pPrior);
|
||||
return 0;
|
||||
}
|
||||
nOld = memsys3Size(pPrior);
|
||||
if( nBytes<=nOld && nBytes>=nOld-128 ){
|
||||
return pPrior;
|
||||
}
|
||||
memsys3Enter();
|
||||
p = memsys3MallocUnsafe(nBytes);
|
||||
if( p ){
|
||||
if( nOld<nBytes ){
|
||||
memcpy(p, pPrior, nOld);
|
||||
}else{
|
||||
memcpy(p, pPrior, nBytes);
|
||||
}
|
||||
memsys3FreeUnsafe(pPrior);
|
||||
}
|
||||
memsys3Leave();
|
||||
return p;
|
||||
}
|
||||
|
||||
/*
|
||||
** Initialize this module.
|
||||
*/
|
||||
static int memsys3Init(void *NotUsed){
|
||||
UNUSED_PARAMETER(NotUsed);
|
||||
if( !sqlite3GlobalConfig.pHeap ){
|
||||
return SQLITE_ERROR;
|
||||
}
|
||||
|
||||
/* Store a pointer to the memory block in global structure mem3. */
|
||||
assert( sizeof(Mem3Block)==8 );
|
||||
mem3.aPool = (Mem3Block *)sqlite3GlobalConfig.pHeap;
|
||||
mem3.nPool = (sqlite3GlobalConfig.nHeap / sizeof(Mem3Block)) - 2;
|
||||
|
||||
/* Initialize the master block. */
|
||||
mem3.szMaster = mem3.nPool;
|
||||
mem3.mnMaster = mem3.szMaster;
|
||||
mem3.iMaster = 1;
|
||||
mem3.aPool[0].u.hdr.size4x = (mem3.szMaster<<2) + 2;
|
||||
mem3.aPool[mem3.nPool].u.hdr.prevSize = mem3.nPool;
|
||||
mem3.aPool[mem3.nPool].u.hdr.size4x = 1;
|
||||
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Deinitialize this module.
|
||||
*/
|
||||
static void memsys3Shutdown(void *NotUsed){
|
||||
UNUSED_PARAMETER(NotUsed);
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*
|
||||
** Open the file indicated and write a log of all unfreed memory
|
||||
** allocations into that log.
|
||||
*/
|
||||
void sqlite3Memsys3Dump(const char *zFilename){
|
||||
#ifdef SQLITE_DEBUG
|
||||
FILE *out;
|
||||
u32 i, j;
|
||||
u32 size;
|
||||
if( zFilename==0 || zFilename[0]==0 ){
|
||||
out = stdout;
|
||||
}else{
|
||||
out = fopen(zFilename, "w");
|
||||
if( out==0 ){
|
||||
fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
|
||||
zFilename);
|
||||
return;
|
||||
}
|
||||
}
|
||||
memsys3Enter();
|
||||
fprintf(out, "CHUNKS:\n");
|
||||
for(i=1; i<=mem3.nPool; i+=size/4){
|
||||
size = mem3.aPool[i-1].u.hdr.size4x;
|
||||
if( size/4<=1 ){
|
||||
fprintf(out, "%p size error\n", &mem3.aPool[i]);
|
||||
assert( 0 );
|
||||
break;
|
||||
}
|
||||
if( (size&1)==0 && mem3.aPool[i+size/4-1].u.hdr.prevSize!=size/4 ){
|
||||
fprintf(out, "%p tail size does not match\n", &mem3.aPool[i]);
|
||||
assert( 0 );
|
||||
break;
|
||||
}
|
||||
if( ((mem3.aPool[i+size/4-1].u.hdr.size4x&2)>>1)!=(size&1) ){
|
||||
fprintf(out, "%p tail checkout bit is incorrect\n", &mem3.aPool[i]);
|
||||
assert( 0 );
|
||||
break;
|
||||
}
|
||||
if( size&1 ){
|
||||
fprintf(out, "%p %6d bytes checked out\n", &mem3.aPool[i], (size/4)*8-8);
|
||||
}else{
|
||||
fprintf(out, "%p %6d bytes free%s\n", &mem3.aPool[i], (size/4)*8-8,
|
||||
i==mem3.iMaster ? " **master**" : "");
|
||||
}
|
||||
}
|
||||
for(i=0; i<MX_SMALL-1; i++){
|
||||
if( mem3.aiSmall[i]==0 ) continue;
|
||||
fprintf(out, "small(%2d):", i);
|
||||
for(j = mem3.aiSmall[i]; j>0; j=mem3.aPool[j].u.list.next){
|
||||
fprintf(out, " %p(%d)", &mem3.aPool[j],
|
||||
(mem3.aPool[j-1].u.hdr.size4x/4)*8-8);
|
||||
}
|
||||
fprintf(out, "\n");
|
||||
}
|
||||
for(i=0; i<N_HASH; i++){
|
||||
if( mem3.aiHash[i]==0 ) continue;
|
||||
fprintf(out, "hash(%2d):", i);
|
||||
for(j = mem3.aiHash[i]; j>0; j=mem3.aPool[j].u.list.next){
|
||||
fprintf(out, " %p(%d)", &mem3.aPool[j],
|
||||
(mem3.aPool[j-1].u.hdr.size4x/4)*8-8);
|
||||
}
|
||||
fprintf(out, "\n");
|
||||
}
|
||||
fprintf(out, "master=%d\n", mem3.iMaster);
|
||||
fprintf(out, "nowUsed=%d\n", mem3.nPool*8 - mem3.szMaster*8);
|
||||
fprintf(out, "mxUsed=%d\n", mem3.nPool*8 - mem3.mnMaster*8);
|
||||
sqlite3_mutex_leave(mem3.mutex);
|
||||
if( out==stdout ){
|
||||
fflush(stdout);
|
||||
}else{
|
||||
fclose(out);
|
||||
}
|
||||
#else
|
||||
UNUSED_PARAMETER(zFilename);
|
||||
#endif
|
||||
}
|
||||
|
||||
/*
|
||||
** This routine is the only routine in this file with external
|
||||
** linkage.
|
||||
**
|
||||
** Populate the low-level memory allocation function pointers in
|
||||
** sqlite3GlobalConfig.m with pointers to the routines in this file. The
|
||||
** arguments specify the block of memory to manage.
|
||||
**
|
||||
** This routine is only called by sqlite3_config(), and therefore
|
||||
** is not required to be threadsafe (it is not).
|
||||
*/
|
||||
const sqlite3_mem_methods *sqlite3MemGetMemsys3(void){
|
||||
static const sqlite3_mem_methods mempoolMethods = {
|
||||
memsys3Malloc,
|
||||
memsys3Free,
|
||||
memsys3Realloc,
|
||||
memsys3Size,
|
||||
memsys3Roundup,
|
||||
memsys3Init,
|
||||
memsys3Shutdown,
|
||||
0
|
||||
};
|
||||
return &mempoolMethods;
|
||||
}
|
||||
|
||||
#endif /* SQLITE_ENABLE_MEMSYS3 */
|
488
mem5.c
488
mem5.c
|
@ -1,488 +0,0 @@
|
|||
/*
|
||||
** 2007 October 14
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This file contains the C functions that implement a memory
|
||||
** allocation subsystem for use by SQLite.
|
||||
**
|
||||
** This version of the memory allocation subsystem omits all
|
||||
** use of malloc(). The SQLite user supplies a block of memory
|
||||
** before calling sqlite3_initialize() from which allocations
|
||||
** are made and returned by the xMalloc() and xRealloc()
|
||||
** implementations. Once sqlite3_initialize() has been called,
|
||||
** the amount of memory available to SQLite is fixed and cannot
|
||||
** be changed.
|
||||
**
|
||||
** This version of the memory allocation subsystem is included
|
||||
** in the build only if SQLITE_ENABLE_MEMSYS5 is defined.
|
||||
**
|
||||
** $Id: mem5.c,v 1.19 2008/11/19 16:52:44 danielk1977 Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
/*
|
||||
** This version of the memory allocator is used only when
|
||||
** SQLITE_ENABLE_MEMSYS5 is defined.
|
||||
*/
|
||||
#ifdef SQLITE_ENABLE_MEMSYS5
|
||||
|
||||
/*
|
||||
** A minimum allocation is an instance of the following structure.
|
||||
** Larger allocations are an array of these structures where the
|
||||
** size of the array is a power of 2.
|
||||
*/
|
||||
typedef struct Mem5Link Mem5Link;
|
||||
struct Mem5Link {
|
||||
int next; /* Index of next free chunk */
|
||||
int prev; /* Index of previous free chunk */
|
||||
};
|
||||
|
||||
/*
|
||||
** Maximum size of any allocation is ((1<<LOGMAX)*mem5.nAtom). Since
|
||||
** mem5.nAtom is always at least 8, this is not really a practical
|
||||
** limitation.
|
||||
*/
|
||||
#define LOGMAX 30
|
||||
|
||||
/*
|
||||
** Masks used for mem5.aCtrl[] elements.
|
||||
*/
|
||||
#define CTRL_LOGSIZE 0x1f /* Log2 Size of this block relative to POW2_MIN */
|
||||
#define CTRL_FREE 0x20 /* True if not checked out */
|
||||
|
||||
/*
|
||||
** All of the static variables used by this module are collected
|
||||
** into a single structure named "mem5". This is to keep the
|
||||
** static variables organized and to reduce namespace pollution
|
||||
** when this module is combined with other in the amalgamation.
|
||||
*/
|
||||
static SQLITE_WSD struct Mem5Global {
|
||||
/*
|
||||
** Memory available for allocation
|
||||
*/
|
||||
int nAtom; /* Smallest possible allocation in bytes */
|
||||
int nBlock; /* Number of nAtom sized blocks in zPool */
|
||||
u8 *zPool;
|
||||
|
||||
/*
|
||||
** Mutex to control access to the memory allocation subsystem.
|
||||
*/
|
||||
sqlite3_mutex *mutex;
|
||||
|
||||
/*
|
||||
** Performance statistics
|
||||
*/
|
||||
u64 nAlloc; /* Total number of calls to malloc */
|
||||
u64 totalAlloc; /* Total of all malloc calls - includes internal frag */
|
||||
u64 totalExcess; /* Total internal fragmentation */
|
||||
u32 currentOut; /* Current checkout, including internal fragmentation */
|
||||
u32 currentCount; /* Current number of distinct checkouts */
|
||||
u32 maxOut; /* Maximum instantaneous currentOut */
|
||||
u32 maxCount; /* Maximum instantaneous currentCount */
|
||||
u32 maxRequest; /* Largest allocation (exclusive of internal frag) */
|
||||
|
||||
/*
|
||||
** Lists of free blocks of various sizes.
|
||||
*/
|
||||
int aiFreelist[LOGMAX+1];
|
||||
|
||||
/*
|
||||
** Space for tracking which blocks are checked out and the size
|
||||
** of each block. One byte per block.
|
||||
*/
|
||||
u8 *aCtrl;
|
||||
|
||||
} mem5 = { 19804167 };
|
||||
|
||||
#define mem5 GLOBAL(struct Mem5Global, mem5)
|
||||
|
||||
#define MEM5LINK(idx) ((Mem5Link *)(&mem5.zPool[(idx)*mem5.nAtom]))
|
||||
|
||||
/*
|
||||
** Unlink the chunk at mem5.aPool[i] from list it is currently
|
||||
** on. It should be found on mem5.aiFreelist[iLogsize].
|
||||
*/
|
||||
static void memsys5Unlink(int i, int iLogsize){
|
||||
int next, prev;
|
||||
assert( i>=0 && i<mem5.nBlock );
|
||||
assert( iLogsize>=0 && iLogsize<=LOGMAX );
|
||||
assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
|
||||
|
||||
next = MEM5LINK(i)->next;
|
||||
prev = MEM5LINK(i)->prev;
|
||||
if( prev<0 ){
|
||||
mem5.aiFreelist[iLogsize] = next;
|
||||
}else{
|
||||
MEM5LINK(prev)->next = next;
|
||||
}
|
||||
if( next>=0 ){
|
||||
MEM5LINK(next)->prev = prev;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Link the chunk at mem5.aPool[i] so that is on the iLogsize
|
||||
** free list.
|
||||
*/
|
||||
static void memsys5Link(int i, int iLogsize){
|
||||
int x;
|
||||
assert( sqlite3_mutex_held(mem5.mutex) );
|
||||
assert( i>=0 && i<mem5.nBlock );
|
||||
assert( iLogsize>=0 && iLogsize<=LOGMAX );
|
||||
assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
|
||||
|
||||
x = MEM5LINK(i)->next = mem5.aiFreelist[iLogsize];
|
||||
MEM5LINK(i)->prev = -1;
|
||||
if( x>=0 ){
|
||||
assert( x<mem5.nBlock );
|
||||
MEM5LINK(x)->prev = i;
|
||||
}
|
||||
mem5.aiFreelist[iLogsize] = i;
|
||||
}
|
||||
|
||||
/*
|
||||
** If the STATIC_MEM mutex is not already held, obtain it now. The mutex
|
||||
** will already be held (obtained by code in malloc.c) if
|
||||
** sqlite3GlobalConfig.bMemStat is true.
|
||||
*/
|
||||
static void memsys5Enter(void){
|
||||
if( sqlite3GlobalConfig.bMemstat==0 && mem5.mutex==0 ){
|
||||
mem5.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
|
||||
}
|
||||
sqlite3_mutex_enter(mem5.mutex);
|
||||
}
|
||||
static void memsys5Leave(void){
|
||||
sqlite3_mutex_leave(mem5.mutex);
|
||||
}
|
||||
|
||||
/*
|
||||
** Return the size of an outstanding allocation, in bytes. The
|
||||
** size returned omits the 8-byte header overhead. This only
|
||||
** works for chunks that are currently checked out.
|
||||
*/
|
||||
static int memsys5Size(void *p){
|
||||
int iSize = 0;
|
||||
if( p ){
|
||||
int i = ((u8 *)p-mem5.zPool)/mem5.nAtom;
|
||||
assert( i>=0 && i<mem5.nBlock );
|
||||
iSize = mem5.nAtom * (1 << (mem5.aCtrl[i]&CTRL_LOGSIZE));
|
||||
}
|
||||
return iSize;
|
||||
}
|
||||
|
||||
/*
|
||||
** Find the first entry on the freelist iLogsize. Unlink that
|
||||
** entry and return its index.
|
||||
*/
|
||||
static int memsys5UnlinkFirst(int iLogsize){
|
||||
int i;
|
||||
int iFirst;
|
||||
|
||||
assert( iLogsize>=0 && iLogsize<=LOGMAX );
|
||||
i = iFirst = mem5.aiFreelist[iLogsize];
|
||||
assert( iFirst>=0 );
|
||||
while( i>0 ){
|
||||
if( i<iFirst ) iFirst = i;
|
||||
i = MEM5LINK(i)->next;
|
||||
}
|
||||
memsys5Unlink(iFirst, iLogsize);
|
||||
return iFirst;
|
||||
}
|
||||
|
||||
/*
|
||||
** Return a block of memory of at least nBytes in size.
|
||||
** Return NULL if unable.
|
||||
*/
|
||||
static void *memsys5MallocUnsafe(int nByte){
|
||||
int i; /* Index of a mem5.aPool[] slot */
|
||||
int iBin; /* Index into mem5.aiFreelist[] */
|
||||
int iFullSz; /* Size of allocation rounded up to power of 2 */
|
||||
int iLogsize; /* Log2 of iFullSz/POW2_MIN */
|
||||
|
||||
/* Keep track of the maximum allocation request. Even unfulfilled
|
||||
** requests are counted */
|
||||
if( (u32)nByte>mem5.maxRequest ){
|
||||
mem5.maxRequest = nByte;
|
||||
}
|
||||
|
||||
/* Round nByte up to the next valid power of two */
|
||||
for(iFullSz=mem5.nAtom, iLogsize=0; iFullSz<nByte; iFullSz *= 2, iLogsize++){}
|
||||
|
||||
/* Make sure mem5.aiFreelist[iLogsize] contains at least one free
|
||||
** block. If not, then split a block of the next larger power of
|
||||
** two in order to create a new free block of size iLogsize.
|
||||
*/
|
||||
for(iBin=iLogsize; mem5.aiFreelist[iBin]<0 && iBin<=LOGMAX; iBin++){}
|
||||
if( iBin>LOGMAX ) return 0;
|
||||
i = memsys5UnlinkFirst(iBin);
|
||||
while( iBin>iLogsize ){
|
||||
int newSize;
|
||||
|
||||
iBin--;
|
||||
newSize = 1 << iBin;
|
||||
mem5.aCtrl[i+newSize] = CTRL_FREE | iBin;
|
||||
memsys5Link(i+newSize, iBin);
|
||||
}
|
||||
mem5.aCtrl[i] = iLogsize;
|
||||
|
||||
/* Update allocator performance statistics. */
|
||||
mem5.nAlloc++;
|
||||
mem5.totalAlloc += iFullSz;
|
||||
mem5.totalExcess += iFullSz - nByte;
|
||||
mem5.currentCount++;
|
||||
mem5.currentOut += iFullSz;
|
||||
if( mem5.maxCount<mem5.currentCount ) mem5.maxCount = mem5.currentCount;
|
||||
if( mem5.maxOut<mem5.currentOut ) mem5.maxOut = mem5.currentOut;
|
||||
|
||||
/* Return a pointer to the allocated memory. */
|
||||
return (void*)&mem5.zPool[i*mem5.nAtom];
|
||||
}
|
||||
|
||||
/*
|
||||
** Free an outstanding memory allocation.
|
||||
*/
|
||||
static void memsys5FreeUnsafe(void *pOld){
|
||||
u32 size, iLogsize;
|
||||
int iBlock;
|
||||
|
||||
/* Set iBlock to the index of the block pointed to by pOld in
|
||||
** the array of mem5.nAtom byte blocks pointed to by mem5.zPool.
|
||||
*/
|
||||
iBlock = ((u8 *)pOld-mem5.zPool)/mem5.nAtom;
|
||||
|
||||
/* Check that the pointer pOld points to a valid, non-free block. */
|
||||
assert( iBlock>=0 && iBlock<mem5.nBlock );
|
||||
assert( ((u8 *)pOld-mem5.zPool)%mem5.nAtom==0 );
|
||||
assert( (mem5.aCtrl[iBlock] & CTRL_FREE)==0 );
|
||||
|
||||
iLogsize = mem5.aCtrl[iBlock] & CTRL_LOGSIZE;
|
||||
size = 1<<iLogsize;
|
||||
assert( iBlock+size-1<(u32)mem5.nBlock );
|
||||
|
||||
mem5.aCtrl[iBlock] |= CTRL_FREE;
|
||||
mem5.aCtrl[iBlock+size-1] |= CTRL_FREE;
|
||||
assert( mem5.currentCount>0 );
|
||||
assert( mem5.currentOut>=(size*mem5.nAtom) );
|
||||
mem5.currentCount--;
|
||||
mem5.currentOut -= size*mem5.nAtom;
|
||||
assert( mem5.currentOut>0 || mem5.currentCount==0 );
|
||||
assert( mem5.currentCount>0 || mem5.currentOut==0 );
|
||||
|
||||
mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
|
||||
while( iLogsize<LOGMAX ){
|
||||
int iBuddy;
|
||||
if( (iBlock>>iLogsize) & 1 ){
|
||||
iBuddy = iBlock - size;
|
||||
}else{
|
||||
iBuddy = iBlock + size;
|
||||
}
|
||||
assert( iBuddy>=0 );
|
||||
if( (iBuddy+(1<<iLogsize))>mem5.nBlock ) break;
|
||||
if( mem5.aCtrl[iBuddy]!=(CTRL_FREE | iLogsize) ) break;
|
||||
memsys5Unlink(iBuddy, iLogsize);
|
||||
iLogsize++;
|
||||
if( iBuddy<iBlock ){
|
||||
mem5.aCtrl[iBuddy] = CTRL_FREE | iLogsize;
|
||||
mem5.aCtrl[iBlock] = 0;
|
||||
iBlock = iBuddy;
|
||||
}else{
|
||||
mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
|
||||
mem5.aCtrl[iBuddy] = 0;
|
||||
}
|
||||
size *= 2;
|
||||
}
|
||||
memsys5Link(iBlock, iLogsize);
|
||||
}
|
||||
|
||||
/*
|
||||
** Allocate nBytes of memory
|
||||
*/
|
||||
static void *memsys5Malloc(int nBytes){
|
||||
sqlite3_int64 *p = 0;
|
||||
if( nBytes>0 ){
|
||||
memsys5Enter();
|
||||
p = memsys5MallocUnsafe(nBytes);
|
||||
memsys5Leave();
|
||||
}
|
||||
return (void*)p;
|
||||
}
|
||||
|
||||
/*
|
||||
** Free memory.
|
||||
*/
|
||||
static void memsys5Free(void *pPrior){
|
||||
if( pPrior==0 ){
|
||||
assert(0);
|
||||
return;
|
||||
}
|
||||
memsys5Enter();
|
||||
memsys5FreeUnsafe(pPrior);
|
||||
memsys5Leave();
|
||||
}
|
||||
|
||||
/*
|
||||
** Change the size of an existing memory allocation
|
||||
*/
|
||||
static void *memsys5Realloc(void *pPrior, int nBytes){
|
||||
int nOld;
|
||||
void *p;
|
||||
if( pPrior==0 ){
|
||||
return memsys5Malloc(nBytes);
|
||||
}
|
||||
if( nBytes<=0 ){
|
||||
memsys5Free(pPrior);
|
||||
return 0;
|
||||
}
|
||||
nOld = memsys5Size(pPrior);
|
||||
if( nBytes<=nOld ){
|
||||
return pPrior;
|
||||
}
|
||||
memsys5Enter();
|
||||
p = memsys5MallocUnsafe(nBytes);
|
||||
if( p ){
|
||||
memcpy(p, pPrior, nOld);
|
||||
memsys5FreeUnsafe(pPrior);
|
||||
}
|
||||
memsys5Leave();
|
||||
return p;
|
||||
}
|
||||
|
||||
/*
|
||||
** Round up a request size to the next valid allocation size.
|
||||
*/
|
||||
static int memsys5Roundup(int n){
|
||||
int iFullSz;
|
||||
for(iFullSz=mem5.nAtom; iFullSz<n; iFullSz *= 2);
|
||||
return iFullSz;
|
||||
}
|
||||
|
||||
static int memsys5Log(int iValue){
|
||||
int iLog;
|
||||
for(iLog=0; (1<<iLog)<iValue; iLog++);
|
||||
return iLog;
|
||||
}
|
||||
|
||||
/*
|
||||
** Initialize this module.
|
||||
*/
|
||||
static int memsys5Init(void *NotUsed){
|
||||
int ii;
|
||||
int nByte = sqlite3GlobalConfig.nHeap;
|
||||
u8 *zByte = (u8 *)sqlite3GlobalConfig.pHeap;
|
||||
int nMinLog; /* Log of minimum allocation size in bytes*/
|
||||
int iOffset;
|
||||
|
||||
UNUSED_PARAMETER(NotUsed);
|
||||
|
||||
if( !zByte ){
|
||||
return SQLITE_ERROR;
|
||||
}
|
||||
|
||||
nMinLog = memsys5Log(sqlite3GlobalConfig.mnReq);
|
||||
mem5.nAtom = (1<<nMinLog);
|
||||
while( (int)sizeof(Mem5Link)>mem5.nAtom ){
|
||||
mem5.nAtom = mem5.nAtom << 1;
|
||||
}
|
||||
|
||||
mem5.nBlock = (nByte / (mem5.nAtom+sizeof(u8)));
|
||||
mem5.zPool = zByte;
|
||||
mem5.aCtrl = (u8 *)&mem5.zPool[mem5.nBlock*mem5.nAtom];
|
||||
|
||||
for(ii=0; ii<=LOGMAX; ii++){
|
||||
mem5.aiFreelist[ii] = -1;
|
||||
}
|
||||
|
||||
iOffset = 0;
|
||||
for(ii=LOGMAX; ii>=0; ii--){
|
||||
int nAlloc = (1<<ii);
|
||||
if( (iOffset+nAlloc)<=mem5.nBlock ){
|
||||
mem5.aCtrl[iOffset] = ii | CTRL_FREE;
|
||||
memsys5Link(iOffset, ii);
|
||||
iOffset += nAlloc;
|
||||
}
|
||||
assert((iOffset+nAlloc)>mem5.nBlock);
|
||||
}
|
||||
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Deinitialize this module.
|
||||
*/
|
||||
static void memsys5Shutdown(void *NotUsed){
|
||||
UNUSED_PARAMETER(NotUsed);
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
** Open the file indicated and write a log of all unfreed memory
|
||||
** allocations into that log.
|
||||
*/
|
||||
void sqlite3Memsys5Dump(const char *zFilename){
|
||||
#ifdef SQLITE_DEBUG
|
||||
FILE *out;
|
||||
int i, j, n;
|
||||
int nMinLog;
|
||||
|
||||
if( zFilename==0 || zFilename[0]==0 ){
|
||||
out = stdout;
|
||||
}else{
|
||||
out = fopen(zFilename, "w");
|
||||
if( out==0 ){
|
||||
fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
|
||||
zFilename);
|
||||
return;
|
||||
}
|
||||
}
|
||||
memsys5Enter();
|
||||
nMinLog = memsys5Log(mem5.nAtom);
|
||||
for(i=0; i<=LOGMAX && i+nMinLog<32; i++){
|
||||
for(n=0, j=mem5.aiFreelist[i]; j>=0; j = MEM5LINK(j)->next, n++){}
|
||||
fprintf(out, "freelist items of size %d: %d\n", mem5.nAtom << i, n);
|
||||
}
|
||||
fprintf(out, "mem5.nAlloc = %llu\n", mem5.nAlloc);
|
||||
fprintf(out, "mem5.totalAlloc = %llu\n", mem5.totalAlloc);
|
||||
fprintf(out, "mem5.totalExcess = %llu\n", mem5.totalExcess);
|
||||
fprintf(out, "mem5.currentOut = %u\n", mem5.currentOut);
|
||||
fprintf(out, "mem5.currentCount = %u\n", mem5.currentCount);
|
||||
fprintf(out, "mem5.maxOut = %u\n", mem5.maxOut);
|
||||
fprintf(out, "mem5.maxCount = %u\n", mem5.maxCount);
|
||||
fprintf(out, "mem5.maxRequest = %u\n", mem5.maxRequest);
|
||||
memsys5Leave();
|
||||
if( out==stdout ){
|
||||
fflush(stdout);
|
||||
}else{
|
||||
fclose(out);
|
||||
}
|
||||
#else
|
||||
UNUSED_PARAMETER(zFilename);
|
||||
#endif
|
||||
}
|
||||
|
||||
/*
|
||||
** This routine is the only routine in this file with external
|
||||
** linkage. It returns a pointer to a static sqlite3_mem_methods
|
||||
** struct populated with the memsys5 methods.
|
||||
*/
|
||||
const sqlite3_mem_methods *sqlite3MemGetMemsys5(void){
|
||||
static const sqlite3_mem_methods memsys5Methods = {
|
||||
memsys5Malloc,
|
||||
memsys5Free,
|
||||
memsys5Realloc,
|
||||
memsys5Size,
|
||||
memsys5Roundup,
|
||||
memsys5Init,
|
||||
memsys5Shutdown,
|
||||
0
|
||||
};
|
||||
return &memsys5Methods;
|
||||
}
|
||||
|
||||
#endif /* SQLITE_ENABLE_MEMSYS5 */
|
259
memjournal.c
259
memjournal.c
|
@ -1,259 +0,0 @@
|
|||
/*
|
||||
** 2008 October 7
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
**
|
||||
** This file contains code use to implement an in-memory rollback journal.
|
||||
** The in-memory rollback journal is used to journal transactions for
|
||||
** ":memory:" databases and when the journal_mode=MEMORY pragma is used.
|
||||
**
|
||||
** @(#) $Id: memjournal.c,v 1.11 2009/04/05 12:22:09 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
/* Forward references to internal structures */
|
||||
typedef struct MemJournal MemJournal;
|
||||
typedef struct FilePoint FilePoint;
|
||||
typedef struct FileChunk FileChunk;
|
||||
|
||||
/* Space to hold the rollback journal is allocated in increments of
|
||||
** this many bytes.
|
||||
**
|
||||
** The size chosen is a little less than a power of two. That way,
|
||||
** the FileChunk object will have a size that almost exactly fills
|
||||
** a power-of-two allocation. This mimimizes wasted space in power-of-two
|
||||
** memory allocators.
|
||||
*/
|
||||
#define JOURNAL_CHUNKSIZE ((int)(1024-sizeof(FileChunk*)))
|
||||
|
||||
/* Macro to find the minimum of two numeric values.
|
||||
*/
|
||||
#ifndef MIN
|
||||
# define MIN(x,y) ((x)<(y)?(x):(y))
|
||||
#endif
|
||||
|
||||
/*
|
||||
** The rollback journal is composed of a linked list of these structures.
|
||||
*/
|
||||
struct FileChunk {
|
||||
FileChunk *pNext; /* Next chunk in the journal */
|
||||
u8 zChunk[JOURNAL_CHUNKSIZE]; /* Content of this chunk */
|
||||
};
|
||||
|
||||
/*
|
||||
** An instance of this object serves as a cursor into the rollback journal.
|
||||
** The cursor can be either for reading or writing.
|
||||
*/
|
||||
struct FilePoint {
|
||||
sqlite3_int64 iOffset; /* Offset from the beginning of the file */
|
||||
FileChunk *pChunk; /* Specific chunk into which cursor points */
|
||||
};
|
||||
|
||||
/*
|
||||
** This subclass is a subclass of sqlite3_file. Each open memory-journal
|
||||
** is an instance of this class.
|
||||
*/
|
||||
struct MemJournal {
|
||||
sqlite3_io_methods *pMethod; /* Parent class. MUST BE FIRST */
|
||||
FileChunk *pFirst; /* Head of in-memory chunk-list */
|
||||
FilePoint endpoint; /* Pointer to the end of the file */
|
||||
FilePoint readpoint; /* Pointer to the end of the last xRead() */
|
||||
};
|
||||
|
||||
/*
|
||||
** Read data from the in-memory journal file. This is the implementation
|
||||
** of the sqlite3_vfs.xRead method.
|
||||
*/
|
||||
static int memjrnlRead(
|
||||
sqlite3_file *pJfd, /* The journal file from which to read */
|
||||
void *zBuf, /* Put the results here */
|
||||
int iAmt, /* Number of bytes to read */
|
||||
sqlite_int64 iOfst /* Begin reading at this offset */
|
||||
){
|
||||
MemJournal *p = (MemJournal *)pJfd;
|
||||
u8 *zOut = zBuf;
|
||||
int nRead = iAmt;
|
||||
int iChunkOffset;
|
||||
FileChunk *pChunk;
|
||||
|
||||
/* SQLite never tries to read past the end of a rollback journal file */
|
||||
assert( iOfst+iAmt<=p->endpoint.iOffset );
|
||||
|
||||
if( p->readpoint.iOffset!=iOfst || iOfst==0 ){
|
||||
sqlite3_int64 iOff = 0;
|
||||
for(pChunk=p->pFirst;
|
||||
ALWAYS(pChunk) && (iOff+JOURNAL_CHUNKSIZE)<=iOfst;
|
||||
pChunk=pChunk->pNext
|
||||
){
|
||||
iOff += JOURNAL_CHUNKSIZE;
|
||||
}
|
||||
}else{
|
||||
pChunk = p->readpoint.pChunk;
|
||||
}
|
||||
|
||||
iChunkOffset = (int)(iOfst%JOURNAL_CHUNKSIZE);
|
||||
do {
|
||||
int iSpace = JOURNAL_CHUNKSIZE - iChunkOffset;
|
||||
int nCopy = MIN(nRead, (JOURNAL_CHUNKSIZE - iChunkOffset));
|
||||
memcpy(zOut, &pChunk->zChunk[iChunkOffset], nCopy);
|
||||
zOut += nCopy;
|
||||
nRead -= iSpace;
|
||||
iChunkOffset = 0;
|
||||
} while( nRead>=0 && (pChunk=pChunk->pNext)!=0 && nRead>0 );
|
||||
p->readpoint.iOffset = iOfst+iAmt;
|
||||
p->readpoint.pChunk = pChunk;
|
||||
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Write data to the file.
|
||||
*/
|
||||
static int memjrnlWrite(
|
||||
sqlite3_file *pJfd, /* The journal file into which to write */
|
||||
const void *zBuf, /* Take data to be written from here */
|
||||
int iAmt, /* Number of bytes to write */
|
||||
sqlite_int64 iOfst /* Begin writing at this offset into the file */
|
||||
){
|
||||
MemJournal *p = (MemJournal *)pJfd;
|
||||
int nWrite = iAmt;
|
||||
u8 *zWrite = (u8 *)zBuf;
|
||||
|
||||
/* An in-memory journal file should only ever be appended to. Random
|
||||
** access writes are not required by sqlite.
|
||||
*/
|
||||
assert(iOfst==p->endpoint.iOffset);
|
||||
UNUSED_PARAMETER(iOfst);
|
||||
|
||||
while( nWrite>0 ){
|
||||
FileChunk *pChunk = p->endpoint.pChunk;
|
||||
int iChunkOffset = (int)(p->endpoint.iOffset%JOURNAL_CHUNKSIZE);
|
||||
int iSpace = MIN(nWrite, JOURNAL_CHUNKSIZE - iChunkOffset);
|
||||
|
||||
if( iChunkOffset==0 ){
|
||||
/* New chunk is required to extend the file. */
|
||||
FileChunk *pNew = sqlite3_malloc(sizeof(FileChunk));
|
||||
if( !pNew ){
|
||||
return SQLITE_IOERR_NOMEM;
|
||||
}
|
||||
pNew->pNext = 0;
|
||||
if( pChunk ){
|
||||
assert( p->pFirst );
|
||||
pChunk->pNext = pNew;
|
||||
}else{
|
||||
assert( !p->pFirst );
|
||||
p->pFirst = pNew;
|
||||
}
|
||||
p->endpoint.pChunk = pNew;
|
||||
}
|
||||
|
||||
memcpy(&p->endpoint.pChunk->zChunk[iChunkOffset], zWrite, iSpace);
|
||||
zWrite += iSpace;
|
||||
nWrite -= iSpace;
|
||||
p->endpoint.iOffset += iSpace;
|
||||
}
|
||||
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Truncate the file.
|
||||
*/
|
||||
static int memjrnlTruncate(sqlite3_file *pJfd, sqlite_int64 size){
|
||||
MemJournal *p = (MemJournal *)pJfd;
|
||||
FileChunk *pChunk;
|
||||
assert(size==0);
|
||||
UNUSED_PARAMETER(size);
|
||||
pChunk = p->pFirst;
|
||||
while( pChunk ){
|
||||
FileChunk *pTmp = pChunk;
|
||||
pChunk = pChunk->pNext;
|
||||
sqlite3_free(pTmp);
|
||||
}
|
||||
sqlite3MemJournalOpen(pJfd);
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Close the file.
|
||||
*/
|
||||
static int memjrnlClose(sqlite3_file *pJfd){
|
||||
memjrnlTruncate(pJfd, 0);
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** Sync the file.
|
||||
**
|
||||
** Syncing an in-memory journal is a no-op. And, in fact, this routine
|
||||
** is never called in a working implementation. This implementation
|
||||
** exists purely as a contingency, in case some malfunction in some other
|
||||
** part of SQLite causes Sync to be called by mistake.
|
||||
*/
|
||||
static int memjrnlSync(sqlite3_file *NotUsed, int NotUsed2){ /*NO_TEST*/
|
||||
UNUSED_PARAMETER2(NotUsed, NotUsed2); /*NO_TEST*/
|
||||
assert( 0 ); /*NO_TEST*/
|
||||
return SQLITE_OK; /*NO_TEST*/
|
||||
} /*NO_TEST*/
|
||||
|
||||
/*
|
||||
** Query the size of the file in bytes.
|
||||
*/
|
||||
static int memjrnlFileSize(sqlite3_file *pJfd, sqlite_int64 *pSize){
|
||||
MemJournal *p = (MemJournal *)pJfd;
|
||||
*pSize = (sqlite_int64) p->endpoint.iOffset;
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Table of methods for MemJournal sqlite3_file object.
|
||||
*/
|
||||
static struct sqlite3_io_methods MemJournalMethods = {
|
||||
1, /* iVersion */
|
||||
memjrnlClose, /* xClose */
|
||||
memjrnlRead, /* xRead */
|
||||
memjrnlWrite, /* xWrite */
|
||||
memjrnlTruncate, /* xTruncate */
|
||||
memjrnlSync, /* xSync */
|
||||
memjrnlFileSize, /* xFileSize */
|
||||
0, /* xLock */
|
||||
0, /* xUnlock */
|
||||
0, /* xCheckReservedLock */
|
||||
0, /* xFileControl */
|
||||
0, /* xSectorSize */
|
||||
0 /* xDeviceCharacteristics */
|
||||
};
|
||||
|
||||
/*
|
||||
** Open a journal file.
|
||||
*/
|
||||
void sqlite3MemJournalOpen(sqlite3_file *pJfd){
|
||||
MemJournal *p = (MemJournal *)pJfd;
|
||||
assert( EIGHT_BYTE_ALIGNMENT(p) );
|
||||
memset(p, 0, sqlite3MemJournalSize());
|
||||
p->pMethod = &MemJournalMethods;
|
||||
}
|
||||
|
||||
/*
|
||||
** Return true if the file-handle passed as an argument is
|
||||
** an in-memory journal
|
||||
*/
|
||||
int sqlite3IsMemJournal(sqlite3_file *pJfd){
|
||||
return pJfd->pMethods==&MemJournalMethods;
|
||||
}
|
||||
|
||||
/*
|
||||
** Return the number of bytes required to store a MemJournal that uses vfs
|
||||
** pVfs to create the underlying on-disk files.
|
||||
*/
|
||||
int sqlite3MemJournalSize(void){
|
||||
return sizeof(MemJournal);
|
||||
}
|
149
mutex.c
149
mutex.c
|
@ -1,149 +0,0 @@
|
|||
/*
|
||||
** 2007 August 14
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This file contains the C functions that implement mutexes.
|
||||
**
|
||||
** This file contains code that is common across all mutex implementations.
|
||||
|
||||
**
|
||||
** $Id: mutex.c,v 1.30 2009/02/17 16:29:11 danielk1977 Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
#ifndef SQLITE_MUTEX_OMIT
|
||||
/*
|
||||
** Initialize the mutex system.
|
||||
*/
|
||||
int sqlite3MutexInit(void){
|
||||
int rc = SQLITE_OK;
|
||||
if( sqlite3GlobalConfig.bCoreMutex ){
|
||||
if( !sqlite3GlobalConfig.mutex.xMutexAlloc ){
|
||||
/* If the xMutexAlloc method has not been set, then the user did not
|
||||
** install a mutex implementation via sqlite3_config() prior to
|
||||
** sqlite3_initialize() being called. This block copies pointers to
|
||||
** the default implementation into the sqlite3GlobalConfig structure.
|
||||
**
|
||||
** The danger is that although sqlite3_config() is not a threadsafe
|
||||
** API, sqlite3_initialize() is, and so multiple threads may be
|
||||
** attempting to run this function simultaneously. To guard write
|
||||
** access to the sqlite3GlobalConfig structure, the 'MASTER' static mutex
|
||||
** is obtained before modifying it.
|
||||
*/
|
||||
sqlite3_mutex_methods *p = sqlite3DefaultMutex();
|
||||
sqlite3_mutex *pMaster = 0;
|
||||
|
||||
rc = p->xMutexInit();
|
||||
if( rc==SQLITE_OK ){
|
||||
pMaster = p->xMutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
|
||||
assert(pMaster);
|
||||
p->xMutexEnter(pMaster);
|
||||
assert( sqlite3GlobalConfig.mutex.xMutexAlloc==0
|
||||
|| sqlite3GlobalConfig.mutex.xMutexAlloc==p->xMutexAlloc
|
||||
);
|
||||
if( !sqlite3GlobalConfig.mutex.xMutexAlloc ){
|
||||
sqlite3GlobalConfig.mutex = *p;
|
||||
}
|
||||
p->xMutexLeave(pMaster);
|
||||
}
|
||||
}else{
|
||||
rc = sqlite3GlobalConfig.mutex.xMutexInit();
|
||||
}
|
||||
}
|
||||
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** Shutdown the mutex system. This call frees resources allocated by
|
||||
** sqlite3MutexInit().
|
||||
*/
|
||||
int sqlite3MutexEnd(void){
|
||||
int rc = SQLITE_OK;
|
||||
if( sqlite3GlobalConfig.mutex.xMutexEnd ){
|
||||
rc = sqlite3GlobalConfig.mutex.xMutexEnd();
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** Retrieve a pointer to a static mutex or allocate a new dynamic one.
|
||||
*/
|
||||
sqlite3_mutex *sqlite3_mutex_alloc(int id){
|
||||
#ifndef SQLITE_OMIT_AUTOINIT
|
||||
if( sqlite3_initialize() ) return 0;
|
||||
#endif
|
||||
return sqlite3GlobalConfig.mutex.xMutexAlloc(id);
|
||||
}
|
||||
|
||||
sqlite3_mutex *sqlite3MutexAlloc(int id){
|
||||
if( !sqlite3GlobalConfig.bCoreMutex ){
|
||||
return 0;
|
||||
}
|
||||
return sqlite3GlobalConfig.mutex.xMutexAlloc(id);
|
||||
}
|
||||
|
||||
/*
|
||||
** Free a dynamic mutex.
|
||||
*/
|
||||
void sqlite3_mutex_free(sqlite3_mutex *p){
|
||||
if( p ){
|
||||
sqlite3GlobalConfig.mutex.xMutexFree(p);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Obtain the mutex p. If some other thread already has the mutex, block
|
||||
** until it can be obtained.
|
||||
*/
|
||||
void sqlite3_mutex_enter(sqlite3_mutex *p){
|
||||
if( p ){
|
||||
sqlite3GlobalConfig.mutex.xMutexEnter(p);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Obtain the mutex p. If successful, return SQLITE_OK. Otherwise, if another
|
||||
** thread holds the mutex and it cannot be obtained, return SQLITE_BUSY.
|
||||
*/
|
||||
int sqlite3_mutex_try(sqlite3_mutex *p){
|
||||
int rc = SQLITE_OK;
|
||||
if( p ){
|
||||
return sqlite3GlobalConfig.mutex.xMutexTry(p);
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** The sqlite3_mutex_leave() routine exits a mutex that was previously
|
||||
** entered by the same thread. The behavior is undefined if the mutex
|
||||
** is not currently entered. If a NULL pointer is passed as an argument
|
||||
** this function is a no-op.
|
||||
*/
|
||||
void sqlite3_mutex_leave(sqlite3_mutex *p){
|
||||
if( p ){
|
||||
sqlite3GlobalConfig.mutex.xMutexLeave(p);
|
||||
}
|
||||
}
|
||||
|
||||
#ifndef NDEBUG
|
||||
/*
|
||||
** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
|
||||
** intended for use inside assert() statements.
|
||||
*/
|
||||
int sqlite3_mutex_held(sqlite3_mutex *p){
|
||||
return p==0 || sqlite3GlobalConfig.mutex.xMutexHeld(p);
|
||||
}
|
||||
int sqlite3_mutex_notheld(sqlite3_mutex *p){
|
||||
return p==0 || sqlite3GlobalConfig.mutex.xMutexNotheld(p);
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* SQLITE_OMIT_MUTEX */
|
73
mutex.h
73
mutex.h
|
@ -1,73 +0,0 @@
|
|||
/*
|
||||
** 2007 August 28
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
**
|
||||
** This file contains the common header for all mutex implementations.
|
||||
** The sqliteInt.h header #includes this file so that it is available
|
||||
** to all source files. We break it out in an effort to keep the code
|
||||
** better organized.
|
||||
**
|
||||
** NOTE: source files should *not* #include this header file directly.
|
||||
** Source files should #include the sqliteInt.h file and let that file
|
||||
** include this one indirectly.
|
||||
**
|
||||
** $Id: mutex.h,v 1.9 2008/10/07 15:25:48 drh Exp $
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
** Figure out what version of the code to use. The choices are
|
||||
**
|
||||
** SQLITE_MUTEX_OMIT No mutex logic. Not even stubs. The
|
||||
** mutexes implemention cannot be overridden
|
||||
** at start-time.
|
||||
**
|
||||
** SQLITE_MUTEX_NOOP For single-threaded applications. No
|
||||
** mutual exclusion is provided. But this
|
||||
** implementation can be overridden at
|
||||
** start-time.
|
||||
**
|
||||
** SQLITE_MUTEX_PTHREADS For multi-threaded applications on Unix.
|
||||
**
|
||||
** SQLITE_MUTEX_W32 For multi-threaded applications on Win32.
|
||||
**
|
||||
** SQLITE_MUTEX_OS2 For multi-threaded applications on OS/2.
|
||||
*/
|
||||
#if !SQLITE_THREADSAFE
|
||||
# define SQLITE_MUTEX_OMIT
|
||||
#endif
|
||||
#if SQLITE_THREADSAFE && !defined(SQLITE_MUTEX_NOOP)
|
||||
# if SQLITE_OS_UNIX
|
||||
# define SQLITE_MUTEX_PTHREADS
|
||||
# elif SQLITE_OS_WIN
|
||||
# define SQLITE_MUTEX_W32
|
||||
# elif SQLITE_OS_OS2
|
||||
# define SQLITE_MUTEX_OS2
|
||||
# else
|
||||
# define SQLITE_MUTEX_NOOP
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#ifdef SQLITE_MUTEX_OMIT
|
||||
/*
|
||||
** If this is a no-op implementation, implement everything as macros.
|
||||
*/
|
||||
#define sqlite3_mutex_alloc(X) ((sqlite3_mutex*)8)
|
||||
#define sqlite3_mutex_free(X)
|
||||
#define sqlite3_mutex_enter(X)
|
||||
#define sqlite3_mutex_try(X) SQLITE_OK
|
||||
#define sqlite3_mutex_leave(X)
|
||||
#define sqlite3_mutex_held(X) 1
|
||||
#define sqlite3_mutex_notheld(X) 1
|
||||
#define sqlite3MutexAlloc(X) ((sqlite3_mutex*)8)
|
||||
#define sqlite3MutexInit() SQLITE_OK
|
||||
#define sqlite3MutexEnd()
|
||||
#endif /* defined(SQLITE_OMIT_MUTEX) */
|
186
mutex_noop.c
186
mutex_noop.c
|
@ -1,186 +0,0 @@
|
|||
/*
|
||||
** 2008 October 07
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This file contains the C functions that implement mutexes.
|
||||
**
|
||||
** This implementation in this file does not provide any mutual
|
||||
** exclusion and is thus suitable for use only in applications
|
||||
** that use SQLite in a single thread. The routines defined
|
||||
** here are place-holders. Applications can substitute working
|
||||
** mutex routines at start-time using the
|
||||
**
|
||||
** sqlite3_config(SQLITE_CONFIG_MUTEX,...)
|
||||
**
|
||||
** interface.
|
||||
**
|
||||
** If compiled with SQLITE_DEBUG, then additional logic is inserted
|
||||
** that does error checking on mutexes to make sure they are being
|
||||
** called correctly.
|
||||
**
|
||||
** $Id: mutex_noop.c,v 1.3 2008/12/05 17:17:08 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
|
||||
#if defined(SQLITE_MUTEX_NOOP) && !defined(SQLITE_DEBUG)
|
||||
/*
|
||||
** Stub routines for all mutex methods.
|
||||
**
|
||||
** This routines provide no mutual exclusion or error checking.
|
||||
*/
|
||||
static int noopMutexHeld(sqlite3_mutex *p){ return 1; }
|
||||
static int noopMutexNotheld(sqlite3_mutex *p){ return 1; }
|
||||
static int noopMutexInit(void){ return SQLITE_OK; }
|
||||
static int noopMutexEnd(void){ return SQLITE_OK; }
|
||||
static sqlite3_mutex *noopMutexAlloc(int id){ return (sqlite3_mutex*)8; }
|
||||
static void noopMutexFree(sqlite3_mutex *p){ return; }
|
||||
static void noopMutexEnter(sqlite3_mutex *p){ return; }
|
||||
static int noopMutexTry(sqlite3_mutex *p){ return SQLITE_OK; }
|
||||
static void noopMutexLeave(sqlite3_mutex *p){ return; }
|
||||
|
||||
sqlite3_mutex_methods *sqlite3DefaultMutex(void){
|
||||
static sqlite3_mutex_methods sMutex = {
|
||||
noopMutexInit,
|
||||
noopMutexEnd,
|
||||
noopMutexAlloc,
|
||||
noopMutexFree,
|
||||
noopMutexEnter,
|
||||
noopMutexTry,
|
||||
noopMutexLeave,
|
||||
|
||||
noopMutexHeld,
|
||||
noopMutexNotheld
|
||||
};
|
||||
|
||||
return &sMutex;
|
||||
}
|
||||
#endif /* defined(SQLITE_MUTEX_NOOP) && !defined(SQLITE_DEBUG) */
|
||||
|
||||
#if defined(SQLITE_MUTEX_NOOP) && defined(SQLITE_DEBUG)
|
||||
/*
|
||||
** In this implementation, error checking is provided for testing
|
||||
** and debugging purposes. The mutexes still do not provide any
|
||||
** mutual exclusion.
|
||||
*/
|
||||
|
||||
/*
|
||||
** The mutex object
|
||||
*/
|
||||
struct sqlite3_mutex {
|
||||
int id; /* The mutex type */
|
||||
int cnt; /* Number of entries without a matching leave */
|
||||
};
|
||||
|
||||
/*
|
||||
** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
|
||||
** intended for use inside assert() statements.
|
||||
*/
|
||||
static int debugMutexHeld(sqlite3_mutex *p){
|
||||
return p==0 || p->cnt>0;
|
||||
}
|
||||
static int debugMutexNotheld(sqlite3_mutex *p){
|
||||
return p==0 || p->cnt==0;
|
||||
}
|
||||
|
||||
/*
|
||||
** Initialize and deinitialize the mutex subsystem.
|
||||
*/
|
||||
static int debugMutexInit(void){ return SQLITE_OK; }
|
||||
static int debugMutexEnd(void){ return SQLITE_OK; }
|
||||
|
||||
/*
|
||||
** The sqlite3_mutex_alloc() routine allocates a new
|
||||
** mutex and returns a pointer to it. If it returns NULL
|
||||
** that means that a mutex could not be allocated.
|
||||
*/
|
||||
static sqlite3_mutex *debugMutexAlloc(int id){
|
||||
static sqlite3_mutex aStatic[6];
|
||||
sqlite3_mutex *pNew = 0;
|
||||
switch( id ){
|
||||
case SQLITE_MUTEX_FAST:
|
||||
case SQLITE_MUTEX_RECURSIVE: {
|
||||
pNew = sqlite3Malloc(sizeof(*pNew));
|
||||
if( pNew ){
|
||||
pNew->id = id;
|
||||
pNew->cnt = 0;
|
||||
}
|
||||
break;
|
||||
}
|
||||
default: {
|
||||
assert( id-2 >= 0 );
|
||||
assert( id-2 < (int)(sizeof(aStatic)/sizeof(aStatic[0])) );
|
||||
pNew = &aStatic[id-2];
|
||||
pNew->id = id;
|
||||
break;
|
||||
}
|
||||
}
|
||||
return pNew;
|
||||
}
|
||||
|
||||
/*
|
||||
** This routine deallocates a previously allocated mutex.
|
||||
*/
|
||||
static void debugMutexFree(sqlite3_mutex *p){
|
||||
assert( p->cnt==0 );
|
||||
assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );
|
||||
sqlite3_free(p);
|
||||
}
|
||||
|
||||
/*
|
||||
** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
|
||||
** to enter a mutex. If another thread is already within the mutex,
|
||||
** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
|
||||
** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK
|
||||
** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can
|
||||
** be entered multiple times by the same thread. In such cases the,
|
||||
** mutex must be exited an equal number of times before another thread
|
||||
** can enter. If the same thread tries to enter any other kind of mutex
|
||||
** more than once, the behavior is undefined.
|
||||
*/
|
||||
static void debugMutexEnter(sqlite3_mutex *p){
|
||||
assert( p->id==SQLITE_MUTEX_RECURSIVE || debugMutexNotheld(p) );
|
||||
p->cnt++;
|
||||
}
|
||||
static int debugMutexTry(sqlite3_mutex *p){
|
||||
assert( p->id==SQLITE_MUTEX_RECURSIVE || debugMutexNotheld(p) );
|
||||
p->cnt++;
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** The sqlite3_mutex_leave() routine exits a mutex that was
|
||||
** previously entered by the same thread. The behavior
|
||||
** is undefined if the mutex is not currently entered or
|
||||
** is not currently allocated. SQLite will never do either.
|
||||
*/
|
||||
static void debugMutexLeave(sqlite3_mutex *p){
|
||||
assert( debugMutexHeld(p) );
|
||||
p->cnt--;
|
||||
assert( p->id==SQLITE_MUTEX_RECURSIVE || debugMutexNotheld(p) );
|
||||
}
|
||||
|
||||
sqlite3_mutex_methods *sqlite3DefaultMutex(void){
|
||||
static sqlite3_mutex_methods sMutex = {
|
||||
debugMutexInit,
|
||||
debugMutexEnd,
|
||||
debugMutexAlloc,
|
||||
debugMutexFree,
|
||||
debugMutexEnter,
|
||||
debugMutexTry,
|
||||
debugMutexLeave,
|
||||
|
||||
debugMutexHeld,
|
||||
debugMutexNotheld
|
||||
};
|
||||
|
||||
return &sMutex;
|
||||
}
|
||||
#endif /* defined(SQLITE_MUTEX_NOOP) && defined(SQLITE_DEBUG) */
|
273
mutex_os2.c
273
mutex_os2.c
|
@ -1,273 +0,0 @@
|
|||
/*
|
||||
** 2007 August 28
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This file contains the C functions that implement mutexes for OS/2
|
||||
**
|
||||
** $Id: mutex_os2.c,v 1.11 2008/11/22 19:50:54 pweilbacher Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
/*
|
||||
** The code in this file is only used if SQLITE_MUTEX_OS2 is defined.
|
||||
** See the mutex.h file for details.
|
||||
*/
|
||||
#ifdef SQLITE_MUTEX_OS2
|
||||
|
||||
/********************** OS/2 Mutex Implementation **********************
|
||||
**
|
||||
** This implementation of mutexes is built using the OS/2 API.
|
||||
*/
|
||||
|
||||
/*
|
||||
** The mutex object
|
||||
** Each recursive mutex is an instance of the following structure.
|
||||
*/
|
||||
struct sqlite3_mutex {
|
||||
HMTX mutex; /* Mutex controlling the lock */
|
||||
int id; /* Mutex type */
|
||||
int nRef; /* Number of references */
|
||||
TID owner; /* Thread holding this mutex */
|
||||
};
|
||||
|
||||
#define OS2_MUTEX_INITIALIZER 0,0,0,0
|
||||
|
||||
/*
|
||||
** Initialize and deinitialize the mutex subsystem.
|
||||
*/
|
||||
static int os2MutexInit(void){ return SQLITE_OK; }
|
||||
static int os2MutexEnd(void){ return SQLITE_OK; }
|
||||
|
||||
/*
|
||||
** The sqlite3_mutex_alloc() routine allocates a new
|
||||
** mutex and returns a pointer to it. If it returns NULL
|
||||
** that means that a mutex could not be allocated.
|
||||
** SQLite will unwind its stack and return an error. The argument
|
||||
** to sqlite3_mutex_alloc() is one of these integer constants:
|
||||
**
|
||||
** <ul>
|
||||
** <li> SQLITE_MUTEX_FAST 0
|
||||
** <li> SQLITE_MUTEX_RECURSIVE 1
|
||||
** <li> SQLITE_MUTEX_STATIC_MASTER 2
|
||||
** <li> SQLITE_MUTEX_STATIC_MEM 3
|
||||
** <li> SQLITE_MUTEX_STATIC_PRNG 4
|
||||
** </ul>
|
||||
**
|
||||
** The first two constants cause sqlite3_mutex_alloc() to create
|
||||
** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
|
||||
** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
|
||||
** The mutex implementation does not need to make a distinction
|
||||
** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
|
||||
** not want to. But SQLite will only request a recursive mutex in
|
||||
** cases where it really needs one. If a faster non-recursive mutex
|
||||
** implementation is available on the host platform, the mutex subsystem
|
||||
** might return such a mutex in response to SQLITE_MUTEX_FAST.
|
||||
**
|
||||
** The other allowed parameters to sqlite3_mutex_alloc() each return
|
||||
** a pointer to a static preexisting mutex. Three static mutexes are
|
||||
** used by the current version of SQLite. Future versions of SQLite
|
||||
** may add additional static mutexes. Static mutexes are for internal
|
||||
** use by SQLite only. Applications that use SQLite mutexes should
|
||||
** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
|
||||
** SQLITE_MUTEX_RECURSIVE.
|
||||
**
|
||||
** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
|
||||
** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
|
||||
** returns a different mutex on every call. But for the static
|
||||
** mutex types, the same mutex is returned on every call that has
|
||||
** the same type number.
|
||||
*/
|
||||
static sqlite3_mutex *os2MutexAlloc(int iType){
|
||||
sqlite3_mutex *p = NULL;
|
||||
switch( iType ){
|
||||
case SQLITE_MUTEX_FAST:
|
||||
case SQLITE_MUTEX_RECURSIVE: {
|
||||
p = sqlite3MallocZero( sizeof(*p) );
|
||||
if( p ){
|
||||
p->id = iType;
|
||||
if( DosCreateMutexSem( 0, &p->mutex, 0, FALSE ) != NO_ERROR ){
|
||||
sqlite3_free( p );
|
||||
p = NULL;
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
default: {
|
||||
static volatile int isInit = 0;
|
||||
static sqlite3_mutex staticMutexes[] = {
|
||||
{ OS2_MUTEX_INITIALIZER, },
|
||||
{ OS2_MUTEX_INITIALIZER, },
|
||||
{ OS2_MUTEX_INITIALIZER, },
|
||||
{ OS2_MUTEX_INITIALIZER, },
|
||||
{ OS2_MUTEX_INITIALIZER, },
|
||||
{ OS2_MUTEX_INITIALIZER, },
|
||||
};
|
||||
if ( !isInit ){
|
||||
APIRET rc;
|
||||
PTIB ptib;
|
||||
PPIB ppib;
|
||||
HMTX mutex;
|
||||
char name[32];
|
||||
DosGetInfoBlocks( &ptib, &ppib );
|
||||
sqlite3_snprintf( sizeof(name), name, "\\SEM32\\SQLITE%04x",
|
||||
ppib->pib_ulpid );
|
||||
while( !isInit ){
|
||||
mutex = 0;
|
||||
rc = DosCreateMutexSem( name, &mutex, 0, FALSE);
|
||||
if( rc == NO_ERROR ){
|
||||
unsigned int i;
|
||||
if( !isInit ){
|
||||
for( i = 0; i < sizeof(staticMutexes)/sizeof(staticMutexes[0]); i++ ){
|
||||
DosCreateMutexSem( 0, &staticMutexes[i].mutex, 0, FALSE );
|
||||
}
|
||||
isInit = 1;
|
||||
}
|
||||
DosCloseMutexSem( mutex );
|
||||
}else if( rc == ERROR_DUPLICATE_NAME ){
|
||||
DosSleep( 1 );
|
||||
}else{
|
||||
return p;
|
||||
}
|
||||
}
|
||||
}
|
||||
assert( iType-2 >= 0 );
|
||||
assert( iType-2 < sizeof(staticMutexes)/sizeof(staticMutexes[0]) );
|
||||
p = &staticMutexes[iType-2];
|
||||
p->id = iType;
|
||||
break;
|
||||
}
|
||||
}
|
||||
return p;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** This routine deallocates a previously allocated mutex.
|
||||
** SQLite is careful to deallocate every mutex that it allocates.
|
||||
*/
|
||||
static void os2MutexFree(sqlite3_mutex *p){
|
||||
if( p==0 ) return;
|
||||
assert( p->nRef==0 );
|
||||
assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );
|
||||
DosCloseMutexSem( p->mutex );
|
||||
sqlite3_free( p );
|
||||
}
|
||||
|
||||
/*
|
||||
** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
|
||||
** to enter a mutex. If another thread is already within the mutex,
|
||||
** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
|
||||
** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK
|
||||
** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can
|
||||
** be entered multiple times by the same thread. In such cases the,
|
||||
** mutex must be exited an equal number of times before another thread
|
||||
** can enter. If the same thread tries to enter any other kind of mutex
|
||||
** more than once, the behavior is undefined.
|
||||
*/
|
||||
static void os2MutexEnter(sqlite3_mutex *p){
|
||||
TID tid;
|
||||
PID holder1;
|
||||
ULONG holder2;
|
||||
if( p==0 ) return;
|
||||
assert( p->id==SQLITE_MUTEX_RECURSIVE || os2MutexNotheld(p) );
|
||||
DosRequestMutexSem(p->mutex, SEM_INDEFINITE_WAIT);
|
||||
DosQueryMutexSem(p->mutex, &holder1, &tid, &holder2);
|
||||
p->owner = tid;
|
||||
p->nRef++;
|
||||
}
|
||||
static int os2MutexTry(sqlite3_mutex *p){
|
||||
int rc;
|
||||
TID tid;
|
||||
PID holder1;
|
||||
ULONG holder2;
|
||||
if( p==0 ) return SQLITE_OK;
|
||||
assert( p->id==SQLITE_MUTEX_RECURSIVE || os2MutexNotheld(p) );
|
||||
if( DosRequestMutexSem(p->mutex, SEM_IMMEDIATE_RETURN) == NO_ERROR) {
|
||||
DosQueryMutexSem(p->mutex, &holder1, &tid, &holder2);
|
||||
p->owner = tid;
|
||||
p->nRef++;
|
||||
rc = SQLITE_OK;
|
||||
} else {
|
||||
rc = SQLITE_BUSY;
|
||||
}
|
||||
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** The sqlite3_mutex_leave() routine exits a mutex that was
|
||||
** previously entered by the same thread. The behavior
|
||||
** is undefined if the mutex is not currently entered or
|
||||
** is not currently allocated. SQLite will never do either.
|
||||
*/
|
||||
static void os2MutexLeave(sqlite3_mutex *p){
|
||||
TID tid;
|
||||
PID holder1;
|
||||
ULONG holder2;
|
||||
if( p==0 ) return;
|
||||
assert( p->nRef>0 );
|
||||
DosQueryMutexSem(p->mutex, &holder1, &tid, &holder2);
|
||||
assert( p->owner==tid );
|
||||
p->nRef--;
|
||||
assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE );
|
||||
DosReleaseMutexSem(p->mutex);
|
||||
}
|
||||
|
||||
#ifdef SQLITE_DEBUG
|
||||
/*
|
||||
** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
|
||||
** intended for use inside assert() statements.
|
||||
*/
|
||||
static int os2MutexHeld(sqlite3_mutex *p){
|
||||
TID tid;
|
||||
PID pid;
|
||||
ULONG ulCount;
|
||||
PTIB ptib;
|
||||
if( p!=0 ) {
|
||||
DosQueryMutexSem(p->mutex, &pid, &tid, &ulCount);
|
||||
} else {
|
||||
DosGetInfoBlocks(&ptib, NULL);
|
||||
tid = ptib->tib_ptib2->tib2_ultid;
|
||||
}
|
||||
return p==0 || (p->nRef!=0 && p->owner==tid);
|
||||
}
|
||||
static int os2MutexNotheld(sqlite3_mutex *p){
|
||||
TID tid;
|
||||
PID pid;
|
||||
ULONG ulCount;
|
||||
PTIB ptib;
|
||||
if( p!= 0 ) {
|
||||
DosQueryMutexSem(p->mutex, &pid, &tid, &ulCount);
|
||||
} else {
|
||||
DosGetInfoBlocks(&ptib, NULL);
|
||||
tid = ptib->tib_ptib2->tib2_ultid;
|
||||
}
|
||||
return p==0 || p->nRef==0 || p->owner!=tid;
|
||||
}
|
||||
#endif
|
||||
|
||||
sqlite3_mutex_methods *sqlite3DefaultMutex(void){
|
||||
static sqlite3_mutex_methods sMutex = {
|
||||
os2MutexInit,
|
||||
os2MutexEnd,
|
||||
os2MutexAlloc,
|
||||
os2MutexFree,
|
||||
os2MutexEnter,
|
||||
os2MutexTry,
|
||||
os2MutexLeave,
|
||||
#ifdef SQLITE_DEBUG
|
||||
os2MutexHeld,
|
||||
os2MutexNotheld
|
||||
#endif
|
||||
};
|
||||
|
||||
return &sMutex;
|
||||
}
|
||||
#endif /* SQLITE_MUTEX_OS2 */
|
328
mutex_unix.c
328
mutex_unix.c
|
@ -1,328 +0,0 @@
|
|||
/*
|
||||
** 2007 August 28
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This file contains the C functions that implement mutexes for pthreads
|
||||
**
|
||||
** $Id: mutex_unix.c,v 1.16 2008/12/08 18:19:18 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
/*
|
||||
** The code in this file is only used if we are compiling threadsafe
|
||||
** under unix with pthreads.
|
||||
**
|
||||
** Note that this implementation requires a version of pthreads that
|
||||
** supports recursive mutexes.
|
||||
*/
|
||||
#ifdef SQLITE_MUTEX_PTHREADS
|
||||
|
||||
#include <pthread.h>
|
||||
|
||||
|
||||
/*
|
||||
** Each recursive mutex is an instance of the following structure.
|
||||
*/
|
||||
struct sqlite3_mutex {
|
||||
pthread_mutex_t mutex; /* Mutex controlling the lock */
|
||||
int id; /* Mutex type */
|
||||
int nRef; /* Number of entrances */
|
||||
pthread_t owner; /* Thread that is within this mutex */
|
||||
#ifdef SQLITE_DEBUG
|
||||
int trace; /* True to trace changes */
|
||||
#endif
|
||||
};
|
||||
#ifdef SQLITE_DEBUG
|
||||
#define SQLITE3_MUTEX_INITIALIZER { PTHREAD_MUTEX_INITIALIZER, 0, 0, (pthread_t)0, 0 }
|
||||
#else
|
||||
#define SQLITE3_MUTEX_INITIALIZER { PTHREAD_MUTEX_INITIALIZER, 0, 0, (pthread_t)0 }
|
||||
#endif
|
||||
|
||||
/*
|
||||
** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
|
||||
** intended for use only inside assert() statements. On some platforms,
|
||||
** there might be race conditions that can cause these routines to
|
||||
** deliver incorrect results. In particular, if pthread_equal() is
|
||||
** not an atomic operation, then these routines might delivery
|
||||
** incorrect results. On most platforms, pthread_equal() is a
|
||||
** comparison of two integers and is therefore atomic. But we are
|
||||
** told that HPUX is not such a platform. If so, then these routines
|
||||
** will not always work correctly on HPUX.
|
||||
**
|
||||
** On those platforms where pthread_equal() is not atomic, SQLite
|
||||
** should be compiled without -DSQLITE_DEBUG and with -DNDEBUG to
|
||||
** make sure no assert() statements are evaluated and hence these
|
||||
** routines are never called.
|
||||
*/
|
||||
#if !defined(NDEBUG) || defined(SQLITE_DEBUG)
|
||||
static int pthreadMutexHeld(sqlite3_mutex *p){
|
||||
return (p->nRef!=0 && pthread_equal(p->owner, pthread_self()));
|
||||
}
|
||||
static int pthreadMutexNotheld(sqlite3_mutex *p){
|
||||
return p->nRef==0 || pthread_equal(p->owner, pthread_self())==0;
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
** Initialize and deinitialize the mutex subsystem.
|
||||
*/
|
||||
static int pthreadMutexInit(void){ return SQLITE_OK; }
|
||||
static int pthreadMutexEnd(void){ return SQLITE_OK; }
|
||||
|
||||
/*
|
||||
** The sqlite3_mutex_alloc() routine allocates a new
|
||||
** mutex and returns a pointer to it. If it returns NULL
|
||||
** that means that a mutex could not be allocated. SQLite
|
||||
** will unwind its stack and return an error. The argument
|
||||
** to sqlite3_mutex_alloc() is one of these integer constants:
|
||||
**
|
||||
** <ul>
|
||||
** <li> SQLITE_MUTEX_FAST
|
||||
** <li> SQLITE_MUTEX_RECURSIVE
|
||||
** <li> SQLITE_MUTEX_STATIC_MASTER
|
||||
** <li> SQLITE_MUTEX_STATIC_MEM
|
||||
** <li> SQLITE_MUTEX_STATIC_MEM2
|
||||
** <li> SQLITE_MUTEX_STATIC_PRNG
|
||||
** <li> SQLITE_MUTEX_STATIC_LRU
|
||||
** </ul>
|
||||
**
|
||||
** The first two constants cause sqlite3_mutex_alloc() to create
|
||||
** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
|
||||
** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
|
||||
** The mutex implementation does not need to make a distinction
|
||||
** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
|
||||
** not want to. But SQLite will only request a recursive mutex in
|
||||
** cases where it really needs one. If a faster non-recursive mutex
|
||||
** implementation is available on the host platform, the mutex subsystem
|
||||
** might return such a mutex in response to SQLITE_MUTEX_FAST.
|
||||
**
|
||||
** The other allowed parameters to sqlite3_mutex_alloc() each return
|
||||
** a pointer to a static preexisting mutex. Three static mutexes are
|
||||
** used by the current version of SQLite. Future versions of SQLite
|
||||
** may add additional static mutexes. Static mutexes are for internal
|
||||
** use by SQLite only. Applications that use SQLite mutexes should
|
||||
** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
|
||||
** SQLITE_MUTEX_RECURSIVE.
|
||||
**
|
||||
** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
|
||||
** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
|
||||
** returns a different mutex on every call. But for the static
|
||||
** mutex types, the same mutex is returned on every call that has
|
||||
** the same type number.
|
||||
*/
|
||||
static sqlite3_mutex *pthreadMutexAlloc(int iType){
|
||||
static sqlite3_mutex staticMutexes[] = {
|
||||
SQLITE3_MUTEX_INITIALIZER,
|
||||
SQLITE3_MUTEX_INITIALIZER,
|
||||
SQLITE3_MUTEX_INITIALIZER,
|
||||
SQLITE3_MUTEX_INITIALIZER,
|
||||
SQLITE3_MUTEX_INITIALIZER,
|
||||
SQLITE3_MUTEX_INITIALIZER
|
||||
};
|
||||
sqlite3_mutex *p;
|
||||
switch( iType ){
|
||||
case SQLITE_MUTEX_RECURSIVE: {
|
||||
p = sqlite3MallocZero( sizeof(*p) );
|
||||
if( p ){
|
||||
#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
|
||||
/* If recursive mutexes are not available, we will have to
|
||||
** build our own. See below. */
|
||||
pthread_mutex_init(&p->mutex, 0);
|
||||
#else
|
||||
/* Use a recursive mutex if it is available */
|
||||
pthread_mutexattr_t recursiveAttr;
|
||||
pthread_mutexattr_init(&recursiveAttr);
|
||||
pthread_mutexattr_settype(&recursiveAttr, PTHREAD_MUTEX_RECURSIVE);
|
||||
pthread_mutex_init(&p->mutex, &recursiveAttr);
|
||||
pthread_mutexattr_destroy(&recursiveAttr);
|
||||
#endif
|
||||
p->id = iType;
|
||||
}
|
||||
break;
|
||||
}
|
||||
case SQLITE_MUTEX_FAST: {
|
||||
p = sqlite3MallocZero( sizeof(*p) );
|
||||
if( p ){
|
||||
p->id = iType;
|
||||
pthread_mutex_init(&p->mutex, 0);
|
||||
}
|
||||
break;
|
||||
}
|
||||
default: {
|
||||
assert( iType-2 >= 0 );
|
||||
assert( iType-2 < ArraySize(staticMutexes) );
|
||||
p = &staticMutexes[iType-2];
|
||||
p->id = iType;
|
||||
break;
|
||||
}
|
||||
}
|
||||
return p;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** This routine deallocates a previously
|
||||
** allocated mutex. SQLite is careful to deallocate every
|
||||
** mutex that it allocates.
|
||||
*/
|
||||
static void pthreadMutexFree(sqlite3_mutex *p){
|
||||
assert( p->nRef==0 );
|
||||
assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );
|
||||
pthread_mutex_destroy(&p->mutex);
|
||||
sqlite3_free(p);
|
||||
}
|
||||
|
||||
/*
|
||||
** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
|
||||
** to enter a mutex. If another thread is already within the mutex,
|
||||
** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
|
||||
** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK
|
||||
** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can
|
||||
** be entered multiple times by the same thread. In such cases the,
|
||||
** mutex must be exited an equal number of times before another thread
|
||||
** can enter. If the same thread tries to enter any other kind of mutex
|
||||
** more than once, the behavior is undefined.
|
||||
*/
|
||||
static void pthreadMutexEnter(sqlite3_mutex *p){
|
||||
assert( p->id==SQLITE_MUTEX_RECURSIVE || pthreadMutexNotheld(p) );
|
||||
|
||||
#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
|
||||
/* If recursive mutexes are not available, then we have to grow
|
||||
** our own. This implementation assumes that pthread_equal()
|
||||
** is atomic - that it cannot be deceived into thinking self
|
||||
** and p->owner are equal if p->owner changes between two values
|
||||
** that are not equal to self while the comparison is taking place.
|
||||
** This implementation also assumes a coherent cache - that
|
||||
** separate processes cannot read different values from the same
|
||||
** address at the same time. If either of these two conditions
|
||||
** are not met, then the mutexes will fail and problems will result.
|
||||
*/
|
||||
{
|
||||
pthread_t self = pthread_self();
|
||||
if( p->nRef>0 && pthread_equal(p->owner, self) ){
|
||||
p->nRef++;
|
||||
}else{
|
||||
pthread_mutex_lock(&p->mutex);
|
||||
assert( p->nRef==0 );
|
||||
p->owner = self;
|
||||
p->nRef = 1;
|
||||
}
|
||||
}
|
||||
#else
|
||||
/* Use the built-in recursive mutexes if they are available.
|
||||
*/
|
||||
pthread_mutex_lock(&p->mutex);
|
||||
p->owner = pthread_self();
|
||||
p->nRef++;
|
||||
#endif
|
||||
|
||||
#ifdef SQLITE_DEBUG
|
||||
if( p->trace ){
|
||||
printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
static int pthreadMutexTry(sqlite3_mutex *p){
|
||||
int rc;
|
||||
assert( p->id==SQLITE_MUTEX_RECURSIVE || pthreadMutexNotheld(p) );
|
||||
|
||||
#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
|
||||
/* If recursive mutexes are not available, then we have to grow
|
||||
** our own. This implementation assumes that pthread_equal()
|
||||
** is atomic - that it cannot be deceived into thinking self
|
||||
** and p->owner are equal if p->owner changes between two values
|
||||
** that are not equal to self while the comparison is taking place.
|
||||
** This implementation also assumes a coherent cache - that
|
||||
** separate processes cannot read different values from the same
|
||||
** address at the same time. If either of these two conditions
|
||||
** are not met, then the mutexes will fail and problems will result.
|
||||
*/
|
||||
{
|
||||
pthread_t self = pthread_self();
|
||||
if( p->nRef>0 && pthread_equal(p->owner, self) ){
|
||||
p->nRef++;
|
||||
rc = SQLITE_OK;
|
||||
}else if( pthread_mutex_trylock(&p->mutex)==0 ){
|
||||
assert( p->nRef==0 );
|
||||
p->owner = self;
|
||||
p->nRef = 1;
|
||||
rc = SQLITE_OK;
|
||||
}else{
|
||||
rc = SQLITE_BUSY;
|
||||
}
|
||||
}
|
||||
#else
|
||||
/* Use the built-in recursive mutexes if they are available.
|
||||
*/
|
||||
if( pthread_mutex_trylock(&p->mutex)==0 ){
|
||||
p->owner = pthread_self();
|
||||
p->nRef++;
|
||||
rc = SQLITE_OK;
|
||||
}else{
|
||||
rc = SQLITE_BUSY;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef SQLITE_DEBUG
|
||||
if( rc==SQLITE_OK && p->trace ){
|
||||
printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
|
||||
}
|
||||
#endif
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** The sqlite3_mutex_leave() routine exits a mutex that was
|
||||
** previously entered by the same thread. The behavior
|
||||
** is undefined if the mutex is not currently entered or
|
||||
** is not currently allocated. SQLite will never do either.
|
||||
*/
|
||||
static void pthreadMutexLeave(sqlite3_mutex *p){
|
||||
assert( pthreadMutexHeld(p) );
|
||||
p->nRef--;
|
||||
assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE );
|
||||
|
||||
#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
|
||||
if( p->nRef==0 ){
|
||||
pthread_mutex_unlock(&p->mutex);
|
||||
}
|
||||
#else
|
||||
pthread_mutex_unlock(&p->mutex);
|
||||
#endif
|
||||
|
||||
#ifdef SQLITE_DEBUG
|
||||
if( p->trace ){
|
||||
printf("leave mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
sqlite3_mutex_methods *sqlite3DefaultMutex(void){
|
||||
static sqlite3_mutex_methods sMutex = {
|
||||
pthreadMutexInit,
|
||||
pthreadMutexEnd,
|
||||
pthreadMutexAlloc,
|
||||
pthreadMutexFree,
|
||||
pthreadMutexEnter,
|
||||
pthreadMutexTry,
|
||||
pthreadMutexLeave,
|
||||
#ifdef SQLITE_DEBUG
|
||||
pthreadMutexHeld,
|
||||
pthreadMutexNotheld
|
||||
#else
|
||||
0,
|
||||
0
|
||||
#endif
|
||||
};
|
||||
|
||||
return &sMutex;
|
||||
}
|
||||
|
||||
#endif /* SQLITE_MUTEX_PTHREAD */
|
256
mutex_w32.c
256
mutex_w32.c
|
@ -1,256 +0,0 @@
|
|||
/*
|
||||
** 2007 August 14
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This file contains the C functions that implement mutexes for win32
|
||||
**
|
||||
** $Id: mutex_w32.c,v 1.15 2009/01/30 16:09:23 shane Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
/*
|
||||
** The code in this file is only used if we are compiling multithreaded
|
||||
** on a win32 system.
|
||||
*/
|
||||
#ifdef SQLITE_MUTEX_W32
|
||||
|
||||
/*
|
||||
** Each recursive mutex is an instance of the following structure.
|
||||
*/
|
||||
struct sqlite3_mutex {
|
||||
CRITICAL_SECTION mutex; /* Mutex controlling the lock */
|
||||
int id; /* Mutex type */
|
||||
int nRef; /* Number of enterances */
|
||||
DWORD owner; /* Thread holding this mutex */
|
||||
};
|
||||
|
||||
/*
|
||||
** Return true (non-zero) if we are running under WinNT, Win2K, WinXP,
|
||||
** or WinCE. Return false (zero) for Win95, Win98, or WinME.
|
||||
**
|
||||
** Here is an interesting observation: Win95, Win98, and WinME lack
|
||||
** the LockFileEx() API. But we can still statically link against that
|
||||
** API as long as we don't call it win running Win95/98/ME. A call to
|
||||
** this routine is used to determine if the host is Win95/98/ME or
|
||||
** WinNT/2K/XP so that we will know whether or not we can safely call
|
||||
** the LockFileEx() API.
|
||||
**
|
||||
** mutexIsNT() is only used for the TryEnterCriticalSection() API call,
|
||||
** which is only available if your application was compiled with
|
||||
** _WIN32_WINNT defined to a value >= 0x0400. Currently, the only
|
||||
** call to TryEnterCriticalSection() is #ifdef'ed out, so #ifdef
|
||||
** this out as well.
|
||||
*/
|
||||
#if 0
|
||||
#if SQLITE_OS_WINCE
|
||||
# define mutexIsNT() (1)
|
||||
#else
|
||||
static int mutexIsNT(void){
|
||||
static int osType = 0;
|
||||
if( osType==0 ){
|
||||
OSVERSIONINFO sInfo;
|
||||
sInfo.dwOSVersionInfoSize = sizeof(sInfo);
|
||||
GetVersionEx(&sInfo);
|
||||
osType = sInfo.dwPlatformId==VER_PLATFORM_WIN32_NT ? 2 : 1;
|
||||
}
|
||||
return osType==2;
|
||||
}
|
||||
#endif /* SQLITE_OS_WINCE */
|
||||
#endif
|
||||
|
||||
#ifdef SQLITE_DEBUG
|
||||
/*
|
||||
** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
|
||||
** intended for use only inside assert() statements.
|
||||
*/
|
||||
static int winMutexHeld(sqlite3_mutex *p){
|
||||
return p->nRef!=0 && p->owner==GetCurrentThreadId();
|
||||
}
|
||||
static int winMutexNotheld(sqlite3_mutex *p){
|
||||
return p->nRef==0 || p->owner!=GetCurrentThreadId();
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
** Initialize and deinitialize the mutex subsystem.
|
||||
*/
|
||||
static int winMutexInit(void){ return SQLITE_OK; }
|
||||
static int winMutexEnd(void){ return SQLITE_OK; }
|
||||
|
||||
/*
|
||||
** The sqlite3_mutex_alloc() routine allocates a new
|
||||
** mutex and returns a pointer to it. If it returns NULL
|
||||
** that means that a mutex could not be allocated. SQLite
|
||||
** will unwind its stack and return an error. The argument
|
||||
** to sqlite3_mutex_alloc() is one of these integer constants:
|
||||
**
|
||||
** <ul>
|
||||
** <li> SQLITE_MUTEX_FAST 0
|
||||
** <li> SQLITE_MUTEX_RECURSIVE 1
|
||||
** <li> SQLITE_MUTEX_STATIC_MASTER 2
|
||||
** <li> SQLITE_MUTEX_STATIC_MEM 3
|
||||
** <li> SQLITE_MUTEX_STATIC_PRNG 4
|
||||
** </ul>
|
||||
**
|
||||
** The first two constants cause sqlite3_mutex_alloc() to create
|
||||
** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
|
||||
** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
|
||||
** The mutex implementation does not need to make a distinction
|
||||
** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
|
||||
** not want to. But SQLite will only request a recursive mutex in
|
||||
** cases where it really needs one. If a faster non-recursive mutex
|
||||
** implementation is available on the host platform, the mutex subsystem
|
||||
** might return such a mutex in response to SQLITE_MUTEX_FAST.
|
||||
**
|
||||
** The other allowed parameters to sqlite3_mutex_alloc() each return
|
||||
** a pointer to a static preexisting mutex. Three static mutexes are
|
||||
** used by the current version of SQLite. Future versions of SQLite
|
||||
** may add additional static mutexes. Static mutexes are for internal
|
||||
** use by SQLite only. Applications that use SQLite mutexes should
|
||||
** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
|
||||
** SQLITE_MUTEX_RECURSIVE.
|
||||
**
|
||||
** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
|
||||
** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
|
||||
** returns a different mutex on every call. But for the static
|
||||
** mutex types, the same mutex is returned on every call that has
|
||||
** the same type number.
|
||||
*/
|
||||
static sqlite3_mutex *winMutexAlloc(int iType){
|
||||
sqlite3_mutex *p;
|
||||
|
||||
switch( iType ){
|
||||
case SQLITE_MUTEX_FAST:
|
||||
case SQLITE_MUTEX_RECURSIVE: {
|
||||
p = sqlite3MallocZero( sizeof(*p) );
|
||||
if( p ){
|
||||
p->id = iType;
|
||||
InitializeCriticalSection(&p->mutex);
|
||||
}
|
||||
break;
|
||||
}
|
||||
default: {
|
||||
static sqlite3_mutex staticMutexes[6];
|
||||
static int isInit = 0;
|
||||
while( !isInit ){
|
||||
static long lock = 0;
|
||||
if( InterlockedIncrement(&lock)==1 ){
|
||||
int i;
|
||||
for(i=0; i<sizeof(staticMutexes)/sizeof(staticMutexes[0]); i++){
|
||||
InitializeCriticalSection(&staticMutexes[i].mutex);
|
||||
}
|
||||
isInit = 1;
|
||||
}else{
|
||||
Sleep(1);
|
||||
}
|
||||
}
|
||||
assert( iType-2 >= 0 );
|
||||
assert( iType-2 < sizeof(staticMutexes)/sizeof(staticMutexes[0]) );
|
||||
p = &staticMutexes[iType-2];
|
||||
p->id = iType;
|
||||
break;
|
||||
}
|
||||
}
|
||||
return p;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** This routine deallocates a previously
|
||||
** allocated mutex. SQLite is careful to deallocate every
|
||||
** mutex that it allocates.
|
||||
*/
|
||||
static void winMutexFree(sqlite3_mutex *p){
|
||||
assert( p );
|
||||
assert( p->nRef==0 );
|
||||
assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );
|
||||
DeleteCriticalSection(&p->mutex);
|
||||
sqlite3_free(p);
|
||||
}
|
||||
|
||||
/*
|
||||
** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
|
||||
** to enter a mutex. If another thread is already within the mutex,
|
||||
** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
|
||||
** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK
|
||||
** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can
|
||||
** be entered multiple times by the same thread. In such cases the,
|
||||
** mutex must be exited an equal number of times before another thread
|
||||
** can enter. If the same thread tries to enter any other kind of mutex
|
||||
** more than once, the behavior is undefined.
|
||||
*/
|
||||
static void winMutexEnter(sqlite3_mutex *p){
|
||||
assert( p->id==SQLITE_MUTEX_RECURSIVE || winMutexNotheld(p) );
|
||||
EnterCriticalSection(&p->mutex);
|
||||
p->owner = GetCurrentThreadId();
|
||||
p->nRef++;
|
||||
}
|
||||
static int winMutexTry(sqlite3_mutex *p){
|
||||
int rc = SQLITE_BUSY;
|
||||
assert( p->id==SQLITE_MUTEX_RECURSIVE || winMutexNotheld(p) );
|
||||
/*
|
||||
** The sqlite3_mutex_try() routine is very rarely used, and when it
|
||||
** is used it is merely an optimization. So it is OK for it to always
|
||||
** fail.
|
||||
**
|
||||
** The TryEnterCriticalSection() interface is only available on WinNT.
|
||||
** And some windows compilers complain if you try to use it without
|
||||
** first doing some #defines that prevent SQLite from building on Win98.
|
||||
** For that reason, we will omit this optimization for now. See
|
||||
** ticket #2685.
|
||||
*/
|
||||
#if 0
|
||||
if( mutexIsNT() && TryEnterCriticalSection(&p->mutex) ){
|
||||
p->owner = GetCurrentThreadId();
|
||||
p->nRef++;
|
||||
rc = SQLITE_OK;
|
||||
}
|
||||
#else
|
||||
UNUSED_PARAMETER(p);
|
||||
#endif
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** The sqlite3_mutex_leave() routine exits a mutex that was
|
||||
** previously entered by the same thread. The behavior
|
||||
** is undefined if the mutex is not currently entered or
|
||||
** is not currently allocated. SQLite will never do either.
|
||||
*/
|
||||
static void winMutexLeave(sqlite3_mutex *p){
|
||||
assert( p->nRef>0 );
|
||||
assert( p->owner==GetCurrentThreadId() );
|
||||
p->nRef--;
|
||||
assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE );
|
||||
LeaveCriticalSection(&p->mutex);
|
||||
}
|
||||
|
||||
sqlite3_mutex_methods *sqlite3DefaultMutex(void){
|
||||
static sqlite3_mutex_methods sMutex = {
|
||||
winMutexInit,
|
||||
winMutexEnd,
|
||||
winMutexAlloc,
|
||||
winMutexFree,
|
||||
winMutexEnter,
|
||||
winMutexTry,
|
||||
winMutexLeave,
|
||||
#ifdef SQLITE_DEBUG
|
||||
winMutexHeld,
|
||||
winMutexNotheld
|
||||
#else
|
||||
0,
|
||||
0
|
||||
#endif
|
||||
};
|
||||
|
||||
return &sMutex;
|
||||
}
|
||||
#endif /* SQLITE_MUTEX_W32 */
|
333
notify.c
333
notify.c
|
@ -1,333 +0,0 @@
|
|||
/*
|
||||
** 2009 March 3
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
**
|
||||
** This file contains the implementation of the sqlite3_unlock_notify()
|
||||
** API method and its associated functionality.
|
||||
**
|
||||
** $Id: notify.c,v 1.4 2009/04/07 22:06:57 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
#include "btreeInt.h"
|
||||
|
||||
/* Omit this entire file if SQLITE_ENABLE_UNLOCK_NOTIFY is not defined. */
|
||||
#ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
|
||||
|
||||
/*
|
||||
** Public interfaces:
|
||||
**
|
||||
** sqlite3ConnectionBlocked()
|
||||
** sqlite3ConnectionUnlocked()
|
||||
** sqlite3ConnectionClosed()
|
||||
** sqlite3_unlock_notify()
|
||||
*/
|
||||
|
||||
#define assertMutexHeld() \
|
||||
assert( sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)) )
|
||||
|
||||
/*
|
||||
** Head of a linked list of all sqlite3 objects created by this process
|
||||
** for which either sqlite3.pBlockingConnection or sqlite3.pUnlockConnection
|
||||
** is not NULL. This variable may only accessed while the STATIC_MASTER
|
||||
** mutex is held.
|
||||
*/
|
||||
static sqlite3 *SQLITE_WSD sqlite3BlockedList = 0;
|
||||
|
||||
#ifndef NDEBUG
|
||||
/*
|
||||
** This function is a complex assert() that verifies the following
|
||||
** properties of the blocked connections list:
|
||||
**
|
||||
** 1) Each entry in the list has a non-NULL value for either
|
||||
** pUnlockConnection or pBlockingConnection, or both.
|
||||
**
|
||||
** 2) All entries in the list that share a common value for
|
||||
** xUnlockNotify are grouped together.
|
||||
**
|
||||
** 3) If the argument db is not NULL, then none of the entries in the
|
||||
** blocked connections list have pUnlockConnection or pBlockingConnection
|
||||
** set to db. This is used when closing connection db.
|
||||
*/
|
||||
static void checkListProperties(sqlite3 *db){
|
||||
sqlite3 *p;
|
||||
for(p=sqlite3BlockedList; p; p=p->pNextBlocked){
|
||||
int seen = 0;
|
||||
sqlite3 *p2;
|
||||
|
||||
/* Verify property (1) */
|
||||
assert( p->pUnlockConnection || p->pBlockingConnection );
|
||||
|
||||
/* Verify property (2) */
|
||||
for(p2=sqlite3BlockedList; p2!=p; p2=p2->pNextBlocked){
|
||||
if( p2->xUnlockNotify==p->xUnlockNotify ) seen = 1;
|
||||
assert( p2->xUnlockNotify==p->xUnlockNotify || !seen );
|
||||
assert( db==0 || p->pUnlockConnection!=db );
|
||||
assert( db==0 || p->pBlockingConnection!=db );
|
||||
}
|
||||
}
|
||||
}
|
||||
#else
|
||||
# define checkListProperties(x)
|
||||
#endif
|
||||
|
||||
/*
|
||||
** Remove connection db from the blocked connections list. If connection
|
||||
** db is not currently a part of the list, this function is a no-op.
|
||||
*/
|
||||
static void removeFromBlockedList(sqlite3 *db){
|
||||
sqlite3 **pp;
|
||||
assertMutexHeld();
|
||||
for(pp=&sqlite3BlockedList; *pp; pp = &(*pp)->pNextBlocked){
|
||||
if( *pp==db ){
|
||||
*pp = (*pp)->pNextBlocked;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Add connection db to the blocked connections list. It is assumed
|
||||
** that it is not already a part of the list.
|
||||
*/
|
||||
static void addToBlockedList(sqlite3 *db){
|
||||
sqlite3 **pp;
|
||||
assertMutexHeld();
|
||||
for(
|
||||
pp=&sqlite3BlockedList;
|
||||
*pp && (*pp)->xUnlockNotify!=db->xUnlockNotify;
|
||||
pp=&(*pp)->pNextBlocked
|
||||
);
|
||||
db->pNextBlocked = *pp;
|
||||
*pp = db;
|
||||
}
|
||||
|
||||
/*
|
||||
** Obtain the STATIC_MASTER mutex.
|
||||
*/
|
||||
static void enterMutex(void){
|
||||
sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
|
||||
checkListProperties(0);
|
||||
}
|
||||
|
||||
/*
|
||||
** Release the STATIC_MASTER mutex.
|
||||
*/
|
||||
static void leaveMutex(void){
|
||||
assertMutexHeld();
|
||||
checkListProperties(0);
|
||||
sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
|
||||
}
|
||||
|
||||
/*
|
||||
** Register an unlock-notify callback.
|
||||
**
|
||||
** This is called after connection "db" has attempted some operation
|
||||
** but has received an SQLITE_LOCKED error because another connection
|
||||
** (call it pOther) in the same process was busy using the same shared
|
||||
** cache. pOther is found by looking at db->pBlockingConnection.
|
||||
**
|
||||
** If there is no blocking connection, the callback is invoked immediately,
|
||||
** before this routine returns.
|
||||
**
|
||||
** If pOther is already blocked on db, then report SQLITE_LOCKED, to indicate
|
||||
** a deadlock.
|
||||
**
|
||||
** Otherwise, make arrangements to invoke xNotify when pOther drops
|
||||
** its locks.
|
||||
**
|
||||
** Each call to this routine overrides any prior callbacks registered
|
||||
** on the same "db". If xNotify==0 then any prior callbacks are immediately
|
||||
** cancelled.
|
||||
*/
|
||||
int sqlite3_unlock_notify(
|
||||
sqlite3 *db,
|
||||
void (*xNotify)(void **, int),
|
||||
void *pArg
|
||||
){
|
||||
int rc = SQLITE_OK;
|
||||
|
||||
sqlite3_mutex_enter(db->mutex);
|
||||
enterMutex();
|
||||
|
||||
if( xNotify==0 ){
|
||||
removeFromBlockedList(db);
|
||||
db->pUnlockConnection = 0;
|
||||
db->xUnlockNotify = 0;
|
||||
db->pUnlockArg = 0;
|
||||
}else if( 0==db->pBlockingConnection ){
|
||||
/* The blocking transaction has been concluded. Or there never was a
|
||||
** blocking transaction. In either case, invoke the notify callback
|
||||
** immediately.
|
||||
*/
|
||||
xNotify(&pArg, 1);
|
||||
}else{
|
||||
sqlite3 *p;
|
||||
|
||||
for(p=db->pBlockingConnection; p && p!=db; p=p->pUnlockConnection){}
|
||||
if( p ){
|
||||
rc = SQLITE_LOCKED; /* Deadlock detected. */
|
||||
}else{
|
||||
db->pUnlockConnection = db->pBlockingConnection;
|
||||
db->xUnlockNotify = xNotify;
|
||||
db->pUnlockArg = pArg;
|
||||
removeFromBlockedList(db);
|
||||
addToBlockedList(db);
|
||||
}
|
||||
}
|
||||
|
||||
leaveMutex();
|
||||
assert( !db->mallocFailed );
|
||||
sqlite3Error(db, rc, (rc?"database is deadlocked":0));
|
||||
sqlite3_mutex_leave(db->mutex);
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** This function is called while stepping or preparing a statement
|
||||
** associated with connection db. The operation will return SQLITE_LOCKED
|
||||
** to the user because it requires a lock that will not be available
|
||||
** until connection pBlocker concludes its current transaction.
|
||||
*/
|
||||
void sqlite3ConnectionBlocked(sqlite3 *db, sqlite3 *pBlocker){
|
||||
enterMutex();
|
||||
if( db->pBlockingConnection==0 && db->pUnlockConnection==0 ){
|
||||
addToBlockedList(db);
|
||||
}
|
||||
db->pBlockingConnection = pBlocker;
|
||||
leaveMutex();
|
||||
}
|
||||
|
||||
/*
|
||||
** This function is called when
|
||||
** the transaction opened by database db has just finished. Locks held
|
||||
** by database connection db have been released.
|
||||
**
|
||||
** This function loops through each entry in the blocked connections
|
||||
** list and does the following:
|
||||
**
|
||||
** 1) If the sqlite3.pBlockingConnection member of a list entry is
|
||||
** set to db, then set pBlockingConnection=0.
|
||||
**
|
||||
** 2) If the sqlite3.pUnlockConnection member of a list entry is
|
||||
** set to db, then invoke the configured unlock-notify callback and
|
||||
** set pUnlockConnection=0.
|
||||
**
|
||||
** 3) If the two steps above mean that pBlockingConnection==0 and
|
||||
** pUnlockConnection==0, remove the entry from the blocked connections
|
||||
** list.
|
||||
*/
|
||||
void sqlite3ConnectionUnlocked(sqlite3 *db){
|
||||
void (*xUnlockNotify)(void **, int) = 0; /* Unlock-notify cb to invoke */
|
||||
int nArg = 0; /* Number of entries in aArg[] */
|
||||
sqlite3 **pp; /* Iterator variable */
|
||||
void **aArg; /* Arguments to the unlock callback */
|
||||
void **aDyn = 0; /* Dynamically allocated space for aArg[] */
|
||||
void *aStatic[16]; /* Starter space for aArg[]. No malloc required */
|
||||
|
||||
aArg = aStatic;
|
||||
enterMutex(); /* Enter STATIC_MASTER mutex */
|
||||
|
||||
/* This loop runs once for each entry in the blocked-connections list. */
|
||||
for(pp=&sqlite3BlockedList; *pp; /* no-op */ ){
|
||||
sqlite3 *p = *pp;
|
||||
|
||||
/* Step 1. */
|
||||
if( p->pBlockingConnection==db ){
|
||||
p->pBlockingConnection = 0;
|
||||
}
|
||||
|
||||
/* Step 2. */
|
||||
if( p->pUnlockConnection==db ){
|
||||
assert( p->xUnlockNotify );
|
||||
if( p->xUnlockNotify!=xUnlockNotify && nArg!=0 ){
|
||||
xUnlockNotify(aArg, nArg);
|
||||
nArg = 0;
|
||||
}
|
||||
|
||||
sqlite3BeginBenignMalloc();
|
||||
assert( aArg==aDyn || (aDyn==0 && aArg==aStatic) );
|
||||
assert( nArg<=(int)ArraySize(aStatic) || aArg==aDyn );
|
||||
if( (!aDyn && nArg==(int)ArraySize(aStatic))
|
||||
|| (aDyn && nArg==(int)(sqlite3DbMallocSize(db, aDyn)/sizeof(void*)))
|
||||
){
|
||||
/* The aArg[] array needs to grow. */
|
||||
void **pNew = (void **)sqlite3Malloc(nArg*sizeof(void *)*2);
|
||||
if( pNew ){
|
||||
memcpy(pNew, aArg, nArg*sizeof(void *));
|
||||
sqlite3_free(aDyn);
|
||||
aDyn = aArg = pNew;
|
||||
}else{
|
||||
/* This occurs when the array of context pointers that need to
|
||||
** be passed to the unlock-notify callback is larger than the
|
||||
** aStatic[] array allocated on the stack and the attempt to
|
||||
** allocate a larger array from the heap has failed.
|
||||
**
|
||||
** This is a difficult situation to handle. Returning an error
|
||||
** code to the caller is insufficient, as even if an error code
|
||||
** is returned the transaction on connection db will still be
|
||||
** closed and the unlock-notify callbacks on blocked connections
|
||||
** will go unissued. This might cause the application to wait
|
||||
** indefinitely for an unlock-notify callback that will never
|
||||
** arrive.
|
||||
**
|
||||
** Instead, invoke the unlock-notify callback with the context
|
||||
** array already accumulated. We can then clear the array and
|
||||
** begin accumulating any further context pointers without
|
||||
** requiring any dynamic allocation. This is sub-optimal because
|
||||
** it means that instead of one callback with a large array of
|
||||
** context pointers the application will receive two or more
|
||||
** callbacks with smaller arrays of context pointers, which will
|
||||
** reduce the applications ability to prioritize multiple
|
||||
** connections. But it is the best that can be done under the
|
||||
** circumstances.
|
||||
*/
|
||||
xUnlockNotify(aArg, nArg);
|
||||
nArg = 0;
|
||||
}
|
||||
}
|
||||
sqlite3EndBenignMalloc();
|
||||
|
||||
aArg[nArg++] = p->pUnlockArg;
|
||||
xUnlockNotify = p->xUnlockNotify;
|
||||
p->pUnlockConnection = 0;
|
||||
p->xUnlockNotify = 0;
|
||||
p->pUnlockArg = 0;
|
||||
}
|
||||
|
||||
/* Step 3. */
|
||||
if( p->pBlockingConnection==0 && p->pUnlockConnection==0 ){
|
||||
/* Remove connection p from the blocked connections list. */
|
||||
*pp = p->pNextBlocked;
|
||||
p->pNextBlocked = 0;
|
||||
}else{
|
||||
pp = &p->pNextBlocked;
|
||||
}
|
||||
}
|
||||
|
||||
if( nArg!=0 ){
|
||||
xUnlockNotify(aArg, nArg);
|
||||
}
|
||||
sqlite3_free(aDyn);
|
||||
leaveMutex(); /* Leave STATIC_MASTER mutex */
|
||||
}
|
||||
|
||||
/*
|
||||
** This is called when the database connection passed as an argument is
|
||||
** being closed. The connection is removed from the blocked list.
|
||||
*/
|
||||
void sqlite3ConnectionClosed(sqlite3 *db){
|
||||
sqlite3ConnectionUnlocked(db);
|
||||
enterMutex();
|
||||
removeFromBlockedList(db);
|
||||
checkListProperties(db);
|
||||
leaveMutex();
|
||||
}
|
||||
#endif
|
154
opcodes.c
154
opcodes.c
|
@ -1,154 +0,0 @@
|
|||
/* Automatically generated. Do not edit */
|
||||
/* See the mkopcodec.awk script for details. */
|
||||
#if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
|
||||
const char *sqlite3OpcodeName(int i){
|
||||
static const char *const azName[] = { "?",
|
||||
/* 1 */ "ReadCookie",
|
||||
/* 2 */ "AutoCommit",
|
||||
/* 3 */ "Found",
|
||||
/* 4 */ "NullRow",
|
||||
/* 5 */ "Variable",
|
||||
/* 6 */ "RealAffinity",
|
||||
/* 7 */ "Sort",
|
||||
/* 8 */ "Affinity",
|
||||
/* 9 */ "IfNot",
|
||||
/* 10 */ "Gosub",
|
||||
/* 11 */ "NotFound",
|
||||
/* 12 */ "ResultRow",
|
||||
/* 13 */ "SeekLe",
|
||||
/* 14 */ "Rowid",
|
||||
/* 15 */ "CreateIndex",
|
||||
/* 16 */ "Explain",
|
||||
/* 17 */ "Statement",
|
||||
/* 18 */ "DropIndex",
|
||||
/* 19 */ "Not",
|
||||
/* 20 */ "Null",
|
||||
/* 21 */ "Int64",
|
||||
/* 22 */ "LoadAnalysis",
|
||||
/* 23 */ "IdxInsert",
|
||||
/* 24 */ "VUpdate",
|
||||
/* 25 */ "Next",
|
||||
/* 26 */ "SetNumColumns",
|
||||
/* 27 */ "SeekLt",
|
||||
/* 28 */ "Rewind",
|
||||
/* 29 */ "RowSetRead",
|
||||
/* 30 */ "Last",
|
||||
/* 31 */ "MustBeInt",
|
||||
/* 32 */ "IncrVacuum",
|
||||
/* 33 */ "String",
|
||||
/* 34 */ "VFilter",
|
||||
/* 35 */ "Count",
|
||||
/* 36 */ "Close",
|
||||
/* 37 */ "AggFinal",
|
||||
/* 38 */ "RowData",
|
||||
/* 39 */ "IdxRowid",
|
||||
/* 40 */ "Pagecount",
|
||||
/* 41 */ "SeekGe",
|
||||
/* 42 */ "OpenPseudo",
|
||||
/* 43 */ "Halt",
|
||||
/* 44 */ "Compare",
|
||||
/* 45 */ "NewRowid",
|
||||
/* 46 */ "IdxLT",
|
||||
/* 47 */ "SeekGt",
|
||||
/* 48 */ "MemMax",
|
||||
/* 49 */ "Function",
|
||||
/* 50 */ "IntegrityCk",
|
||||
/* 51 */ "SCopy",
|
||||
/* 52 */ "IfNeg",
|
||||
/* 53 */ "NotExists",
|
||||
/* 54 */ "VDestroy",
|
||||
/* 55 */ "IdxDelete",
|
||||
/* 56 */ "Vacuum",
|
||||
/* 57 */ "Copy",
|
||||
/* 58 */ "If",
|
||||
/* 59 */ "Destroy",
|
||||
/* 60 */ "Jump",
|
||||
/* 61 */ "AggStep",
|
||||
/* 62 */ "Clear",
|
||||
/* 63 */ "Insert",
|
||||
/* 64 */ "Permutation",
|
||||
/* 65 */ "VBegin",
|
||||
/* 66 */ "Or",
|
||||
/* 67 */ "And",
|
||||
/* 68 */ "OpenEphemeral",
|
||||
/* 69 */ "IdxGE",
|
||||
/* 70 */ "Trace",
|
||||
/* 71 */ "IsNull",
|
||||
/* 72 */ "NotNull",
|
||||
/* 73 */ "Ne",
|
||||
/* 74 */ "Eq",
|
||||
/* 75 */ "Gt",
|
||||
/* 76 */ "Le",
|
||||
/* 77 */ "Lt",
|
||||
/* 78 */ "Ge",
|
||||
/* 79 */ "VRowid",
|
||||
/* 80 */ "BitAnd",
|
||||
/* 81 */ "BitOr",
|
||||
/* 82 */ "ShiftLeft",
|
||||
/* 83 */ "ShiftRight",
|
||||
/* 84 */ "Add",
|
||||
/* 85 */ "Subtract",
|
||||
/* 86 */ "Multiply",
|
||||
/* 87 */ "Divide",
|
||||
/* 88 */ "Remainder",
|
||||
/* 89 */ "Concat",
|
||||
/* 90 */ "MakeRecord",
|
||||
/* 91 */ "Yield",
|
||||
/* 92 */ "SetCookie",
|
||||
/* 93 */ "BitNot",
|
||||
/* 94 */ "String8",
|
||||
/* 95 */ "Prev",
|
||||
/* 96 */ "ContextPush",
|
||||
/* 97 */ "DropTrigger",
|
||||
/* 98 */ "VColumn",
|
||||
/* 99 */ "Return",
|
||||
/* 100 */ "OpenWrite",
|
||||
/* 101 */ "Integer",
|
||||
/* 102 */ "Transaction",
|
||||
/* 103 */ "IfPos",
|
||||
/* 104 */ "RowSetAdd",
|
||||
/* 105 */ "CollSeq",
|
||||
/* 106 */ "Savepoint",
|
||||
/* 107 */ "VRename",
|
||||
/* 108 */ "Sequence",
|
||||
/* 109 */ "ContextPop",
|
||||
/* 110 */ "HaltIfNull",
|
||||
/* 111 */ "VCreate",
|
||||
/* 112 */ "CreateTable",
|
||||
/* 113 */ "AddImm",
|
||||
/* 114 */ "DropTable",
|
||||
/* 115 */ "IsUnique",
|
||||
/* 116 */ "VOpen",
|
||||
/* 117 */ "IfZero",
|
||||
/* 118 */ "Noop",
|
||||
/* 119 */ "RowKey",
|
||||
/* 120 */ "Expire",
|
||||
/* 121 */ "Delete",
|
||||
/* 122 */ "Blob",
|
||||
/* 123 */ "Move",
|
||||
/* 124 */ "Goto",
|
||||
/* 125 */ "ParseSchema",
|
||||
/* 126 */ "VNext",
|
||||
/* 127 */ "Seek",
|
||||
/* 128 */ "TableLock",
|
||||
/* 129 */ "VerifyCookie",
|
||||
/* 130 */ "Real",
|
||||
/* 131 */ "Column",
|
||||
/* 132 */ "OpenRead",
|
||||
/* 133 */ "ResetCount",
|
||||
/* 134 */ "NotUsed_134",
|
||||
/* 135 */ "NotUsed_135",
|
||||
/* 136 */ "NotUsed_136",
|
||||
/* 137 */ "NotUsed_137",
|
||||
/* 138 */ "NotUsed_138",
|
||||
/* 139 */ "NotUsed_139",
|
||||
/* 140 */ "NotUsed_140",
|
||||
/* 141 */ "ToText",
|
||||
/* 142 */ "ToBlob",
|
||||
/* 143 */ "ToNumeric",
|
||||
/* 144 */ "ToInt",
|
||||
/* 145 */ "ToReal",
|
||||
};
|
||||
return azName[i];
|
||||
}
|
||||
#endif
|
181
opcodes.h
181
opcodes.h
|
@ -1,181 +0,0 @@
|
|||
/* Automatically generated. Do not edit */
|
||||
/* See the mkopcodeh.awk script for details */
|
||||
#define OP_ReadCookie 1
|
||||
#define OP_AutoCommit 2
|
||||
#define OP_Found 3
|
||||
#define OP_NullRow 4
|
||||
#define OP_Lt 77 /* same as TK_LT */
|
||||
#define OP_Variable 5
|
||||
#define OP_RealAffinity 6
|
||||
#define OP_Sort 7
|
||||
#define OP_Affinity 8
|
||||
#define OP_IfNot 9
|
||||
#define OP_Gosub 10
|
||||
#define OP_Add 84 /* same as TK_PLUS */
|
||||
#define OP_NotFound 11
|
||||
#define OP_ResultRow 12
|
||||
#define OP_IsNull 71 /* same as TK_ISNULL */
|
||||
#define OP_SeekLe 13
|
||||
#define OP_Rowid 14
|
||||
#define OP_CreateIndex 15
|
||||
#define OP_Explain 16
|
||||
#define OP_Statement 17
|
||||
#define OP_DropIndex 18
|
||||
#define OP_Null 20
|
||||
#define OP_ToInt 144 /* same as TK_TO_INT */
|
||||
#define OP_Int64 21
|
||||
#define OP_LoadAnalysis 22
|
||||
#define OP_IdxInsert 23
|
||||
#define OP_VUpdate 24
|
||||
#define OP_Next 25
|
||||
#define OP_SetNumColumns 26
|
||||
#define OP_ToNumeric 143 /* same as TK_TO_NUMERIC*/
|
||||
#define OP_Ge 78 /* same as TK_GE */
|
||||
#define OP_BitNot 93 /* same as TK_BITNOT */
|
||||
#define OP_SeekLt 27
|
||||
#define OP_Rewind 28
|
||||
#define OP_Multiply 86 /* same as TK_STAR */
|
||||
#define OP_ToReal 145 /* same as TK_TO_REAL */
|
||||
#define OP_Gt 75 /* same as TK_GT */
|
||||
#define OP_RowSetRead 29
|
||||
#define OP_Last 30
|
||||
#define OP_MustBeInt 31
|
||||
#define OP_Ne 73 /* same as TK_NE */
|
||||
#define OP_IncrVacuum 32
|
||||
#define OP_String 33
|
||||
#define OP_VFilter 34
|
||||
#define OP_Count 35
|
||||
#define OP_Close 36
|
||||
#define OP_AggFinal 37
|
||||
#define OP_RowData 38
|
||||
#define OP_IdxRowid 39
|
||||
#define OP_Pagecount 40
|
||||
#define OP_BitOr 81 /* same as TK_BITOR */
|
||||
#define OP_NotNull 72 /* same as TK_NOTNULL */
|
||||
#define OP_SeekGe 41
|
||||
#define OP_Not 19 /* same as TK_NOT */
|
||||
#define OP_OpenPseudo 42
|
||||
#define OP_Halt 43
|
||||
#define OP_Compare 44
|
||||
#define OP_NewRowid 45
|
||||
#define OP_Real 130 /* same as TK_FLOAT */
|
||||
#define OP_IdxLT 46
|
||||
#define OP_SeekGt 47
|
||||
#define OP_MemMax 48
|
||||
#define OP_Function 49
|
||||
#define OP_IntegrityCk 50
|
||||
#define OP_Remainder 88 /* same as TK_REM */
|
||||
#define OP_SCopy 51
|
||||
#define OP_ShiftLeft 82 /* same as TK_LSHIFT */
|
||||
#define OP_IfNeg 52
|
||||
#define OP_BitAnd 80 /* same as TK_BITAND */
|
||||
#define OP_Or 66 /* same as TK_OR */
|
||||
#define OP_NotExists 53
|
||||
#define OP_VDestroy 54
|
||||
#define OP_IdxDelete 55
|
||||
#define OP_Vacuum 56
|
||||
#define OP_Copy 57
|
||||
#define OP_If 58
|
||||
#define OP_Destroy 59
|
||||
#define OP_Jump 60
|
||||
#define OP_AggStep 61
|
||||
#define OP_Clear 62
|
||||
#define OP_Insert 63
|
||||
#define OP_Permutation 64
|
||||
#define OP_VBegin 65
|
||||
#define OP_OpenEphemeral 68
|
||||
#define OP_IdxGE 69
|
||||
#define OP_Trace 70
|
||||
#define OP_Divide 87 /* same as TK_SLASH */
|
||||
#define OP_String8 94 /* same as TK_STRING */
|
||||
#define OP_Concat 89 /* same as TK_CONCAT */
|
||||
#define OP_VRowid 79
|
||||
#define OP_MakeRecord 90
|
||||
#define OP_Yield 91
|
||||
#define OP_SetCookie 92
|
||||
#define OP_Prev 95
|
||||
#define OP_ContextPush 96
|
||||
#define OP_DropTrigger 97
|
||||
#define OP_And 67 /* same as TK_AND */
|
||||
#define OP_VColumn 98
|
||||
#define OP_Return 99
|
||||
#define OP_OpenWrite 100
|
||||
#define OP_Integer 101
|
||||
#define OP_Transaction 102
|
||||
#define OP_IfPos 103
|
||||
#define OP_RowSetAdd 104
|
||||
#define OP_CollSeq 105
|
||||
#define OP_Savepoint 106
|
||||
#define OP_VRename 107
|
||||
#define OP_ToBlob 142 /* same as TK_TO_BLOB */
|
||||
#define OP_Sequence 108
|
||||
#define OP_ContextPop 109
|
||||
#define OP_ShiftRight 83 /* same as TK_RSHIFT */
|
||||
#define OP_HaltIfNull 110
|
||||
#define OP_VCreate 111
|
||||
#define OP_CreateTable 112
|
||||
#define OP_AddImm 113
|
||||
#define OP_ToText 141 /* same as TK_TO_TEXT */
|
||||
#define OP_DropTable 114
|
||||
#define OP_IsUnique 115
|
||||
#define OP_VOpen 116
|
||||
#define OP_IfZero 117
|
||||
#define OP_Noop 118
|
||||
#define OP_RowKey 119
|
||||
#define OP_Expire 120
|
||||
#define OP_Delete 121
|
||||
#define OP_Subtract 85 /* same as TK_MINUS */
|
||||
#define OP_Blob 122
|
||||
#define OP_Move 123
|
||||
#define OP_Goto 124
|
||||
#define OP_ParseSchema 125
|
||||
#define OP_Eq 74 /* same as TK_EQ */
|
||||
#define OP_VNext 126
|
||||
#define OP_Seek 127
|
||||
#define OP_Le 76 /* same as TK_LE */
|
||||
#define OP_TableLock 128
|
||||
#define OP_VerifyCookie 129
|
||||
#define OP_Column 131
|
||||
#define OP_OpenRead 132
|
||||
#define OP_ResetCount 133
|
||||
|
||||
/* The following opcode values are never used */
|
||||
#define OP_NotUsed_134 134
|
||||
#define OP_NotUsed_135 135
|
||||
#define OP_NotUsed_136 136
|
||||
#define OP_NotUsed_137 137
|
||||
#define OP_NotUsed_138 138
|
||||
#define OP_NotUsed_139 139
|
||||
#define OP_NotUsed_140 140
|
||||
|
||||
|
||||
/* Properties such as "out2" or "jump" that are specified in
|
||||
** comments following the "case" for each opcode in the vdbe.c
|
||||
** are encoded into bitvectors as follows:
|
||||
*/
|
||||
#define OPFLG_JUMP 0x0001 /* jump: P2 holds jmp target */
|
||||
#define OPFLG_OUT2_PRERELEASE 0x0002 /* out2-prerelease: */
|
||||
#define OPFLG_IN1 0x0004 /* in1: P1 is an input */
|
||||
#define OPFLG_IN2 0x0008 /* in2: P2 is an input */
|
||||
#define OPFLG_IN3 0x0010 /* in3: P3 is an input */
|
||||
#define OPFLG_OUT3 0x0020 /* out3: P3 is an output */
|
||||
#define OPFLG_INITIALIZER {\
|
||||
/* 0 */ 0x00, 0x02, 0x00, 0x11, 0x00, 0x00, 0x04, 0x01,\
|
||||
/* 8 */ 0x00, 0x05, 0x01, 0x11, 0x00, 0x11, 0x02, 0x02,\
|
||||
/* 16 */ 0x00, 0x00, 0x00, 0x04, 0x02, 0x02, 0x00, 0x08,\
|
||||
/* 24 */ 0x00, 0x01, 0x00, 0x11, 0x01, 0x21, 0x01, 0x05,\
|
||||
/* 32 */ 0x01, 0x02, 0x01, 0x02, 0x00, 0x00, 0x00, 0x02,\
|
||||
/* 40 */ 0x02, 0x11, 0x00, 0x00, 0x00, 0x02, 0x11, 0x11,\
|
||||
/* 48 */ 0x0c, 0x00, 0x00, 0x04, 0x05, 0x11, 0x00, 0x00,\
|
||||
/* 56 */ 0x00, 0x04, 0x05, 0x02, 0x01, 0x00, 0x00, 0x00,\
|
||||
/* 64 */ 0x00, 0x00, 0x2c, 0x2c, 0x00, 0x11, 0x00, 0x05,\
|
||||
/* 72 */ 0x05, 0x15, 0x15, 0x15, 0x15, 0x15, 0x15, 0x02,\
|
||||
/* 80 */ 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c,\
|
||||
/* 88 */ 0x2c, 0x2c, 0x00, 0x04, 0x10, 0x04, 0x02, 0x01,\
|
||||
/* 96 */ 0x00, 0x00, 0x00, 0x04, 0x00, 0x02, 0x00, 0x05,\
|
||||
/* 104 */ 0x08, 0x00, 0x00, 0x00, 0x02, 0x00, 0x10, 0x00,\
|
||||
/* 112 */ 0x02, 0x04, 0x00, 0x11, 0x00, 0x05, 0x00, 0x00,\
|
||||
/* 120 */ 0x00, 0x00, 0x02, 0x00, 0x01, 0x00, 0x01, 0x08,\
|
||||
/* 128 */ 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00,\
|
||||
/* 136 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x04, 0x04,\
|
||||
/* 144 */ 0x04, 0x04,}
|
281
os.c
281
os.c
|
@ -1,281 +0,0 @@
|
|||
/*
|
||||
** 2005 November 29
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
******************************************************************************
|
||||
**
|
||||
** This file contains OS interface code that is common to all
|
||||
** architectures.
|
||||
**
|
||||
** $Id: os.c,v 1.126 2009/03/25 14:24:42 drh Exp $
|
||||
*/
|
||||
#define _SQLITE_OS_C_ 1
|
||||
#include "sqliteInt.h"
|
||||
#undef _SQLITE_OS_C_
|
||||
|
||||
/*
|
||||
** The default SQLite sqlite3_vfs implementations do not allocate
|
||||
** memory (actually, os_unix.c allocates a small amount of memory
|
||||
** from within OsOpen()), but some third-party implementations may.
|
||||
** So we test the effects of a malloc() failing and the sqlite3OsXXX()
|
||||
** function returning SQLITE_IOERR_NOMEM using the DO_OS_MALLOC_TEST macro.
|
||||
**
|
||||
** The following functions are instrumented for malloc() failure
|
||||
** testing:
|
||||
**
|
||||
** sqlite3OsOpen()
|
||||
** sqlite3OsRead()
|
||||
** sqlite3OsWrite()
|
||||
** sqlite3OsSync()
|
||||
** sqlite3OsLock()
|
||||
**
|
||||
*/
|
||||
#if defined(SQLITE_TEST) && (SQLITE_OS_WIN==0)
|
||||
#define DO_OS_MALLOC_TEST if (1) { \
|
||||
void *pTstAlloc = sqlite3Malloc(10); \
|
||||
if (!pTstAlloc) return SQLITE_IOERR_NOMEM; \
|
||||
sqlite3_free(pTstAlloc); \
|
||||
}
|
||||
#else
|
||||
#define DO_OS_MALLOC_TEST
|
||||
#endif
|
||||
|
||||
/*
|
||||
** The following routines are convenience wrappers around methods
|
||||
** of the sqlite3_file object. This is mostly just syntactic sugar. All
|
||||
** of this would be completely automatic if SQLite were coded using
|
||||
** C++ instead of plain old C.
|
||||
*/
|
||||
int sqlite3OsClose(sqlite3_file *pId){
|
||||
int rc = SQLITE_OK;
|
||||
if( pId->pMethods ){
|
||||
rc = pId->pMethods->xClose(pId);
|
||||
pId->pMethods = 0;
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
int sqlite3OsRead(sqlite3_file *id, void *pBuf, int amt, i64 offset){
|
||||
DO_OS_MALLOC_TEST;
|
||||
return id->pMethods->xRead(id, pBuf, amt, offset);
|
||||
}
|
||||
int sqlite3OsWrite(sqlite3_file *id, const void *pBuf, int amt, i64 offset){
|
||||
DO_OS_MALLOC_TEST;
|
||||
return id->pMethods->xWrite(id, pBuf, amt, offset);
|
||||
}
|
||||
int sqlite3OsTruncate(sqlite3_file *id, i64 size){
|
||||
return id->pMethods->xTruncate(id, size);
|
||||
}
|
||||
int sqlite3OsSync(sqlite3_file *id, int flags){
|
||||
DO_OS_MALLOC_TEST;
|
||||
return id->pMethods->xSync(id, flags);
|
||||
}
|
||||
int sqlite3OsFileSize(sqlite3_file *id, i64 *pSize){
|
||||
DO_OS_MALLOC_TEST;
|
||||
return id->pMethods->xFileSize(id, pSize);
|
||||
}
|
||||
int sqlite3OsLock(sqlite3_file *id, int lockType){
|
||||
DO_OS_MALLOC_TEST;
|
||||
return id->pMethods->xLock(id, lockType);
|
||||
}
|
||||
int sqlite3OsUnlock(sqlite3_file *id, int lockType){
|
||||
return id->pMethods->xUnlock(id, lockType);
|
||||
}
|
||||
int sqlite3OsCheckReservedLock(sqlite3_file *id, int *pResOut){
|
||||
DO_OS_MALLOC_TEST;
|
||||
return id->pMethods->xCheckReservedLock(id, pResOut);
|
||||
}
|
||||
int sqlite3OsFileControl(sqlite3_file *id, int op, void *pArg){
|
||||
return id->pMethods->xFileControl(id, op, pArg);
|
||||
}
|
||||
int sqlite3OsSectorSize(sqlite3_file *id){
|
||||
int (*xSectorSize)(sqlite3_file*) = id->pMethods->xSectorSize;
|
||||
return (xSectorSize ? xSectorSize(id) : SQLITE_DEFAULT_SECTOR_SIZE);
|
||||
}
|
||||
int sqlite3OsDeviceCharacteristics(sqlite3_file *id){
|
||||
return id->pMethods->xDeviceCharacteristics(id);
|
||||
}
|
||||
|
||||
/*
|
||||
** The next group of routines are convenience wrappers around the
|
||||
** VFS methods.
|
||||
*/
|
||||
int sqlite3OsOpen(
|
||||
sqlite3_vfs *pVfs,
|
||||
const char *zPath,
|
||||
sqlite3_file *pFile,
|
||||
int flags,
|
||||
int *pFlagsOut
|
||||
){
|
||||
int rc;
|
||||
DO_OS_MALLOC_TEST;
|
||||
rc = pVfs->xOpen(pVfs, zPath, pFile, flags, pFlagsOut);
|
||||
assert( rc==SQLITE_OK || pFile->pMethods==0 );
|
||||
return rc;
|
||||
}
|
||||
int sqlite3OsDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){
|
||||
return pVfs->xDelete(pVfs, zPath, dirSync);
|
||||
}
|
||||
int sqlite3OsAccess(
|
||||
sqlite3_vfs *pVfs,
|
||||
const char *zPath,
|
||||
int flags,
|
||||
int *pResOut
|
||||
){
|
||||
DO_OS_MALLOC_TEST;
|
||||
return pVfs->xAccess(pVfs, zPath, flags, pResOut);
|
||||
}
|
||||
int sqlite3OsFullPathname(
|
||||
sqlite3_vfs *pVfs,
|
||||
const char *zPath,
|
||||
int nPathOut,
|
||||
char *zPathOut
|
||||
){
|
||||
return pVfs->xFullPathname(pVfs, zPath, nPathOut, zPathOut);
|
||||
}
|
||||
#ifndef SQLITE_OMIT_LOAD_EXTENSION
|
||||
void *sqlite3OsDlOpen(sqlite3_vfs *pVfs, const char *zPath){
|
||||
return pVfs->xDlOpen(pVfs, zPath);
|
||||
}
|
||||
void sqlite3OsDlError(sqlite3_vfs *pVfs, int nByte, char *zBufOut){
|
||||
pVfs->xDlError(pVfs, nByte, zBufOut);
|
||||
}
|
||||
void (*sqlite3OsDlSym(sqlite3_vfs *pVfs, void *pHdle, const char *zSym))(void){
|
||||
return pVfs->xDlSym(pVfs, pHdle, zSym);
|
||||
}
|
||||
void sqlite3OsDlClose(sqlite3_vfs *pVfs, void *pHandle){
|
||||
pVfs->xDlClose(pVfs, pHandle);
|
||||
}
|
||||
#endif /* SQLITE_OMIT_LOAD_EXTENSION */
|
||||
int sqlite3OsRandomness(sqlite3_vfs *pVfs, int nByte, char *zBufOut){
|
||||
return pVfs->xRandomness(pVfs, nByte, zBufOut);
|
||||
}
|
||||
int sqlite3OsSleep(sqlite3_vfs *pVfs, int nMicro){
|
||||
return pVfs->xSleep(pVfs, nMicro);
|
||||
}
|
||||
int sqlite3OsCurrentTime(sqlite3_vfs *pVfs, double *pTimeOut){
|
||||
return pVfs->xCurrentTime(pVfs, pTimeOut);
|
||||
}
|
||||
|
||||
int sqlite3OsOpenMalloc(
|
||||
sqlite3_vfs *pVfs,
|
||||
const char *zFile,
|
||||
sqlite3_file **ppFile,
|
||||
int flags,
|
||||
int *pOutFlags
|
||||
){
|
||||
int rc = SQLITE_NOMEM;
|
||||
sqlite3_file *pFile;
|
||||
pFile = (sqlite3_file *)sqlite3Malloc(pVfs->szOsFile);
|
||||
if( pFile ){
|
||||
rc = sqlite3OsOpen(pVfs, zFile, pFile, flags, pOutFlags);
|
||||
if( rc!=SQLITE_OK ){
|
||||
sqlite3_free(pFile);
|
||||
}else{
|
||||
*ppFile = pFile;
|
||||
}
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
int sqlite3OsCloseFree(sqlite3_file *pFile){
|
||||
int rc = SQLITE_OK;
|
||||
assert( pFile );
|
||||
rc = sqlite3OsClose(pFile);
|
||||
sqlite3_free(pFile);
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** The list of all registered VFS implementations.
|
||||
*/
|
||||
static sqlite3_vfs * SQLITE_WSD vfsList = 0;
|
||||
#define vfsList GLOBAL(sqlite3_vfs *, vfsList)
|
||||
|
||||
/*
|
||||
** Locate a VFS by name. If no name is given, simply return the
|
||||
** first VFS on the list.
|
||||
*/
|
||||
sqlite3_vfs *sqlite3_vfs_find(const char *zVfs){
|
||||
sqlite3_vfs *pVfs = 0;
|
||||
#if SQLITE_THREADSAFE
|
||||
sqlite3_mutex *mutex;
|
||||
#endif
|
||||
#ifndef SQLITE_OMIT_AUTOINIT
|
||||
int rc = sqlite3_initialize();
|
||||
if( rc ) return 0;
|
||||
#endif
|
||||
#if SQLITE_THREADSAFE
|
||||
mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
|
||||
#endif
|
||||
sqlite3_mutex_enter(mutex);
|
||||
for(pVfs = vfsList; pVfs; pVfs=pVfs->pNext){
|
||||
if( zVfs==0 ) break;
|
||||
if( strcmp(zVfs, pVfs->zName)==0 ) break;
|
||||
}
|
||||
sqlite3_mutex_leave(mutex);
|
||||
return pVfs;
|
||||
}
|
||||
|
||||
/*
|
||||
** Unlink a VFS from the linked list
|
||||
*/
|
||||
static void vfsUnlink(sqlite3_vfs *pVfs){
|
||||
assert( sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)) );
|
||||
if( pVfs==0 ){
|
||||
/* No-op */
|
||||
}else if( vfsList==pVfs ){
|
||||
vfsList = pVfs->pNext;
|
||||
}else if( vfsList ){
|
||||
sqlite3_vfs *p = vfsList;
|
||||
while( p->pNext && p->pNext!=pVfs ){
|
||||
p = p->pNext;
|
||||
}
|
||||
if( p->pNext==pVfs ){
|
||||
p->pNext = pVfs->pNext;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Register a VFS with the system. It is harmless to register the same
|
||||
** VFS multiple times. The new VFS becomes the default if makeDflt is
|
||||
** true.
|
||||
*/
|
||||
int sqlite3_vfs_register(sqlite3_vfs *pVfs, int makeDflt){
|
||||
sqlite3_mutex *mutex = 0;
|
||||
#ifndef SQLITE_OMIT_AUTOINIT
|
||||
int rc = sqlite3_initialize();
|
||||
if( rc ) return rc;
|
||||
#endif
|
||||
mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
|
||||
sqlite3_mutex_enter(mutex);
|
||||
vfsUnlink(pVfs);
|
||||
if( makeDflt || vfsList==0 ){
|
||||
pVfs->pNext = vfsList;
|
||||
vfsList = pVfs;
|
||||
}else{
|
||||
pVfs->pNext = vfsList->pNext;
|
||||
vfsList->pNext = pVfs;
|
||||
}
|
||||
assert(vfsList);
|
||||
sqlite3_mutex_leave(mutex);
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Unregister a VFS so that it is no longer accessible.
|
||||
*/
|
||||
int sqlite3_vfs_unregister(sqlite3_vfs *pVfs){
|
||||
#if SQLITE_THREADSAFE
|
||||
sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
|
||||
#endif
|
||||
sqlite3_mutex_enter(mutex);
|
||||
vfsUnlink(pVfs);
|
||||
sqlite3_mutex_leave(mutex);
|
||||
return SQLITE_OK;
|
||||
}
|
268
os.h
268
os.h
|
@ -1,268 +0,0 @@
|
|||
/*
|
||||
** 2001 September 16
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
******************************************************************************
|
||||
**
|
||||
** This header file (together with is companion C source-code file
|
||||
** "os.c") attempt to abstract the underlying operating system so that
|
||||
** the SQLite library will work on both POSIX and windows systems.
|
||||
**
|
||||
** This header file is #include-ed by sqliteInt.h and thus ends up
|
||||
** being included by every source file.
|
||||
**
|
||||
** $Id: os.h,v 1.108 2009/02/05 16:31:46 drh Exp $
|
||||
*/
|
||||
#ifndef _SQLITE_OS_H_
|
||||
#define _SQLITE_OS_H_
|
||||
|
||||
/*
|
||||
** Figure out if we are dealing with Unix, Windows, or some other
|
||||
** operating system. After the following block of preprocess macros,
|
||||
** all of SQLITE_OS_UNIX, SQLITE_OS_WIN, SQLITE_OS_OS2, and SQLITE_OS_OTHER
|
||||
** will defined to either 1 or 0. One of the four will be 1. The other
|
||||
** three will be 0.
|
||||
*/
|
||||
#if defined(SQLITE_OS_OTHER)
|
||||
# if SQLITE_OS_OTHER==1
|
||||
# undef SQLITE_OS_UNIX
|
||||
# define SQLITE_OS_UNIX 0
|
||||
# undef SQLITE_OS_WIN
|
||||
# define SQLITE_OS_WIN 0
|
||||
# undef SQLITE_OS_OS2
|
||||
# define SQLITE_OS_OS2 0
|
||||
# else
|
||||
# undef SQLITE_OS_OTHER
|
||||
# endif
|
||||
#endif
|
||||
#if !defined(SQLITE_OS_UNIX) && !defined(SQLITE_OS_OTHER)
|
||||
# define SQLITE_OS_OTHER 0
|
||||
# ifndef SQLITE_OS_WIN
|
||||
# if defined(_WIN32) || defined(WIN32) || defined(__CYGWIN__) || defined(__MINGW32__) || defined(__BORLANDC__)
|
||||
# define SQLITE_OS_WIN 1
|
||||
# define SQLITE_OS_UNIX 0
|
||||
# define SQLITE_OS_OS2 0
|
||||
# elif defined(__EMX__) || defined(_OS2) || defined(OS2) || defined(_OS2_) || defined(__OS2__)
|
||||
# define SQLITE_OS_WIN 0
|
||||
# define SQLITE_OS_UNIX 0
|
||||
# define SQLITE_OS_OS2 1
|
||||
# else
|
||||
# define SQLITE_OS_WIN 0
|
||||
# define SQLITE_OS_UNIX 1
|
||||
# define SQLITE_OS_OS2 0
|
||||
# endif
|
||||
# else
|
||||
# define SQLITE_OS_UNIX 0
|
||||
# define SQLITE_OS_OS2 0
|
||||
# endif
|
||||
#else
|
||||
# ifndef SQLITE_OS_WIN
|
||||
# define SQLITE_OS_WIN 0
|
||||
# endif
|
||||
#endif
|
||||
|
||||
/*
|
||||
** Determine if we are dealing with WindowsCE - which has a much
|
||||
** reduced API.
|
||||
*/
|
||||
#if defined(_WIN32_WCE)
|
||||
# define SQLITE_OS_WINCE 1
|
||||
#else
|
||||
# define SQLITE_OS_WINCE 0
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
** Define the maximum size of a temporary filename
|
||||
*/
|
||||
#if SQLITE_OS_WIN
|
||||
# include <windows.h>
|
||||
# define SQLITE_TEMPNAME_SIZE (MAX_PATH+50)
|
||||
#elif SQLITE_OS_OS2
|
||||
# if (__GNUC__ > 3 || __GNUC__ == 3 && __GNUC_MINOR__ >= 3) && defined(OS2_HIGH_MEMORY)
|
||||
# include <os2safe.h> /* has to be included before os2.h for linking to work */
|
||||
# endif
|
||||
# define INCL_DOSDATETIME
|
||||
# define INCL_DOSFILEMGR
|
||||
# define INCL_DOSERRORS
|
||||
# define INCL_DOSMISC
|
||||
# define INCL_DOSPROCESS
|
||||
# define INCL_DOSMODULEMGR
|
||||
# define INCL_DOSSEMAPHORES
|
||||
# include <os2.h>
|
||||
# include <uconv.h>
|
||||
# define SQLITE_TEMPNAME_SIZE (CCHMAXPATHCOMP)
|
||||
#else
|
||||
# define SQLITE_TEMPNAME_SIZE 200
|
||||
#endif
|
||||
|
||||
/* If the SET_FULLSYNC macro is not defined above, then make it
|
||||
** a no-op
|
||||
*/
|
||||
#ifndef SET_FULLSYNC
|
||||
# define SET_FULLSYNC(x,y)
|
||||
#endif
|
||||
|
||||
/*
|
||||
** The default size of a disk sector
|
||||
*/
|
||||
#ifndef SQLITE_DEFAULT_SECTOR_SIZE
|
||||
# define SQLITE_DEFAULT_SECTOR_SIZE 512
|
||||
#endif
|
||||
|
||||
/*
|
||||
** Temporary files are named starting with this prefix followed by 16 random
|
||||
** alphanumeric characters, and no file extension. They are stored in the
|
||||
** OS's standard temporary file directory, and are deleted prior to exit.
|
||||
** If sqlite is being embedded in another program, you may wish to change the
|
||||
** prefix to reflect your program's name, so that if your program exits
|
||||
** prematurely, old temporary files can be easily identified. This can be done
|
||||
** using -DSQLITE_TEMP_FILE_PREFIX=myprefix_ on the compiler command line.
|
||||
**
|
||||
** 2006-10-31: The default prefix used to be "sqlite_". But then
|
||||
** Mcafee started using SQLite in their anti-virus product and it
|
||||
** started putting files with the "sqlite" name in the c:/temp folder.
|
||||
** This annoyed many windows users. Those users would then do a
|
||||
** Google search for "sqlite", find the telephone numbers of the
|
||||
** developers and call to wake them up at night and complain.
|
||||
** For this reason, the default name prefix is changed to be "sqlite"
|
||||
** spelled backwards. So the temp files are still identified, but
|
||||
** anybody smart enough to figure out the code is also likely smart
|
||||
** enough to know that calling the developer will not help get rid
|
||||
** of the file.
|
||||
*/
|
||||
#ifndef SQLITE_TEMP_FILE_PREFIX
|
||||
# define SQLITE_TEMP_FILE_PREFIX "etilqs_"
|
||||
#endif
|
||||
|
||||
/*
|
||||
** The following values may be passed as the second argument to
|
||||
** sqlite3OsLock(). The various locks exhibit the following semantics:
|
||||
**
|
||||
** SHARED: Any number of processes may hold a SHARED lock simultaneously.
|
||||
** RESERVED: A single process may hold a RESERVED lock on a file at
|
||||
** any time. Other processes may hold and obtain new SHARED locks.
|
||||
** PENDING: A single process may hold a PENDING lock on a file at
|
||||
** any one time. Existing SHARED locks may persist, but no new
|
||||
** SHARED locks may be obtained by other processes.
|
||||
** EXCLUSIVE: An EXCLUSIVE lock precludes all other locks.
|
||||
**
|
||||
** PENDING_LOCK may not be passed directly to sqlite3OsLock(). Instead, a
|
||||
** process that requests an EXCLUSIVE lock may actually obtain a PENDING
|
||||
** lock. This can be upgraded to an EXCLUSIVE lock by a subsequent call to
|
||||
** sqlite3OsLock().
|
||||
*/
|
||||
#define NO_LOCK 0
|
||||
#define SHARED_LOCK 1
|
||||
#define RESERVED_LOCK 2
|
||||
#define PENDING_LOCK 3
|
||||
#define EXCLUSIVE_LOCK 4
|
||||
|
||||
/*
|
||||
** File Locking Notes: (Mostly about windows but also some info for Unix)
|
||||
**
|
||||
** We cannot use LockFileEx() or UnlockFileEx() on Win95/98/ME because
|
||||
** those functions are not available. So we use only LockFile() and
|
||||
** UnlockFile().
|
||||
**
|
||||
** LockFile() prevents not just writing but also reading by other processes.
|
||||
** A SHARED_LOCK is obtained by locking a single randomly-chosen
|
||||
** byte out of a specific range of bytes. The lock byte is obtained at
|
||||
** random so two separate readers can probably access the file at the
|
||||
** same time, unless they are unlucky and choose the same lock byte.
|
||||
** An EXCLUSIVE_LOCK is obtained by locking all bytes in the range.
|
||||
** There can only be one writer. A RESERVED_LOCK is obtained by locking
|
||||
** a single byte of the file that is designated as the reserved lock byte.
|
||||
** A PENDING_LOCK is obtained by locking a designated byte different from
|
||||
** the RESERVED_LOCK byte.
|
||||
**
|
||||
** On WinNT/2K/XP systems, LockFileEx() and UnlockFileEx() are available,
|
||||
** which means we can use reader/writer locks. When reader/writer locks
|
||||
** are used, the lock is placed on the same range of bytes that is used
|
||||
** for probabilistic locking in Win95/98/ME. Hence, the locking scheme
|
||||
** will support two or more Win95 readers or two or more WinNT readers.
|
||||
** But a single Win95 reader will lock out all WinNT readers and a single
|
||||
** WinNT reader will lock out all other Win95 readers.
|
||||
**
|
||||
** The following #defines specify the range of bytes used for locking.
|
||||
** SHARED_SIZE is the number of bytes available in the pool from which
|
||||
** a random byte is selected for a shared lock. The pool of bytes for
|
||||
** shared locks begins at SHARED_FIRST.
|
||||
**
|
||||
** The same locking strategy and
|
||||
** byte ranges are used for Unix. This leaves open the possiblity of having
|
||||
** clients on win95, winNT, and unix all talking to the same shared file
|
||||
** and all locking correctly. To do so would require that samba (or whatever
|
||||
** tool is being used for file sharing) implements locks correctly between
|
||||
** windows and unix. I'm guessing that isn't likely to happen, but by
|
||||
** using the same locking range we are at least open to the possibility.
|
||||
**
|
||||
** Locking in windows is manditory. For this reason, we cannot store
|
||||
** actual data in the bytes used for locking. The pager never allocates
|
||||
** the pages involved in locking therefore. SHARED_SIZE is selected so
|
||||
** that all locks will fit on a single page even at the minimum page size.
|
||||
** PENDING_BYTE defines the beginning of the locks. By default PENDING_BYTE
|
||||
** is set high so that we don't have to allocate an unused page except
|
||||
** for very large databases. But one should test the page skipping logic
|
||||
** by setting PENDING_BYTE low and running the entire regression suite.
|
||||
**
|
||||
** Changing the value of PENDING_BYTE results in a subtly incompatible
|
||||
** file format. Depending on how it is changed, you might not notice
|
||||
** the incompatibility right away, even running a full regression test.
|
||||
** The default location of PENDING_BYTE is the first byte past the
|
||||
** 1GB boundary.
|
||||
**
|
||||
*/
|
||||
#define PENDING_BYTE sqlite3PendingByte
|
||||
#define RESERVED_BYTE (PENDING_BYTE+1)
|
||||
#define SHARED_FIRST (PENDING_BYTE+2)
|
||||
#define SHARED_SIZE 510
|
||||
|
||||
/*
|
||||
** Functions for accessing sqlite3_file methods
|
||||
*/
|
||||
int sqlite3OsClose(sqlite3_file*);
|
||||
int sqlite3OsRead(sqlite3_file*, void*, int amt, i64 offset);
|
||||
int sqlite3OsWrite(sqlite3_file*, const void*, int amt, i64 offset);
|
||||
int sqlite3OsTruncate(sqlite3_file*, i64 size);
|
||||
int sqlite3OsSync(sqlite3_file*, int);
|
||||
int sqlite3OsFileSize(sqlite3_file*, i64 *pSize);
|
||||
int sqlite3OsLock(sqlite3_file*, int);
|
||||
int sqlite3OsUnlock(sqlite3_file*, int);
|
||||
int sqlite3OsCheckReservedLock(sqlite3_file *id, int *pResOut);
|
||||
int sqlite3OsFileControl(sqlite3_file*,int,void*);
|
||||
#define SQLITE_FCNTL_DB_UNCHANGED 0xca093fa0
|
||||
int sqlite3OsSectorSize(sqlite3_file *id);
|
||||
int sqlite3OsDeviceCharacteristics(sqlite3_file *id);
|
||||
|
||||
/*
|
||||
** Functions for accessing sqlite3_vfs methods
|
||||
*/
|
||||
int sqlite3OsOpen(sqlite3_vfs *, const char *, sqlite3_file*, int, int *);
|
||||
int sqlite3OsDelete(sqlite3_vfs *, const char *, int);
|
||||
int sqlite3OsAccess(sqlite3_vfs *, const char *, int, int *pResOut);
|
||||
int sqlite3OsFullPathname(sqlite3_vfs *, const char *, int, char *);
|
||||
#ifndef SQLITE_OMIT_LOAD_EXTENSION
|
||||
void *sqlite3OsDlOpen(sqlite3_vfs *, const char *);
|
||||
void sqlite3OsDlError(sqlite3_vfs *, int, char *);
|
||||
void (*sqlite3OsDlSym(sqlite3_vfs *, void *, const char *))(void);
|
||||
void sqlite3OsDlClose(sqlite3_vfs *, void *);
|
||||
#endif /* SQLITE_OMIT_LOAD_EXTENSION */
|
||||
int sqlite3OsRandomness(sqlite3_vfs *, int, char *);
|
||||
int sqlite3OsSleep(sqlite3_vfs *, int);
|
||||
int sqlite3OsCurrentTime(sqlite3_vfs *, double*);
|
||||
|
||||
/*
|
||||
** Convenience functions for opening and closing files using
|
||||
** sqlite3_malloc() to obtain space for the file-handle structure.
|
||||
*/
|
||||
int sqlite3OsOpenMalloc(sqlite3_vfs *, const char *, sqlite3_file **, int,int*);
|
||||
int sqlite3OsCloseFree(sqlite3_file *);
|
||||
|
||||
#endif /* _SQLITE_OS_H_ */
|
128
os_common.h
128
os_common.h
|
@ -1,128 +0,0 @@
|
|||
/*
|
||||
** 2004 May 22
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
******************************************************************************
|
||||
**
|
||||
** This file contains macros and a little bit of code that is common to
|
||||
** all of the platform-specific files (os_*.c) and is #included into those
|
||||
** files.
|
||||
**
|
||||
** This file should be #included by the os_*.c files only. It is not a
|
||||
** general purpose header file.
|
||||
**
|
||||
** $Id: os_common.h,v 1.38 2009/02/24 18:40:50 danielk1977 Exp $
|
||||
*/
|
||||
#ifndef _OS_COMMON_H_
|
||||
#define _OS_COMMON_H_
|
||||
|
||||
/*
|
||||
** At least two bugs have slipped in because we changed the MEMORY_DEBUG
|
||||
** macro to SQLITE_DEBUG and some older makefiles have not yet made the
|
||||
** switch. The following code should catch this problem at compile-time.
|
||||
*/
|
||||
#ifdef MEMORY_DEBUG
|
||||
# error "The MEMORY_DEBUG macro is obsolete. Use SQLITE_DEBUG instead."
|
||||
#endif
|
||||
|
||||
#ifdef SQLITE_DEBUG
|
||||
int sqlite3OSTrace = 0;
|
||||
#define OSTRACE1(X) if( sqlite3OSTrace ) sqlite3DebugPrintf(X)
|
||||
#define OSTRACE2(X,Y) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y)
|
||||
#define OSTRACE3(X,Y,Z) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z)
|
||||
#define OSTRACE4(X,Y,Z,A) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z,A)
|
||||
#define OSTRACE5(X,Y,Z,A,B) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z,A,B)
|
||||
#define OSTRACE6(X,Y,Z,A,B,C) \
|
||||
if(sqlite3OSTrace) sqlite3DebugPrintf(X,Y,Z,A,B,C)
|
||||
#define OSTRACE7(X,Y,Z,A,B,C,D) \
|
||||
if(sqlite3OSTrace) sqlite3DebugPrintf(X,Y,Z,A,B,C,D)
|
||||
#else
|
||||
#define OSTRACE1(X)
|
||||
#define OSTRACE2(X,Y)
|
||||
#define OSTRACE3(X,Y,Z)
|
||||
#define OSTRACE4(X,Y,Z,A)
|
||||
#define OSTRACE5(X,Y,Z,A,B)
|
||||
#define OSTRACE6(X,Y,Z,A,B,C)
|
||||
#define OSTRACE7(X,Y,Z,A,B,C,D)
|
||||
#endif
|
||||
|
||||
/*
|
||||
** Macros for performance tracing. Normally turned off. Only works
|
||||
** on i486 hardware.
|
||||
*/
|
||||
#ifdef SQLITE_PERFORMANCE_TRACE
|
||||
|
||||
/*
|
||||
** hwtime.h contains inline assembler code for implementing
|
||||
** high-performance timing routines.
|
||||
*/
|
||||
#include "hwtime.h"
|
||||
|
||||
static sqlite_uint64 g_start;
|
||||
static sqlite_uint64 g_elapsed;
|
||||
#define TIMER_START g_start=sqlite3Hwtime()
|
||||
#define TIMER_END g_elapsed=sqlite3Hwtime()-g_start
|
||||
#define TIMER_ELAPSED g_elapsed
|
||||
#else
|
||||
#define TIMER_START
|
||||
#define TIMER_END
|
||||
#define TIMER_ELAPSED ((sqlite_uint64)0)
|
||||
#endif
|
||||
|
||||
/*
|
||||
** If we compile with the SQLITE_TEST macro set, then the following block
|
||||
** of code will give us the ability to simulate a disk I/O error. This
|
||||
** is used for testing the I/O recovery logic.
|
||||
*/
|
||||
#ifdef SQLITE_TEST
|
||||
int sqlite3_io_error_hit = 0; /* Total number of I/O Errors */
|
||||
int sqlite3_io_error_hardhit = 0; /* Number of non-benign errors */
|
||||
int sqlite3_io_error_pending = 0; /* Count down to first I/O error */
|
||||
int sqlite3_io_error_persist = 0; /* True if I/O errors persist */
|
||||
int sqlite3_io_error_benign = 0; /* True if errors are benign */
|
||||
int sqlite3_diskfull_pending = 0;
|
||||
int sqlite3_diskfull = 0;
|
||||
#define SimulateIOErrorBenign(X) sqlite3_io_error_benign=(X)
|
||||
#define SimulateIOError(CODE) \
|
||||
if( (sqlite3_io_error_persist && sqlite3_io_error_hit) \
|
||||
|| sqlite3_io_error_pending-- == 1 ) \
|
||||
{ local_ioerr(); CODE; }
|
||||
static void local_ioerr(){
|
||||
IOTRACE(("IOERR\n"));
|
||||
sqlite3_io_error_hit++;
|
||||
if( !sqlite3_io_error_benign ) sqlite3_io_error_hardhit++;
|
||||
}
|
||||
#define SimulateDiskfullError(CODE) \
|
||||
if( sqlite3_diskfull_pending ){ \
|
||||
if( sqlite3_diskfull_pending == 1 ){ \
|
||||
local_ioerr(); \
|
||||
sqlite3_diskfull = 1; \
|
||||
sqlite3_io_error_hit = 1; \
|
||||
CODE; \
|
||||
}else{ \
|
||||
sqlite3_diskfull_pending--; \
|
||||
} \
|
||||
}
|
||||
#else
|
||||
#define SimulateIOErrorBenign(X)
|
||||
#define SimulateIOError(A)
|
||||
#define SimulateDiskfullError(A)
|
||||
#endif
|
||||
|
||||
/*
|
||||
** When testing, keep a count of the number of open files.
|
||||
*/
|
||||
#ifdef SQLITE_TEST
|
||||
int sqlite3_open_file_count = 0;
|
||||
#define OpenCounter(X) sqlite3_open_file_count+=(X)
|
||||
#else
|
||||
#define OpenCounter(X)
|
||||
#endif
|
||||
|
||||
#endif /* !defined(_OS_COMMON_H_) */
|
164
pager.h
164
pager.h
|
@ -1,164 +0,0 @@
|
|||
/*
|
||||
** 2001 September 15
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This header file defines the interface that the sqlite page cache
|
||||
** subsystem. The page cache subsystem reads and writes a file a page
|
||||
** at a time and provides a journal for rollback.
|
||||
**
|
||||
** @(#) $Id: pager.h,v 1.100 2009/02/03 16:51:25 danielk1977 Exp $
|
||||
*/
|
||||
|
||||
#ifndef _PAGER_H_
|
||||
#define _PAGER_H_
|
||||
|
||||
/*
|
||||
** Default maximum size for persistent journal files. A negative
|
||||
** value means no limit. This value may be overridden using the
|
||||
** sqlite3PagerJournalSizeLimit() API. See also "PRAGMA journal_size_limit".
|
||||
*/
|
||||
#ifndef SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT
|
||||
#define SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT -1
|
||||
#endif
|
||||
|
||||
/*
|
||||
** The type used to represent a page number. The first page in a file
|
||||
** is called page 1. 0 is used to represent "not a page".
|
||||
*/
|
||||
typedef u32 Pgno;
|
||||
|
||||
/*
|
||||
** Each open file is managed by a separate instance of the "Pager" structure.
|
||||
*/
|
||||
typedef struct Pager Pager;
|
||||
|
||||
/*
|
||||
** Handle type for pages.
|
||||
*/
|
||||
typedef struct PgHdr DbPage;
|
||||
|
||||
/*
|
||||
** Page number PAGER_MJ_PGNO is never used in an SQLite database (it is
|
||||
** reserved for working around a windows/posix incompatibility). It is
|
||||
** used in the journal to signify that the remainder of the journal file
|
||||
** is devoted to storing a master journal name - there are no more pages to
|
||||
** roll back. See comments for function writeMasterJournal() in pager.c
|
||||
** for details.
|
||||
*/
|
||||
#define PAGER_MJ_PGNO(x) ((Pgno)((PENDING_BYTE/((x)->pageSize))+1))
|
||||
|
||||
/*
|
||||
** Allowed values for the flags parameter to sqlite3PagerOpen().
|
||||
**
|
||||
** NOTE: These values must match the corresponding BTREE_ values in btree.h.
|
||||
*/
|
||||
#define PAGER_OMIT_JOURNAL 0x0001 /* Do not use a rollback journal */
|
||||
#define PAGER_NO_READLOCK 0x0002 /* Omit readlocks on readonly files */
|
||||
|
||||
/*
|
||||
** Valid values for the second argument to sqlite3PagerLockingMode().
|
||||
*/
|
||||
#define PAGER_LOCKINGMODE_QUERY -1
|
||||
#define PAGER_LOCKINGMODE_NORMAL 0
|
||||
#define PAGER_LOCKINGMODE_EXCLUSIVE 1
|
||||
|
||||
/*
|
||||
** Valid values for the second argument to sqlite3PagerJournalMode().
|
||||
*/
|
||||
#define PAGER_JOURNALMODE_QUERY -1
|
||||
#define PAGER_JOURNALMODE_DELETE 0 /* Commit by deleting journal file */
|
||||
#define PAGER_JOURNALMODE_PERSIST 1 /* Commit by zeroing journal header */
|
||||
#define PAGER_JOURNALMODE_OFF 2 /* Journal omitted. */
|
||||
#define PAGER_JOURNALMODE_TRUNCATE 3 /* Commit by truncating journal */
|
||||
#define PAGER_JOURNALMODE_MEMORY 4 /* In-memory journal file */
|
||||
|
||||
/*
|
||||
** The remainder of this file contains the declarations of the functions
|
||||
** that make up the Pager sub-system API. See source code comments for
|
||||
** a detailed description of each routine.
|
||||
*/
|
||||
|
||||
/* Open and close a Pager connection. */
|
||||
int sqlite3PagerOpen(sqlite3_vfs *, Pager **ppPager, const char*, int,int,int);
|
||||
int sqlite3PagerClose(Pager *pPager);
|
||||
int sqlite3PagerReadFileheader(Pager*, int, unsigned char*);
|
||||
|
||||
/* Functions used to configure a Pager object. */
|
||||
void sqlite3PagerSetBusyhandler(Pager*, int(*)(void *), void *);
|
||||
void sqlite3PagerSetReiniter(Pager*, void(*)(DbPage*));
|
||||
int sqlite3PagerSetPagesize(Pager*, u16*);
|
||||
int sqlite3PagerMaxPageCount(Pager*, int);
|
||||
void sqlite3PagerSetCachesize(Pager*, int);
|
||||
void sqlite3PagerSetSafetyLevel(Pager*,int,int);
|
||||
int sqlite3PagerLockingMode(Pager *, int);
|
||||
int sqlite3PagerJournalMode(Pager *, int);
|
||||
i64 sqlite3PagerJournalSizeLimit(Pager *, i64);
|
||||
sqlite3_backup **sqlite3PagerBackupPtr(Pager*);
|
||||
|
||||
/* Functions used to obtain and release page references. */
|
||||
int sqlite3PagerAcquire(Pager *pPager, Pgno pgno, DbPage **ppPage, int clrFlag);
|
||||
#define sqlite3PagerGet(A,B,C) sqlite3PagerAcquire(A,B,C,0)
|
||||
DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno);
|
||||
void sqlite3PagerRef(DbPage*);
|
||||
void sqlite3PagerUnref(DbPage*);
|
||||
|
||||
/* Operations on page references. */
|
||||
int sqlite3PagerWrite(DbPage*);
|
||||
void sqlite3PagerDontWrite(DbPage*);
|
||||
int sqlite3PagerMovepage(Pager*,DbPage*,Pgno,int);
|
||||
int sqlite3PagerPageRefcount(DbPage*);
|
||||
void *sqlite3PagerGetData(DbPage *);
|
||||
void *sqlite3PagerGetExtra(DbPage *);
|
||||
|
||||
/* Functions used to manage pager transactions and savepoints. */
|
||||
int sqlite3PagerPagecount(Pager*, int*);
|
||||
int sqlite3PagerBegin(Pager*, int exFlag);
|
||||
int sqlite3PagerCommitPhaseOne(Pager*,const char *zMaster, int);
|
||||
int sqlite3PagerSync(Pager *pPager);
|
||||
int sqlite3PagerCommitPhaseTwo(Pager*);
|
||||
int sqlite3PagerRollback(Pager*);
|
||||
int sqlite3PagerOpenSavepoint(Pager *pPager, int n);
|
||||
int sqlite3PagerSavepoint(Pager *pPager, int op, int iSavepoint);
|
||||
|
||||
/* Functions used to query pager state and configuration. */
|
||||
u8 sqlite3PagerIsreadonly(Pager*);
|
||||
int sqlite3PagerRefcount(Pager*);
|
||||
const char *sqlite3PagerFilename(Pager*);
|
||||
const sqlite3_vfs *sqlite3PagerVfs(Pager*);
|
||||
sqlite3_file *sqlite3PagerFile(Pager*);
|
||||
const char *sqlite3PagerJournalname(Pager*);
|
||||
int sqlite3PagerNosync(Pager*);
|
||||
void *sqlite3PagerTempSpace(Pager*);
|
||||
int sqlite3PagerIsMemdb(Pager*);
|
||||
|
||||
/* Functions used to truncate the database file. */
|
||||
void sqlite3PagerTruncateImage(Pager*,Pgno);
|
||||
|
||||
/* Used by encryption extensions. */
|
||||
#ifdef SQLITE_HAS_CODEC
|
||||
void sqlite3PagerSetCodec(Pager*,void*(*)(void*,void*,Pgno,int),void*);
|
||||
#endif
|
||||
|
||||
/* Functions to support testing and debugging. */
|
||||
#if !defined(NDEBUG) || defined(SQLITE_TEST)
|
||||
Pgno sqlite3PagerPagenumber(DbPage*);
|
||||
int sqlite3PagerIswriteable(DbPage*);
|
||||
#endif
|
||||
#ifdef SQLITE_TEST
|
||||
int *sqlite3PagerStats(Pager*);
|
||||
void sqlite3PagerRefdump(Pager*);
|
||||
void disable_simulated_io_errors(void);
|
||||
void enable_simulated_io_errors(void);
|
||||
#else
|
||||
# define disable_simulated_io_errors()
|
||||
# define enable_simulated_io_errors()
|
||||
#endif
|
||||
|
||||
#endif /* _PAGER_H_ */
|
154
parse.h
154
parse.h
|
@ -1,154 +0,0 @@
|
|||
#define TK_SEMI 1
|
||||
#define TK_EXPLAIN 2
|
||||
#define TK_QUERY 3
|
||||
#define TK_PLAN 4
|
||||
#define TK_BEGIN 5
|
||||
#define TK_TRANSACTION 6
|
||||
#define TK_DEFERRED 7
|
||||
#define TK_IMMEDIATE 8
|
||||
#define TK_EXCLUSIVE 9
|
||||
#define TK_COMMIT 10
|
||||
#define TK_END 11
|
||||
#define TK_ROLLBACK 12
|
||||
#define TK_SAVEPOINT 13
|
||||
#define TK_RELEASE 14
|
||||
#define TK_TO 15
|
||||
#define TK_TABLE 16
|
||||
#define TK_CREATE 17
|
||||
#define TK_IF 18
|
||||
#define TK_NOT 19
|
||||
#define TK_EXISTS 20
|
||||
#define TK_TEMP 21
|
||||
#define TK_LP 22
|
||||
#define TK_RP 23
|
||||
#define TK_AS 24
|
||||
#define TK_COMMA 25
|
||||
#define TK_ID 26
|
||||
#define TK_INDEXED 27
|
||||
#define TK_ABORT 28
|
||||
#define TK_AFTER 29
|
||||
#define TK_ANALYZE 30
|
||||
#define TK_ASC 31
|
||||
#define TK_ATTACH 32
|
||||
#define TK_BEFORE 33
|
||||
#define TK_BY 34
|
||||
#define TK_CASCADE 35
|
||||
#define TK_CAST 36
|
||||
#define TK_COLUMNKW 37
|
||||
#define TK_CONFLICT 38
|
||||
#define TK_DATABASE 39
|
||||
#define TK_DESC 40
|
||||
#define TK_DETACH 41
|
||||
#define TK_EACH 42
|
||||
#define TK_FAIL 43
|
||||
#define TK_FOR 44
|
||||
#define TK_IGNORE 45
|
||||
#define TK_INITIALLY 46
|
||||
#define TK_INSTEAD 47
|
||||
#define TK_LIKE_KW 48
|
||||
#define TK_MATCH 49
|
||||
#define TK_KEY 50
|
||||
#define TK_OF 51
|
||||
#define TK_OFFSET 52
|
||||
#define TK_PRAGMA 53
|
||||
#define TK_RAISE 54
|
||||
#define TK_REPLACE 55
|
||||
#define TK_RESTRICT 56
|
||||
#define TK_ROW 57
|
||||
#define TK_TRIGGER 58
|
||||
#define TK_VACUUM 59
|
||||
#define TK_VIEW 60
|
||||
#define TK_VIRTUAL 61
|
||||
#define TK_REINDEX 62
|
||||
#define TK_RENAME 63
|
||||
#define TK_CTIME_KW 64
|
||||
#define TK_ANY 65
|
||||
#define TK_OR 66
|
||||
#define TK_AND 67
|
||||
#define TK_IS 68
|
||||
#define TK_BETWEEN 69
|
||||
#define TK_IN 70
|
||||
#define TK_ISNULL 71
|
||||
#define TK_NOTNULL 72
|
||||
#define TK_NE 73
|
||||
#define TK_EQ 74
|
||||
#define TK_GT 75
|
||||
#define TK_LE 76
|
||||
#define TK_LT 77
|
||||
#define TK_GE 78
|
||||
#define TK_ESCAPE 79
|
||||
#define TK_BITAND 80
|
||||
#define TK_BITOR 81
|
||||
#define TK_LSHIFT 82
|
||||
#define TK_RSHIFT 83
|
||||
#define TK_PLUS 84
|
||||
#define TK_MINUS 85
|
||||
#define TK_STAR 86
|
||||
#define TK_SLASH 87
|
||||
#define TK_REM 88
|
||||
#define TK_CONCAT 89
|
||||
#define TK_COLLATE 90
|
||||
#define TK_UMINUS 91
|
||||
#define TK_UPLUS 92
|
||||
#define TK_BITNOT 93
|
||||
#define TK_STRING 94
|
||||
#define TK_JOIN_KW 95
|
||||
#define TK_CONSTRAINT 96
|
||||
#define TK_DEFAULT 97
|
||||
#define TK_NULL 98
|
||||
#define TK_PRIMARY 99
|
||||
#define TK_UNIQUE 100
|
||||
#define TK_CHECK 101
|
||||
#define TK_REFERENCES 102
|
||||
#define TK_AUTOINCR 103
|
||||
#define TK_ON 104
|
||||
#define TK_DELETE 105
|
||||
#define TK_UPDATE 106
|
||||
#define TK_INSERT 107
|
||||
#define TK_SET 108
|
||||
#define TK_DEFERRABLE 109
|
||||
#define TK_FOREIGN 110
|
||||
#define TK_DROP 111
|
||||
#define TK_UNION 112
|
||||
#define TK_ALL 113
|
||||
#define TK_EXCEPT 114
|
||||
#define TK_INTERSECT 115
|
||||
#define TK_SELECT 116
|
||||
#define TK_DISTINCT 117
|
||||
#define TK_DOT 118
|
||||
#define TK_FROM 119
|
||||
#define TK_JOIN 120
|
||||
#define TK_USING 121
|
||||
#define TK_ORDER 122
|
||||
#define TK_GROUP 123
|
||||
#define TK_HAVING 124
|
||||
#define TK_LIMIT 125
|
||||
#define TK_WHERE 126
|
||||
#define TK_INTO 127
|
||||
#define TK_VALUES 128
|
||||
#define TK_INTEGER 129
|
||||
#define TK_FLOAT 130
|
||||
#define TK_BLOB 131
|
||||
#define TK_REGISTER 132
|
||||
#define TK_VARIABLE 133
|
||||
#define TK_CASE 134
|
||||
#define TK_WHEN 135
|
||||
#define TK_THEN 136
|
||||
#define TK_ELSE 137
|
||||
#define TK_INDEX 138
|
||||
#define TK_ALTER 139
|
||||
#define TK_ADD 140
|
||||
#define TK_TO_TEXT 141
|
||||
#define TK_TO_BLOB 142
|
||||
#define TK_TO_NUMERIC 143
|
||||
#define TK_TO_INT 144
|
||||
#define TK_TO_REAL 145
|
||||
#define TK_END_OF_FILE 146
|
||||
#define TK_ILLEGAL 147
|
||||
#define TK_SPACE 148
|
||||
#define TK_UNCLOSED_STRING 149
|
||||
#define TK_FUNCTION 150
|
||||
#define TK_COLUMN 151
|
||||
#define TK_AGG_FUNCTION 152
|
||||
#define TK_AGG_COLUMN 153
|
||||
#define TK_CONST_FUNC 154
|
582
pcache.c
582
pcache.c
|
@ -1,582 +0,0 @@
|
|||
/*
|
||||
** 2008 August 05
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This file implements that page cache.
|
||||
**
|
||||
** @(#) $Id: pcache.c,v 1.44 2009/03/31 01:32:18 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
/*
|
||||
** A complete page cache is an instance of this structure.
|
||||
*/
|
||||
struct PCache {
|
||||
PgHdr *pDirty, *pDirtyTail; /* List of dirty pages in LRU order */
|
||||
PgHdr *pSynced; /* Last synced page in dirty page list */
|
||||
int nRef; /* Number of referenced pages */
|
||||
int nMax; /* Configured cache size */
|
||||
int szPage; /* Size of every page in this cache */
|
||||
int szExtra; /* Size of extra space for each page */
|
||||
int bPurgeable; /* True if pages are on backing store */
|
||||
int (*xStress)(void*,PgHdr*); /* Call to try make a page clean */
|
||||
void *pStress; /* Argument to xStress */
|
||||
sqlite3_pcache *pCache; /* Pluggable cache module */
|
||||
PgHdr *pPage1; /* Reference to page 1 */
|
||||
};
|
||||
|
||||
/*
|
||||
** Some of the assert() macros in this code are too expensive to run
|
||||
** even during normal debugging. Use them only rarely on long-running
|
||||
** tests. Enable the expensive asserts using the
|
||||
** -DSQLITE_ENABLE_EXPENSIVE_ASSERT=1 compile-time option.
|
||||
*/
|
||||
#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
|
||||
# define expensive_assert(X) assert(X)
|
||||
#else
|
||||
# define expensive_assert(X)
|
||||
#endif
|
||||
|
||||
/********************************** Linked List Management ********************/
|
||||
|
||||
#if !defined(NDEBUG) && defined(SQLITE_ENABLE_EXPENSIVE_ASSERT)
|
||||
/*
|
||||
** Check that the pCache->pSynced variable is set correctly. If it
|
||||
** is not, either fail an assert or return zero. Otherwise, return
|
||||
** non-zero. This is only used in debugging builds, as follows:
|
||||
**
|
||||
** expensive_assert( pcacheCheckSynced(pCache) );
|
||||
*/
|
||||
static int pcacheCheckSynced(PCache *pCache){
|
||||
PgHdr *p;
|
||||
for(p=pCache->pDirtyTail; p!=pCache->pSynced; p=p->pDirtyPrev){
|
||||
assert( p->nRef || (p->flags&PGHDR_NEED_SYNC) );
|
||||
}
|
||||
return (p==0 || p->nRef || (p->flags&PGHDR_NEED_SYNC)==0);
|
||||
}
|
||||
#endif /* !NDEBUG && SQLITE_ENABLE_EXPENSIVE_ASSERT */
|
||||
|
||||
/*
|
||||
** Remove page pPage from the list of dirty pages.
|
||||
*/
|
||||
static void pcacheRemoveFromDirtyList(PgHdr *pPage){
|
||||
PCache *p = pPage->pCache;
|
||||
|
||||
assert( pPage->pDirtyNext || pPage==p->pDirtyTail );
|
||||
assert( pPage->pDirtyPrev || pPage==p->pDirty );
|
||||
|
||||
/* Update the PCache1.pSynced variable if necessary. */
|
||||
if( p->pSynced==pPage ){
|
||||
PgHdr *pSynced = pPage->pDirtyPrev;
|
||||
while( pSynced && (pSynced->flags&PGHDR_NEED_SYNC) ){
|
||||
pSynced = pSynced->pDirtyPrev;
|
||||
}
|
||||
p->pSynced = pSynced;
|
||||
}
|
||||
|
||||
if( pPage->pDirtyNext ){
|
||||
pPage->pDirtyNext->pDirtyPrev = pPage->pDirtyPrev;
|
||||
}else{
|
||||
assert( pPage==p->pDirtyTail );
|
||||
p->pDirtyTail = pPage->pDirtyPrev;
|
||||
}
|
||||
if( pPage->pDirtyPrev ){
|
||||
pPage->pDirtyPrev->pDirtyNext = pPage->pDirtyNext;
|
||||
}else{
|
||||
assert( pPage==p->pDirty );
|
||||
p->pDirty = pPage->pDirtyNext;
|
||||
}
|
||||
pPage->pDirtyNext = 0;
|
||||
pPage->pDirtyPrev = 0;
|
||||
|
||||
expensive_assert( pcacheCheckSynced(p) );
|
||||
}
|
||||
|
||||
/*
|
||||
** Add page pPage to the head of the dirty list (PCache1.pDirty is set to
|
||||
** pPage).
|
||||
*/
|
||||
static void pcacheAddToDirtyList(PgHdr *pPage){
|
||||
PCache *p = pPage->pCache;
|
||||
|
||||
assert( pPage->pDirtyNext==0 && pPage->pDirtyPrev==0 && p->pDirty!=pPage );
|
||||
|
||||
pPage->pDirtyNext = p->pDirty;
|
||||
if( pPage->pDirtyNext ){
|
||||
assert( pPage->pDirtyNext->pDirtyPrev==0 );
|
||||
pPage->pDirtyNext->pDirtyPrev = pPage;
|
||||
}
|
||||
p->pDirty = pPage;
|
||||
if( !p->pDirtyTail ){
|
||||
p->pDirtyTail = pPage;
|
||||
}
|
||||
if( !p->pSynced && 0==(pPage->flags&PGHDR_NEED_SYNC) ){
|
||||
p->pSynced = pPage;
|
||||
}
|
||||
expensive_assert( pcacheCheckSynced(p) );
|
||||
}
|
||||
|
||||
/*
|
||||
** Wrapper around the pluggable caches xUnpin method. If the cache is
|
||||
** being used for an in-memory database, this function is a no-op.
|
||||
*/
|
||||
static void pcacheUnpin(PgHdr *p){
|
||||
PCache *pCache = p->pCache;
|
||||
if( pCache->bPurgeable ){
|
||||
if( p->pgno==1 ){
|
||||
pCache->pPage1 = 0;
|
||||
}
|
||||
sqlite3GlobalConfig.pcache.xUnpin(pCache->pCache, p, 0);
|
||||
}
|
||||
}
|
||||
|
||||
/*************************************************** General Interfaces ******
|
||||
**
|
||||
** Initialize and shutdown the page cache subsystem. Neither of these
|
||||
** functions are threadsafe.
|
||||
*/
|
||||
int sqlite3PcacheInitialize(void){
|
||||
if( sqlite3GlobalConfig.pcache.xInit==0 ){
|
||||
sqlite3PCacheSetDefault();
|
||||
}
|
||||
return sqlite3GlobalConfig.pcache.xInit(sqlite3GlobalConfig.pcache.pArg);
|
||||
}
|
||||
void sqlite3PcacheShutdown(void){
|
||||
if( sqlite3GlobalConfig.pcache.xShutdown ){
|
||||
sqlite3GlobalConfig.pcache.xShutdown(sqlite3GlobalConfig.pcache.pArg);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Return the size in bytes of a PCache object.
|
||||
*/
|
||||
int sqlite3PcacheSize(void){ return sizeof(PCache); }
|
||||
|
||||
/*
|
||||
** Create a new PCache object. Storage space to hold the object
|
||||
** has already been allocated and is passed in as the p pointer.
|
||||
** The caller discovers how much space needs to be allocated by
|
||||
** calling sqlite3PcacheSize().
|
||||
*/
|
||||
void sqlite3PcacheOpen(
|
||||
int szPage, /* Size of every page */
|
||||
int szExtra, /* Extra space associated with each page */
|
||||
int bPurgeable, /* True if pages are on backing store */
|
||||
int (*xStress)(void*,PgHdr*),/* Call to try to make pages clean */
|
||||
void *pStress, /* Argument to xStress */
|
||||
PCache *p /* Preallocated space for the PCache */
|
||||
){
|
||||
memset(p, 0, sizeof(PCache));
|
||||
p->szPage = szPage;
|
||||
p->szExtra = szExtra;
|
||||
p->bPurgeable = bPurgeable;
|
||||
p->xStress = xStress;
|
||||
p->pStress = pStress;
|
||||
p->nMax = 100;
|
||||
}
|
||||
|
||||
/*
|
||||
** Change the page size for PCache object. The caller must ensure that there
|
||||
** are no outstanding page references when this function is called.
|
||||
*/
|
||||
void sqlite3PcacheSetPageSize(PCache *pCache, int szPage){
|
||||
assert( pCache->nRef==0 && pCache->pDirty==0 );
|
||||
if( pCache->pCache ){
|
||||
sqlite3GlobalConfig.pcache.xDestroy(pCache->pCache);
|
||||
pCache->pCache = 0;
|
||||
}
|
||||
pCache->szPage = szPage;
|
||||
}
|
||||
|
||||
/*
|
||||
** Try to obtain a page from the cache.
|
||||
*/
|
||||
int sqlite3PcacheFetch(
|
||||
PCache *pCache, /* Obtain the page from this cache */
|
||||
Pgno pgno, /* Page number to obtain */
|
||||
int createFlag, /* If true, create page if it does not exist already */
|
||||
PgHdr **ppPage /* Write the page here */
|
||||
){
|
||||
PgHdr *pPage = 0;
|
||||
int eCreate;
|
||||
|
||||
assert( pCache!=0 );
|
||||
assert( pgno>0 );
|
||||
|
||||
/* If the pluggable cache (sqlite3_pcache*) has not been allocated,
|
||||
** allocate it now.
|
||||
*/
|
||||
if( !pCache->pCache && createFlag ){
|
||||
sqlite3_pcache *p;
|
||||
int nByte;
|
||||
nByte = pCache->szPage + pCache->szExtra + sizeof(PgHdr);
|
||||
p = sqlite3GlobalConfig.pcache.xCreate(nByte, pCache->bPurgeable);
|
||||
if( !p ){
|
||||
return SQLITE_NOMEM;
|
||||
}
|
||||
sqlite3GlobalConfig.pcache.xCachesize(p, pCache->nMax);
|
||||
pCache->pCache = p;
|
||||
}
|
||||
|
||||
eCreate = createFlag ? 1 : 0;
|
||||
if( eCreate && (!pCache->bPurgeable || !pCache->pDirty) ){
|
||||
eCreate = 2;
|
||||
}
|
||||
if( pCache->pCache ){
|
||||
pPage = sqlite3GlobalConfig.pcache.xFetch(pCache->pCache, pgno, eCreate);
|
||||
}
|
||||
|
||||
if( !pPage && eCreate==1 ){
|
||||
PgHdr *pPg;
|
||||
|
||||
/* Find a dirty page to write-out and recycle. First try to find a
|
||||
** page that does not require a journal-sync (one with PGHDR_NEED_SYNC
|
||||
** cleared), but if that is not possible settle for any other
|
||||
** unreferenced dirty page.
|
||||
*/
|
||||
expensive_assert( pcacheCheckSynced(pCache) );
|
||||
for(pPg=pCache->pSynced;
|
||||
pPg && (pPg->nRef || (pPg->flags&PGHDR_NEED_SYNC));
|
||||
pPg=pPg->pDirtyPrev
|
||||
);
|
||||
if( !pPg ){
|
||||
for(pPg=pCache->pDirtyTail; pPg && pPg->nRef; pPg=pPg->pDirtyPrev);
|
||||
}
|
||||
if( pPg ){
|
||||
int rc;
|
||||
rc = pCache->xStress(pCache->pStress, pPg);
|
||||
if( rc!=SQLITE_OK && rc!=SQLITE_BUSY ){
|
||||
return rc;
|
||||
}
|
||||
}
|
||||
|
||||
pPage = sqlite3GlobalConfig.pcache.xFetch(pCache->pCache, pgno, 2);
|
||||
}
|
||||
|
||||
if( pPage ){
|
||||
if( !pPage->pData ){
|
||||
memset(pPage, 0, sizeof(PgHdr) + pCache->szExtra);
|
||||
pPage->pExtra = (void*)&pPage[1];
|
||||
pPage->pData = (void *)&((char *)pPage)[sizeof(PgHdr) + pCache->szExtra];
|
||||
pPage->pCache = pCache;
|
||||
pPage->pgno = pgno;
|
||||
}
|
||||
assert( pPage->pCache==pCache );
|
||||
assert( pPage->pgno==pgno );
|
||||
assert( pPage->pExtra==(void *)&pPage[1] );
|
||||
|
||||
if( 0==pPage->nRef ){
|
||||
pCache->nRef++;
|
||||
}
|
||||
pPage->nRef++;
|
||||
if( pgno==1 ){
|
||||
pCache->pPage1 = pPage;
|
||||
}
|
||||
}
|
||||
*ppPage = pPage;
|
||||
return (pPage==0 && eCreate) ? SQLITE_NOMEM : SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Decrement the reference count on a page. If the page is clean and the
|
||||
** reference count drops to 0, then it is made elible for recycling.
|
||||
*/
|
||||
void sqlite3PcacheRelease(PgHdr *p){
|
||||
assert( p->nRef>0 );
|
||||
p->nRef--;
|
||||
if( p->nRef==0 ){
|
||||
PCache *pCache = p->pCache;
|
||||
pCache->nRef--;
|
||||
if( (p->flags&PGHDR_DIRTY)==0 ){
|
||||
pcacheUnpin(p);
|
||||
}else{
|
||||
/* Move the page to the head of the dirty list. */
|
||||
pcacheRemoveFromDirtyList(p);
|
||||
pcacheAddToDirtyList(p);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Increase the reference count of a supplied page by 1.
|
||||
*/
|
||||
void sqlite3PcacheRef(PgHdr *p){
|
||||
assert(p->nRef>0);
|
||||
p->nRef++;
|
||||
}
|
||||
|
||||
/*
|
||||
** Drop a page from the cache. There must be exactly one reference to the
|
||||
** page. This function deletes that reference, so after it returns the
|
||||
** page pointed to by p is invalid.
|
||||
*/
|
||||
void sqlite3PcacheDrop(PgHdr *p){
|
||||
PCache *pCache;
|
||||
assert( p->nRef==1 );
|
||||
if( p->flags&PGHDR_DIRTY ){
|
||||
pcacheRemoveFromDirtyList(p);
|
||||
}
|
||||
pCache = p->pCache;
|
||||
pCache->nRef--;
|
||||
if( p->pgno==1 ){
|
||||
pCache->pPage1 = 0;
|
||||
}
|
||||
sqlite3GlobalConfig.pcache.xUnpin(pCache->pCache, p, 1);
|
||||
}
|
||||
|
||||
/*
|
||||
** Make sure the page is marked as dirty. If it isn't dirty already,
|
||||
** make it so.
|
||||
*/
|
||||
void sqlite3PcacheMakeDirty(PgHdr *p){
|
||||
p->flags &= ~PGHDR_DONT_WRITE;
|
||||
assert( p->nRef>0 );
|
||||
if( 0==(p->flags & PGHDR_DIRTY) ){
|
||||
p->flags |= PGHDR_DIRTY;
|
||||
pcacheAddToDirtyList( p);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Make sure the page is marked as clean. If it isn't clean already,
|
||||
** make it so.
|
||||
*/
|
||||
void sqlite3PcacheMakeClean(PgHdr *p){
|
||||
if( (p->flags & PGHDR_DIRTY) ){
|
||||
pcacheRemoveFromDirtyList(p);
|
||||
p->flags &= ~(PGHDR_DIRTY|PGHDR_NEED_SYNC);
|
||||
if( p->nRef==0 ){
|
||||
pcacheUnpin(p);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Make every page in the cache clean.
|
||||
*/
|
||||
void sqlite3PcacheCleanAll(PCache *pCache){
|
||||
PgHdr *p;
|
||||
while( (p = pCache->pDirty)!=0 ){
|
||||
sqlite3PcacheMakeClean(p);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Clear the PGHDR_NEED_SYNC flag from all dirty pages.
|
||||
*/
|
||||
void sqlite3PcacheClearSyncFlags(PCache *pCache){
|
||||
PgHdr *p;
|
||||
for(p=pCache->pDirty; p; p=p->pDirtyNext){
|
||||
p->flags &= ~PGHDR_NEED_SYNC;
|
||||
}
|
||||
pCache->pSynced = pCache->pDirtyTail;
|
||||
}
|
||||
|
||||
/*
|
||||
** Change the page number of page p to newPgno.
|
||||
*/
|
||||
void sqlite3PcacheMove(PgHdr *p, Pgno newPgno){
|
||||
PCache *pCache = p->pCache;
|
||||
assert( p->nRef>0 );
|
||||
assert( newPgno>0 );
|
||||
sqlite3GlobalConfig.pcache.xRekey(pCache->pCache, p, p->pgno, newPgno);
|
||||
p->pgno = newPgno;
|
||||
if( (p->flags&PGHDR_DIRTY) && (p->flags&PGHDR_NEED_SYNC) ){
|
||||
pcacheRemoveFromDirtyList(p);
|
||||
pcacheAddToDirtyList(p);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Drop every cache entry whose page number is greater than "pgno". The
|
||||
** caller must ensure that there are no outstanding references to any pages
|
||||
** other than page 1 with a page number greater than pgno.
|
||||
**
|
||||
** If there is a reference to page 1 and the pgno parameter passed to this
|
||||
** function is 0, then the data area associated with page 1 is zeroed, but
|
||||
** the page object is not dropped.
|
||||
*/
|
||||
void sqlite3PcacheTruncate(PCache *pCache, Pgno pgno){
|
||||
if( pCache->pCache ){
|
||||
PgHdr *p;
|
||||
PgHdr *pNext;
|
||||
for(p=pCache->pDirty; p; p=pNext){
|
||||
pNext = p->pDirtyNext;
|
||||
if( p->pgno>pgno ){
|
||||
assert( p->flags&PGHDR_DIRTY );
|
||||
sqlite3PcacheMakeClean(p);
|
||||
}
|
||||
}
|
||||
if( pgno==0 && pCache->pPage1 ){
|
||||
memset(pCache->pPage1->pData, 0, pCache->szPage);
|
||||
pgno = 1;
|
||||
}
|
||||
sqlite3GlobalConfig.pcache.xTruncate(pCache->pCache, pgno+1);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Close a cache.
|
||||
*/
|
||||
void sqlite3PcacheClose(PCache *pCache){
|
||||
if( pCache->pCache ){
|
||||
sqlite3GlobalConfig.pcache.xDestroy(pCache->pCache);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Discard the contents of the cache.
|
||||
*/
|
||||
void sqlite3PcacheClear(PCache *pCache){
|
||||
sqlite3PcacheTruncate(pCache, 0);
|
||||
}
|
||||
|
||||
/*
|
||||
** Merge two lists of pages connected by pDirty and in pgno order.
|
||||
** Do not both fixing the pDirtyPrev pointers.
|
||||
*/
|
||||
static PgHdr *pcacheMergeDirtyList(PgHdr *pA, PgHdr *pB){
|
||||
PgHdr result, *pTail;
|
||||
pTail = &result;
|
||||
while( pA && pB ){
|
||||
if( pA->pgno<pB->pgno ){
|
||||
pTail->pDirty = pA;
|
||||
pTail = pA;
|
||||
pA = pA->pDirty;
|
||||
}else{
|
||||
pTail->pDirty = pB;
|
||||
pTail = pB;
|
||||
pB = pB->pDirty;
|
||||
}
|
||||
}
|
||||
if( pA ){
|
||||
pTail->pDirty = pA;
|
||||
}else if( pB ){
|
||||
pTail->pDirty = pB;
|
||||
}else{
|
||||
pTail->pDirty = 0;
|
||||
}
|
||||
return result.pDirty;
|
||||
}
|
||||
|
||||
/*
|
||||
** Sort the list of pages in accending order by pgno. Pages are
|
||||
** connected by pDirty pointers. The pDirtyPrev pointers are
|
||||
** corrupted by this sort.
|
||||
*/
|
||||
#define N_SORT_BUCKET_ALLOC 25
|
||||
#define N_SORT_BUCKET 25
|
||||
#ifdef SQLITE_TEST
|
||||
int sqlite3_pager_n_sort_bucket = 0;
|
||||
#undef N_SORT_BUCKET
|
||||
#define N_SORT_BUCKET \
|
||||
(sqlite3_pager_n_sort_bucket?sqlite3_pager_n_sort_bucket:N_SORT_BUCKET_ALLOC)
|
||||
#endif
|
||||
static PgHdr *pcacheSortDirtyList(PgHdr *pIn){
|
||||
PgHdr *a[N_SORT_BUCKET_ALLOC], *p;
|
||||
int i;
|
||||
memset(a, 0, sizeof(a));
|
||||
while( pIn ){
|
||||
p = pIn;
|
||||
pIn = p->pDirty;
|
||||
p->pDirty = 0;
|
||||
for(i=0; i<N_SORT_BUCKET-1; i++){
|
||||
if( a[i]==0 ){
|
||||
a[i] = p;
|
||||
break;
|
||||
}else{
|
||||
p = pcacheMergeDirtyList(a[i], p);
|
||||
a[i] = 0;
|
||||
}
|
||||
}
|
||||
if( i==N_SORT_BUCKET-1 ){
|
||||
/* Coverage: To get here, there need to be 2^(N_SORT_BUCKET)
|
||||
** elements in the input list. This is possible, but impractical.
|
||||
** Testing this line is the point of global variable
|
||||
** sqlite3_pager_n_sort_bucket.
|
||||
*/
|
||||
a[i] = pcacheMergeDirtyList(a[i], p);
|
||||
}
|
||||
}
|
||||
p = a[0];
|
||||
for(i=1; i<N_SORT_BUCKET; i++){
|
||||
p = pcacheMergeDirtyList(p, a[i]);
|
||||
}
|
||||
return p;
|
||||
}
|
||||
|
||||
/*
|
||||
** Return a list of all dirty pages in the cache, sorted by page number.
|
||||
*/
|
||||
PgHdr *sqlite3PcacheDirtyList(PCache *pCache){
|
||||
PgHdr *p;
|
||||
for(p=pCache->pDirty; p; p=p->pDirtyNext){
|
||||
p->pDirty = p->pDirtyNext;
|
||||
}
|
||||
return pcacheSortDirtyList(pCache->pDirty);
|
||||
}
|
||||
|
||||
/*
|
||||
** Return the total number of referenced pages held by the cache.
|
||||
*/
|
||||
int sqlite3PcacheRefCount(PCache *pCache){
|
||||
return pCache->nRef;
|
||||
}
|
||||
|
||||
/*
|
||||
** Return the number of references to the page supplied as an argument.
|
||||
*/
|
||||
int sqlite3PcachePageRefcount(PgHdr *p){
|
||||
return p->nRef;
|
||||
}
|
||||
|
||||
/*
|
||||
** Return the total number of pages in the cache.
|
||||
*/
|
||||
int sqlite3PcachePagecount(PCache *pCache){
|
||||
int nPage = 0;
|
||||
if( pCache->pCache ){
|
||||
nPage = sqlite3GlobalConfig.pcache.xPagecount(pCache->pCache);
|
||||
}
|
||||
return nPage;
|
||||
}
|
||||
|
||||
#ifdef SQLITE_TEST
|
||||
/*
|
||||
** Get the suggested cache-size value.
|
||||
*/
|
||||
int sqlite3PcacheGetCachesize(PCache *pCache){
|
||||
return pCache->nMax;
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
** Set the suggested cache-size value.
|
||||
*/
|
||||
void sqlite3PcacheSetCachesize(PCache *pCache, int mxPage){
|
||||
pCache->nMax = mxPage;
|
||||
if( pCache->pCache ){
|
||||
sqlite3GlobalConfig.pcache.xCachesize(pCache->pCache, mxPage);
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef SQLITE_CHECK_PAGES
|
||||
/*
|
||||
** For all dirty pages currently in the cache, invoke the specified
|
||||
** callback. This is only used if the SQLITE_CHECK_PAGES macro is
|
||||
** defined.
|
||||
*/
|
||||
void sqlite3PcacheIterateDirty(PCache *pCache, void (*xIter)(PgHdr *)){
|
||||
PgHdr *pDirty;
|
||||
for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext){
|
||||
xIter(pDirty);
|
||||
}
|
||||
}
|
||||
#endif
|
157
pcache.h
157
pcache.h
|
@ -1,157 +0,0 @@
|
|||
/*
|
||||
** 2008 August 05
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This header file defines the interface that the sqlite page cache
|
||||
** subsystem.
|
||||
**
|
||||
** @(#) $Id: pcache.h,v 1.19 2009/01/20 17:06:27 danielk1977 Exp $
|
||||
*/
|
||||
|
||||
#ifndef _PCACHE_H_
|
||||
|
||||
typedef struct PgHdr PgHdr;
|
||||
typedef struct PCache PCache;
|
||||
|
||||
/*
|
||||
** Every page in the cache is controlled by an instance of the following
|
||||
** structure.
|
||||
*/
|
||||
struct PgHdr {
|
||||
void *pData; /* Content of this page */
|
||||
void *pExtra; /* Extra content */
|
||||
PgHdr *pDirty; /* Transient list of dirty pages */
|
||||
Pgno pgno; /* Page number for this page */
|
||||
Pager *pPager; /* The pager this page is part of */
|
||||
#ifdef SQLITE_CHECK_PAGES
|
||||
u32 pageHash; /* Hash of page content */
|
||||
#endif
|
||||
u16 flags; /* PGHDR flags defined below */
|
||||
|
||||
/**********************************************************************
|
||||
** Elements above are public. All that follows is private to pcache.c
|
||||
** and should not be accessed by other modules.
|
||||
*/
|
||||
i16 nRef; /* Number of users of this page */
|
||||
PCache *pCache; /* Cache that owns this page */
|
||||
|
||||
PgHdr *pDirtyNext; /* Next element in list of dirty pages */
|
||||
PgHdr *pDirtyPrev; /* Previous element in list of dirty pages */
|
||||
};
|
||||
|
||||
/* Bit values for PgHdr.flags */
|
||||
#define PGHDR_DIRTY 0x002 /* Page has changed */
|
||||
#define PGHDR_NEED_SYNC 0x004 /* Fsync the rollback journal before
|
||||
** writing this page to the database */
|
||||
#define PGHDR_NEED_READ 0x008 /* Content is unread */
|
||||
#define PGHDR_REUSE_UNLIKELY 0x010 /* A hint that reuse is unlikely */
|
||||
#define PGHDR_DONT_WRITE 0x020 /* Do not write content to disk */
|
||||
|
||||
/* Initialize and shutdown the page cache subsystem */
|
||||
int sqlite3PcacheInitialize(void);
|
||||
void sqlite3PcacheShutdown(void);
|
||||
|
||||
/* Page cache buffer management:
|
||||
** These routines implement SQLITE_CONFIG_PAGECACHE.
|
||||
*/
|
||||
void sqlite3PCacheBufferSetup(void *, int sz, int n);
|
||||
|
||||
/* Create a new pager cache.
|
||||
** Under memory stress, invoke xStress to try to make pages clean.
|
||||
** Only clean and unpinned pages can be reclaimed.
|
||||
*/
|
||||
void sqlite3PcacheOpen(
|
||||
int szPage, /* Size of every page */
|
||||
int szExtra, /* Extra space associated with each page */
|
||||
int bPurgeable, /* True if pages are on backing store */
|
||||
int (*xStress)(void*, PgHdr*), /* Call to try to make pages clean */
|
||||
void *pStress, /* Argument to xStress */
|
||||
PCache *pToInit /* Preallocated space for the PCache */
|
||||
);
|
||||
|
||||
/* Modify the page-size after the cache has been created. */
|
||||
void sqlite3PcacheSetPageSize(PCache *, int);
|
||||
|
||||
/* Return the size in bytes of a PCache object. Used to preallocate
|
||||
** storage space.
|
||||
*/
|
||||
int sqlite3PcacheSize(void);
|
||||
|
||||
/* One release per successful fetch. Page is pinned until released.
|
||||
** Reference counted.
|
||||
*/
|
||||
int sqlite3PcacheFetch(PCache*, Pgno, int createFlag, PgHdr**);
|
||||
void sqlite3PcacheRelease(PgHdr*);
|
||||
|
||||
void sqlite3PcacheDrop(PgHdr*); /* Remove page from cache */
|
||||
void sqlite3PcacheMakeDirty(PgHdr*); /* Make sure page is marked dirty */
|
||||
void sqlite3PcacheMakeClean(PgHdr*); /* Mark a single page as clean */
|
||||
void sqlite3PcacheCleanAll(PCache*); /* Mark all dirty list pages as clean */
|
||||
|
||||
/* Change a page number. Used by incr-vacuum. */
|
||||
void sqlite3PcacheMove(PgHdr*, Pgno);
|
||||
|
||||
/* Remove all pages with pgno>x. Reset the cache if x==0 */
|
||||
void sqlite3PcacheTruncate(PCache*, Pgno x);
|
||||
|
||||
/* Get a list of all dirty pages in the cache, sorted by page number */
|
||||
PgHdr *sqlite3PcacheDirtyList(PCache*);
|
||||
|
||||
/* Reset and close the cache object */
|
||||
void sqlite3PcacheClose(PCache*);
|
||||
|
||||
/* Clear flags from pages of the page cache */
|
||||
void sqlite3PcacheClearSyncFlags(PCache *);
|
||||
|
||||
/* Discard the contents of the cache */
|
||||
void sqlite3PcacheClear(PCache*);
|
||||
|
||||
/* Return the total number of outstanding page references */
|
||||
int sqlite3PcacheRefCount(PCache*);
|
||||
|
||||
/* Increment the reference count of an existing page */
|
||||
void sqlite3PcacheRef(PgHdr*);
|
||||
|
||||
int sqlite3PcachePageRefcount(PgHdr*);
|
||||
|
||||
/* Return the total number of pages stored in the cache */
|
||||
int sqlite3PcachePagecount(PCache*);
|
||||
|
||||
#ifdef SQLITE_CHECK_PAGES
|
||||
/* Iterate through all dirty pages currently stored in the cache. This
|
||||
** interface is only available if SQLITE_CHECK_PAGES is defined when the
|
||||
** library is built.
|
||||
*/
|
||||
void sqlite3PcacheIterateDirty(PCache *pCache, void (*xIter)(PgHdr *));
|
||||
#endif
|
||||
|
||||
/* Set and get the suggested cache-size for the specified pager-cache.
|
||||
**
|
||||
** If no global maximum is configured, then the system attempts to limit
|
||||
** the total number of pages cached by purgeable pager-caches to the sum
|
||||
** of the suggested cache-sizes.
|
||||
*/
|
||||
void sqlite3PcacheSetCachesize(PCache *, int);
|
||||
#ifdef SQLITE_TEST
|
||||
int sqlite3PcacheGetCachesize(PCache *);
|
||||
#endif
|
||||
|
||||
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
|
||||
/* Try to return memory used by the pcache module to the main memory heap */
|
||||
int sqlite3PcacheReleaseMemory(int);
|
||||
#endif
|
||||
|
||||
#ifdef SQLITE_TEST
|
||||
void sqlite3PcacheStats(int*,int*,int*,int*);
|
||||
#endif
|
||||
|
||||
void sqlite3PCacheSetDefault(void);
|
||||
|
||||
#endif /* _PCACHE_H_ */
|
752
pcache1.c
752
pcache1.c
|
@ -1,752 +0,0 @@
|
|||
/*
|
||||
** 2008 November 05
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
**
|
||||
** This file implements the default page cache implementation (the
|
||||
** sqlite3_pcache interface). It also contains part of the implementation
|
||||
** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features.
|
||||
** If the default page cache implementation is overriden, then neither of
|
||||
** these two features are available.
|
||||
**
|
||||
** @(#) $Id: pcache1.c,v 1.10 2009/03/23 04:33:33 danielk1977 Exp $
|
||||
*/
|
||||
|
||||
#include "sqliteInt.h"
|
||||
|
||||
typedef struct PCache1 PCache1;
|
||||
typedef struct PgHdr1 PgHdr1;
|
||||
typedef struct PgFreeslot PgFreeslot;
|
||||
|
||||
/* Pointers to structures of this type are cast and returned as
|
||||
** opaque sqlite3_pcache* handles
|
||||
*/
|
||||
struct PCache1 {
|
||||
/* Cache configuration parameters. Page size (szPage) and the purgeable
|
||||
** flag (bPurgeable) are set when the cache is created. nMax may be
|
||||
** modified at any time by a call to the pcache1CacheSize() method.
|
||||
** The global mutex must be held when accessing nMax.
|
||||
*/
|
||||
int szPage; /* Size of allocated pages in bytes */
|
||||
int bPurgeable; /* True if cache is purgeable */
|
||||
unsigned int nMin; /* Minimum number of pages reserved */
|
||||
unsigned int nMax; /* Configured "cache_size" value */
|
||||
|
||||
/* Hash table of all pages. The following variables may only be accessed
|
||||
** when the accessor is holding the global mutex (see pcache1EnterMutex()
|
||||
** and pcache1LeaveMutex()).
|
||||
*/
|
||||
unsigned int nRecyclable; /* Number of pages in the LRU list */
|
||||
unsigned int nPage; /* Total number of pages in apHash */
|
||||
unsigned int nHash; /* Number of slots in apHash[] */
|
||||
PgHdr1 **apHash; /* Hash table for fast lookup by key */
|
||||
|
||||
unsigned int iMaxKey; /* Largest key seen since xTruncate() */
|
||||
};
|
||||
|
||||
/*
|
||||
** Each cache entry is represented by an instance of the following
|
||||
** structure. A buffer of PgHdr1.pCache->szPage bytes is allocated
|
||||
** directly after the structure in memory (see the PGHDR1_TO_PAGE()
|
||||
** macro below).
|
||||
*/
|
||||
struct PgHdr1 {
|
||||
unsigned int iKey; /* Key value (page number) */
|
||||
PgHdr1 *pNext; /* Next in hash table chain */
|
||||
PCache1 *pCache; /* Cache that currently owns this page */
|
||||
PgHdr1 *pLruNext; /* Next in LRU list of unpinned pages */
|
||||
PgHdr1 *pLruPrev; /* Previous in LRU list of unpinned pages */
|
||||
};
|
||||
|
||||
/*
|
||||
** Free slots in the allocator used to divide up the buffer provided using
|
||||
** the SQLITE_CONFIG_PAGECACHE mechanism.
|
||||
*/
|
||||
struct PgFreeslot {
|
||||
PgFreeslot *pNext; /* Next free slot */
|
||||
};
|
||||
|
||||
/*
|
||||
** Global data used by this cache.
|
||||
*/
|
||||
static SQLITE_WSD struct PCacheGlobal {
|
||||
sqlite3_mutex *mutex; /* static mutex MUTEX_STATIC_LRU */
|
||||
|
||||
int nMaxPage; /* Sum of nMaxPage for purgeable caches */
|
||||
int nMinPage; /* Sum of nMinPage for purgeable caches */
|
||||
int nCurrentPage; /* Number of purgeable pages allocated */
|
||||
PgHdr1 *pLruHead, *pLruTail; /* LRU list of unpinned pages */
|
||||
|
||||
/* Variables related to SQLITE_CONFIG_PAGECACHE settings. */
|
||||
int szSlot; /* Size of each free slot */
|
||||
void *pStart, *pEnd; /* Bounds of pagecache malloc range */
|
||||
PgFreeslot *pFree; /* Free page blocks */
|
||||
} pcache1_g;
|
||||
|
||||
/*
|
||||
** All code in this file should access the global structure above via the
|
||||
** alias "pcache1". This ensures that the WSD emulation is used when
|
||||
** compiling for systems that do not support real WSD.
|
||||
*/
|
||||
#define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g))
|
||||
|
||||
/*
|
||||
** When a PgHdr1 structure is allocated, the associated PCache1.szPage
|
||||
** bytes of data are located directly after it in memory (i.e. the total
|
||||
** size of the allocation is sizeof(PgHdr1)+PCache1.szPage byte). The
|
||||
** PGHDR1_TO_PAGE() macro takes a pointer to a PgHdr1 structure as
|
||||
** an argument and returns a pointer to the associated block of szPage
|
||||
** bytes. The PAGE_TO_PGHDR1() macro does the opposite: its argument is
|
||||
** a pointer to a block of szPage bytes of data and the return value is
|
||||
** a pointer to the associated PgHdr1 structure.
|
||||
**
|
||||
** assert( PGHDR1_TO_PAGE(PAGE_TO_PGHDR1(X))==X );
|
||||
*/
|
||||
#define PGHDR1_TO_PAGE(p) (void *)(&((unsigned char *)p)[sizeof(PgHdr1)])
|
||||
#define PAGE_TO_PGHDR1(p) (PgHdr1 *)(&((unsigned char *)p)[-1*(int)sizeof(PgHdr1)])
|
||||
|
||||
/*
|
||||
** Macros to enter and leave the global LRU mutex.
|
||||
*/
|
||||
#define pcache1EnterMutex() sqlite3_mutex_enter(pcache1.mutex)
|
||||
#define pcache1LeaveMutex() sqlite3_mutex_leave(pcache1.mutex)
|
||||
|
||||
/******************************************************************************/
|
||||
/******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/
|
||||
|
||||
/*
|
||||
** This function is called during initialization if a static buffer is
|
||||
** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE
|
||||
** verb to sqlite3_config(). Parameter pBuf points to an allocation large
|
||||
** enough to contain 'n' buffers of 'sz' bytes each.
|
||||
*/
|
||||
void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){
|
||||
PgFreeslot *p;
|
||||
sz = ROUNDDOWN8(sz);
|
||||
pcache1.szSlot = sz;
|
||||
pcache1.pStart = pBuf;
|
||||
pcache1.pFree = 0;
|
||||
while( n-- ){
|
||||
p = (PgFreeslot*)pBuf;
|
||||
p->pNext = pcache1.pFree;
|
||||
pcache1.pFree = p;
|
||||
pBuf = (void*)&((char*)pBuf)[sz];
|
||||
}
|
||||
pcache1.pEnd = pBuf;
|
||||
}
|
||||
|
||||
/*
|
||||
** Malloc function used within this file to allocate space from the buffer
|
||||
** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no
|
||||
** such buffer exists or there is no space left in it, this function falls
|
||||
** back to sqlite3Malloc().
|
||||
*/
|
||||
static void *pcache1Alloc(int nByte){
|
||||
void *p;
|
||||
assert( sqlite3_mutex_held(pcache1.mutex) );
|
||||
if( nByte<=pcache1.szSlot && pcache1.pFree ){
|
||||
p = (PgHdr1 *)pcache1.pFree;
|
||||
pcache1.pFree = pcache1.pFree->pNext;
|
||||
sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
|
||||
sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, 1);
|
||||
}else{
|
||||
|
||||
/* Allocate a new buffer using sqlite3Malloc. Before doing so, exit the
|
||||
** global pcache mutex and unlock the pager-cache object pCache. This is
|
||||
** so that if the attempt to allocate a new buffer causes the the
|
||||
** configured soft-heap-limit to be breached, it will be possible to
|
||||
** reclaim memory from this pager-cache.
|
||||
*/
|
||||
pcache1LeaveMutex();
|
||||
p = sqlite3Malloc(nByte);
|
||||
pcache1EnterMutex();
|
||||
if( p ){
|
||||
int sz = sqlite3MallocSize(p);
|
||||
sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz);
|
||||
}
|
||||
}
|
||||
return p;
|
||||
}
|
||||
|
||||
/*
|
||||
** Free an allocated buffer obtained from pcache1Alloc().
|
||||
*/
|
||||
static void pcache1Free(void *p){
|
||||
assert( sqlite3_mutex_held(pcache1.mutex) );
|
||||
if( p==0 ) return;
|
||||
if( p>=pcache1.pStart && p<pcache1.pEnd ){
|
||||
PgFreeslot *pSlot;
|
||||
sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, -1);
|
||||
pSlot = (PgFreeslot*)p;
|
||||
pSlot->pNext = pcache1.pFree;
|
||||
pcache1.pFree = pSlot;
|
||||
}else{
|
||||
int iSize = sqlite3MallocSize(p);
|
||||
sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, -iSize);
|
||||
sqlite3_free(p);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Allocate a new page object initially associated with cache pCache.
|
||||
*/
|
||||
static PgHdr1 *pcache1AllocPage(PCache1 *pCache){
|
||||
int nByte = sizeof(PgHdr1) + pCache->szPage;
|
||||
PgHdr1 *p = (PgHdr1 *)pcache1Alloc(nByte);
|
||||
if( p ){
|
||||
if( pCache->bPurgeable ){
|
||||
pcache1.nCurrentPage++;
|
||||
}
|
||||
}
|
||||
return p;
|
||||
}
|
||||
|
||||
/*
|
||||
** Free a page object allocated by pcache1AllocPage().
|
||||
*/
|
||||
static void pcache1FreePage(PgHdr1 *p){
|
||||
if( p ){
|
||||
if( p->pCache->bPurgeable ){
|
||||
pcache1.nCurrentPage--;
|
||||
}
|
||||
pcache1Free(p);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Malloc function used by SQLite to obtain space from the buffer configured
|
||||
** using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer
|
||||
** exists, this function falls back to sqlite3Malloc().
|
||||
*/
|
||||
void *sqlite3PageMalloc(int sz){
|
||||
void *p;
|
||||
pcache1EnterMutex();
|
||||
p = pcache1Alloc(sz);
|
||||
pcache1LeaveMutex();
|
||||
return p;
|
||||
}
|
||||
|
||||
/*
|
||||
** Free an allocated buffer obtained from sqlite3PageMalloc().
|
||||
*/
|
||||
void sqlite3PageFree(void *p){
|
||||
pcache1EnterMutex();
|
||||
pcache1Free(p);
|
||||
pcache1LeaveMutex();
|
||||
}
|
||||
|
||||
/******************************************************************************/
|
||||
/******** General Implementation Functions ************************************/
|
||||
|
||||
/*
|
||||
** This function is used to resize the hash table used by the cache passed
|
||||
** as the first argument.
|
||||
**
|
||||
** The global mutex must be held when this function is called.
|
||||
*/
|
||||
static int pcache1ResizeHash(PCache1 *p){
|
||||
PgHdr1 **apNew;
|
||||
unsigned int nNew;
|
||||
unsigned int i;
|
||||
|
||||
assert( sqlite3_mutex_held(pcache1.mutex) );
|
||||
|
||||
nNew = p->nHash*2;
|
||||
if( nNew<256 ){
|
||||
nNew = 256;
|
||||
}
|
||||
|
||||
pcache1LeaveMutex();
|
||||
if( p->nHash ){ sqlite3BeginBenignMalloc(); }
|
||||
apNew = (PgHdr1 **)sqlite3_malloc(sizeof(PgHdr1 *)*nNew);
|
||||
if( p->nHash ){ sqlite3EndBenignMalloc(); }
|
||||
pcache1EnterMutex();
|
||||
if( apNew ){
|
||||
memset(apNew, 0, sizeof(PgHdr1 *)*nNew);
|
||||
for(i=0; i<p->nHash; i++){
|
||||
PgHdr1 *pPage;
|
||||
PgHdr1 *pNext = p->apHash[i];
|
||||
while( (pPage = pNext)!=0 ){
|
||||
unsigned int h = pPage->iKey % nNew;
|
||||
pNext = pPage->pNext;
|
||||
pPage->pNext = apNew[h];
|
||||
apNew[h] = pPage;
|
||||
}
|
||||
}
|
||||
sqlite3_free(p->apHash);
|
||||
p->apHash = apNew;
|
||||
p->nHash = nNew;
|
||||
}
|
||||
|
||||
return (p->apHash ? SQLITE_OK : SQLITE_NOMEM);
|
||||
}
|
||||
|
||||
/*
|
||||
** This function is used internally to remove the page pPage from the
|
||||
** global LRU list, if is part of it. If pPage is not part of the global
|
||||
** LRU list, then this function is a no-op.
|
||||
**
|
||||
** The global mutex must be held when this function is called.
|
||||
*/
|
||||
static void pcache1PinPage(PgHdr1 *pPage){
|
||||
assert( sqlite3_mutex_held(pcache1.mutex) );
|
||||
if( pPage && (pPage->pLruNext || pPage==pcache1.pLruTail) ){
|
||||
if( pPage->pLruPrev ){
|
||||
pPage->pLruPrev->pLruNext = pPage->pLruNext;
|
||||
}
|
||||
if( pPage->pLruNext ){
|
||||
pPage->pLruNext->pLruPrev = pPage->pLruPrev;
|
||||
}
|
||||
if( pcache1.pLruHead==pPage ){
|
||||
pcache1.pLruHead = pPage->pLruNext;
|
||||
}
|
||||
if( pcache1.pLruTail==pPage ){
|
||||
pcache1.pLruTail = pPage->pLruPrev;
|
||||
}
|
||||
pPage->pLruNext = 0;
|
||||
pPage->pLruPrev = 0;
|
||||
pPage->pCache->nRecyclable--;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** Remove the page supplied as an argument from the hash table
|
||||
** (PCache1.apHash structure) that it is currently stored in.
|
||||
**
|
||||
** The global mutex must be held when this function is called.
|
||||
*/
|
||||
static void pcache1RemoveFromHash(PgHdr1 *pPage){
|
||||
unsigned int h;
|
||||
PCache1 *pCache = pPage->pCache;
|
||||
PgHdr1 **pp;
|
||||
|
||||
h = pPage->iKey % pCache->nHash;
|
||||
for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext);
|
||||
*pp = (*pp)->pNext;
|
||||
|
||||
pCache->nPage--;
|
||||
}
|
||||
|
||||
/*
|
||||
** If there are currently more than pcache.nMaxPage pages allocated, try
|
||||
** to recycle pages to reduce the number allocated to pcache.nMaxPage.
|
||||
*/
|
||||
static void pcache1EnforceMaxPage(void){
|
||||
assert( sqlite3_mutex_held(pcache1.mutex) );
|
||||
while( pcache1.nCurrentPage>pcache1.nMaxPage && pcache1.pLruTail ){
|
||||
PgHdr1 *p = pcache1.pLruTail;
|
||||
pcache1PinPage(p);
|
||||
pcache1RemoveFromHash(p);
|
||||
pcache1FreePage(p);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Discard all pages from cache pCache with a page number (key value)
|
||||
** greater than or equal to iLimit. Any pinned pages that meet this
|
||||
** criteria are unpinned before they are discarded.
|
||||
**
|
||||
** The global mutex must be held when this function is called.
|
||||
*/
|
||||
static void pcache1TruncateUnsafe(
|
||||
PCache1 *pCache,
|
||||
unsigned int iLimit
|
||||
){
|
||||
unsigned int h;
|
||||
assert( sqlite3_mutex_held(pcache1.mutex) );
|
||||
for(h=0; h<pCache->nHash; h++){
|
||||
PgHdr1 **pp = &pCache->apHash[h];
|
||||
PgHdr1 *pPage;
|
||||
while( (pPage = *pp)!=0 ){
|
||||
if( pPage->iKey>=iLimit ){
|
||||
pcache1PinPage(pPage);
|
||||
*pp = pPage->pNext;
|
||||
pcache1FreePage(pPage);
|
||||
}else{
|
||||
pp = &pPage->pNext;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/******************************************************************************/
|
||||
/******** sqlite3_pcache Methods **********************************************/
|
||||
|
||||
/*
|
||||
** Implementation of the sqlite3_pcache.xInit method.
|
||||
*/
|
||||
static int pcache1Init(void *NotUsed){
|
||||
UNUSED_PARAMETER(NotUsed);
|
||||
memset(&pcache1, 0, sizeof(pcache1));
|
||||
if( sqlite3GlobalConfig.bCoreMutex ){
|
||||
pcache1.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU);
|
||||
}
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Implementation of the sqlite3_pcache.xShutdown method.
|
||||
*/
|
||||
static void pcache1Shutdown(void *NotUsed){
|
||||
UNUSED_PARAMETER(NotUsed);
|
||||
/* no-op */
|
||||
}
|
||||
|
||||
/*
|
||||
** Implementation of the sqlite3_pcache.xCreate method.
|
||||
**
|
||||
** Allocate a new cache.
|
||||
*/
|
||||
static sqlite3_pcache *pcache1Create(int szPage, int bPurgeable){
|
||||
PCache1 *pCache;
|
||||
|
||||
pCache = (PCache1 *)sqlite3_malloc(sizeof(PCache1));
|
||||
if( pCache ){
|
||||
memset(pCache, 0, sizeof(PCache1));
|
||||
pCache->szPage = szPage;
|
||||
pCache->bPurgeable = (bPurgeable ? 1 : 0);
|
||||
if( bPurgeable ){
|
||||
pCache->nMin = 10;
|
||||
pcache1EnterMutex();
|
||||
pcache1.nMinPage += pCache->nMin;
|
||||
pcache1LeaveMutex();
|
||||
}
|
||||
}
|
||||
return (sqlite3_pcache *)pCache;
|
||||
}
|
||||
|
||||
/*
|
||||
** Implementation of the sqlite3_pcache.xCachesize method.
|
||||
**
|
||||
** Configure the cache_size limit for a cache.
|
||||
*/
|
||||
static void pcache1Cachesize(sqlite3_pcache *p, int nMax){
|
||||
PCache1 *pCache = (PCache1 *)p;
|
||||
if( pCache->bPurgeable ){
|
||||
pcache1EnterMutex();
|
||||
pcache1.nMaxPage += (nMax - pCache->nMax);
|
||||
pCache->nMax = nMax;
|
||||
pcache1EnforceMaxPage();
|
||||
pcache1LeaveMutex();
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Implementation of the sqlite3_pcache.xPagecount method.
|
||||
*/
|
||||
static int pcache1Pagecount(sqlite3_pcache *p){
|
||||
int n;
|
||||
pcache1EnterMutex();
|
||||
n = ((PCache1 *)p)->nPage;
|
||||
pcache1LeaveMutex();
|
||||
return n;
|
||||
}
|
||||
|
||||
/*
|
||||
** Implementation of the sqlite3_pcache.xFetch method.
|
||||
**
|
||||
** Fetch a page by key value.
|
||||
**
|
||||
** Whether or not a new page may be allocated by this function depends on
|
||||
** the value of the createFlag argument.
|
||||
**
|
||||
** There are three different approaches to obtaining space for a page,
|
||||
** depending on the value of parameter createFlag (which may be 0, 1 or 2).
|
||||
**
|
||||
** 1. Regardless of the value of createFlag, the cache is searched for a
|
||||
** copy of the requested page. If one is found, it is returned.
|
||||
**
|
||||
** 2. If createFlag==0 and the page is not already in the cache, NULL is
|
||||
** returned.
|
||||
**
|
||||
** 3. If createFlag is 1, the cache is marked as purgeable and the page is
|
||||
** not already in the cache, and if either of the following are true,
|
||||
** return NULL:
|
||||
**
|
||||
** (a) the number of pages pinned by the cache is greater than
|
||||
** PCache1.nMax, or
|
||||
** (b) the number of pages pinned by the cache is greater than
|
||||
** the sum of nMax for all purgeable caches, less the sum of
|
||||
** nMin for all other purgeable caches.
|
||||
**
|
||||
** 4. If none of the first three conditions apply and the cache is marked
|
||||
** as purgeable, and if one of the following is true:
|
||||
**
|
||||
** (a) The number of pages allocated for the cache is already
|
||||
** PCache1.nMax, or
|
||||
**
|
||||
** (b) The number of pages allocated for all purgeable caches is
|
||||
** already equal to or greater than the sum of nMax for all
|
||||
** purgeable caches,
|
||||
**
|
||||
** then attempt to recycle a page from the LRU list. If it is the right
|
||||
** size, return the recycled buffer. Otherwise, free the buffer and
|
||||
** proceed to step 5.
|
||||
**
|
||||
** 5. Otherwise, allocate and return a new page buffer.
|
||||
*/
|
||||
static void *pcache1Fetch(sqlite3_pcache *p, unsigned int iKey, int createFlag){
|
||||
unsigned int nPinned;
|
||||
PCache1 *pCache = (PCache1 *)p;
|
||||
PgHdr1 *pPage = 0;
|
||||
|
||||
pcache1EnterMutex();
|
||||
if( createFlag==1 ) sqlite3BeginBenignMalloc();
|
||||
|
||||
/* Search the hash table for an existing entry. */
|
||||
if( pCache->nHash>0 ){
|
||||
unsigned int h = iKey % pCache->nHash;
|
||||
for(pPage=pCache->apHash[h]; pPage&&pPage->iKey!=iKey; pPage=pPage->pNext);
|
||||
}
|
||||
|
||||
if( pPage || createFlag==0 ){
|
||||
pcache1PinPage(pPage);
|
||||
goto fetch_out;
|
||||
}
|
||||
|
||||
/* Step 3 of header comment. */
|
||||
nPinned = pCache->nPage - pCache->nRecyclable;
|
||||
if( createFlag==1 && pCache->bPurgeable && (
|
||||
nPinned>=(pcache1.nMaxPage+pCache->nMin-pcache1.nMinPage)
|
||||
|| nPinned>=(pCache->nMax * 9 / 10)
|
||||
)){
|
||||
goto fetch_out;
|
||||
}
|
||||
|
||||
if( pCache->nPage>=pCache->nHash && pcache1ResizeHash(pCache) ){
|
||||
goto fetch_out;
|
||||
}
|
||||
|
||||
/* Step 4. Try to recycle a page buffer if appropriate. */
|
||||
if( pCache->bPurgeable && pcache1.pLruTail && (
|
||||
pCache->nPage>=pCache->nMax-1 || pcache1.nCurrentPage>=pcache1.nMaxPage
|
||||
)){
|
||||
pPage = pcache1.pLruTail;
|
||||
pcache1RemoveFromHash(pPage);
|
||||
pcache1PinPage(pPage);
|
||||
if( pPage->pCache->szPage!=pCache->szPage ){
|
||||
pcache1FreePage(pPage);
|
||||
pPage = 0;
|
||||
}else{
|
||||
pcache1.nCurrentPage -= (pPage->pCache->bPurgeable - pCache->bPurgeable);
|
||||
}
|
||||
}
|
||||
|
||||
/* Step 5. If a usable page buffer has still not been found,
|
||||
** attempt to allocate a new one.
|
||||
*/
|
||||
if( !pPage ){
|
||||
pPage = pcache1AllocPage(pCache);
|
||||
}
|
||||
|
||||
if( pPage ){
|
||||
unsigned int h = iKey % pCache->nHash;
|
||||
*(void **)(PGHDR1_TO_PAGE(pPage)) = 0;
|
||||
pCache->nPage++;
|
||||
pPage->iKey = iKey;
|
||||
pPage->pNext = pCache->apHash[h];
|
||||
pPage->pCache = pCache;
|
||||
pPage->pLruPrev = 0;
|
||||
pPage->pLruNext = 0;
|
||||
pCache->apHash[h] = pPage;
|
||||
}
|
||||
|
||||
fetch_out:
|
||||
if( pPage && iKey>pCache->iMaxKey ){
|
||||
pCache->iMaxKey = iKey;
|
||||
}
|
||||
if( createFlag==1 ) sqlite3EndBenignMalloc();
|
||||
pcache1LeaveMutex();
|
||||
return (pPage ? PGHDR1_TO_PAGE(pPage) : 0);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** Implementation of the sqlite3_pcache.xUnpin method.
|
||||
**
|
||||
** Mark a page as unpinned (eligible for asynchronous recycling).
|
||||
*/
|
||||
static void pcache1Unpin(sqlite3_pcache *p, void *pPg, int reuseUnlikely){
|
||||
PCache1 *pCache = (PCache1 *)p;
|
||||
PgHdr1 *pPage = PAGE_TO_PGHDR1(pPg);
|
||||
|
||||
pcache1EnterMutex();
|
||||
|
||||
/* It is an error to call this function if the page is already
|
||||
** part of the global LRU list.
|
||||
*/
|
||||
assert( pPage->pLruPrev==0 && pPage->pLruNext==0 );
|
||||
assert( pcache1.pLruHead!=pPage && pcache1.pLruTail!=pPage );
|
||||
|
||||
if( reuseUnlikely || pcache1.nCurrentPage>pcache1.nMaxPage ){
|
||||
pcache1RemoveFromHash(pPage);
|
||||
pcache1FreePage(pPage);
|
||||
}else{
|
||||
/* Add the page to the global LRU list. Normally, the page is added to
|
||||
** the head of the list (last page to be recycled). However, if the
|
||||
** reuseUnlikely flag passed to this function is true, the page is added
|
||||
** to the tail of the list (first page to be recycled).
|
||||
*/
|
||||
if( pcache1.pLruHead ){
|
||||
pcache1.pLruHead->pLruPrev = pPage;
|
||||
pPage->pLruNext = pcache1.pLruHead;
|
||||
pcache1.pLruHead = pPage;
|
||||
}else{
|
||||
pcache1.pLruTail = pPage;
|
||||
pcache1.pLruHead = pPage;
|
||||
}
|
||||
pCache->nRecyclable++;
|
||||
}
|
||||
|
||||
pcache1LeaveMutex();
|
||||
}
|
||||
|
||||
/*
|
||||
** Implementation of the sqlite3_pcache.xRekey method.
|
||||
*/
|
||||
static void pcache1Rekey(
|
||||
sqlite3_pcache *p,
|
||||
void *pPg,
|
||||
unsigned int iOld,
|
||||
unsigned int iNew
|
||||
){
|
||||
PCache1 *pCache = (PCache1 *)p;
|
||||
PgHdr1 *pPage = PAGE_TO_PGHDR1(pPg);
|
||||
PgHdr1 **pp;
|
||||
unsigned int h;
|
||||
assert( pPage->iKey==iOld );
|
||||
|
||||
pcache1EnterMutex();
|
||||
|
||||
h = iOld%pCache->nHash;
|
||||
pp = &pCache->apHash[h];
|
||||
while( (*pp)!=pPage ){
|
||||
pp = &(*pp)->pNext;
|
||||
}
|
||||
*pp = pPage->pNext;
|
||||
|
||||
h = iNew%pCache->nHash;
|
||||
pPage->iKey = iNew;
|
||||
pPage->pNext = pCache->apHash[h];
|
||||
pCache->apHash[h] = pPage;
|
||||
|
||||
if( iNew>pCache->iMaxKey ){
|
||||
pCache->iMaxKey = iNew;
|
||||
}
|
||||
|
||||
pcache1LeaveMutex();
|
||||
}
|
||||
|
||||
/*
|
||||
** Implementation of the sqlite3_pcache.xTruncate method.
|
||||
**
|
||||
** Discard all unpinned pages in the cache with a page number equal to
|
||||
** or greater than parameter iLimit. Any pinned pages with a page number
|
||||
** equal to or greater than iLimit are implicitly unpinned.
|
||||
*/
|
||||
static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){
|
||||
PCache1 *pCache = (PCache1 *)p;
|
||||
pcache1EnterMutex();
|
||||
if( iLimit<=pCache->iMaxKey ){
|
||||
pcache1TruncateUnsafe(pCache, iLimit);
|
||||
pCache->iMaxKey = iLimit-1;
|
||||
}
|
||||
pcache1LeaveMutex();
|
||||
}
|
||||
|
||||
/*
|
||||
** Implementation of the sqlite3_pcache.xDestroy method.
|
||||
**
|
||||
** Destroy a cache allocated using pcache1Create().
|
||||
*/
|
||||
static void pcache1Destroy(sqlite3_pcache *p){
|
||||
PCache1 *pCache = (PCache1 *)p;
|
||||
pcache1EnterMutex();
|
||||
pcache1TruncateUnsafe(pCache, 0);
|
||||
pcache1.nMaxPage -= pCache->nMax;
|
||||
pcache1.nMinPage -= pCache->nMin;
|
||||
pcache1EnforceMaxPage();
|
||||
pcache1LeaveMutex();
|
||||
sqlite3_free(pCache->apHash);
|
||||
sqlite3_free(pCache);
|
||||
}
|
||||
|
||||
/*
|
||||
** This function is called during initialization (sqlite3_initialize()) to
|
||||
** install the default pluggable cache module, assuming the user has not
|
||||
** already provided an alternative.
|
||||
*/
|
||||
void sqlite3PCacheSetDefault(void){
|
||||
static sqlite3_pcache_methods defaultMethods = {
|
||||
0, /* pArg */
|
||||
pcache1Init, /* xInit */
|
||||
pcache1Shutdown, /* xShutdown */
|
||||
pcache1Create, /* xCreate */
|
||||
pcache1Cachesize, /* xCachesize */
|
||||
pcache1Pagecount, /* xPagecount */
|
||||
pcache1Fetch, /* xFetch */
|
||||
pcache1Unpin, /* xUnpin */
|
||||
pcache1Rekey, /* xRekey */
|
||||
pcache1Truncate, /* xTruncate */
|
||||
pcache1Destroy /* xDestroy */
|
||||
};
|
||||
sqlite3_config(SQLITE_CONFIG_PCACHE, &defaultMethods);
|
||||
}
|
||||
|
||||
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
|
||||
/*
|
||||
** This function is called to free superfluous dynamically allocated memory
|
||||
** held by the pager system. Memory in use by any SQLite pager allocated
|
||||
** by the current thread may be sqlite3_free()ed.
|
||||
**
|
||||
** nReq is the number of bytes of memory required. Once this much has
|
||||
** been released, the function returns. The return value is the total number
|
||||
** of bytes of memory released.
|
||||
*/
|
||||
int sqlite3PcacheReleaseMemory(int nReq){
|
||||
int nFree = 0;
|
||||
if( pcache1.pStart==0 ){
|
||||
PgHdr1 *p;
|
||||
pcache1EnterMutex();
|
||||
while( (nReq<0 || nFree<nReq) && (p=pcache1.pLruTail) ){
|
||||
nFree += sqlite3MallocSize(p);
|
||||
pcache1PinPage(p);
|
||||
pcache1RemoveFromHash(p);
|
||||
pcache1FreePage(p);
|
||||
}
|
||||
pcache1LeaveMutex();
|
||||
}
|
||||
return nFree;
|
||||
}
|
||||
#endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
|
||||
|
||||
#ifdef SQLITE_TEST
|
||||
/*
|
||||
** This function is used by test procedures to inspect the internal state
|
||||
** of the global cache.
|
||||
*/
|
||||
void sqlite3PcacheStats(
|
||||
int *pnCurrent, /* OUT: Total number of pages cached */
|
||||
int *pnMax, /* OUT: Global maximum cache size */
|
||||
int *pnMin, /* OUT: Sum of PCache1.nMin for purgeable caches */
|
||||
int *pnRecyclable /* OUT: Total number of pages available for recycling */
|
||||
){
|
||||
PgHdr1 *p;
|
||||
int nRecyclable = 0;
|
||||
for(p=pcache1.pLruHead; p; p=p->pLruNext){
|
||||
nRecyclable++;
|
||||
}
|
||||
*pnCurrent = pcache1.nCurrentPage;
|
||||
*pnMax = pcache1.nMaxPage;
|
||||
*pnMin = pcache1.nMinPage;
|
||||
*pnRecyclable = nRecyclable;
|
||||
}
|
||||
#endif
|
834
prepare.c
834
prepare.c
|
@ -1,834 +0,0 @@
|
|||
/*
|
||||
** 2005 May 25
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This file contains the implementation of the sqlite3_prepare()
|
||||
** interface, and routines that contribute to loading the database schema
|
||||
** from disk.
|
||||
**
|
||||
** $Id: prepare.c,v 1.116 2009/04/02 18:32:27 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
/*
|
||||
** Fill the InitData structure with an error message that indicates
|
||||
** that the database is corrupt.
|
||||
*/
|
||||
static void corruptSchema(
|
||||
InitData *pData, /* Initialization context */
|
||||
const char *zObj, /* Object being parsed at the point of error */
|
||||
const char *zExtra /* Error information */
|
||||
){
|
||||
sqlite3 *db = pData->db;
|
||||
if( !db->mallocFailed && (db->flags & SQLITE_RecoveryMode)==0 ){
|
||||
if( zObj==0 ) zObj = "?";
|
||||
sqlite3SetString(pData->pzErrMsg, pData->db,
|
||||
"malformed database schema (%s)", zObj);
|
||||
if( zExtra && zExtra[0] ){
|
||||
*pData->pzErrMsg = sqlite3MAppendf(pData->db, *pData->pzErrMsg, "%s - %s",
|
||||
*pData->pzErrMsg, zExtra);
|
||||
}
|
||||
}
|
||||
pData->rc = SQLITE_CORRUPT;
|
||||
}
|
||||
|
||||
/*
|
||||
** This is the callback routine for the code that initializes the
|
||||
** database. See sqlite3Init() below for additional information.
|
||||
** This routine is also called from the OP_ParseSchema opcode of the VDBE.
|
||||
**
|
||||
** Each callback contains the following information:
|
||||
**
|
||||
** argv[0] = name of thing being created
|
||||
** argv[1] = root page number for table or index. 0 for trigger or view.
|
||||
** argv[2] = SQL text for the CREATE statement.
|
||||
**
|
||||
*/
|
||||
int sqlite3InitCallback(void *pInit, int argc, char **argv, char **NotUsed){
|
||||
InitData *pData = (InitData*)pInit;
|
||||
sqlite3 *db = pData->db;
|
||||
int iDb = pData->iDb;
|
||||
|
||||
assert( argc==3 );
|
||||
UNUSED_PARAMETER2(NotUsed, argc);
|
||||
assert( sqlite3_mutex_held(db->mutex) );
|
||||
DbClearProperty(db, iDb, DB_Empty);
|
||||
if( db->mallocFailed ){
|
||||
corruptSchema(pData, argv[0], 0);
|
||||
return SQLITE_NOMEM;
|
||||
}
|
||||
|
||||
assert( iDb>=0 && iDb<db->nDb );
|
||||
if( argv==0 ) return 0; /* Might happen if EMPTY_RESULT_CALLBACKS are on */
|
||||
if( argv[1]==0 ){
|
||||
corruptSchema(pData, argv[0], 0);
|
||||
}else if( argv[2] && argv[2][0] ){
|
||||
/* Call the parser to process a CREATE TABLE, INDEX or VIEW.
|
||||
** But because db->init.busy is set to 1, no VDBE code is generated
|
||||
** or executed. All the parser does is build the internal data
|
||||
** structures that describe the table, index, or view.
|
||||
*/
|
||||
char *zErr;
|
||||
int rc;
|
||||
assert( db->init.busy );
|
||||
db->init.iDb = iDb;
|
||||
db->init.newTnum = atoi(argv[1]);
|
||||
rc = sqlite3_exec(db, argv[2], 0, 0, &zErr);
|
||||
db->init.iDb = 0;
|
||||
assert( rc!=SQLITE_OK || zErr==0 );
|
||||
if( SQLITE_OK!=rc ){
|
||||
pData->rc = rc;
|
||||
if( rc==SQLITE_NOMEM ){
|
||||
db->mallocFailed = 1;
|
||||
}else if( rc!=SQLITE_INTERRUPT && (rc&0xff)!=SQLITE_LOCKED ){
|
||||
corruptSchema(pData, argv[0], zErr);
|
||||
}
|
||||
sqlite3DbFree(db, zErr);
|
||||
}
|
||||
}else if( argv[0]==0 ){
|
||||
corruptSchema(pData, 0, 0);
|
||||
}else{
|
||||
/* If the SQL column is blank it means this is an index that
|
||||
** was created to be the PRIMARY KEY or to fulfill a UNIQUE
|
||||
** constraint for a CREATE TABLE. The index should have already
|
||||
** been created when we processed the CREATE TABLE. All we have
|
||||
** to do here is record the root page number for that index.
|
||||
*/
|
||||
Index *pIndex;
|
||||
pIndex = sqlite3FindIndex(db, argv[0], db->aDb[iDb].zName);
|
||||
if( pIndex==0 || pIndex->tnum!=0 ){
|
||||
/* This can occur if there exists an index on a TEMP table which
|
||||
** has the same name as another index on a permanent index. Since
|
||||
** the permanent table is hidden by the TEMP table, we can also
|
||||
** safely ignore the index on the permanent table.
|
||||
*/
|
||||
/* Do Nothing */;
|
||||
}else{
|
||||
pIndex->tnum = atoi(argv[1]);
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
** Attempt to read the database schema and initialize internal
|
||||
** data structures for a single database file. The index of the
|
||||
** database file is given by iDb. iDb==0 is used for the main
|
||||
** database. iDb==1 should never be used. iDb>=2 is used for
|
||||
** auxiliary databases. Return one of the SQLITE_ error codes to
|
||||
** indicate success or failure.
|
||||
*/
|
||||
static int sqlite3InitOne(sqlite3 *db, int iDb, char **pzErrMsg){
|
||||
int rc;
|
||||
BtCursor *curMain;
|
||||
int size;
|
||||
Table *pTab;
|
||||
Db *pDb;
|
||||
char const *azArg[4];
|
||||
int meta[10];
|
||||
InitData initData;
|
||||
char const *zMasterSchema;
|
||||
char const *zMasterName = SCHEMA_TABLE(iDb);
|
||||
|
||||
/*
|
||||
** The master database table has a structure like this
|
||||
*/
|
||||
static const char master_schema[] =
|
||||
"CREATE TABLE sqlite_master(\n"
|
||||
" type text,\n"
|
||||
" name text,\n"
|
||||
" tbl_name text,\n"
|
||||
" rootpage integer,\n"
|
||||
" sql text\n"
|
||||
")"
|
||||
;
|
||||
#ifndef SQLITE_OMIT_TEMPDB
|
||||
static const char temp_master_schema[] =
|
||||
"CREATE TEMP TABLE sqlite_temp_master(\n"
|
||||
" type text,\n"
|
||||
" name text,\n"
|
||||
" tbl_name text,\n"
|
||||
" rootpage integer,\n"
|
||||
" sql text\n"
|
||||
")"
|
||||
;
|
||||
#else
|
||||
#define temp_master_schema 0
|
||||
#endif
|
||||
|
||||
assert( iDb>=0 && iDb<db->nDb );
|
||||
assert( db->aDb[iDb].pSchema );
|
||||
assert( sqlite3_mutex_held(db->mutex) );
|
||||
assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
|
||||
|
||||
/* zMasterSchema and zInitScript are set to point at the master schema
|
||||
** and initialisation script appropriate for the database being
|
||||
** initialised. zMasterName is the name of the master table.
|
||||
*/
|
||||
if( !OMIT_TEMPDB && iDb==1 ){
|
||||
zMasterSchema = temp_master_schema;
|
||||
}else{
|
||||
zMasterSchema = master_schema;
|
||||
}
|
||||
zMasterName = SCHEMA_TABLE(iDb);
|
||||
|
||||
/* Construct the schema tables. */
|
||||
azArg[0] = zMasterName;
|
||||
azArg[1] = "1";
|
||||
azArg[2] = zMasterSchema;
|
||||
azArg[3] = 0;
|
||||
initData.db = db;
|
||||
initData.iDb = iDb;
|
||||
initData.rc = SQLITE_OK;
|
||||
initData.pzErrMsg = pzErrMsg;
|
||||
(void)sqlite3SafetyOff(db);
|
||||
sqlite3InitCallback(&initData, 3, (char **)azArg, 0);
|
||||
(void)sqlite3SafetyOn(db);
|
||||
if( initData.rc ){
|
||||
rc = initData.rc;
|
||||
goto error_out;
|
||||
}
|
||||
pTab = sqlite3FindTable(db, zMasterName, db->aDb[iDb].zName);
|
||||
if( pTab ){
|
||||
pTab->tabFlags |= TF_Readonly;
|
||||
}
|
||||
|
||||
/* Create a cursor to hold the database open
|
||||
*/
|
||||
pDb = &db->aDb[iDb];
|
||||
if( pDb->pBt==0 ){
|
||||
if( !OMIT_TEMPDB && iDb==1 ){
|
||||
DbSetProperty(db, 1, DB_SchemaLoaded);
|
||||
}
|
||||
return SQLITE_OK;
|
||||
}
|
||||
curMain = sqlite3MallocZero(sqlite3BtreeCursorSize());
|
||||
if( !curMain ){
|
||||
rc = SQLITE_NOMEM;
|
||||
goto error_out;
|
||||
}
|
||||
sqlite3BtreeEnter(pDb->pBt);
|
||||
rc = sqlite3BtreeCursor(pDb->pBt, MASTER_ROOT, 0, 0, curMain);
|
||||
if( rc!=SQLITE_OK && rc!=SQLITE_EMPTY ){
|
||||
sqlite3SetString(pzErrMsg, db, "%s", sqlite3ErrStr(rc));
|
||||
goto initone_error_out;
|
||||
}
|
||||
|
||||
/* Get the database meta information.
|
||||
**
|
||||
** Meta values are as follows:
|
||||
** meta[0] Schema cookie. Changes with each schema change.
|
||||
** meta[1] File format of schema layer.
|
||||
** meta[2] Size of the page cache.
|
||||
** meta[3] Use freelist if 0. Autovacuum if greater than zero.
|
||||
** meta[4] Db text encoding. 1:UTF-8 2:UTF-16LE 3:UTF-16BE
|
||||
** meta[5] The user cookie. Used by the application.
|
||||
** meta[6] Incremental-vacuum flag.
|
||||
** meta[7]
|
||||
** meta[8]
|
||||
** meta[9]
|
||||
**
|
||||
** Note: The #defined SQLITE_UTF* symbols in sqliteInt.h correspond to
|
||||
** the possible values of meta[4].
|
||||
*/
|
||||
if( rc==SQLITE_OK ){
|
||||
int i;
|
||||
for(i=0; i<ArraySize(meta); i++){
|
||||
rc = sqlite3BtreeGetMeta(pDb->pBt, i+1, (u32 *)&meta[i]);
|
||||
if( rc ){
|
||||
sqlite3SetString(pzErrMsg, db, "%s", sqlite3ErrStr(rc));
|
||||
goto initone_error_out;
|
||||
}
|
||||
}
|
||||
}else{
|
||||
memset(meta, 0, sizeof(meta));
|
||||
}
|
||||
pDb->pSchema->schema_cookie = meta[0];
|
||||
|
||||
/* If opening a non-empty database, check the text encoding. For the
|
||||
** main database, set sqlite3.enc to the encoding of the main database.
|
||||
** For an attached db, it is an error if the encoding is not the same
|
||||
** as sqlite3.enc.
|
||||
*/
|
||||
if( meta[4] ){ /* text encoding */
|
||||
if( iDb==0 ){
|
||||
/* If opening the main database, set ENC(db). */
|
||||
ENC(db) = (u8)meta[4];
|
||||
db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 6, 0);
|
||||
}else{
|
||||
/* If opening an attached database, the encoding much match ENC(db) */
|
||||
if( meta[4]!=ENC(db) ){
|
||||
sqlite3SetString(pzErrMsg, db, "attached databases must use the same"
|
||||
" text encoding as main database");
|
||||
rc = SQLITE_ERROR;
|
||||
goto initone_error_out;
|
||||
}
|
||||
}
|
||||
}else{
|
||||
DbSetProperty(db, iDb, DB_Empty);
|
||||
}
|
||||
pDb->pSchema->enc = ENC(db);
|
||||
|
||||
if( pDb->pSchema->cache_size==0 ){
|
||||
size = meta[2];
|
||||
if( size==0 ){ size = SQLITE_DEFAULT_CACHE_SIZE; }
|
||||
if( size<0 ) size = -size;
|
||||
pDb->pSchema->cache_size = size;
|
||||
sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
|
||||
}
|
||||
|
||||
/*
|
||||
** file_format==1 Version 3.0.0.
|
||||
** file_format==2 Version 3.1.3. // ALTER TABLE ADD COLUMN
|
||||
** file_format==3 Version 3.1.4. // ditto but with non-NULL defaults
|
||||
** file_format==4 Version 3.3.0. // DESC indices. Boolean constants
|
||||
*/
|
||||
pDb->pSchema->file_format = (u8)meta[1];
|
||||
if( pDb->pSchema->file_format==0 ){
|
||||
pDb->pSchema->file_format = 1;
|
||||
}
|
||||
if( pDb->pSchema->file_format>SQLITE_MAX_FILE_FORMAT ){
|
||||
sqlite3SetString(pzErrMsg, db, "unsupported file format");
|
||||
rc = SQLITE_ERROR;
|
||||
goto initone_error_out;
|
||||
}
|
||||
|
||||
/* Ticket #2804: When we open a database in the newer file format,
|
||||
** clear the legacy_file_format pragma flag so that a VACUUM will
|
||||
** not downgrade the database and thus invalidate any descending
|
||||
** indices that the user might have created.
|
||||
*/
|
||||
if( iDb==0 && meta[1]>=4 ){
|
||||
db->flags &= ~SQLITE_LegacyFileFmt;
|
||||
}
|
||||
|
||||
/* Read the schema information out of the schema tables
|
||||
*/
|
||||
assert( db->init.busy );
|
||||
if( rc==SQLITE_EMPTY ){
|
||||
/* For an empty database, there is nothing to read */
|
||||
rc = SQLITE_OK;
|
||||
}else{
|
||||
char *zSql;
|
||||
zSql = sqlite3MPrintf(db,
|
||||
"SELECT name, rootpage, sql FROM '%q'.%s",
|
||||
db->aDb[iDb].zName, zMasterName);
|
||||
(void)sqlite3SafetyOff(db);
|
||||
#ifndef SQLITE_OMIT_AUTHORIZATION
|
||||
{
|
||||
int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
|
||||
xAuth = db->xAuth;
|
||||
db->xAuth = 0;
|
||||
#endif
|
||||
rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
|
||||
#ifndef SQLITE_OMIT_AUTHORIZATION
|
||||
db->xAuth = xAuth;
|
||||
}
|
||||
#endif
|
||||
if( rc==SQLITE_OK ) rc = initData.rc;
|
||||
(void)sqlite3SafetyOn(db);
|
||||
sqlite3DbFree(db, zSql);
|
||||
#ifndef SQLITE_OMIT_ANALYZE
|
||||
if( rc==SQLITE_OK ){
|
||||
sqlite3AnalysisLoad(db, iDb);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
if( db->mallocFailed ){
|
||||
rc = SQLITE_NOMEM;
|
||||
sqlite3ResetInternalSchema(db, 0);
|
||||
}
|
||||
if( rc==SQLITE_OK || (db->flags&SQLITE_RecoveryMode)){
|
||||
/* Black magic: If the SQLITE_RecoveryMode flag is set, then consider
|
||||
** the schema loaded, even if errors occurred. In this situation the
|
||||
** current sqlite3_prepare() operation will fail, but the following one
|
||||
** will attempt to compile the supplied statement against whatever subset
|
||||
** of the schema was loaded before the error occurred. The primary
|
||||
** purpose of this is to allow access to the sqlite_master table
|
||||
** even when its contents have been corrupted.
|
||||
*/
|
||||
DbSetProperty(db, iDb, DB_SchemaLoaded);
|
||||
rc = SQLITE_OK;
|
||||
}
|
||||
|
||||
/* Jump here for an error that occurs after successfully allocating
|
||||
** curMain and calling sqlite3BtreeEnter(). For an error that occurs
|
||||
** before that point, jump to error_out.
|
||||
*/
|
||||
initone_error_out:
|
||||
sqlite3BtreeCloseCursor(curMain);
|
||||
sqlite3_free(curMain);
|
||||
sqlite3BtreeLeave(pDb->pBt);
|
||||
|
||||
error_out:
|
||||
if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){
|
||||
db->mallocFailed = 1;
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** Initialize all database files - the main database file, the file
|
||||
** used to store temporary tables, and any additional database files
|
||||
** created using ATTACH statements. Return a success code. If an
|
||||
** error occurs, write an error message into *pzErrMsg.
|
||||
**
|
||||
** After a database is initialized, the DB_SchemaLoaded bit is set
|
||||
** bit is set in the flags field of the Db structure. If the database
|
||||
** file was of zero-length, then the DB_Empty flag is also set.
|
||||
*/
|
||||
int sqlite3Init(sqlite3 *db, char **pzErrMsg){
|
||||
int i, rc;
|
||||
int commit_internal = !(db->flags&SQLITE_InternChanges);
|
||||
|
||||
assert( sqlite3_mutex_held(db->mutex) );
|
||||
if( db->init.busy ) return SQLITE_OK;
|
||||
rc = SQLITE_OK;
|
||||
db->init.busy = 1;
|
||||
for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
|
||||
if( DbHasProperty(db, i, DB_SchemaLoaded) || i==1 ) continue;
|
||||
rc = sqlite3InitOne(db, i, pzErrMsg);
|
||||
if( rc ){
|
||||
sqlite3ResetInternalSchema(db, i);
|
||||
}
|
||||
}
|
||||
|
||||
/* Once all the other databases have been initialised, load the schema
|
||||
** for the TEMP database. This is loaded last, as the TEMP database
|
||||
** schema may contain references to objects in other databases.
|
||||
*/
|
||||
#ifndef SQLITE_OMIT_TEMPDB
|
||||
if( rc==SQLITE_OK && db->nDb>1 && !DbHasProperty(db, 1, DB_SchemaLoaded) ){
|
||||
rc = sqlite3InitOne(db, 1, pzErrMsg);
|
||||
if( rc ){
|
||||
sqlite3ResetInternalSchema(db, 1);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
db->init.busy = 0;
|
||||
if( rc==SQLITE_OK && commit_internal ){
|
||||
sqlite3CommitInternalChanges(db);
|
||||
}
|
||||
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** This routine is a no-op if the database schema is already initialised.
|
||||
** Otherwise, the schema is loaded. An error code is returned.
|
||||
*/
|
||||
int sqlite3ReadSchema(Parse *pParse){
|
||||
int rc = SQLITE_OK;
|
||||
sqlite3 *db = pParse->db;
|
||||
assert( sqlite3_mutex_held(db->mutex) );
|
||||
if( !db->init.busy ){
|
||||
rc = sqlite3Init(db, &pParse->zErrMsg);
|
||||
}
|
||||
if( rc!=SQLITE_OK ){
|
||||
pParse->rc = rc;
|
||||
pParse->nErr++;
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** Check schema cookies in all databases. If any cookie is out
|
||||
** of date, return 0. If all schema cookies are current, return 1.
|
||||
*/
|
||||
static int schemaIsValid(sqlite3 *db){
|
||||
int iDb;
|
||||
int rc;
|
||||
BtCursor *curTemp;
|
||||
int cookie;
|
||||
int allOk = 1;
|
||||
|
||||
curTemp = (BtCursor *)sqlite3Malloc(sqlite3BtreeCursorSize());
|
||||
if( curTemp ){
|
||||
assert( sqlite3_mutex_held(db->mutex) );
|
||||
for(iDb=0; allOk && iDb<db->nDb; iDb++){
|
||||
Btree *pBt;
|
||||
pBt = db->aDb[iDb].pBt;
|
||||
if( pBt==0 ) continue;
|
||||
memset(curTemp, 0, sqlite3BtreeCursorSize());
|
||||
rc = sqlite3BtreeCursor(pBt, MASTER_ROOT, 0, 0, curTemp);
|
||||
if( rc==SQLITE_OK ){
|
||||
rc = sqlite3BtreeGetMeta(pBt, 1, (u32 *)&cookie);
|
||||
if( rc==SQLITE_OK && cookie!=db->aDb[iDb].pSchema->schema_cookie ){
|
||||
allOk = 0;
|
||||
}
|
||||
sqlite3BtreeCloseCursor(curTemp);
|
||||
}
|
||||
if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){
|
||||
db->mallocFailed = 1;
|
||||
}
|
||||
}
|
||||
sqlite3_free(curTemp);
|
||||
}else{
|
||||
allOk = 0;
|
||||
db->mallocFailed = 1;
|
||||
}
|
||||
|
||||
return allOk;
|
||||
}
|
||||
|
||||
/*
|
||||
** Convert a schema pointer into the iDb index that indicates
|
||||
** which database file in db->aDb[] the schema refers to.
|
||||
**
|
||||
** If the same database is attached more than once, the first
|
||||
** attached database is returned.
|
||||
*/
|
||||
int sqlite3SchemaToIndex(sqlite3 *db, Schema *pSchema){
|
||||
int i = -1000000;
|
||||
|
||||
/* If pSchema is NULL, then return -1000000. This happens when code in
|
||||
** expr.c is trying to resolve a reference to a transient table (i.e. one
|
||||
** created by a sub-select). In this case the return value of this
|
||||
** function should never be used.
|
||||
**
|
||||
** We return -1000000 instead of the more usual -1 simply because using
|
||||
** -1000000 as the incorrect index into db->aDb[] is much
|
||||
** more likely to cause a segfault than -1 (of course there are assert()
|
||||
** statements too, but it never hurts to play the odds).
|
||||
*/
|
||||
assert( sqlite3_mutex_held(db->mutex) );
|
||||
if( pSchema ){
|
||||
for(i=0; ALWAYS(i<db->nDb); i++){
|
||||
if( db->aDb[i].pSchema==pSchema ){
|
||||
break;
|
||||
}
|
||||
}
|
||||
assert( i>=0 && i<db->nDb );
|
||||
}
|
||||
return i;
|
||||
}
|
||||
|
||||
/*
|
||||
** Compile the UTF-8 encoded SQL statement zSql into a statement handle.
|
||||
*/
|
||||
static int sqlite3Prepare(
|
||||
sqlite3 *db, /* Database handle. */
|
||||
const char *zSql, /* UTF-8 encoded SQL statement. */
|
||||
int nBytes, /* Length of zSql in bytes. */
|
||||
int saveSqlFlag, /* True to copy SQL text into the sqlite3_stmt */
|
||||
sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
|
||||
const char **pzTail /* OUT: End of parsed string */
|
||||
){
|
||||
Parse sParse;
|
||||
char *zErrMsg = 0;
|
||||
int rc = SQLITE_OK;
|
||||
int i;
|
||||
|
||||
if( sqlite3SafetyOn(db) ) return SQLITE_MISUSE;
|
||||
assert( ppStmt && *ppStmt==0 );
|
||||
assert( !db->mallocFailed );
|
||||
assert( sqlite3_mutex_held(db->mutex) );
|
||||
|
||||
/* Check to verify that it is possible to get a read lock on all
|
||||
** database schemas. The inability to get a read lock indicates that
|
||||
** some other database connection is holding a write-lock, which in
|
||||
** turn means that the other connection has made uncommitted changes
|
||||
** to the schema.
|
||||
**
|
||||
** Were we to proceed and prepare the statement against the uncommitted
|
||||
** schema changes and if those schema changes are subsequently rolled
|
||||
** back and different changes are made in their place, then when this
|
||||
** prepared statement goes to run the schema cookie would fail to detect
|
||||
** the schema change. Disaster would follow.
|
||||
**
|
||||
** This thread is currently holding mutexes on all Btrees (because
|
||||
** of the sqlite3BtreeEnterAll() in sqlite3LockAndPrepare()) so it
|
||||
** is not possible for another thread to start a new schema change
|
||||
** while this routine is running. Hence, we do not need to hold
|
||||
** locks on the schema, we just need to make sure nobody else is
|
||||
** holding them.
|
||||
**
|
||||
** Note that setting READ_UNCOMMITTED overrides most lock detection,
|
||||
** but it does *not* override schema lock detection, so this all still
|
||||
** works even if READ_UNCOMMITTED is set.
|
||||
*/
|
||||
for(i=0; i<db->nDb; i++) {
|
||||
Btree *pBt = db->aDb[i].pBt;
|
||||
if( pBt ){
|
||||
assert( sqlite3BtreeHoldsMutex(pBt) );
|
||||
rc = sqlite3BtreeSchemaLocked(pBt);
|
||||
if( rc ){
|
||||
const char *zDb = db->aDb[i].zName;
|
||||
sqlite3Error(db, rc, "database schema is locked: %s", zDb);
|
||||
(void)sqlite3SafetyOff(db);
|
||||
testcase( db->flags & SQLITE_ReadUncommitted );
|
||||
return sqlite3ApiExit(db, rc);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
memset(&sParse, 0, sizeof(sParse));
|
||||
sParse.db = db;
|
||||
if( nBytes>=0 && (nBytes==0 || zSql[nBytes-1]!=0) ){
|
||||
char *zSqlCopy;
|
||||
int mxLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH];
|
||||
if( nBytes>mxLen ){
|
||||
sqlite3Error(db, SQLITE_TOOBIG, "statement too long");
|
||||
(void)sqlite3SafetyOff(db);
|
||||
return sqlite3ApiExit(db, SQLITE_TOOBIG);
|
||||
}
|
||||
zSqlCopy = sqlite3DbStrNDup(db, zSql, nBytes);
|
||||
if( zSqlCopy ){
|
||||
sqlite3RunParser(&sParse, zSqlCopy, &zErrMsg);
|
||||
sqlite3DbFree(db, zSqlCopy);
|
||||
sParse.zTail = &zSql[sParse.zTail-zSqlCopy];
|
||||
}else{
|
||||
sParse.zTail = &zSql[nBytes];
|
||||
}
|
||||
}else{
|
||||
sqlite3RunParser(&sParse, zSql, &zErrMsg);
|
||||
}
|
||||
|
||||
if( db->mallocFailed ){
|
||||
sParse.rc = SQLITE_NOMEM;
|
||||
}
|
||||
if( sParse.rc==SQLITE_DONE ) sParse.rc = SQLITE_OK;
|
||||
if( sParse.checkSchema && !schemaIsValid(db) ){
|
||||
sParse.rc = SQLITE_SCHEMA;
|
||||
}
|
||||
if( sParse.rc==SQLITE_SCHEMA ){
|
||||
sqlite3ResetInternalSchema(db, 0);
|
||||
}
|
||||
if( db->mallocFailed ){
|
||||
sParse.rc = SQLITE_NOMEM;
|
||||
}
|
||||
if( pzTail ){
|
||||
*pzTail = sParse.zTail;
|
||||
}
|
||||
rc = sParse.rc;
|
||||
|
||||
#ifndef SQLITE_OMIT_EXPLAIN
|
||||
if( rc==SQLITE_OK && sParse.pVdbe && sParse.explain ){
|
||||
if( sParse.explain==2 ){
|
||||
sqlite3VdbeSetNumCols(sParse.pVdbe, 3);
|
||||
sqlite3VdbeSetColName(sParse.pVdbe, 0, COLNAME_NAME, "order", SQLITE_STATIC);
|
||||
sqlite3VdbeSetColName(sParse.pVdbe, 1, COLNAME_NAME, "from", SQLITE_STATIC);
|
||||
sqlite3VdbeSetColName(sParse.pVdbe, 2, COLNAME_NAME, "detail", SQLITE_STATIC);
|
||||
}else{
|
||||
sqlite3VdbeSetNumCols(sParse.pVdbe, 8);
|
||||
sqlite3VdbeSetColName(sParse.pVdbe, 0, COLNAME_NAME, "addr", SQLITE_STATIC);
|
||||
sqlite3VdbeSetColName(sParse.pVdbe, 1, COLNAME_NAME, "opcode", SQLITE_STATIC);
|
||||
sqlite3VdbeSetColName(sParse.pVdbe, 2, COLNAME_NAME, "p1", SQLITE_STATIC);
|
||||
sqlite3VdbeSetColName(sParse.pVdbe, 3, COLNAME_NAME, "p2", SQLITE_STATIC);
|
||||
sqlite3VdbeSetColName(sParse.pVdbe, 4, COLNAME_NAME, "p3", SQLITE_STATIC);
|
||||
sqlite3VdbeSetColName(sParse.pVdbe, 5, COLNAME_NAME, "p4", SQLITE_STATIC);
|
||||
sqlite3VdbeSetColName(sParse.pVdbe, 6, COLNAME_NAME, "p5", SQLITE_STATIC);
|
||||
sqlite3VdbeSetColName(sParse.pVdbe, 7, COLNAME_NAME, "comment", SQLITE_STATIC);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
if( sqlite3SafetyOff(db) ){
|
||||
rc = SQLITE_MISUSE;
|
||||
}
|
||||
|
||||
assert( db->init.busy==0 || saveSqlFlag==0 );
|
||||
if( db->init.busy==0 ){
|
||||
Vdbe *pVdbe = sParse.pVdbe;
|
||||
sqlite3VdbeSetSql(pVdbe, zSql, (int)(sParse.zTail-zSql), saveSqlFlag);
|
||||
}
|
||||
if( sParse.pVdbe && (rc!=SQLITE_OK || db->mallocFailed) ){
|
||||
sqlite3VdbeFinalize(sParse.pVdbe);
|
||||
assert(!(*ppStmt));
|
||||
}else{
|
||||
*ppStmt = (sqlite3_stmt*)sParse.pVdbe;
|
||||
}
|
||||
|
||||
if( zErrMsg ){
|
||||
sqlite3Error(db, rc, "%s", zErrMsg);
|
||||
sqlite3DbFree(db, zErrMsg);
|
||||
}else{
|
||||
sqlite3Error(db, rc, 0);
|
||||
}
|
||||
|
||||
rc = sqlite3ApiExit(db, rc);
|
||||
assert( (rc&db->errMask)==rc );
|
||||
return rc;
|
||||
}
|
||||
static int sqlite3LockAndPrepare(
|
||||
sqlite3 *db, /* Database handle. */
|
||||
const char *zSql, /* UTF-8 encoded SQL statement. */
|
||||
int nBytes, /* Length of zSql in bytes. */
|
||||
int saveSqlFlag, /* True to copy SQL text into the sqlite3_stmt */
|
||||
sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
|
||||
const char **pzTail /* OUT: End of parsed string */
|
||||
){
|
||||
int rc;
|
||||
assert( ppStmt!=0 );
|
||||
*ppStmt = 0;
|
||||
if( !sqlite3SafetyCheckOk(db) ){
|
||||
return SQLITE_MISUSE;
|
||||
}
|
||||
sqlite3_mutex_enter(db->mutex);
|
||||
sqlite3BtreeEnterAll(db);
|
||||
rc = sqlite3Prepare(db, zSql, nBytes, saveSqlFlag, ppStmt, pzTail);
|
||||
sqlite3BtreeLeaveAll(db);
|
||||
sqlite3_mutex_leave(db->mutex);
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** Rerun the compilation of a statement after a schema change.
|
||||
**
|
||||
** If the statement is successfully recompiled, return SQLITE_OK. Otherwise,
|
||||
** if the statement cannot be recompiled because another connection has
|
||||
** locked the sqlite3_master table, return SQLITE_LOCKED. If any other error
|
||||
** occurs, return SQLITE_SCHEMA.
|
||||
*/
|
||||
int sqlite3Reprepare(Vdbe *p){
|
||||
int rc;
|
||||
sqlite3_stmt *pNew;
|
||||
const char *zSql;
|
||||
sqlite3 *db;
|
||||
|
||||
assert( sqlite3_mutex_held(sqlite3VdbeDb(p)->mutex) );
|
||||
zSql = sqlite3_sql((sqlite3_stmt *)p);
|
||||
assert( zSql!=0 ); /* Reprepare only called for prepare_v2() statements */
|
||||
db = sqlite3VdbeDb(p);
|
||||
assert( sqlite3_mutex_held(db->mutex) );
|
||||
rc = sqlite3LockAndPrepare(db, zSql, -1, 0, &pNew, 0);
|
||||
if( rc ){
|
||||
if( rc==SQLITE_NOMEM ){
|
||||
db->mallocFailed = 1;
|
||||
}
|
||||
assert( pNew==0 );
|
||||
return (rc==SQLITE_LOCKED) ? SQLITE_LOCKED : SQLITE_SCHEMA;
|
||||
}else{
|
||||
assert( pNew!=0 );
|
||||
}
|
||||
sqlite3VdbeSwap((Vdbe*)pNew, p);
|
||||
sqlite3TransferBindings(pNew, (sqlite3_stmt*)p);
|
||||
sqlite3VdbeResetStepResult((Vdbe*)pNew);
|
||||
sqlite3VdbeFinalize((Vdbe*)pNew);
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** Two versions of the official API. Legacy and new use. In the legacy
|
||||
** version, the original SQL text is not saved in the prepared statement
|
||||
** and so if a schema change occurs, SQLITE_SCHEMA is returned by
|
||||
** sqlite3_step(). In the new version, the original SQL text is retained
|
||||
** and the statement is automatically recompiled if an schema change
|
||||
** occurs.
|
||||
*/
|
||||
int sqlite3_prepare(
|
||||
sqlite3 *db, /* Database handle. */
|
||||
const char *zSql, /* UTF-8 encoded SQL statement. */
|
||||
int nBytes, /* Length of zSql in bytes. */
|
||||
sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
|
||||
const char **pzTail /* OUT: End of parsed string */
|
||||
){
|
||||
int rc;
|
||||
rc = sqlite3LockAndPrepare(db,zSql,nBytes,0,ppStmt,pzTail);
|
||||
assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */
|
||||
return rc;
|
||||
}
|
||||
int sqlite3_prepare_v2(
|
||||
sqlite3 *db, /* Database handle. */
|
||||
const char *zSql, /* UTF-8 encoded SQL statement. */
|
||||
int nBytes, /* Length of zSql in bytes. */
|
||||
sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
|
||||
const char **pzTail /* OUT: End of parsed string */
|
||||
){
|
||||
int rc;
|
||||
rc = sqlite3LockAndPrepare(db,zSql,nBytes,1,ppStmt,pzTail);
|
||||
assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */
|
||||
return rc;
|
||||
}
|
||||
|
||||
|
||||
#ifndef SQLITE_OMIT_UTF16
|
||||
/*
|
||||
** Compile the UTF-16 encoded SQL statement zSql into a statement handle.
|
||||
*/
|
||||
static int sqlite3Prepare16(
|
||||
sqlite3 *db, /* Database handle. */
|
||||
const void *zSql, /* UTF-8 encoded SQL statement. */
|
||||
int nBytes, /* Length of zSql in bytes. */
|
||||
int saveSqlFlag, /* True to save SQL text into the sqlite3_stmt */
|
||||
sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
|
||||
const void **pzTail /* OUT: End of parsed string */
|
||||
){
|
||||
/* This function currently works by first transforming the UTF-16
|
||||
** encoded string to UTF-8, then invoking sqlite3_prepare(). The
|
||||
** tricky bit is figuring out the pointer to return in *pzTail.
|
||||
*/
|
||||
char *zSql8;
|
||||
const char *zTail8 = 0;
|
||||
int rc = SQLITE_OK;
|
||||
|
||||
assert( ppStmt );
|
||||
*ppStmt = 0;
|
||||
if( !sqlite3SafetyCheckOk(db) ){
|
||||
return SQLITE_MISUSE;
|
||||
}
|
||||
sqlite3_mutex_enter(db->mutex);
|
||||
zSql8 = sqlite3Utf16to8(db, zSql, nBytes);
|
||||
if( zSql8 ){
|
||||
rc = sqlite3LockAndPrepare(db, zSql8, -1, saveSqlFlag, ppStmt, &zTail8);
|
||||
}
|
||||
|
||||
if( zTail8 && pzTail ){
|
||||
/* If sqlite3_prepare returns a tail pointer, we calculate the
|
||||
** equivalent pointer into the UTF-16 string by counting the unicode
|
||||
** characters between zSql8 and zTail8, and then returning a pointer
|
||||
** the same number of characters into the UTF-16 string.
|
||||
*/
|
||||
int chars_parsed = sqlite3Utf8CharLen(zSql8, (int)(zTail8-zSql8));
|
||||
*pzTail = (u8 *)zSql + sqlite3Utf16ByteLen(zSql, chars_parsed);
|
||||
}
|
||||
sqlite3DbFree(db, zSql8);
|
||||
rc = sqlite3ApiExit(db, rc);
|
||||
sqlite3_mutex_leave(db->mutex);
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** Two versions of the official API. Legacy and new use. In the legacy
|
||||
** version, the original SQL text is not saved in the prepared statement
|
||||
** and so if a schema change occurs, SQLITE_SCHEMA is returned by
|
||||
** sqlite3_step(). In the new version, the original SQL text is retained
|
||||
** and the statement is automatically recompiled if an schema change
|
||||
** occurs.
|
||||
*/
|
||||
int sqlite3_prepare16(
|
||||
sqlite3 *db, /* Database handle. */
|
||||
const void *zSql, /* UTF-8 encoded SQL statement. */
|
||||
int nBytes, /* Length of zSql in bytes. */
|
||||
sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
|
||||
const void **pzTail /* OUT: End of parsed string */
|
||||
){
|
||||
int rc;
|
||||
rc = sqlite3Prepare16(db,zSql,nBytes,0,ppStmt,pzTail);
|
||||
assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */
|
||||
return rc;
|
||||
}
|
||||
int sqlite3_prepare16_v2(
|
||||
sqlite3 *db, /* Database handle. */
|
||||
const void *zSql, /* UTF-8 encoded SQL statement. */
|
||||
int nBytes, /* Length of zSql in bytes. */
|
||||
sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
|
||||
const void **pzTail /* OUT: End of parsed string */
|
||||
){
|
||||
int rc;
|
||||
rc = sqlite3Prepare16(db,zSql,nBytes,1,ppStmt,pzTail);
|
||||
assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */
|
||||
return rc;
|
||||
}
|
||||
|
||||
#endif /* SQLITE_OMIT_UTF16 */
|
947
printf.c
947
printf.c
|
@ -1,947 +0,0 @@
|
|||
/*
|
||||
** The "printf" code that follows dates from the 1980's. It is in
|
||||
** the public domain. The original comments are included here for
|
||||
** completeness. They are very out-of-date but might be useful as
|
||||
** an historical reference. Most of the "enhancements" have been backed
|
||||
** out so that the functionality is now the same as standard printf().
|
||||
**
|
||||
** $Id: printf.c,v 1.102 2009/04/08 16:10:04 drh Exp $
|
||||
**
|
||||
**************************************************************************
|
||||
**
|
||||
** The following modules is an enhanced replacement for the "printf" subroutines
|
||||
** found in the standard C library. The following enhancements are
|
||||
** supported:
|
||||
**
|
||||
** + Additional functions. The standard set of "printf" functions
|
||||
** includes printf, fprintf, sprintf, vprintf, vfprintf, and
|
||||
** vsprintf. This module adds the following:
|
||||
**
|
||||
** * snprintf -- Works like sprintf, but has an extra argument
|
||||
** which is the size of the buffer written to.
|
||||
**
|
||||
** * mprintf -- Similar to sprintf. Writes output to memory
|
||||
** obtained from malloc.
|
||||
**
|
||||
** * xprintf -- Calls a function to dispose of output.
|
||||
**
|
||||
** * nprintf -- No output, but returns the number of characters
|
||||
** that would have been output by printf.
|
||||
**
|
||||
** * A v- version (ex: vsnprintf) of every function is also
|
||||
** supplied.
|
||||
**
|
||||
** + A few extensions to the formatting notation are supported:
|
||||
**
|
||||
** * The "=" flag (similar to "-") causes the output to be
|
||||
** be centered in the appropriately sized field.
|
||||
**
|
||||
** * The %b field outputs an integer in binary notation.
|
||||
**
|
||||
** * The %c field now accepts a precision. The character output
|
||||
** is repeated by the number of times the precision specifies.
|
||||
**
|
||||
** * The %' field works like %c, but takes as its character the
|
||||
** next character of the format string, instead of the next
|
||||
** argument. For example, printf("%.78'-") prints 78 minus
|
||||
** signs, the same as printf("%.78c",'-').
|
||||
**
|
||||
** + When compiled using GCC on a SPARC, this version of printf is
|
||||
** faster than the library printf for SUN OS 4.1.
|
||||
**
|
||||
** + All functions are fully reentrant.
|
||||
**
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
/*
|
||||
** Conversion types fall into various categories as defined by the
|
||||
** following enumeration.
|
||||
*/
|
||||
#define etRADIX 1 /* Integer types. %d, %x, %o, and so forth */
|
||||
#define etFLOAT 2 /* Floating point. %f */
|
||||
#define etEXP 3 /* Exponentional notation. %e and %E */
|
||||
#define etGENERIC 4 /* Floating or exponential, depending on exponent. %g */
|
||||
#define etSIZE 5 /* Return number of characters processed so far. %n */
|
||||
#define etSTRING 6 /* Strings. %s */
|
||||
#define etDYNSTRING 7 /* Dynamically allocated strings. %z */
|
||||
#define etPERCENT 8 /* Percent symbol. %% */
|
||||
#define etCHARX 9 /* Characters. %c */
|
||||
/* The rest are extensions, not normally found in printf() */
|
||||
#define etSQLESCAPE 10 /* Strings with '\'' doubled. %q */
|
||||
#define etSQLESCAPE2 11 /* Strings with '\'' doubled and enclosed in '',
|
||||
NULL pointers replaced by SQL NULL. %Q */
|
||||
#define etTOKEN 12 /* a pointer to a Token structure */
|
||||
#define etSRCLIST 13 /* a pointer to a SrcList */
|
||||
#define etPOINTER 14 /* The %p conversion */
|
||||
#define etSQLESCAPE3 15 /* %w -> Strings with '\"' doubled */
|
||||
#define etORDINAL 16 /* %r -> 1st, 2nd, 3rd, 4th, etc. English only */
|
||||
|
||||
#define etINVALID 0 /* Any unrecognized conversion type */
|
||||
|
||||
|
||||
/*
|
||||
** An "etByte" is an 8-bit unsigned value.
|
||||
*/
|
||||
typedef unsigned char etByte;
|
||||
|
||||
/*
|
||||
** Each builtin conversion character (ex: the 'd' in "%d") is described
|
||||
** by an instance of the following structure
|
||||
*/
|
||||
typedef struct et_info { /* Information about each format field */
|
||||
char fmttype; /* The format field code letter */
|
||||
etByte base; /* The base for radix conversion */
|
||||
etByte flags; /* One or more of FLAG_ constants below */
|
||||
etByte type; /* Conversion paradigm */
|
||||
etByte charset; /* Offset into aDigits[] of the digits string */
|
||||
etByte prefix; /* Offset into aPrefix[] of the prefix string */
|
||||
} et_info;
|
||||
|
||||
/*
|
||||
** Allowed values for et_info.flags
|
||||
*/
|
||||
#define FLAG_SIGNED 1 /* True if the value to convert is signed */
|
||||
#define FLAG_INTERN 2 /* True if for internal use only */
|
||||
#define FLAG_STRING 4 /* Allow infinity precision */
|
||||
|
||||
|
||||
/*
|
||||
** The following table is searched linearly, so it is good to put the
|
||||
** most frequently used conversion types first.
|
||||
*/
|
||||
static const char aDigits[] = "0123456789ABCDEF0123456789abcdef";
|
||||
static const char aPrefix[] = "-x0\000X0";
|
||||
static const et_info fmtinfo[] = {
|
||||
{ 'd', 10, 1, etRADIX, 0, 0 },
|
||||
{ 's', 0, 4, etSTRING, 0, 0 },
|
||||
{ 'g', 0, 1, etGENERIC, 30, 0 },
|
||||
{ 'z', 0, 4, etDYNSTRING, 0, 0 },
|
||||
{ 'q', 0, 4, etSQLESCAPE, 0, 0 },
|
||||
{ 'Q', 0, 4, etSQLESCAPE2, 0, 0 },
|
||||
{ 'w', 0, 4, etSQLESCAPE3, 0, 0 },
|
||||
{ 'c', 0, 0, etCHARX, 0, 0 },
|
||||
{ 'o', 8, 0, etRADIX, 0, 2 },
|
||||
{ 'u', 10, 0, etRADIX, 0, 0 },
|
||||
{ 'x', 16, 0, etRADIX, 16, 1 },
|
||||
{ 'X', 16, 0, etRADIX, 0, 4 },
|
||||
#ifndef SQLITE_OMIT_FLOATING_POINT
|
||||
{ 'f', 0, 1, etFLOAT, 0, 0 },
|
||||
{ 'e', 0, 1, etEXP, 30, 0 },
|
||||
{ 'E', 0, 1, etEXP, 14, 0 },
|
||||
{ 'G', 0, 1, etGENERIC, 14, 0 },
|
||||
#endif
|
||||
{ 'i', 10, 1, etRADIX, 0, 0 },
|
||||
{ 'n', 0, 0, etSIZE, 0, 0 },
|
||||
{ '%', 0, 0, etPERCENT, 0, 0 },
|
||||
{ 'p', 16, 0, etPOINTER, 0, 1 },
|
||||
|
||||
/* All the rest have the FLAG_INTERN bit set and are thus for internal
|
||||
** use only */
|
||||
{ 'T', 0, 2, etTOKEN, 0, 0 },
|
||||
{ 'S', 0, 2, etSRCLIST, 0, 0 },
|
||||
{ 'r', 10, 3, etORDINAL, 0, 0 },
|
||||
};
|
||||
|
||||
/*
|
||||
** If SQLITE_OMIT_FLOATING_POINT is defined, then none of the floating point
|
||||
** conversions will work.
|
||||
*/
|
||||
#ifndef SQLITE_OMIT_FLOATING_POINT
|
||||
/*
|
||||
** "*val" is a double such that 0.1 <= *val < 10.0
|
||||
** Return the ascii code for the leading digit of *val, then
|
||||
** multiply "*val" by 10.0 to renormalize.
|
||||
**
|
||||
** Example:
|
||||
** input: *val = 3.14159
|
||||
** output: *val = 1.4159 function return = '3'
|
||||
**
|
||||
** The counter *cnt is incremented each time. After counter exceeds
|
||||
** 16 (the number of significant digits in a 64-bit float) '0' is
|
||||
** always returned.
|
||||
*/
|
||||
static char et_getdigit(LONGDOUBLE_TYPE *val, int *cnt){
|
||||
int digit;
|
||||
LONGDOUBLE_TYPE d;
|
||||
if( (*cnt)++ >= 16 ) return '0';
|
||||
digit = (int)*val;
|
||||
d = digit;
|
||||
digit += '0';
|
||||
*val = (*val - d)*10.0;
|
||||
return (char)digit;
|
||||
}
|
||||
#endif /* SQLITE_OMIT_FLOATING_POINT */
|
||||
|
||||
/*
|
||||
** Append N space characters to the given string buffer.
|
||||
*/
|
||||
static void appendSpace(StrAccum *pAccum, int N){
|
||||
static const char zSpaces[] = " ";
|
||||
while( N>=(int)sizeof(zSpaces)-1 ){
|
||||
sqlite3StrAccumAppend(pAccum, zSpaces, sizeof(zSpaces)-1);
|
||||
N -= sizeof(zSpaces)-1;
|
||||
}
|
||||
if( N>0 ){
|
||||
sqlite3StrAccumAppend(pAccum, zSpaces, N);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** On machines with a small stack size, you can redefine the
|
||||
** SQLITE_PRINT_BUF_SIZE to be less than 350. But beware - for
|
||||
** smaller values some %f conversions may go into an infinite loop.
|
||||
*/
|
||||
#ifndef SQLITE_PRINT_BUF_SIZE
|
||||
# define SQLITE_PRINT_BUF_SIZE 350
|
||||
#endif
|
||||
#define etBUFSIZE SQLITE_PRINT_BUF_SIZE /* Size of the output buffer */
|
||||
|
||||
/*
|
||||
** The root program. All variations call this core.
|
||||
**
|
||||
** INPUTS:
|
||||
** func This is a pointer to a function taking three arguments
|
||||
** 1. A pointer to anything. Same as the "arg" parameter.
|
||||
** 2. A pointer to the list of characters to be output
|
||||
** (Note, this list is NOT null terminated.)
|
||||
** 3. An integer number of characters to be output.
|
||||
** (Note: This number might be zero.)
|
||||
**
|
||||
** arg This is the pointer to anything which will be passed as the
|
||||
** first argument to "func". Use it for whatever you like.
|
||||
**
|
||||
** fmt This is the format string, as in the usual print.
|
||||
**
|
||||
** ap This is a pointer to a list of arguments. Same as in
|
||||
** vfprint.
|
||||
**
|
||||
** OUTPUTS:
|
||||
** The return value is the total number of characters sent to
|
||||
** the function "func". Returns -1 on a error.
|
||||
**
|
||||
** Note that the order in which automatic variables are declared below
|
||||
** seems to make a big difference in determining how fast this beast
|
||||
** will run.
|
||||
*/
|
||||
void sqlite3VXPrintf(
|
||||
StrAccum *pAccum, /* Accumulate results here */
|
||||
int useExtended, /* Allow extended %-conversions */
|
||||
const char *fmt, /* Format string */
|
||||
va_list ap /* arguments */
|
||||
){
|
||||
int c; /* Next character in the format string */
|
||||
char *bufpt; /* Pointer to the conversion buffer */
|
||||
int precision; /* Precision of the current field */
|
||||
int length; /* Length of the field */
|
||||
int idx; /* A general purpose loop counter */
|
||||
int width; /* Width of the current field */
|
||||
etByte flag_leftjustify; /* True if "-" flag is present */
|
||||
etByte flag_plussign; /* True if "+" flag is present */
|
||||
etByte flag_blanksign; /* True if " " flag is present */
|
||||
etByte flag_alternateform; /* True if "#" flag is present */
|
||||
etByte flag_altform2; /* True if "!" flag is present */
|
||||
etByte flag_zeropad; /* True if field width constant starts with zero */
|
||||
etByte flag_long; /* True if "l" flag is present */
|
||||
etByte flag_longlong; /* True if the "ll" flag is present */
|
||||
etByte done; /* Loop termination flag */
|
||||
sqlite_uint64 longvalue; /* Value for integer types */
|
||||
LONGDOUBLE_TYPE realvalue; /* Value for real types */
|
||||
const et_info *infop; /* Pointer to the appropriate info structure */
|
||||
char buf[etBUFSIZE]; /* Conversion buffer */
|
||||
char prefix; /* Prefix character. "+" or "-" or " " or '\0'. */
|
||||
etByte xtype = 0; /* Conversion paradigm */
|
||||
char *zExtra; /* Extra memory used for etTCLESCAPE conversions */
|
||||
#ifndef SQLITE_OMIT_FLOATING_POINT
|
||||
int exp, e2; /* exponent of real numbers */
|
||||
double rounder; /* Used for rounding floating point values */
|
||||
etByte flag_dp; /* True if decimal point should be shown */
|
||||
etByte flag_rtz; /* True if trailing zeros should be removed */
|
||||
etByte flag_exp; /* True to force display of the exponent */
|
||||
int nsd; /* Number of significant digits returned */
|
||||
#endif
|
||||
|
||||
length = 0;
|
||||
bufpt = 0;
|
||||
for(; (c=(*fmt))!=0; ++fmt){
|
||||
if( c!='%' ){
|
||||
int amt;
|
||||
bufpt = (char *)fmt;
|
||||
amt = 1;
|
||||
while( (c=(*++fmt))!='%' && c!=0 ) amt++;
|
||||
sqlite3StrAccumAppend(pAccum, bufpt, amt);
|
||||
if( c==0 ) break;
|
||||
}
|
||||
if( (c=(*++fmt))==0 ){
|
||||
sqlite3StrAccumAppend(pAccum, "%", 1);
|
||||
break;
|
||||
}
|
||||
/* Find out what flags are present */
|
||||
flag_leftjustify = flag_plussign = flag_blanksign =
|
||||
flag_alternateform = flag_altform2 = flag_zeropad = 0;
|
||||
done = 0;
|
||||
do{
|
||||
switch( c ){
|
||||
case '-': flag_leftjustify = 1; break;
|
||||
case '+': flag_plussign = 1; break;
|
||||
case ' ': flag_blanksign = 1; break;
|
||||
case '#': flag_alternateform = 1; break;
|
||||
case '!': flag_altform2 = 1; break;
|
||||
case '0': flag_zeropad = 1; break;
|
||||
default: done = 1; break;
|
||||
}
|
||||
}while( !done && (c=(*++fmt))!=0 );
|
||||
/* Get the field width */
|
||||
width = 0;
|
||||
if( c=='*' ){
|
||||
width = va_arg(ap,int);
|
||||
if( width<0 ){
|
||||
flag_leftjustify = 1;
|
||||
width = -width;
|
||||
}
|
||||
c = *++fmt;
|
||||
}else{
|
||||
while( c>='0' && c<='9' ){
|
||||
width = width*10 + c - '0';
|
||||
c = *++fmt;
|
||||
}
|
||||
}
|
||||
if( width > etBUFSIZE-10 ){
|
||||
width = etBUFSIZE-10;
|
||||
}
|
||||
/* Get the precision */
|
||||
if( c=='.' ){
|
||||
precision = 0;
|
||||
c = *++fmt;
|
||||
if( c=='*' ){
|
||||
precision = va_arg(ap,int);
|
||||
if( precision<0 ) precision = -precision;
|
||||
c = *++fmt;
|
||||
}else{
|
||||
while( c>='0' && c<='9' ){
|
||||
precision = precision*10 + c - '0';
|
||||
c = *++fmt;
|
||||
}
|
||||
}
|
||||
}else{
|
||||
precision = -1;
|
||||
}
|
||||
/* Get the conversion type modifier */
|
||||
if( c=='l' ){
|
||||
flag_long = 1;
|
||||
c = *++fmt;
|
||||
if( c=='l' ){
|
||||
flag_longlong = 1;
|
||||
c = *++fmt;
|
||||
}else{
|
||||
flag_longlong = 0;
|
||||
}
|
||||
}else{
|
||||
flag_long = flag_longlong = 0;
|
||||
}
|
||||
/* Fetch the info entry for the field */
|
||||
infop = &fmtinfo[0];
|
||||
xtype = etINVALID;
|
||||
for(idx=0; idx<ArraySize(fmtinfo); idx++){
|
||||
if( c==fmtinfo[idx].fmttype ){
|
||||
infop = &fmtinfo[idx];
|
||||
if( useExtended || (infop->flags & FLAG_INTERN)==0 ){
|
||||
xtype = infop->type;
|
||||
}else{
|
||||
return;
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
zExtra = 0;
|
||||
|
||||
|
||||
/* Limit the precision to prevent overflowing buf[] during conversion */
|
||||
if( precision>etBUFSIZE-40 && (infop->flags & FLAG_STRING)==0 ){
|
||||
precision = etBUFSIZE-40;
|
||||
}
|
||||
|
||||
/*
|
||||
** At this point, variables are initialized as follows:
|
||||
**
|
||||
** flag_alternateform TRUE if a '#' is present.
|
||||
** flag_altform2 TRUE if a '!' is present.
|
||||
** flag_plussign TRUE if a '+' is present.
|
||||
** flag_leftjustify TRUE if a '-' is present or if the
|
||||
** field width was negative.
|
||||
** flag_zeropad TRUE if the width began with 0.
|
||||
** flag_long TRUE if the letter 'l' (ell) prefixed
|
||||
** the conversion character.
|
||||
** flag_longlong TRUE if the letter 'll' (ell ell) prefixed
|
||||
** the conversion character.
|
||||
** flag_blanksign TRUE if a ' ' is present.
|
||||
** width The specified field width. This is
|
||||
** always non-negative. Zero is the default.
|
||||
** precision The specified precision. The default
|
||||
** is -1.
|
||||
** xtype The class of the conversion.
|
||||
** infop Pointer to the appropriate info struct.
|
||||
*/
|
||||
switch( xtype ){
|
||||
case etPOINTER:
|
||||
flag_longlong = sizeof(char*)==sizeof(i64);
|
||||
flag_long = sizeof(char*)==sizeof(long int);
|
||||
/* Fall through into the next case */
|
||||
case etORDINAL:
|
||||
case etRADIX:
|
||||
if( infop->flags & FLAG_SIGNED ){
|
||||
i64 v;
|
||||
if( flag_longlong ) v = va_arg(ap,i64);
|
||||
else if( flag_long ) v = va_arg(ap,long int);
|
||||
else v = va_arg(ap,int);
|
||||
if( v<0 ){
|
||||
longvalue = -v;
|
||||
prefix = '-';
|
||||
}else{
|
||||
longvalue = v;
|
||||
if( flag_plussign ) prefix = '+';
|
||||
else if( flag_blanksign ) prefix = ' ';
|
||||
else prefix = 0;
|
||||
}
|
||||
}else{
|
||||
if( flag_longlong ) longvalue = va_arg(ap,u64);
|
||||
else if( flag_long ) longvalue = va_arg(ap,unsigned long int);
|
||||
else longvalue = va_arg(ap,unsigned int);
|
||||
prefix = 0;
|
||||
}
|
||||
if( longvalue==0 ) flag_alternateform = 0;
|
||||
if( flag_zeropad && precision<width-(prefix!=0) ){
|
||||
precision = width-(prefix!=0);
|
||||
}
|
||||
bufpt = &buf[etBUFSIZE-1];
|
||||
if( xtype==etORDINAL ){
|
||||
static const char zOrd[] = "thstndrd";
|
||||
int x = (int)(longvalue % 10);
|
||||
if( x>=4 || (longvalue/10)%10==1 ){
|
||||
x = 0;
|
||||
}
|
||||
buf[etBUFSIZE-3] = zOrd[x*2];
|
||||
buf[etBUFSIZE-2] = zOrd[x*2+1];
|
||||
bufpt -= 2;
|
||||
}
|
||||
{
|
||||
register const char *cset; /* Use registers for speed */
|
||||
register int base;
|
||||
cset = &aDigits[infop->charset];
|
||||
base = infop->base;
|
||||
do{ /* Convert to ascii */
|
||||
*(--bufpt) = cset[longvalue%base];
|
||||
longvalue = longvalue/base;
|
||||
}while( longvalue>0 );
|
||||
}
|
||||
length = (int)(&buf[etBUFSIZE-1]-bufpt);
|
||||
for(idx=precision-length; idx>0; idx--){
|
||||
*(--bufpt) = '0'; /* Zero pad */
|
||||
}
|
||||
if( prefix ) *(--bufpt) = prefix; /* Add sign */
|
||||
if( flag_alternateform && infop->prefix ){ /* Add "0" or "0x" */
|
||||
const char *pre;
|
||||
char x;
|
||||
pre = &aPrefix[infop->prefix];
|
||||
for(; (x=(*pre))!=0; pre++) *(--bufpt) = x;
|
||||
}
|
||||
length = (int)(&buf[etBUFSIZE-1]-bufpt);
|
||||
break;
|
||||
case etFLOAT:
|
||||
case etEXP:
|
||||
case etGENERIC:
|
||||
realvalue = va_arg(ap,double);
|
||||
#ifndef SQLITE_OMIT_FLOATING_POINT
|
||||
if( precision<0 ) precision = 6; /* Set default precision */
|
||||
if( precision>etBUFSIZE/2-10 ) precision = etBUFSIZE/2-10;
|
||||
if( realvalue<0.0 ){
|
||||
realvalue = -realvalue;
|
||||
prefix = '-';
|
||||
}else{
|
||||
if( flag_plussign ) prefix = '+';
|
||||
else if( flag_blanksign ) prefix = ' ';
|
||||
else prefix = 0;
|
||||
}
|
||||
if( xtype==etGENERIC && precision>0 ) precision--;
|
||||
#if 0
|
||||
/* Rounding works like BSD when the constant 0.4999 is used. Wierd! */
|
||||
for(idx=precision, rounder=0.4999; idx>0; idx--, rounder*=0.1);
|
||||
#else
|
||||
/* It makes more sense to use 0.5 */
|
||||
for(idx=precision, rounder=0.5; idx>0; idx--, rounder*=0.1){}
|
||||
#endif
|
||||
if( xtype==etFLOAT ) realvalue += rounder;
|
||||
/* Normalize realvalue to within 10.0 > realvalue >= 1.0 */
|
||||
exp = 0;
|
||||
if( sqlite3IsNaN((double)realvalue) ){
|
||||
bufpt = "NaN";
|
||||
length = 3;
|
||||
break;
|
||||
}
|
||||
if( realvalue>0.0 ){
|
||||
while( realvalue>=1e32 && exp<=350 ){ realvalue *= 1e-32; exp+=32; }
|
||||
while( realvalue>=1e8 && exp<=350 ){ realvalue *= 1e-8; exp+=8; }
|
||||
while( realvalue>=10.0 && exp<=350 ){ realvalue *= 0.1; exp++; }
|
||||
while( realvalue<1e-8 ){ realvalue *= 1e8; exp-=8; }
|
||||
while( realvalue<1.0 ){ realvalue *= 10.0; exp--; }
|
||||
if( exp>350 ){
|
||||
if( prefix=='-' ){
|
||||
bufpt = "-Inf";
|
||||
}else if( prefix=='+' ){
|
||||
bufpt = "+Inf";
|
||||
}else{
|
||||
bufpt = "Inf";
|
||||
}
|
||||
length = sqlite3Strlen30(bufpt);
|
||||
break;
|
||||
}
|
||||
}
|
||||
bufpt = buf;
|
||||
/*
|
||||
** If the field type is etGENERIC, then convert to either etEXP
|
||||
** or etFLOAT, as appropriate.
|
||||
*/
|
||||
flag_exp = xtype==etEXP;
|
||||
if( xtype!=etFLOAT ){
|
||||
realvalue += rounder;
|
||||
if( realvalue>=10.0 ){ realvalue *= 0.1; exp++; }
|
||||
}
|
||||
if( xtype==etGENERIC ){
|
||||
flag_rtz = !flag_alternateform;
|
||||
if( exp<-4 || exp>precision ){
|
||||
xtype = etEXP;
|
||||
}else{
|
||||
precision = precision - exp;
|
||||
xtype = etFLOAT;
|
||||
}
|
||||
}else{
|
||||
flag_rtz = 0;
|
||||
}
|
||||
if( xtype==etEXP ){
|
||||
e2 = 0;
|
||||
}else{
|
||||
e2 = exp;
|
||||
}
|
||||
nsd = 0;
|
||||
flag_dp = (precision>0 ?1:0) | flag_alternateform | flag_altform2;
|
||||
/* The sign in front of the number */
|
||||
if( prefix ){
|
||||
*(bufpt++) = prefix;
|
||||
}
|
||||
/* Digits prior to the decimal point */
|
||||
if( e2<0 ){
|
||||
*(bufpt++) = '0';
|
||||
}else{
|
||||
for(; e2>=0; e2--){
|
||||
*(bufpt++) = et_getdigit(&realvalue,&nsd);
|
||||
}
|
||||
}
|
||||
/* The decimal point */
|
||||
if( flag_dp ){
|
||||
*(bufpt++) = '.';
|
||||
}
|
||||
/* "0" digits after the decimal point but before the first
|
||||
** significant digit of the number */
|
||||
for(e2++; e2<0; precision--, e2++){
|
||||
assert( precision>0 );
|
||||
*(bufpt++) = '0';
|
||||
}
|
||||
/* Significant digits after the decimal point */
|
||||
while( (precision--)>0 ){
|
||||
*(bufpt++) = et_getdigit(&realvalue,&nsd);
|
||||
}
|
||||
/* Remove trailing zeros and the "." if no digits follow the "." */
|
||||
if( flag_rtz && flag_dp ){
|
||||
while( bufpt[-1]=='0' ) *(--bufpt) = 0;
|
||||
assert( bufpt>buf );
|
||||
if( bufpt[-1]=='.' ){
|
||||
if( flag_altform2 ){
|
||||
*(bufpt++) = '0';
|
||||
}else{
|
||||
*(--bufpt) = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* Add the "eNNN" suffix */
|
||||
if( flag_exp || xtype==etEXP ){
|
||||
*(bufpt++) = aDigits[infop->charset];
|
||||
if( exp<0 ){
|
||||
*(bufpt++) = '-'; exp = -exp;
|
||||
}else{
|
||||
*(bufpt++) = '+';
|
||||
}
|
||||
if( exp>=100 ){
|
||||
*(bufpt++) = (char)((exp/100)+'0'); /* 100's digit */
|
||||
exp %= 100;
|
||||
}
|
||||
*(bufpt++) = (char)(exp/10+'0'); /* 10's digit */
|
||||
*(bufpt++) = (char)(exp%10+'0'); /* 1's digit */
|
||||
}
|
||||
*bufpt = 0;
|
||||
|
||||
/* The converted number is in buf[] and zero terminated. Output it.
|
||||
** Note that the number is in the usual order, not reversed as with
|
||||
** integer conversions. */
|
||||
length = (int)(bufpt-buf);
|
||||
bufpt = buf;
|
||||
|
||||
/* Special case: Add leading zeros if the flag_zeropad flag is
|
||||
** set and we are not left justified */
|
||||
if( flag_zeropad && !flag_leftjustify && length < width){
|
||||
int i;
|
||||
int nPad = width - length;
|
||||
for(i=width; i>=nPad; i--){
|
||||
bufpt[i] = bufpt[i-nPad];
|
||||
}
|
||||
i = prefix!=0;
|
||||
while( nPad-- ) bufpt[i++] = '0';
|
||||
length = width;
|
||||
}
|
||||
#endif
|
||||
break;
|
||||
case etSIZE:
|
||||
*(va_arg(ap,int*)) = pAccum->nChar;
|
||||
length = width = 0;
|
||||
break;
|
||||
case etPERCENT:
|
||||
buf[0] = '%';
|
||||
bufpt = buf;
|
||||
length = 1;
|
||||
break;
|
||||
case etCHARX:
|
||||
c = va_arg(ap,int);
|
||||
buf[0] = (char)c;
|
||||
if( precision>=0 ){
|
||||
for(idx=1; idx<precision; idx++) buf[idx] = (char)c;
|
||||
length = precision;
|
||||
}else{
|
||||
length =1;
|
||||
}
|
||||
bufpt = buf;
|
||||
break;
|
||||
case etSTRING:
|
||||
case etDYNSTRING:
|
||||
bufpt = va_arg(ap,char*);
|
||||
if( bufpt==0 ){
|
||||
bufpt = "";
|
||||
}else if( xtype==etDYNSTRING ){
|
||||
zExtra = bufpt;
|
||||
}
|
||||
if( precision>=0 ){
|
||||
for(length=0; length<precision && bufpt[length]; length++){}
|
||||
}else{
|
||||
length = sqlite3Strlen30(bufpt);
|
||||
}
|
||||
break;
|
||||
case etSQLESCAPE:
|
||||
case etSQLESCAPE2:
|
||||
case etSQLESCAPE3: {
|
||||
int i, j, n, isnull;
|
||||
int needQuote;
|
||||
char ch;
|
||||
char q = ((xtype==etSQLESCAPE3)?'"':'\''); /* Quote character */
|
||||
char *escarg = va_arg(ap,char*);
|
||||
isnull = escarg==0;
|
||||
if( isnull ) escarg = (xtype==etSQLESCAPE2 ? "NULL" : "(NULL)");
|
||||
for(i=n=0; (ch=escarg[i])!=0; i++){
|
||||
if( ch==q ) n++;
|
||||
}
|
||||
needQuote = !isnull && xtype==etSQLESCAPE2;
|
||||
n += i + 1 + needQuote*2;
|
||||
if( n>etBUFSIZE ){
|
||||
bufpt = zExtra = sqlite3Malloc( n );
|
||||
if( bufpt==0 ){
|
||||
pAccum->mallocFailed = 1;
|
||||
return;
|
||||
}
|
||||
}else{
|
||||
bufpt = buf;
|
||||
}
|
||||
j = 0;
|
||||
if( needQuote ) bufpt[j++] = q;
|
||||
for(i=0; (ch=escarg[i])!=0; i++){
|
||||
bufpt[j++] = ch;
|
||||
if( ch==q ) bufpt[j++] = ch;
|
||||
}
|
||||
if( needQuote ) bufpt[j++] = q;
|
||||
bufpt[j] = 0;
|
||||
length = j;
|
||||
/* The precision is ignored on %q and %Q */
|
||||
/* if( precision>=0 && precision<length ) length = precision; */
|
||||
break;
|
||||
}
|
||||
case etTOKEN: {
|
||||
Token *pToken = va_arg(ap, Token*);
|
||||
if( pToken ){
|
||||
sqlite3StrAccumAppend(pAccum, (const char*)pToken->z, pToken->n);
|
||||
}
|
||||
length = width = 0;
|
||||
break;
|
||||
}
|
||||
case etSRCLIST: {
|
||||
SrcList *pSrc = va_arg(ap, SrcList*);
|
||||
int k = va_arg(ap, int);
|
||||
struct SrcList_item *pItem = &pSrc->a[k];
|
||||
assert( k>=0 && k<pSrc->nSrc );
|
||||
if( pItem->zDatabase ){
|
||||
sqlite3StrAccumAppend(pAccum, pItem->zDatabase, -1);
|
||||
sqlite3StrAccumAppend(pAccum, ".", 1);
|
||||
}
|
||||
sqlite3StrAccumAppend(pAccum, pItem->zName, -1);
|
||||
length = width = 0;
|
||||
break;
|
||||
}
|
||||
default: {
|
||||
assert( xtype==etINVALID );
|
||||
return;
|
||||
}
|
||||
}/* End switch over the format type */
|
||||
/*
|
||||
** The text of the conversion is pointed to by "bufpt" and is
|
||||
** "length" characters long. The field width is "width". Do
|
||||
** the output.
|
||||
*/
|
||||
if( !flag_leftjustify ){
|
||||
register int nspace;
|
||||
nspace = width-length;
|
||||
if( nspace>0 ){
|
||||
appendSpace(pAccum, nspace);
|
||||
}
|
||||
}
|
||||
if( length>0 ){
|
||||
sqlite3StrAccumAppend(pAccum, bufpt, length);
|
||||
}
|
||||
if( flag_leftjustify ){
|
||||
register int nspace;
|
||||
nspace = width-length;
|
||||
if( nspace>0 ){
|
||||
appendSpace(pAccum, nspace);
|
||||
}
|
||||
}
|
||||
if( zExtra ){
|
||||
sqlite3_free(zExtra);
|
||||
}
|
||||
}/* End for loop over the format string */
|
||||
} /* End of function */
|
||||
|
||||
/*
|
||||
** Append N bytes of text from z to the StrAccum object.
|
||||
*/
|
||||
void sqlite3StrAccumAppend(StrAccum *p, const char *z, int N){
|
||||
assert( z!=0 || N==0 );
|
||||
if( p->tooBig | p->mallocFailed ){
|
||||
testcase(p->tooBig);
|
||||
testcase(p->mallocFailed);
|
||||
return;
|
||||
}
|
||||
if( N<0 ){
|
||||
N = sqlite3Strlen30(z);
|
||||
}
|
||||
if( N==0 || NEVER(z==0) ){
|
||||
return;
|
||||
}
|
||||
if( p->nChar+N >= p->nAlloc ){
|
||||
char *zNew;
|
||||
if( !p->useMalloc ){
|
||||
p->tooBig = 1;
|
||||
N = p->nAlloc - p->nChar - 1;
|
||||
if( N<=0 ){
|
||||
return;
|
||||
}
|
||||
}else{
|
||||
i64 szNew = p->nChar;
|
||||
szNew += N + 1;
|
||||
if( szNew > p->mxAlloc ){
|
||||
sqlite3StrAccumReset(p);
|
||||
p->tooBig = 1;
|
||||
return;
|
||||
}else{
|
||||
p->nAlloc = (int)szNew;
|
||||
}
|
||||
zNew = sqlite3DbMallocRaw(p->db, p->nAlloc );
|
||||
if( zNew ){
|
||||
memcpy(zNew, p->zText, p->nChar);
|
||||
sqlite3StrAccumReset(p);
|
||||
p->zText = zNew;
|
||||
}else{
|
||||
p->mallocFailed = 1;
|
||||
sqlite3StrAccumReset(p);
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
memcpy(&p->zText[p->nChar], z, N);
|
||||
p->nChar += N;
|
||||
}
|
||||
|
||||
/*
|
||||
** Finish off a string by making sure it is zero-terminated.
|
||||
** Return a pointer to the resulting string. Return a NULL
|
||||
** pointer if any kind of error was encountered.
|
||||
*/
|
||||
char *sqlite3StrAccumFinish(StrAccum *p){
|
||||
if( p->zText ){
|
||||
p->zText[p->nChar] = 0;
|
||||
if( p->useMalloc && p->zText==p->zBase ){
|
||||
p->zText = sqlite3DbMallocRaw(p->db, p->nChar+1 );
|
||||
if( p->zText ){
|
||||
memcpy(p->zText, p->zBase, p->nChar+1);
|
||||
}else{
|
||||
p->mallocFailed = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
return p->zText;
|
||||
}
|
||||
|
||||
/*
|
||||
** Reset an StrAccum string. Reclaim all malloced memory.
|
||||
*/
|
||||
void sqlite3StrAccumReset(StrAccum *p){
|
||||
if( p->zText!=p->zBase ){
|
||||
sqlite3DbFree(p->db, p->zText);
|
||||
}
|
||||
p->zText = 0;
|
||||
}
|
||||
|
||||
/*
|
||||
** Initialize a string accumulator
|
||||
*/
|
||||
void sqlite3StrAccumInit(StrAccum *p, char *zBase, int n, int mx){
|
||||
p->zText = p->zBase = zBase;
|
||||
p->db = 0;
|
||||
p->nChar = 0;
|
||||
p->nAlloc = n;
|
||||
p->mxAlloc = mx;
|
||||
p->useMalloc = 1;
|
||||
p->tooBig = 0;
|
||||
p->mallocFailed = 0;
|
||||
}
|
||||
|
||||
/*
|
||||
** Print into memory obtained from sqliteMalloc(). Use the internal
|
||||
** %-conversion extensions.
|
||||
*/
|
||||
char *sqlite3VMPrintf(sqlite3 *db, const char *zFormat, va_list ap){
|
||||
char *z;
|
||||
char zBase[SQLITE_PRINT_BUF_SIZE];
|
||||
StrAccum acc;
|
||||
assert( db!=0 );
|
||||
sqlite3StrAccumInit(&acc, zBase, sizeof(zBase),
|
||||
db->aLimit[SQLITE_LIMIT_LENGTH]);
|
||||
acc.db = db;
|
||||
sqlite3VXPrintf(&acc, 1, zFormat, ap);
|
||||
z = sqlite3StrAccumFinish(&acc);
|
||||
if( acc.mallocFailed ){
|
||||
db->mallocFailed = 1;
|
||||
}
|
||||
return z;
|
||||
}
|
||||
|
||||
/*
|
||||
** Print into memory obtained from sqliteMalloc(). Use the internal
|
||||
** %-conversion extensions.
|
||||
*/
|
||||
char *sqlite3MPrintf(sqlite3 *db, const char *zFormat, ...){
|
||||
va_list ap;
|
||||
char *z;
|
||||
va_start(ap, zFormat);
|
||||
z = sqlite3VMPrintf(db, zFormat, ap);
|
||||
va_end(ap);
|
||||
return z;
|
||||
}
|
||||
|
||||
/*
|
||||
** Like sqlite3MPrintf(), but call sqlite3DbFree() on zStr after formatting
|
||||
** the string and before returnning. This routine is intended to be used
|
||||
** to modify an existing string. For example:
|
||||
**
|
||||
** x = sqlite3MPrintf(db, x, "prefix %s suffix", x);
|
||||
**
|
||||
*/
|
||||
char *sqlite3MAppendf(sqlite3 *db, char *zStr, const char *zFormat, ...){
|
||||
va_list ap;
|
||||
char *z;
|
||||
va_start(ap, zFormat);
|
||||
z = sqlite3VMPrintf(db, zFormat, ap);
|
||||
va_end(ap);
|
||||
sqlite3DbFree(db, zStr);
|
||||
return z;
|
||||
}
|
||||
|
||||
/*
|
||||
** Print into memory obtained from sqlite3_malloc(). Omit the internal
|
||||
** %-conversion extensions.
|
||||
*/
|
||||
char *sqlite3_vmprintf(const char *zFormat, va_list ap){
|
||||
char *z;
|
||||
char zBase[SQLITE_PRINT_BUF_SIZE];
|
||||
StrAccum acc;
|
||||
#ifndef SQLITE_OMIT_AUTOINIT
|
||||
if( sqlite3_initialize() ) return 0;
|
||||
#endif
|
||||
sqlite3StrAccumInit(&acc, zBase, sizeof(zBase), SQLITE_MAX_LENGTH);
|
||||
sqlite3VXPrintf(&acc, 0, zFormat, ap);
|
||||
z = sqlite3StrAccumFinish(&acc);
|
||||
return z;
|
||||
}
|
||||
|
||||
/*
|
||||
** Print into memory obtained from sqlite3_malloc()(). Omit the internal
|
||||
** %-conversion extensions.
|
||||
*/
|
||||
char *sqlite3_mprintf(const char *zFormat, ...){
|
||||
va_list ap;
|
||||
char *z;
|
||||
#ifndef SQLITE_OMIT_AUTOINIT
|
||||
if( sqlite3_initialize() ) return 0;
|
||||
#endif
|
||||
va_start(ap, zFormat);
|
||||
z = sqlite3_vmprintf(zFormat, ap);
|
||||
va_end(ap);
|
||||
return z;
|
||||
}
|
||||
|
||||
/*
|
||||
** sqlite3_snprintf() works like snprintf() except that it ignores the
|
||||
** current locale settings. This is important for SQLite because we
|
||||
** are not able to use a "," as the decimal point in place of "." as
|
||||
** specified by some locales.
|
||||
*/
|
||||
char *sqlite3_snprintf(int n, char *zBuf, const char *zFormat, ...){
|
||||
char *z;
|
||||
va_list ap;
|
||||
StrAccum acc;
|
||||
|
||||
if( n<=0 ){
|
||||
return zBuf;
|
||||
}
|
||||
sqlite3StrAccumInit(&acc, zBuf, n, 0);
|
||||
acc.useMalloc = 0;
|
||||
va_start(ap,zFormat);
|
||||
sqlite3VXPrintf(&acc, 0, zFormat, ap);
|
||||
va_end(ap);
|
||||
z = sqlite3StrAccumFinish(&acc);
|
||||
return z;
|
||||
}
|
||||
|
||||
#if defined(SQLITE_DEBUG)
|
||||
/*
|
||||
** A version of printf() that understands %lld. Used for debugging.
|
||||
** The printf() built into some versions of windows does not understand %lld
|
||||
** and segfaults if you give it a long long int.
|
||||
*/
|
||||
void sqlite3DebugPrintf(const char *zFormat, ...){
|
||||
va_list ap;
|
||||
StrAccum acc;
|
||||
char zBuf[500];
|
||||
sqlite3StrAccumInit(&acc, zBuf, sizeof(zBuf), 0);
|
||||
acc.useMalloc = 0;
|
||||
va_start(ap,zFormat);
|
||||
sqlite3VXPrintf(&acc, 0, zFormat, ap);
|
||||
va_end(ap);
|
||||
sqlite3StrAccumFinish(&acc);
|
||||
fprintf(stdout,"%s", zBuf);
|
||||
fflush(stdout);
|
||||
}
|
||||
#endif
|
147
random.c
147
random.c
|
@ -1,147 +0,0 @@
|
|||
/*
|
||||
** 2001 September 15
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This file contains code to implement a pseudo-random number
|
||||
** generator (PRNG) for SQLite.
|
||||
**
|
||||
** Random numbers are used by some of the database backends in order
|
||||
** to generate random integer keys for tables or random filenames.
|
||||
**
|
||||
** $Id: random.c,v 1.29 2008/12/10 19:26:24 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
|
||||
/* All threads share a single random number generator.
|
||||
** This structure is the current state of the generator.
|
||||
*/
|
||||
static SQLITE_WSD struct sqlite3PrngType {
|
||||
unsigned char isInit; /* True if initialized */
|
||||
unsigned char i, j; /* State variables */
|
||||
unsigned char s[256]; /* State variables */
|
||||
} sqlite3Prng;
|
||||
|
||||
/*
|
||||
** Get a single 8-bit random value from the RC4 PRNG. The Mutex
|
||||
** must be held while executing this routine.
|
||||
**
|
||||
** Why not just use a library random generator like lrand48() for this?
|
||||
** Because the OP_NewRowid opcode in the VDBE depends on having a very
|
||||
** good source of random numbers. The lrand48() library function may
|
||||
** well be good enough. But maybe not. Or maybe lrand48() has some
|
||||
** subtle problems on some systems that could cause problems. It is hard
|
||||
** to know. To minimize the risk of problems due to bad lrand48()
|
||||
** implementations, SQLite uses this random number generator based
|
||||
** on RC4, which we know works very well.
|
||||
**
|
||||
** (Later): Actually, OP_NewRowid does not depend on a good source of
|
||||
** randomness any more. But we will leave this code in all the same.
|
||||
*/
|
||||
static u8 randomByte(void){
|
||||
unsigned char t;
|
||||
|
||||
|
||||
/* The "wsdPrng" macro will resolve to the pseudo-random number generator
|
||||
** state vector. If writable static data is unsupported on the target,
|
||||
** we have to locate the state vector at run-time. In the more common
|
||||
** case where writable static data is supported, wsdPrng can refer directly
|
||||
** to the "sqlite3Prng" state vector declared above.
|
||||
*/
|
||||
#ifdef SQLITE_OMIT_WSD
|
||||
struct sqlite3PrngType *p = &GLOBAL(struct sqlite3PrngType, sqlite3Prng);
|
||||
# define wsdPrng p[0]
|
||||
#else
|
||||
# define wsdPrng sqlite3Prng
|
||||
#endif
|
||||
|
||||
|
||||
/* Initialize the state of the random number generator once,
|
||||
** the first time this routine is called. The seed value does
|
||||
** not need to contain a lot of randomness since we are not
|
||||
** trying to do secure encryption or anything like that...
|
||||
**
|
||||
** Nothing in this file or anywhere else in SQLite does any kind of
|
||||
** encryption. The RC4 algorithm is being used as a PRNG (pseudo-random
|
||||
** number generator) not as an encryption device.
|
||||
*/
|
||||
if( !wsdPrng.isInit ){
|
||||
int i;
|
||||
char k[256];
|
||||
wsdPrng.j = 0;
|
||||
wsdPrng.i = 0;
|
||||
sqlite3OsRandomness(sqlite3_vfs_find(0), 256, k);
|
||||
for(i=0; i<256; i++){
|
||||
wsdPrng.s[i] = (u8)i;
|
||||
}
|
||||
for(i=0; i<256; i++){
|
||||
wsdPrng.j += wsdPrng.s[i] + k[i];
|
||||
t = wsdPrng.s[wsdPrng.j];
|
||||
wsdPrng.s[wsdPrng.j] = wsdPrng.s[i];
|
||||
wsdPrng.s[i] = t;
|
||||
}
|
||||
wsdPrng.isInit = 1;
|
||||
}
|
||||
|
||||
/* Generate and return single random byte
|
||||
*/
|
||||
wsdPrng.i++;
|
||||
t = wsdPrng.s[wsdPrng.i];
|
||||
wsdPrng.j += t;
|
||||
wsdPrng.s[wsdPrng.i] = wsdPrng.s[wsdPrng.j];
|
||||
wsdPrng.s[wsdPrng.j] = t;
|
||||
t += wsdPrng.s[wsdPrng.i];
|
||||
return wsdPrng.s[t];
|
||||
}
|
||||
|
||||
/*
|
||||
** Return N random bytes.
|
||||
*/
|
||||
void sqlite3_randomness(int N, void *pBuf){
|
||||
unsigned char *zBuf = pBuf;
|
||||
#if SQLITE_THREADSAFE
|
||||
sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_PRNG);
|
||||
#endif
|
||||
sqlite3_mutex_enter(mutex);
|
||||
while( N-- ){
|
||||
*(zBuf++) = randomByte();
|
||||
}
|
||||
sqlite3_mutex_leave(mutex);
|
||||
}
|
||||
|
||||
#ifndef SQLITE_OMIT_BUILTIN_TEST
|
||||
/*
|
||||
** For testing purposes, we sometimes want to preserve the state of
|
||||
** PRNG and restore the PRNG to its saved state at a later time, or
|
||||
** to reset the PRNG to its initial state. These routines accomplish
|
||||
** those tasks.
|
||||
**
|
||||
** The sqlite3_test_control() interface calls these routines to
|
||||
** control the PRNG.
|
||||
*/
|
||||
static SQLITE_WSD struct sqlite3PrngType sqlite3SavedPrng;
|
||||
void sqlite3PrngSaveState(void){
|
||||
memcpy(
|
||||
&GLOBAL(struct sqlite3PrngType, sqlite3SavedPrng),
|
||||
&GLOBAL(struct sqlite3PrngType, sqlite3Prng),
|
||||
sizeof(sqlite3Prng)
|
||||
);
|
||||
}
|
||||
void sqlite3PrngRestoreState(void){
|
||||
memcpy(
|
||||
&GLOBAL(struct sqlite3PrngType, sqlite3Prng),
|
||||
&GLOBAL(struct sqlite3PrngType, sqlite3SavedPrng),
|
||||
sizeof(sqlite3Prng)
|
||||
);
|
||||
}
|
||||
void sqlite3PrngResetState(void){
|
||||
GLOBAL(struct sqlite3PrngType, sqlite3Prng).isInit = 0;
|
||||
}
|
||||
#endif /* SQLITE_OMIT_BUILTIN_TEST */
|
238
rowset.c
238
rowset.c
|
@ -1,238 +0,0 @@
|
|||
/*
|
||||
** 2008 December 3
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
**
|
||||
** This module implements an object we call a "Row Set".
|
||||
**
|
||||
** The RowSet object is a bag of rowids. Rowids
|
||||
** are inserted into the bag in an arbitrary order. Then they are
|
||||
** pulled from the bag in sorted order. Rowids only appear in the
|
||||
** bag once. If the same rowid is inserted multiple times, the
|
||||
** second and subsequent inserts make no difference on the output.
|
||||
**
|
||||
** This implementation accumulates rowids in a linked list. For
|
||||
** output, it first sorts the linked list (removing duplicates during
|
||||
** the sort) then returns elements one by one by walking the list.
|
||||
**
|
||||
** Big chunks of rowid/next-ptr pairs are allocated at a time, to
|
||||
** reduce the malloc overhead.
|
||||
**
|
||||
** $Id: rowset.c,v 1.4 2009/04/01 19:35:55 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
/*
|
||||
** The number of rowset entries per allocation chunk.
|
||||
*/
|
||||
#define ROWSET_ENTRY_PER_CHUNK 63
|
||||
|
||||
/*
|
||||
** Each entry in a RowSet is an instance of the following
|
||||
** structure:
|
||||
*/
|
||||
struct RowSetEntry {
|
||||
i64 v; /* ROWID value for this entry */
|
||||
struct RowSetEntry *pNext; /* Next entry on a list of all entries */
|
||||
};
|
||||
|
||||
/*
|
||||
** Index entries are allocated in large chunks (instances of the
|
||||
** following structure) to reduce memory allocation overhead. The
|
||||
** chunks are kept on a linked list so that they can be deallocated
|
||||
** when the RowSet is destroyed.
|
||||
*/
|
||||
struct RowSetChunk {
|
||||
struct RowSetChunk *pNext; /* Next chunk on list of them all */
|
||||
struct RowSetEntry aEntry[ROWSET_ENTRY_PER_CHUNK]; /* Allocated entries */
|
||||
};
|
||||
|
||||
/*
|
||||
** A RowSet in an instance of the following structure.
|
||||
**
|
||||
** A typedef of this structure if found in sqliteInt.h.
|
||||
*/
|
||||
struct RowSet {
|
||||
struct RowSetChunk *pChunk; /* List of all chunk allocations */
|
||||
sqlite3 *db; /* The database connection */
|
||||
struct RowSetEntry *pEntry; /* List of entries in the rowset */
|
||||
struct RowSetEntry *pLast; /* Last entry on the pEntry list */
|
||||
struct RowSetEntry *pFresh; /* Source of new entry objects */
|
||||
u16 nFresh; /* Number of objects on pFresh */
|
||||
u8 isSorted; /* True if content is sorted */
|
||||
};
|
||||
|
||||
/*
|
||||
** Turn bulk memory into a RowSet object. N bytes of memory
|
||||
** are available at pSpace. The db pointer is used as a memory context
|
||||
** for any subsequent allocations that need to occur.
|
||||
** Return a pointer to the new RowSet object.
|
||||
**
|
||||
** It must be the case that N is sufficient to make a Rowset. If not
|
||||
** an assertion fault occurs.
|
||||
**
|
||||
** If N is larger than the minimum, use the surplus as an initial
|
||||
** allocation of entries available to be filled.
|
||||
*/
|
||||
RowSet *sqlite3RowSetInit(sqlite3 *db, void *pSpace, unsigned int N){
|
||||
RowSet *p;
|
||||
assert( N >= sizeof(*p) );
|
||||
p = pSpace;
|
||||
p->pChunk = 0;
|
||||
p->db = db;
|
||||
p->pEntry = 0;
|
||||
p->pLast = 0;
|
||||
p->pFresh = (struct RowSetEntry*)&p[1];
|
||||
p->nFresh = (u16)((N - sizeof(*p))/sizeof(struct RowSetEntry));
|
||||
p->isSorted = 1;
|
||||
return p;
|
||||
}
|
||||
|
||||
/*
|
||||
** Deallocate all chunks from a RowSet.
|
||||
*/
|
||||
void sqlite3RowSetClear(RowSet *p){
|
||||
struct RowSetChunk *pChunk, *pNextChunk;
|
||||
for(pChunk=p->pChunk; pChunk; pChunk = pNextChunk){
|
||||
pNextChunk = pChunk->pNext;
|
||||
sqlite3DbFree(p->db, pChunk);
|
||||
}
|
||||
p->pChunk = 0;
|
||||
p->nFresh = 0;
|
||||
p->pEntry = 0;
|
||||
p->pLast = 0;
|
||||
p->isSorted = 1;
|
||||
}
|
||||
|
||||
/*
|
||||
** Insert a new value into a RowSet.
|
||||
**
|
||||
** The mallocFailed flag of the database connection is set if a
|
||||
** memory allocation fails.
|
||||
*/
|
||||
void sqlite3RowSetInsert(RowSet *p, i64 rowid){
|
||||
struct RowSetEntry *pEntry;
|
||||
struct RowSetEntry *pLast;
|
||||
assert( p!=0 );
|
||||
if( p->nFresh==0 ){
|
||||
struct RowSetChunk *pNew;
|
||||
pNew = sqlite3DbMallocRaw(p->db, sizeof(*pNew));
|
||||
if( pNew==0 ){
|
||||
return;
|
||||
}
|
||||
pNew->pNext = p->pChunk;
|
||||
p->pChunk = pNew;
|
||||
p->pFresh = pNew->aEntry;
|
||||
p->nFresh = ROWSET_ENTRY_PER_CHUNK;
|
||||
}
|
||||
pEntry = p->pFresh++;
|
||||
p->nFresh--;
|
||||
pEntry->v = rowid;
|
||||
pEntry->pNext = 0;
|
||||
pLast = p->pLast;
|
||||
if( pLast ){
|
||||
if( p->isSorted && rowid<=pLast->v ){
|
||||
p->isSorted = 0;
|
||||
}
|
||||
pLast->pNext = pEntry;
|
||||
}else{
|
||||
assert( p->pEntry==0 );
|
||||
p->pEntry = pEntry;
|
||||
}
|
||||
p->pLast = pEntry;
|
||||
}
|
||||
|
||||
/*
|
||||
** Merge two lists of RowSet entries. Remove duplicates.
|
||||
**
|
||||
** The input lists are assumed to be in sorted order.
|
||||
*/
|
||||
static struct RowSetEntry *boolidxMerge(
|
||||
struct RowSetEntry *pA, /* First sorted list to be merged */
|
||||
struct RowSetEntry *pB /* Second sorted list to be merged */
|
||||
){
|
||||
struct RowSetEntry head;
|
||||
struct RowSetEntry *pTail;
|
||||
|
||||
pTail = &head;
|
||||
while( pA && pB ){
|
||||
assert( pA->pNext==0 || pA->v<=pA->pNext->v );
|
||||
assert( pB->pNext==0 || pB->v<=pB->pNext->v );
|
||||
if( pA->v<pB->v ){
|
||||
pTail->pNext = pA;
|
||||
pA = pA->pNext;
|
||||
pTail = pTail->pNext;
|
||||
}else if( pB->v<pA->v ){
|
||||
pTail->pNext = pB;
|
||||
pB = pB->pNext;
|
||||
pTail = pTail->pNext;
|
||||
}else{
|
||||
pA = pA->pNext;
|
||||
}
|
||||
}
|
||||
if( pA ){
|
||||
assert( pA->pNext==0 || pA->v<=pA->pNext->v );
|
||||
pTail->pNext = pA;
|
||||
}else{
|
||||
assert( pB==0 || pB->pNext==0 || pB->v<=pB->pNext->v );
|
||||
pTail->pNext = pB;
|
||||
}
|
||||
return head.pNext;
|
||||
}
|
||||
|
||||
/*
|
||||
** Sort all elements of the RowSet into ascending order.
|
||||
*/
|
||||
static void sqlite3RowSetSort(RowSet *p){
|
||||
unsigned int i;
|
||||
struct RowSetEntry *pEntry;
|
||||
struct RowSetEntry *aBucket[40];
|
||||
|
||||
assert( p->isSorted==0 );
|
||||
memset(aBucket, 0, sizeof(aBucket));
|
||||
while( p->pEntry ){
|
||||
pEntry = p->pEntry;
|
||||
p->pEntry = pEntry->pNext;
|
||||
pEntry->pNext = 0;
|
||||
for(i=0; aBucket[i]; i++){
|
||||
pEntry = boolidxMerge(aBucket[i],pEntry);
|
||||
aBucket[i] = 0;
|
||||
}
|
||||
aBucket[i] = pEntry;
|
||||
}
|
||||
pEntry = 0;
|
||||
for(i=0; i<sizeof(aBucket)/sizeof(aBucket[0]); i++){
|
||||
pEntry = boolidxMerge(pEntry,aBucket[i]);
|
||||
}
|
||||
p->pEntry = pEntry;
|
||||
p->pLast = 0;
|
||||
p->isSorted = 1;
|
||||
}
|
||||
|
||||
/*
|
||||
** Extract the next (smallest) element from the RowSet.
|
||||
** Write the element into *pRowid. Return 1 on success. Return
|
||||
** 0 if the RowSet is already empty.
|
||||
*/
|
||||
int sqlite3RowSetNext(RowSet *p, i64 *pRowid){
|
||||
if( !p->isSorted ){
|
||||
sqlite3RowSetSort(p);
|
||||
}
|
||||
if( p->pEntry ){
|
||||
*pRowid = p->pEntry->v;
|
||||
p->pEntry = p->pEntry->pNext;
|
||||
if( p->pEntry==0 ){
|
||||
sqlite3RowSetClear(p);
|
||||
}
|
||||
return 1;
|
||||
}else{
|
||||
return 0;
|
||||
}
|
||||
}
|
2836
sqliteInt.h
2836
sqliteInt.h
File diff suppressed because it is too large
Load diff
190
sqliteLimit.h
190
sqliteLimit.h
|
@ -1,190 +0,0 @@
|
|||
/*
|
||||
** 2007 May 7
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
**
|
||||
** This file defines various limits of what SQLite can process.
|
||||
**
|
||||
** @(#) $Id: sqliteLimit.h,v 1.10 2009/01/10 16:15:09 danielk1977 Exp $
|
||||
*/
|
||||
|
||||
/*
|
||||
** The maximum length of a TEXT or BLOB in bytes. This also
|
||||
** limits the size of a row in a table or index.
|
||||
**
|
||||
** The hard limit is the ability of a 32-bit signed integer
|
||||
** to count the size: 2^31-1 or 2147483647.
|
||||
*/
|
||||
#ifndef SQLITE_MAX_LENGTH
|
||||
# define SQLITE_MAX_LENGTH 1000000000
|
||||
#endif
|
||||
|
||||
/*
|
||||
** This is the maximum number of
|
||||
**
|
||||
** * Columns in a table
|
||||
** * Columns in an index
|
||||
** * Columns in a view
|
||||
** * Terms in the SET clause of an UPDATE statement
|
||||
** * Terms in the result set of a SELECT statement
|
||||
** * Terms in the GROUP BY or ORDER BY clauses of a SELECT statement.
|
||||
** * Terms in the VALUES clause of an INSERT statement
|
||||
**
|
||||
** The hard upper limit here is 32676. Most database people will
|
||||
** tell you that in a well-normalized database, you usually should
|
||||
** not have more than a dozen or so columns in any table. And if
|
||||
** that is the case, there is no point in having more than a few
|
||||
** dozen values in any of the other situations described above.
|
||||
*/
|
||||
#ifndef SQLITE_MAX_COLUMN
|
||||
# define SQLITE_MAX_COLUMN 2000
|
||||
#endif
|
||||
|
||||
/*
|
||||
** The maximum length of a single SQL statement in bytes.
|
||||
**
|
||||
** It used to be the case that setting this value to zero would
|
||||
** turn the limit off. That is no longer true. It is not possible
|
||||
** to turn this limit off.
|
||||
*/
|
||||
#ifndef SQLITE_MAX_SQL_LENGTH
|
||||
# define SQLITE_MAX_SQL_LENGTH 1000000000
|
||||
#endif
|
||||
|
||||
/*
|
||||
** The maximum depth of an expression tree. This is limited to
|
||||
** some extent by SQLITE_MAX_SQL_LENGTH. But sometime you might
|
||||
** want to place more severe limits on the complexity of an
|
||||
** expression.
|
||||
**
|
||||
** A value of 0 used to mean that the limit was not enforced.
|
||||
** But that is no longer true. The limit is now strictly enforced
|
||||
** at all times.
|
||||
*/
|
||||
#ifndef SQLITE_MAX_EXPR_DEPTH
|
||||
# define SQLITE_MAX_EXPR_DEPTH 1000
|
||||
#endif
|
||||
|
||||
/*
|
||||
** The maximum number of terms in a compound SELECT statement.
|
||||
** The code generator for compound SELECT statements does one
|
||||
** level of recursion for each term. A stack overflow can result
|
||||
** if the number of terms is too large. In practice, most SQL
|
||||
** never has more than 3 or 4 terms. Use a value of 0 to disable
|
||||
** any limit on the number of terms in a compount SELECT.
|
||||
*/
|
||||
#ifndef SQLITE_MAX_COMPOUND_SELECT
|
||||
# define SQLITE_MAX_COMPOUND_SELECT 500
|
||||
#endif
|
||||
|
||||
/*
|
||||
** The maximum number of opcodes in a VDBE program.
|
||||
** Not currently enforced.
|
||||
*/
|
||||
#ifndef SQLITE_MAX_VDBE_OP
|
||||
# define SQLITE_MAX_VDBE_OP 25000
|
||||
#endif
|
||||
|
||||
/*
|
||||
** The maximum number of arguments to an SQL function.
|
||||
*/
|
||||
#ifndef SQLITE_MAX_FUNCTION_ARG
|
||||
# define SQLITE_MAX_FUNCTION_ARG 127
|
||||
#endif
|
||||
|
||||
/*
|
||||
** The maximum number of in-memory pages to use for the main database
|
||||
** table and for temporary tables. The SQLITE_DEFAULT_CACHE_SIZE
|
||||
*/
|
||||
#ifndef SQLITE_DEFAULT_CACHE_SIZE
|
||||
# define SQLITE_DEFAULT_CACHE_SIZE 2000
|
||||
#endif
|
||||
#ifndef SQLITE_DEFAULT_TEMP_CACHE_SIZE
|
||||
# define SQLITE_DEFAULT_TEMP_CACHE_SIZE 500
|
||||
#endif
|
||||
|
||||
/*
|
||||
** The maximum number of attached databases. This must be between 0
|
||||
** and 30. The upper bound on 30 is because a 32-bit integer bitmap
|
||||
** is used internally to track attached databases.
|
||||
*/
|
||||
#ifndef SQLITE_MAX_ATTACHED
|
||||
# define SQLITE_MAX_ATTACHED 10
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
** The maximum value of a ?nnn wildcard that the parser will accept.
|
||||
*/
|
||||
#ifndef SQLITE_MAX_VARIABLE_NUMBER
|
||||
# define SQLITE_MAX_VARIABLE_NUMBER 999
|
||||
#endif
|
||||
|
||||
/* Maximum page size. The upper bound on this value is 32768. This a limit
|
||||
** imposed by the necessity of storing the value in a 2-byte unsigned integer
|
||||
** and the fact that the page size must be a power of 2.
|
||||
**
|
||||
** If this limit is changed, then the compiled library is technically
|
||||
** incompatible with an SQLite library compiled with a different limit. If
|
||||
** a process operating on a database with a page-size of 65536 bytes
|
||||
** crashes, then an instance of SQLite compiled with the default page-size
|
||||
** limit will not be able to rollback the aborted transaction. This could
|
||||
** lead to database corruption.
|
||||
*/
|
||||
#ifndef SQLITE_MAX_PAGE_SIZE
|
||||
# define SQLITE_MAX_PAGE_SIZE 32768
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
** The default size of a database page.
|
||||
*/
|
||||
#ifndef SQLITE_DEFAULT_PAGE_SIZE
|
||||
# define SQLITE_DEFAULT_PAGE_SIZE 1024
|
||||
#endif
|
||||
#if SQLITE_DEFAULT_PAGE_SIZE>SQLITE_MAX_PAGE_SIZE
|
||||
# undef SQLITE_DEFAULT_PAGE_SIZE
|
||||
# define SQLITE_DEFAULT_PAGE_SIZE SQLITE_MAX_PAGE_SIZE
|
||||
#endif
|
||||
|
||||
/*
|
||||
** Ordinarily, if no value is explicitly provided, SQLite creates databases
|
||||
** with page size SQLITE_DEFAULT_PAGE_SIZE. However, based on certain
|
||||
** device characteristics (sector-size and atomic write() support),
|
||||
** SQLite may choose a larger value. This constant is the maximum value
|
||||
** SQLite will choose on its own.
|
||||
*/
|
||||
#ifndef SQLITE_MAX_DEFAULT_PAGE_SIZE
|
||||
# define SQLITE_MAX_DEFAULT_PAGE_SIZE 8192
|
||||
#endif
|
||||
#if SQLITE_MAX_DEFAULT_PAGE_SIZE>SQLITE_MAX_PAGE_SIZE
|
||||
# undef SQLITE_MAX_DEFAULT_PAGE_SIZE
|
||||
# define SQLITE_MAX_DEFAULT_PAGE_SIZE SQLITE_MAX_PAGE_SIZE
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
** Maximum number of pages in one database file.
|
||||
**
|
||||
** This is really just the default value for the max_page_count pragma.
|
||||
** This value can be lowered (or raised) at run-time using that the
|
||||
** max_page_count macro.
|
||||
*/
|
||||
#ifndef SQLITE_MAX_PAGE_COUNT
|
||||
# define SQLITE_MAX_PAGE_COUNT 1073741823
|
||||
#endif
|
||||
|
||||
/*
|
||||
** Maximum length (in bytes) of the pattern in a LIKE or GLOB
|
||||
** operator.
|
||||
*/
|
||||
#ifndef SQLITE_MAX_LIKE_PATTERN_LENGTH
|
||||
# define SQLITE_MAX_LIKE_PATTERN_LENGTH 50000
|
||||
#endif
|
122
status.c
122
status.c
|
@ -1,122 +0,0 @@
|
|||
/*
|
||||
** 2008 June 18
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
**
|
||||
** This module implements the sqlite3_status() interface and related
|
||||
** functionality.
|
||||
**
|
||||
** $Id: status.c,v 1.9 2008/09/02 00:52:52 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
/*
|
||||
** Variables in which to record status information.
|
||||
*/
|
||||
typedef struct sqlite3StatType sqlite3StatType;
|
||||
static SQLITE_WSD struct sqlite3StatType {
|
||||
int nowValue[9]; /* Current value */
|
||||
int mxValue[9]; /* Maximum value */
|
||||
} sqlite3Stat = { {0,}, {0,} };
|
||||
|
||||
|
||||
/* The "wsdStat" macro will resolve to the status information
|
||||
** state vector. If writable static data is unsupported on the target,
|
||||
** we have to locate the state vector at run-time. In the more common
|
||||
** case where writable static data is supported, wsdStat can refer directly
|
||||
** to the "sqlite3Stat" state vector declared above.
|
||||
*/
|
||||
#ifdef SQLITE_OMIT_WSD
|
||||
# define wsdStatInit sqlite3StatType *x = &GLOBAL(sqlite3StatType,sqlite3Stat)
|
||||
# define wsdStat x[0]
|
||||
#else
|
||||
# define wsdStatInit
|
||||
# define wsdStat sqlite3Stat
|
||||
#endif
|
||||
|
||||
/*
|
||||
** Return the current value of a status parameter.
|
||||
*/
|
||||
int sqlite3StatusValue(int op){
|
||||
wsdStatInit;
|
||||
assert( op>=0 && op<ArraySize(wsdStat.nowValue) );
|
||||
return wsdStat.nowValue[op];
|
||||
}
|
||||
|
||||
/*
|
||||
** Add N to the value of a status record. It is assumed that the
|
||||
** caller holds appropriate locks.
|
||||
*/
|
||||
void sqlite3StatusAdd(int op, int N){
|
||||
wsdStatInit;
|
||||
assert( op>=0 && op<ArraySize(wsdStat.nowValue) );
|
||||
wsdStat.nowValue[op] += N;
|
||||
if( wsdStat.nowValue[op]>wsdStat.mxValue[op] ){
|
||||
wsdStat.mxValue[op] = wsdStat.nowValue[op];
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Set the value of a status to X.
|
||||
*/
|
||||
void sqlite3StatusSet(int op, int X){
|
||||
wsdStatInit;
|
||||
assert( op>=0 && op<ArraySize(wsdStat.nowValue) );
|
||||
wsdStat.nowValue[op] = X;
|
||||
if( wsdStat.nowValue[op]>wsdStat.mxValue[op] ){
|
||||
wsdStat.mxValue[op] = wsdStat.nowValue[op];
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Query status information.
|
||||
**
|
||||
** This implementation assumes that reading or writing an aligned
|
||||
** 32-bit integer is an atomic operation. If that assumption is not true,
|
||||
** then this routine is not threadsafe.
|
||||
*/
|
||||
int sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetFlag){
|
||||
wsdStatInit;
|
||||
if( op<0 || op>=ArraySize(wsdStat.nowValue) ){
|
||||
return SQLITE_MISUSE;
|
||||
}
|
||||
*pCurrent = wsdStat.nowValue[op];
|
||||
*pHighwater = wsdStat.mxValue[op];
|
||||
if( resetFlag ){
|
||||
wsdStat.mxValue[op] = wsdStat.nowValue[op];
|
||||
}
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Query status information for a single database connection
|
||||
*/
|
||||
int sqlite3_db_status(
|
||||
sqlite3 *db, /* The database connection whose status is desired */
|
||||
int op, /* Status verb */
|
||||
int *pCurrent, /* Write current value here */
|
||||
int *pHighwater, /* Write high-water mark here */
|
||||
int resetFlag /* Reset high-water mark if true */
|
||||
){
|
||||
switch( op ){
|
||||
case SQLITE_DBSTATUS_LOOKASIDE_USED: {
|
||||
*pCurrent = db->lookaside.nOut;
|
||||
*pHighwater = db->lookaside.mxOut;
|
||||
if( resetFlag ){
|
||||
db->lookaside.mxOut = db->lookaside.nOut;
|
||||
}
|
||||
break;
|
||||
}
|
||||
default: {
|
||||
return SQLITE_ERROR;
|
||||
}
|
||||
}
|
||||
return SQLITE_OK;
|
||||
}
|
199
table.c
199
table.c
|
@ -1,199 +0,0 @@
|
|||
/*
|
||||
** 2001 September 15
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This file contains the sqlite3_get_table() and sqlite3_free_table()
|
||||
** interface routines. These are just wrappers around the main
|
||||
** interface routine of sqlite3_exec().
|
||||
**
|
||||
** These routines are in a separate files so that they will not be linked
|
||||
** if they are not used.
|
||||
**
|
||||
** $Id: table.c,v 1.40 2009/04/10 14:28:00 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
#ifndef SQLITE_OMIT_GET_TABLE
|
||||
|
||||
/*
|
||||
** This structure is used to pass data from sqlite3_get_table() through
|
||||
** to the callback function is uses to build the result.
|
||||
*/
|
||||
typedef struct TabResult {
|
||||
char **azResult; /* Accumulated output */
|
||||
char *zErrMsg; /* Error message text, if an error occurs */
|
||||
int nAlloc; /* Slots allocated for azResult[] */
|
||||
int nRow; /* Number of rows in the result */
|
||||
int nColumn; /* Number of columns in the result */
|
||||
int nData; /* Slots used in azResult[]. (nRow+1)*nColumn */
|
||||
int rc; /* Return code from sqlite3_exec() */
|
||||
} TabResult;
|
||||
|
||||
/*
|
||||
** This routine is called once for each row in the result table. Its job
|
||||
** is to fill in the TabResult structure appropriately, allocating new
|
||||
** memory as necessary.
|
||||
*/
|
||||
static int sqlite3_get_table_cb(void *pArg, int nCol, char **argv, char **colv){
|
||||
TabResult *p = (TabResult*)pArg; /* Result accumulator */
|
||||
int need; /* Slots needed in p->azResult[] */
|
||||
int i; /* Loop counter */
|
||||
char *z; /* A single column of result */
|
||||
|
||||
/* Make sure there is enough space in p->azResult to hold everything
|
||||
** we need to remember from this invocation of the callback.
|
||||
*/
|
||||
if( p->nRow==0 && argv!=0 ){
|
||||
need = nCol*2;
|
||||
}else{
|
||||
need = nCol;
|
||||
}
|
||||
if( p->nData + need > p->nAlloc ){
|
||||
char **azNew;
|
||||
p->nAlloc = p->nAlloc*2 + need;
|
||||
azNew = sqlite3_realloc( p->azResult, sizeof(char*)*p->nAlloc );
|
||||
if( azNew==0 ) goto malloc_failed;
|
||||
p->azResult = azNew;
|
||||
}
|
||||
|
||||
/* If this is the first row, then generate an extra row containing
|
||||
** the names of all columns.
|
||||
*/
|
||||
if( p->nRow==0 ){
|
||||
p->nColumn = nCol;
|
||||
for(i=0; i<nCol; i++){
|
||||
z = sqlite3_mprintf("%s", colv[i]);
|
||||
if( z==0 ) goto malloc_failed;
|
||||
p->azResult[p->nData++] = z;
|
||||
}
|
||||
}else if( p->nColumn!=nCol ){
|
||||
sqlite3_free(p->zErrMsg);
|
||||
p->zErrMsg = sqlite3_mprintf(
|
||||
"sqlite3_get_table() called with two or more incompatible queries"
|
||||
);
|
||||
p->rc = SQLITE_ERROR;
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* Copy over the row data
|
||||
*/
|
||||
if( argv!=0 ){
|
||||
for(i=0; i<nCol; i++){
|
||||
if( argv[i]==0 ){
|
||||
z = 0;
|
||||
}else{
|
||||
int n = sqlite3Strlen30(argv[i])+1;
|
||||
z = sqlite3_malloc( n );
|
||||
if( z==0 ) goto malloc_failed;
|
||||
memcpy(z, argv[i], n);
|
||||
}
|
||||
p->azResult[p->nData++] = z;
|
||||
}
|
||||
p->nRow++;
|
||||
}
|
||||
return 0;
|
||||
|
||||
malloc_failed:
|
||||
p->rc = SQLITE_NOMEM;
|
||||
return 1;
|
||||
}
|
||||
|
||||
/*
|
||||
** Query the database. But instead of invoking a callback for each row,
|
||||
** malloc() for space to hold the result and return the entire results
|
||||
** at the conclusion of the call.
|
||||
**
|
||||
** The result that is written to ***pazResult is held in memory obtained
|
||||
** from malloc(). But the caller cannot free this memory directly.
|
||||
** Instead, the entire table should be passed to sqlite3_free_table() when
|
||||
** the calling procedure is finished using it.
|
||||
*/
|
||||
int sqlite3_get_table(
|
||||
sqlite3 *db, /* The database on which the SQL executes */
|
||||
const char *zSql, /* The SQL to be executed */
|
||||
char ***pazResult, /* Write the result table here */
|
||||
int *pnRow, /* Write the number of rows in the result here */
|
||||
int *pnColumn, /* Write the number of columns of result here */
|
||||
char **pzErrMsg /* Write error messages here */
|
||||
){
|
||||
int rc;
|
||||
TabResult res;
|
||||
|
||||
*pazResult = 0;
|
||||
if( pnColumn ) *pnColumn = 0;
|
||||
if( pnRow ) *pnRow = 0;
|
||||
if( pzErrMsg ) *pzErrMsg = 0;
|
||||
res.zErrMsg = 0;
|
||||
res.nRow = 0;
|
||||
res.nColumn = 0;
|
||||
res.nData = 1;
|
||||
res.nAlloc = 20;
|
||||
res.rc = SQLITE_OK;
|
||||
res.azResult = sqlite3_malloc(sizeof(char*)*res.nAlloc );
|
||||
if( res.azResult==0 ){
|
||||
db->errCode = SQLITE_NOMEM;
|
||||
return SQLITE_NOMEM;
|
||||
}
|
||||
res.azResult[0] = 0;
|
||||
rc = sqlite3_exec(db, zSql, sqlite3_get_table_cb, &res, pzErrMsg);
|
||||
assert( sizeof(res.azResult[0])>= sizeof(res.nData) );
|
||||
res.azResult[0] = SQLITE_INT_TO_PTR(res.nData);
|
||||
if( (rc&0xff)==SQLITE_ABORT ){
|
||||
sqlite3_free_table(&res.azResult[1]);
|
||||
if( res.zErrMsg ){
|
||||
if( pzErrMsg ){
|
||||
sqlite3_free(*pzErrMsg);
|
||||
*pzErrMsg = sqlite3_mprintf("%s",res.zErrMsg);
|
||||
}
|
||||
sqlite3_free(res.zErrMsg);
|
||||
}
|
||||
db->errCode = res.rc; /* Assume 32-bit assignment is atomic */
|
||||
return res.rc;
|
||||
}
|
||||
sqlite3_free(res.zErrMsg);
|
||||
if( rc!=SQLITE_OK ){
|
||||
sqlite3_free_table(&res.azResult[1]);
|
||||
return rc;
|
||||
}
|
||||
if( res.nAlloc>res.nData ){
|
||||
char **azNew;
|
||||
azNew = sqlite3_realloc( res.azResult, sizeof(char*)*res.nData );
|
||||
if( azNew==0 ){
|
||||
sqlite3_free_table(&res.azResult[1]);
|
||||
db->errCode = SQLITE_NOMEM;
|
||||
return SQLITE_NOMEM;
|
||||
}
|
||||
res.azResult = azNew;
|
||||
}
|
||||
*pazResult = &res.azResult[1];
|
||||
if( pnColumn ) *pnColumn = res.nColumn;
|
||||
if( pnRow ) *pnRow = res.nRow;
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** This routine frees the space the sqlite3_get_table() malloced.
|
||||
*/
|
||||
void sqlite3_free_table(
|
||||
char **azResult /* Result returned from from sqlite3_get_table() */
|
||||
){
|
||||
if( azResult ){
|
||||
int i, n;
|
||||
azResult--;
|
||||
assert( azResult!=0 );
|
||||
n = SQLITE_PTR_TO_INT(azResult[0]);
|
||||
for(i=1; i<n; i++){ if( azResult[i] ) sqlite3_free(azResult[i]); }
|
||||
sqlite3_free(azResult);
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* SQLITE_OMIT_GET_TABLE */
|
521
tokenize.c
521
tokenize.c
|
@ -1,521 +0,0 @@
|
|||
/*
|
||||
** 2001 September 15
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** An tokenizer for SQL
|
||||
**
|
||||
** This file contains C code that splits an SQL input string up into
|
||||
** individual tokens and sends those tokens one-by-one over to the
|
||||
** parser for analysis.
|
||||
**
|
||||
** $Id: tokenize.c,v 1.155 2009/03/31 03:41:57 shane Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
#include <stdlib.h>
|
||||
|
||||
/*
|
||||
** The charMap() macro maps alphabetic characters into their
|
||||
** lower-case ASCII equivalent. On ASCII machines, this is just
|
||||
** an upper-to-lower case map. On EBCDIC machines we also need
|
||||
** to adjust the encoding. Only alphabetic characters and underscores
|
||||
** need to be translated.
|
||||
*/
|
||||
#ifdef SQLITE_ASCII
|
||||
# define charMap(X) sqlite3UpperToLower[(unsigned char)X]
|
||||
#endif
|
||||
#ifdef SQLITE_EBCDIC
|
||||
# define charMap(X) ebcdicToAscii[(unsigned char)X]
|
||||
const unsigned char ebcdicToAscii[] = {
|
||||
/* 0 1 2 3 4 5 6 7 8 9 A B C D E F */
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x */
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 1x */
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 3x */
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 4x */
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 5x */
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 95, 0, 0, /* 6x */
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 7x */
|
||||
0, 97, 98, 99,100,101,102,103,104,105, 0, 0, 0, 0, 0, 0, /* 8x */
|
||||
0,106,107,108,109,110,111,112,113,114, 0, 0, 0, 0, 0, 0, /* 9x */
|
||||
0, 0,115,116,117,118,119,120,121,122, 0, 0, 0, 0, 0, 0, /* Ax */
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* Bx */
|
||||
0, 97, 98, 99,100,101,102,103,104,105, 0, 0, 0, 0, 0, 0, /* Cx */
|
||||
0,106,107,108,109,110,111,112,113,114, 0, 0, 0, 0, 0, 0, /* Dx */
|
||||
0, 0,115,116,117,118,119,120,121,122, 0, 0, 0, 0, 0, 0, /* Ex */
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* Fx */
|
||||
};
|
||||
#endif
|
||||
|
||||
/*
|
||||
** The sqlite3KeywordCode function looks up an identifier to determine if
|
||||
** it is a keyword. If it is a keyword, the token code of that keyword is
|
||||
** returned. If the input is not a keyword, TK_ID is returned.
|
||||
**
|
||||
** The implementation of this routine was generated by a program,
|
||||
** mkkeywordhash.h, located in the tool subdirectory of the distribution.
|
||||
** The output of the mkkeywordhash.c program is written into a file
|
||||
** named keywordhash.h and then included into this source file by
|
||||
** the #include below.
|
||||
*/
|
||||
#include "keywordhash.h"
|
||||
|
||||
|
||||
/*
|
||||
** If X is a character that can be used in an identifier then
|
||||
** IdChar(X) will be true. Otherwise it is false.
|
||||
**
|
||||
** For ASCII, any character with the high-order bit set is
|
||||
** allowed in an identifier. For 7-bit characters,
|
||||
** sqlite3IsIdChar[X] must be 1.
|
||||
**
|
||||
** For EBCDIC, the rules are more complex but have the same
|
||||
** end result.
|
||||
**
|
||||
** Ticket #1066. the SQL standard does not allow '$' in the
|
||||
** middle of identfiers. But many SQL implementations do.
|
||||
** SQLite will allow '$' in identifiers for compatibility.
|
||||
** But the feature is undocumented.
|
||||
*/
|
||||
#ifdef SQLITE_ASCII
|
||||
const char sqlite3IsAsciiIdChar[] = {
|
||||
/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
|
||||
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */
|
||||
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */
|
||||
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */
|
||||
};
|
||||
#define IdChar(C) (((c=C)&0x80)!=0 || (c>0x1f && sqlite3IsAsciiIdChar[c-0x20]))
|
||||
#endif
|
||||
#ifdef SQLITE_EBCDIC
|
||||
const char sqlite3IsEbcdicIdChar[] = {
|
||||
/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
|
||||
0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 4x */
|
||||
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, /* 5x */
|
||||
0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, /* 6x */
|
||||
0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, /* 7x */
|
||||
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, /* 8x */
|
||||
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, /* 9x */
|
||||
1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, /* Ax */
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* Bx */
|
||||
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, /* Cx */
|
||||
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, /* Dx */
|
||||
0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, /* Ex */
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, /* Fx */
|
||||
};
|
||||
#define IdChar(C) (((c=C)>=0x42 && sqlite3IsEbcdicIdChar[c-0x40]))
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
** Return the length of the token that begins at z[0].
|
||||
** Store the token type in *tokenType before returning.
|
||||
*/
|
||||
int sqlite3GetToken(const unsigned char *z, int *tokenType){
|
||||
int i, c;
|
||||
switch( *z ){
|
||||
case ' ': case '\t': case '\n': case '\f': case '\r': {
|
||||
for(i=1; sqlite3Isspace(z[i]); i++){}
|
||||
*tokenType = TK_SPACE;
|
||||
return i;
|
||||
}
|
||||
case '-': {
|
||||
if( z[1]=='-' ){
|
||||
for(i=2; (c=z[i])!=0 && c!='\n'; i++){}
|
||||
*tokenType = TK_SPACE;
|
||||
return i;
|
||||
}
|
||||
*tokenType = TK_MINUS;
|
||||
return 1;
|
||||
}
|
||||
case '(': {
|
||||
*tokenType = TK_LP;
|
||||
return 1;
|
||||
}
|
||||
case ')': {
|
||||
*tokenType = TK_RP;
|
||||
return 1;
|
||||
}
|
||||
case ';': {
|
||||
*tokenType = TK_SEMI;
|
||||
return 1;
|
||||
}
|
||||
case '+': {
|
||||
*tokenType = TK_PLUS;
|
||||
return 1;
|
||||
}
|
||||
case '*': {
|
||||
*tokenType = TK_STAR;
|
||||
return 1;
|
||||
}
|
||||
case '/': {
|
||||
if( z[1]!='*' || z[2]==0 ){
|
||||
*tokenType = TK_SLASH;
|
||||
return 1;
|
||||
}
|
||||
for(i=3, c=z[2]; (c!='*' || z[i]!='/') && (c=z[i])!=0; i++){}
|
||||
if( c ) i++;
|
||||
*tokenType = TK_SPACE;
|
||||
return i;
|
||||
}
|
||||
case '%': {
|
||||
*tokenType = TK_REM;
|
||||
return 1;
|
||||
}
|
||||
case '=': {
|
||||
*tokenType = TK_EQ;
|
||||
return 1 + (z[1]=='=');
|
||||
}
|
||||
case '<': {
|
||||
if( (c=z[1])=='=' ){
|
||||
*tokenType = TK_LE;
|
||||
return 2;
|
||||
}else if( c=='>' ){
|
||||
*tokenType = TK_NE;
|
||||
return 2;
|
||||
}else if( c=='<' ){
|
||||
*tokenType = TK_LSHIFT;
|
||||
return 2;
|
||||
}else{
|
||||
*tokenType = TK_LT;
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
case '>': {
|
||||
if( (c=z[1])=='=' ){
|
||||
*tokenType = TK_GE;
|
||||
return 2;
|
||||
}else if( c=='>' ){
|
||||
*tokenType = TK_RSHIFT;
|
||||
return 2;
|
||||
}else{
|
||||
*tokenType = TK_GT;
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
case '!': {
|
||||
if( z[1]!='=' ){
|
||||
*tokenType = TK_ILLEGAL;
|
||||
return 2;
|
||||
}else{
|
||||
*tokenType = TK_NE;
|
||||
return 2;
|
||||
}
|
||||
}
|
||||
case '|': {
|
||||
if( z[1]!='|' ){
|
||||
*tokenType = TK_BITOR;
|
||||
return 1;
|
||||
}else{
|
||||
*tokenType = TK_CONCAT;
|
||||
return 2;
|
||||
}
|
||||
}
|
||||
case ',': {
|
||||
*tokenType = TK_COMMA;
|
||||
return 1;
|
||||
}
|
||||
case '&': {
|
||||
*tokenType = TK_BITAND;
|
||||
return 1;
|
||||
}
|
||||
case '~': {
|
||||
*tokenType = TK_BITNOT;
|
||||
return 1;
|
||||
}
|
||||
case '`':
|
||||
case '\'':
|
||||
case '"': {
|
||||
int delim = z[0];
|
||||
for(i=1; (c=z[i])!=0; i++){
|
||||
if( c==delim ){
|
||||
if( z[i+1]==delim ){
|
||||
i++;
|
||||
}else{
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
if( c=='\'' ){
|
||||
*tokenType = TK_STRING;
|
||||
return i+1;
|
||||
}else if( c!=0 ){
|
||||
*tokenType = TK_ID;
|
||||
return i+1;
|
||||
}else{
|
||||
*tokenType = TK_ILLEGAL;
|
||||
return i;
|
||||
}
|
||||
}
|
||||
case '.': {
|
||||
#ifndef SQLITE_OMIT_FLOATING_POINT
|
||||
if( !sqlite3Isdigit(z[1]) )
|
||||
#endif
|
||||
{
|
||||
*tokenType = TK_DOT;
|
||||
return 1;
|
||||
}
|
||||
/* If the next character is a digit, this is a floating point
|
||||
** number that begins with ".". Fall thru into the next case */
|
||||
}
|
||||
case '0': case '1': case '2': case '3': case '4':
|
||||
case '5': case '6': case '7': case '8': case '9': {
|
||||
*tokenType = TK_INTEGER;
|
||||
for(i=0; sqlite3Isdigit(z[i]); i++){}
|
||||
#ifndef SQLITE_OMIT_FLOATING_POINT
|
||||
if( z[i]=='.' ){
|
||||
i++;
|
||||
while( sqlite3Isdigit(z[i]) ){ i++; }
|
||||
*tokenType = TK_FLOAT;
|
||||
}
|
||||
if( (z[i]=='e' || z[i]=='E') &&
|
||||
( sqlite3Isdigit(z[i+1])
|
||||
|| ((z[i+1]=='+' || z[i+1]=='-') && sqlite3Isdigit(z[i+2]))
|
||||
)
|
||||
){
|
||||
i += 2;
|
||||
while( sqlite3Isdigit(z[i]) ){ i++; }
|
||||
*tokenType = TK_FLOAT;
|
||||
}
|
||||
#endif
|
||||
while( IdChar(z[i]) ){
|
||||
*tokenType = TK_ILLEGAL;
|
||||
i++;
|
||||
}
|
||||
return i;
|
||||
}
|
||||
case '[': {
|
||||
for(i=1, c=z[0]; c!=']' && (c=z[i])!=0; i++){}
|
||||
*tokenType = c==']' ? TK_ID : TK_ILLEGAL;
|
||||
return i;
|
||||
}
|
||||
case '?': {
|
||||
*tokenType = TK_VARIABLE;
|
||||
for(i=1; sqlite3Isdigit(z[i]); i++){}
|
||||
return i;
|
||||
}
|
||||
case '#': {
|
||||
for(i=1; sqlite3Isdigit(z[i]); i++){}
|
||||
if( i>1 ){
|
||||
/* Parameters of the form #NNN (where NNN is a number) are used
|
||||
** internally by sqlite3NestedParse. */
|
||||
*tokenType = TK_REGISTER;
|
||||
return i;
|
||||
}
|
||||
/* Fall through into the next case if the '#' is not followed by
|
||||
** a digit. Try to match #AAAA where AAAA is a parameter name. */
|
||||
}
|
||||
#ifndef SQLITE_OMIT_TCL_VARIABLE
|
||||
case '$':
|
||||
#endif
|
||||
case '@': /* For compatibility with MS SQL Server */
|
||||
case ':': {
|
||||
int n = 0;
|
||||
*tokenType = TK_VARIABLE;
|
||||
for(i=1; (c=z[i])!=0; i++){
|
||||
if( IdChar(c) ){
|
||||
n++;
|
||||
#ifndef SQLITE_OMIT_TCL_VARIABLE
|
||||
}else if( c=='(' && n>0 ){
|
||||
do{
|
||||
i++;
|
||||
}while( (c=z[i])!=0 && !sqlite3Isspace(c) && c!=')' );
|
||||
if( c==')' ){
|
||||
i++;
|
||||
}else{
|
||||
*tokenType = TK_ILLEGAL;
|
||||
}
|
||||
break;
|
||||
}else if( c==':' && z[i+1]==':' ){
|
||||
i++;
|
||||
#endif
|
||||
}else{
|
||||
break;
|
||||
}
|
||||
}
|
||||
if( n==0 ) *tokenType = TK_ILLEGAL;
|
||||
return i;
|
||||
}
|
||||
#ifndef SQLITE_OMIT_BLOB_LITERAL
|
||||
case 'x': case 'X': {
|
||||
if( z[1]=='\'' ){
|
||||
*tokenType = TK_BLOB;
|
||||
for(i=2; (c=z[i])!=0 && c!='\''; i++){
|
||||
if( !sqlite3Isxdigit(c) ){
|
||||
*tokenType = TK_ILLEGAL;
|
||||
}
|
||||
}
|
||||
if( i%2 || !c ) *tokenType = TK_ILLEGAL;
|
||||
if( c ) i++;
|
||||
return i;
|
||||
}
|
||||
/* Otherwise fall through to the next case */
|
||||
}
|
||||
#endif
|
||||
default: {
|
||||
if( !IdChar(*z) ){
|
||||
break;
|
||||
}
|
||||
for(i=1; IdChar(z[i]); i++){}
|
||||
*tokenType = keywordCode((char*)z, i);
|
||||
return i;
|
||||
}
|
||||
}
|
||||
*tokenType = TK_ILLEGAL;
|
||||
return 1;
|
||||
}
|
||||
|
||||
/*
|
||||
** Run the parser on the given SQL string. The parser structure is
|
||||
** passed in. An SQLITE_ status code is returned. If an error occurs
|
||||
** then an and attempt is made to write an error message into
|
||||
** memory obtained from sqlite3_malloc() and to make *pzErrMsg point to that
|
||||
** error message.
|
||||
*/
|
||||
int sqlite3RunParser(Parse *pParse, const char *zSql, char **pzErrMsg){
|
||||
int nErr = 0; /* Number of errors encountered */
|
||||
int i; /* Loop counter */
|
||||
void *pEngine; /* The LEMON-generated LALR(1) parser */
|
||||
int tokenType; /* type of the next token */
|
||||
int lastTokenParsed = -1; /* type of the previous token */
|
||||
u8 enableLookaside; /* Saved value of db->lookaside.bEnabled */
|
||||
sqlite3 *db = pParse->db; /* The database connection */
|
||||
int mxSqlLen; /* Max length of an SQL string */
|
||||
|
||||
|
||||
mxSqlLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH];
|
||||
if( db->activeVdbeCnt==0 ){
|
||||
db->u1.isInterrupted = 0;
|
||||
}
|
||||
pParse->rc = SQLITE_OK;
|
||||
pParse->zTail = pParse->zSql = zSql;
|
||||
i = 0;
|
||||
assert( pzErrMsg!=0 );
|
||||
pEngine = sqlite3ParserAlloc((void*(*)(size_t))sqlite3Malloc);
|
||||
if( pEngine==0 ){
|
||||
db->mallocFailed = 1;
|
||||
return SQLITE_NOMEM;
|
||||
}
|
||||
assert( pParse->sLastToken.dyn==0 );
|
||||
assert( pParse->pNewTable==0 );
|
||||
assert( pParse->pNewTrigger==0 );
|
||||
assert( pParse->nVar==0 );
|
||||
assert( pParse->nVarExpr==0 );
|
||||
assert( pParse->nVarExprAlloc==0 );
|
||||
assert( pParse->apVarExpr==0 );
|
||||
enableLookaside = db->lookaside.bEnabled;
|
||||
if( db->lookaside.pStart ) db->lookaside.bEnabled = 1;
|
||||
while( !db->mallocFailed && zSql[i]!=0 ){
|
||||
assert( i>=0 );
|
||||
pParse->sLastToken.z = (u8*)&zSql[i];
|
||||
assert( pParse->sLastToken.dyn==0 );
|
||||
pParse->sLastToken.n = sqlite3GetToken((unsigned char*)&zSql[i],&tokenType);
|
||||
i += pParse->sLastToken.n;
|
||||
if( i>mxSqlLen ){
|
||||
pParse->rc = SQLITE_TOOBIG;
|
||||
break;
|
||||
}
|
||||
switch( tokenType ){
|
||||
case TK_SPACE: {
|
||||
if( db->u1.isInterrupted ){
|
||||
pParse->rc = SQLITE_INTERRUPT;
|
||||
sqlite3SetString(pzErrMsg, db, "interrupt");
|
||||
goto abort_parse;
|
||||
}
|
||||
break;
|
||||
}
|
||||
case TK_ILLEGAL: {
|
||||
sqlite3DbFree(db, *pzErrMsg);
|
||||
*pzErrMsg = sqlite3MPrintf(db, "unrecognized token: \"%T\"",
|
||||
&pParse->sLastToken);
|
||||
nErr++;
|
||||
goto abort_parse;
|
||||
}
|
||||
case TK_SEMI: {
|
||||
pParse->zTail = &zSql[i];
|
||||
/* Fall thru into the default case */
|
||||
}
|
||||
default: {
|
||||
sqlite3Parser(pEngine, tokenType, pParse->sLastToken, pParse);
|
||||
lastTokenParsed = tokenType;
|
||||
if( pParse->rc!=SQLITE_OK ){
|
||||
goto abort_parse;
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
abort_parse:
|
||||
if( zSql[i]==0 && nErr==0 && pParse->rc==SQLITE_OK ){
|
||||
if( lastTokenParsed!=TK_SEMI ){
|
||||
sqlite3Parser(pEngine, TK_SEMI, pParse->sLastToken, pParse);
|
||||
pParse->zTail = &zSql[i];
|
||||
}
|
||||
sqlite3Parser(pEngine, 0, pParse->sLastToken, pParse);
|
||||
}
|
||||
#ifdef YYTRACKMAXSTACKDEPTH
|
||||
sqlite3StatusSet(SQLITE_STATUS_PARSER_STACK,
|
||||
sqlite3ParserStackPeak(pEngine)
|
||||
);
|
||||
#endif /* YYDEBUG */
|
||||
sqlite3ParserFree(pEngine, sqlite3_free);
|
||||
db->lookaside.bEnabled = enableLookaside;
|
||||
if( db->mallocFailed ){
|
||||
pParse->rc = SQLITE_NOMEM;
|
||||
}
|
||||
if( pParse->rc!=SQLITE_OK && pParse->rc!=SQLITE_DONE && pParse->zErrMsg==0 ){
|
||||
sqlite3SetString(&pParse->zErrMsg, db, "%s", sqlite3ErrStr(pParse->rc));
|
||||
}
|
||||
if( pParse->zErrMsg ){
|
||||
if( *pzErrMsg==0 ){
|
||||
*pzErrMsg = pParse->zErrMsg;
|
||||
}else{
|
||||
sqlite3DbFree(db, pParse->zErrMsg);
|
||||
}
|
||||
pParse->zErrMsg = 0;
|
||||
nErr++;
|
||||
}
|
||||
if( pParse->pVdbe && pParse->nErr>0 && pParse->nested==0 ){
|
||||
sqlite3VdbeDelete(pParse->pVdbe);
|
||||
pParse->pVdbe = 0;
|
||||
}
|
||||
#ifndef SQLITE_OMIT_SHARED_CACHE
|
||||
if( pParse->nested==0 ){
|
||||
sqlite3DbFree(db, pParse->aTableLock);
|
||||
pParse->aTableLock = 0;
|
||||
pParse->nTableLock = 0;
|
||||
}
|
||||
#endif
|
||||
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
||||
sqlite3DbFree(db, pParse->apVtabLock);
|
||||
#endif
|
||||
|
||||
if( !IN_DECLARE_VTAB ){
|
||||
/* If the pParse->declareVtab flag is set, do not delete any table
|
||||
** structure built up in pParse->pNewTable. The calling code (see vtab.c)
|
||||
** will take responsibility for freeing the Table structure.
|
||||
*/
|
||||
sqlite3DeleteTable(pParse->pNewTable);
|
||||
}
|
||||
|
||||
sqlite3DeleteTrigger(db, pParse->pNewTrigger);
|
||||
sqlite3DbFree(db, pParse->apVarExpr);
|
||||
sqlite3DbFree(db, pParse->aAlias);
|
||||
while( pParse->pZombieTab ){
|
||||
Table *p = pParse->pZombieTab;
|
||||
pParse->pZombieTab = p->pNextZombie;
|
||||
sqlite3DeleteTable(p);
|
||||
}
|
||||
if( nErr>0 && (pParse->rc==SQLITE_OK || pParse->rc==SQLITE_DONE) ){
|
||||
pParse->rc = SQLITE_ERROR;
|
||||
}
|
||||
return nErr;
|
||||
}
|
873
trigger.c
873
trigger.c
|
@ -1,873 +0,0 @@
|
|||
/*
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
**
|
||||
**
|
||||
** $Id: trigger.c,v 1.135 2009/02/28 10:47:42 danielk1977 Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
#ifndef SQLITE_OMIT_TRIGGER
|
||||
/*
|
||||
** Delete a linked list of TriggerStep structures.
|
||||
*/
|
||||
void sqlite3DeleteTriggerStep(sqlite3 *db, TriggerStep *pTriggerStep){
|
||||
while( pTriggerStep ){
|
||||
TriggerStep * pTmp = pTriggerStep;
|
||||
pTriggerStep = pTriggerStep->pNext;
|
||||
|
||||
if( pTmp->target.dyn ) sqlite3DbFree(db, (char*)pTmp->target.z);
|
||||
sqlite3ExprDelete(db, pTmp->pWhere);
|
||||
sqlite3ExprListDelete(db, pTmp->pExprList);
|
||||
sqlite3SelectDelete(db, pTmp->pSelect);
|
||||
sqlite3IdListDelete(db, pTmp->pIdList);
|
||||
|
||||
sqlite3DbFree(db, pTmp);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Given table pTab, return a list of all the triggers attached to
|
||||
** the table. The list is connected by Trigger.pNext pointers.
|
||||
*/
|
||||
Trigger *sqlite3TriggerList(Parse *pParse, Table *pTab){
|
||||
Schema * const pTmpSchema = pParse->db->aDb[1].pSchema;
|
||||
Trigger *pList = 0; /* List of triggers to return */
|
||||
|
||||
if( pTmpSchema!=pTab->pSchema ){
|
||||
HashElem *p;
|
||||
for(p=sqliteHashFirst(&pTmpSchema->trigHash); p; p=sqliteHashNext(p)){
|
||||
Trigger *pTrig = (Trigger *)sqliteHashData(p);
|
||||
if( pTrig->pTabSchema==pTab->pSchema
|
||||
&& 0==sqlite3StrICmp(pTrig->table, pTab->zName)
|
||||
){
|
||||
pTrig->pNext = (pList ? pList : pTab->pTrigger);
|
||||
pList = pTrig;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return (pList ? pList : pTab->pTrigger);
|
||||
}
|
||||
|
||||
/*
|
||||
** This is called by the parser when it sees a CREATE TRIGGER statement
|
||||
** up to the point of the BEGIN before the trigger actions. A Trigger
|
||||
** structure is generated based on the information available and stored
|
||||
** in pParse->pNewTrigger. After the trigger actions have been parsed, the
|
||||
** sqlite3FinishTrigger() function is called to complete the trigger
|
||||
** construction process.
|
||||
*/
|
||||
void sqlite3BeginTrigger(
|
||||
Parse *pParse, /* The parse context of the CREATE TRIGGER statement */
|
||||
Token *pName1, /* The name of the trigger */
|
||||
Token *pName2, /* The name of the trigger */
|
||||
int tr_tm, /* One of TK_BEFORE, TK_AFTER, TK_INSTEAD */
|
||||
int op, /* One of TK_INSERT, TK_UPDATE, TK_DELETE */
|
||||
IdList *pColumns, /* column list if this is an UPDATE OF trigger */
|
||||
SrcList *pTableName,/* The name of the table/view the trigger applies to */
|
||||
Expr *pWhen, /* WHEN clause */
|
||||
int isTemp, /* True if the TEMPORARY keyword is present */
|
||||
int noErr /* Suppress errors if the trigger already exists */
|
||||
){
|
||||
Trigger *pTrigger = 0;
|
||||
Table *pTab;
|
||||
char *zName = 0; /* Name of the trigger */
|
||||
sqlite3 *db = pParse->db;
|
||||
int iDb; /* The database to store the trigger in */
|
||||
Token *pName; /* The unqualified db name */
|
||||
DbFixer sFix;
|
||||
int iTabDb;
|
||||
|
||||
assert( pName1!=0 ); /* pName1->z might be NULL, but not pName1 itself */
|
||||
assert( pName2!=0 );
|
||||
assert( op==TK_INSERT || op==TK_UPDATE || op==TK_DELETE );
|
||||
assert( op>0 && op<0xff );
|
||||
if( isTemp ){
|
||||
/* If TEMP was specified, then the trigger name may not be qualified. */
|
||||
if( pName2->n>0 ){
|
||||
sqlite3ErrorMsg(pParse, "temporary trigger may not have qualified name");
|
||||
goto trigger_cleanup;
|
||||
}
|
||||
iDb = 1;
|
||||
pName = pName1;
|
||||
}else{
|
||||
/* Figure out the db that the the trigger will be created in */
|
||||
iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
|
||||
if( iDb<0 ){
|
||||
goto trigger_cleanup;
|
||||
}
|
||||
}
|
||||
|
||||
/* If the trigger name was unqualified, and the table is a temp table,
|
||||
** then set iDb to 1 to create the trigger in the temporary database.
|
||||
** If sqlite3SrcListLookup() returns 0, indicating the table does not
|
||||
** exist, the error is caught by the block below.
|
||||
*/
|
||||
if( !pTableName || db->mallocFailed ){
|
||||
goto trigger_cleanup;
|
||||
}
|
||||
pTab = sqlite3SrcListLookup(pParse, pTableName);
|
||||
if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
|
||||
iDb = 1;
|
||||
}
|
||||
|
||||
/* Ensure the table name matches database name and that the table exists */
|
||||
if( db->mallocFailed ) goto trigger_cleanup;
|
||||
assert( pTableName->nSrc==1 );
|
||||
if( sqlite3FixInit(&sFix, pParse, iDb, "trigger", pName) &&
|
||||
sqlite3FixSrcList(&sFix, pTableName) ){
|
||||
goto trigger_cleanup;
|
||||
}
|
||||
pTab = sqlite3SrcListLookup(pParse, pTableName);
|
||||
if( !pTab ){
|
||||
/* The table does not exist. */
|
||||
goto trigger_cleanup;
|
||||
}
|
||||
if( IsVirtual(pTab) ){
|
||||
sqlite3ErrorMsg(pParse, "cannot create triggers on virtual tables");
|
||||
goto trigger_cleanup;
|
||||
}
|
||||
|
||||
/* Check that the trigger name is not reserved and that no trigger of the
|
||||
** specified name exists */
|
||||
zName = sqlite3NameFromToken(db, pName);
|
||||
if( !zName || SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
|
||||
goto trigger_cleanup;
|
||||
}
|
||||
if( sqlite3HashFind(&(db->aDb[iDb].pSchema->trigHash),
|
||||
zName, sqlite3Strlen30(zName)) ){
|
||||
if( !noErr ){
|
||||
sqlite3ErrorMsg(pParse, "trigger %T already exists", pName);
|
||||
}
|
||||
goto trigger_cleanup;
|
||||
}
|
||||
|
||||
/* Do not create a trigger on a system table */
|
||||
if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){
|
||||
sqlite3ErrorMsg(pParse, "cannot create trigger on system table");
|
||||
pParse->nErr++;
|
||||
goto trigger_cleanup;
|
||||
}
|
||||
|
||||
/* INSTEAD of triggers are only for views and views only support INSTEAD
|
||||
** of triggers.
|
||||
*/
|
||||
if( pTab->pSelect && tr_tm!=TK_INSTEAD ){
|
||||
sqlite3ErrorMsg(pParse, "cannot create %s trigger on view: %S",
|
||||
(tr_tm == TK_BEFORE)?"BEFORE":"AFTER", pTableName, 0);
|
||||
goto trigger_cleanup;
|
||||
}
|
||||
if( !pTab->pSelect && tr_tm==TK_INSTEAD ){
|
||||
sqlite3ErrorMsg(pParse, "cannot create INSTEAD OF"
|
||||
" trigger on table: %S", pTableName, 0);
|
||||
goto trigger_cleanup;
|
||||
}
|
||||
iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema);
|
||||
|
||||
#ifndef SQLITE_OMIT_AUTHORIZATION
|
||||
{
|
||||
int code = SQLITE_CREATE_TRIGGER;
|
||||
const char *zDb = db->aDb[iTabDb].zName;
|
||||
const char *zDbTrig = isTemp ? db->aDb[1].zName : zDb;
|
||||
if( iTabDb==1 || isTemp ) code = SQLITE_CREATE_TEMP_TRIGGER;
|
||||
if( sqlite3AuthCheck(pParse, code, zName, pTab->zName, zDbTrig) ){
|
||||
goto trigger_cleanup;
|
||||
}
|
||||
if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iTabDb),0,zDb)){
|
||||
goto trigger_cleanup;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
/* INSTEAD OF triggers can only appear on views and BEFORE triggers
|
||||
** cannot appear on views. So we might as well translate every
|
||||
** INSTEAD OF trigger into a BEFORE trigger. It simplifies code
|
||||
** elsewhere.
|
||||
*/
|
||||
if (tr_tm == TK_INSTEAD){
|
||||
tr_tm = TK_BEFORE;
|
||||
}
|
||||
|
||||
/* Build the Trigger object */
|
||||
pTrigger = (Trigger*)sqlite3DbMallocZero(db, sizeof(Trigger));
|
||||
if( pTrigger==0 ) goto trigger_cleanup;
|
||||
pTrigger->name = zName;
|
||||
zName = 0;
|
||||
pTrigger->table = sqlite3DbStrDup(db, pTableName->a[0].zName);
|
||||
pTrigger->pSchema = db->aDb[iDb].pSchema;
|
||||
pTrigger->pTabSchema = pTab->pSchema;
|
||||
pTrigger->op = (u8)op;
|
||||
pTrigger->tr_tm = tr_tm==TK_BEFORE ? TRIGGER_BEFORE : TRIGGER_AFTER;
|
||||
pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE);
|
||||
pTrigger->pColumns = sqlite3IdListDup(db, pColumns);
|
||||
sqlite3TokenCopy(db, &pTrigger->nameToken,pName);
|
||||
assert( pParse->pNewTrigger==0 );
|
||||
pParse->pNewTrigger = pTrigger;
|
||||
|
||||
trigger_cleanup:
|
||||
sqlite3DbFree(db, zName);
|
||||
sqlite3SrcListDelete(db, pTableName);
|
||||
sqlite3IdListDelete(db, pColumns);
|
||||
sqlite3ExprDelete(db, pWhen);
|
||||
if( !pParse->pNewTrigger ){
|
||||
sqlite3DeleteTrigger(db, pTrigger);
|
||||
}else{
|
||||
assert( pParse->pNewTrigger==pTrigger );
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** This routine is called after all of the trigger actions have been parsed
|
||||
** in order to complete the process of building the trigger.
|
||||
*/
|
||||
void sqlite3FinishTrigger(
|
||||
Parse *pParse, /* Parser context */
|
||||
TriggerStep *pStepList, /* The triggered program */
|
||||
Token *pAll /* Token that describes the complete CREATE TRIGGER */
|
||||
){
|
||||
Trigger *pTrig = pParse->pNewTrigger; /* Trigger being finished */
|
||||
char *zName; /* Name of trigger */
|
||||
sqlite3 *db = pParse->db; /* The database */
|
||||
DbFixer sFix;
|
||||
int iDb; /* Database containing the trigger */
|
||||
|
||||
pTrig = pParse->pNewTrigger;
|
||||
pParse->pNewTrigger = 0;
|
||||
if( pParse->nErr || !pTrig ) goto triggerfinish_cleanup;
|
||||
zName = pTrig->name;
|
||||
iDb = sqlite3SchemaToIndex(pParse->db, pTrig->pSchema);
|
||||
pTrig->step_list = pStepList;
|
||||
while( pStepList ){
|
||||
pStepList->pTrig = pTrig;
|
||||
pStepList = pStepList->pNext;
|
||||
}
|
||||
if( sqlite3FixInit(&sFix, pParse, iDb, "trigger", &pTrig->nameToken)
|
||||
&& sqlite3FixTriggerStep(&sFix, pTrig->step_list) ){
|
||||
goto triggerfinish_cleanup;
|
||||
}
|
||||
|
||||
/* if we are not initializing, and this trigger is not on a TEMP table,
|
||||
** build the sqlite_master entry
|
||||
*/
|
||||
if( !db->init.busy ){
|
||||
Vdbe *v;
|
||||
char *z;
|
||||
|
||||
/* Make an entry in the sqlite_master table */
|
||||
v = sqlite3GetVdbe(pParse);
|
||||
if( v==0 ) goto triggerfinish_cleanup;
|
||||
sqlite3BeginWriteOperation(pParse, 0, iDb);
|
||||
z = sqlite3DbStrNDup(db, (char*)pAll->z, pAll->n);
|
||||
sqlite3NestedParse(pParse,
|
||||
"INSERT INTO %Q.%s VALUES('trigger',%Q,%Q,0,'CREATE TRIGGER %q')",
|
||||
db->aDb[iDb].zName, SCHEMA_TABLE(iDb), zName,
|
||||
pTrig->table, z);
|
||||
sqlite3DbFree(db, z);
|
||||
sqlite3ChangeCookie(pParse, iDb);
|
||||
sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0, sqlite3MPrintf(
|
||||
db, "type='trigger' AND name='%q'", zName), P4_DYNAMIC
|
||||
);
|
||||
}
|
||||
|
||||
if( db->init.busy ){
|
||||
Trigger *pLink = pTrig;
|
||||
Hash *pHash = &db->aDb[iDb].pSchema->trigHash;
|
||||
pTrig = sqlite3HashInsert(pHash, zName, sqlite3Strlen30(zName), pTrig);
|
||||
if( pTrig ){
|
||||
db->mallocFailed = 1;
|
||||
}else if( pLink->pSchema==pLink->pTabSchema ){
|
||||
Table *pTab;
|
||||
int n = sqlite3Strlen30(pLink->table) + 1;
|
||||
pTab = sqlite3HashFind(&pLink->pTabSchema->tblHash, pLink->table, n);
|
||||
assert( pTab!=0 );
|
||||
pLink->pNext = pTab->pTrigger;
|
||||
pTab->pTrigger = pLink;
|
||||
}
|
||||
}
|
||||
|
||||
triggerfinish_cleanup:
|
||||
sqlite3DeleteTrigger(db, pTrig);
|
||||
assert( !pParse->pNewTrigger );
|
||||
sqlite3DeleteTriggerStep(db, pStepList);
|
||||
}
|
||||
|
||||
/*
|
||||
** Make a copy of all components of the given trigger step. This has
|
||||
** the effect of copying all Expr.token.z values into memory obtained
|
||||
** from sqlite3_malloc(). As initially created, the Expr.token.z values
|
||||
** all point to the input string that was fed to the parser. But that
|
||||
** string is ephemeral - it will go away as soon as the sqlite3_exec()
|
||||
** call that started the parser exits. This routine makes a persistent
|
||||
** copy of all the Expr.token.z strings so that the TriggerStep structure
|
||||
** will be valid even after the sqlite3_exec() call returns.
|
||||
*/
|
||||
static void sqlitePersistTriggerStep(sqlite3 *db, TriggerStep *p){
|
||||
if( p->target.z ){
|
||||
p->target.z = (u8*)sqlite3DbStrNDup(db, (char*)p->target.z, p->target.n);
|
||||
p->target.dyn = 1;
|
||||
}
|
||||
if( p->pSelect ){
|
||||
Select *pNew = sqlite3SelectDup(db, p->pSelect, 1);
|
||||
sqlite3SelectDelete(db, p->pSelect);
|
||||
p->pSelect = pNew;
|
||||
}
|
||||
if( p->pWhere ){
|
||||
Expr *pNew = sqlite3ExprDup(db, p->pWhere, EXPRDUP_REDUCE);
|
||||
sqlite3ExprDelete(db, p->pWhere);
|
||||
p->pWhere = pNew;
|
||||
}
|
||||
if( p->pExprList ){
|
||||
ExprList *pNew = sqlite3ExprListDup(db, p->pExprList, 1);
|
||||
sqlite3ExprListDelete(db, p->pExprList);
|
||||
p->pExprList = pNew;
|
||||
}
|
||||
if( p->pIdList ){
|
||||
IdList *pNew = sqlite3IdListDup(db, p->pIdList);
|
||||
sqlite3IdListDelete(db, p->pIdList);
|
||||
p->pIdList = pNew;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Turn a SELECT statement (that the pSelect parameter points to) into
|
||||
** a trigger step. Return a pointer to a TriggerStep structure.
|
||||
**
|
||||
** The parser calls this routine when it finds a SELECT statement in
|
||||
** body of a TRIGGER.
|
||||
*/
|
||||
TriggerStep *sqlite3TriggerSelectStep(sqlite3 *db, Select *pSelect){
|
||||
TriggerStep *pTriggerStep = sqlite3DbMallocZero(db, sizeof(TriggerStep));
|
||||
if( pTriggerStep==0 ) {
|
||||
sqlite3SelectDelete(db, pSelect);
|
||||
return 0;
|
||||
}
|
||||
|
||||
pTriggerStep->op = TK_SELECT;
|
||||
pTriggerStep->pSelect = pSelect;
|
||||
pTriggerStep->orconf = OE_Default;
|
||||
sqlitePersistTriggerStep(db, pTriggerStep);
|
||||
|
||||
return pTriggerStep;
|
||||
}
|
||||
|
||||
/*
|
||||
** Build a trigger step out of an INSERT statement. Return a pointer
|
||||
** to the new trigger step.
|
||||
**
|
||||
** The parser calls this routine when it sees an INSERT inside the
|
||||
** body of a trigger.
|
||||
*/
|
||||
TriggerStep *sqlite3TriggerInsertStep(
|
||||
sqlite3 *db, /* The database connection */
|
||||
Token *pTableName, /* Name of the table into which we insert */
|
||||
IdList *pColumn, /* List of columns in pTableName to insert into */
|
||||
ExprList *pEList, /* The VALUE clause: a list of values to be inserted */
|
||||
Select *pSelect, /* A SELECT statement that supplies values */
|
||||
int orconf /* The conflict algorithm (OE_Abort, OE_Replace, etc.) */
|
||||
){
|
||||
TriggerStep *pTriggerStep;
|
||||
|
||||
assert(pEList == 0 || pSelect == 0);
|
||||
assert(pEList != 0 || pSelect != 0 || db->mallocFailed);
|
||||
|
||||
pTriggerStep = sqlite3DbMallocZero(db, sizeof(TriggerStep));
|
||||
if( pTriggerStep ){
|
||||
pTriggerStep->op = TK_INSERT;
|
||||
pTriggerStep->pSelect = pSelect;
|
||||
pTriggerStep->target = *pTableName;
|
||||
pTriggerStep->pIdList = pColumn;
|
||||
pTriggerStep->pExprList = pEList;
|
||||
pTriggerStep->orconf = orconf;
|
||||
sqlitePersistTriggerStep(db, pTriggerStep);
|
||||
}else{
|
||||
sqlite3IdListDelete(db, pColumn);
|
||||
sqlite3ExprListDelete(db, pEList);
|
||||
sqlite3SelectDelete(db, pSelect);
|
||||
}
|
||||
|
||||
return pTriggerStep;
|
||||
}
|
||||
|
||||
/*
|
||||
** Construct a trigger step that implements an UPDATE statement and return
|
||||
** a pointer to that trigger step. The parser calls this routine when it
|
||||
** sees an UPDATE statement inside the body of a CREATE TRIGGER.
|
||||
*/
|
||||
TriggerStep *sqlite3TriggerUpdateStep(
|
||||
sqlite3 *db, /* The database connection */
|
||||
Token *pTableName, /* Name of the table to be updated */
|
||||
ExprList *pEList, /* The SET clause: list of column and new values */
|
||||
Expr *pWhere, /* The WHERE clause */
|
||||
int orconf /* The conflict algorithm. (OE_Abort, OE_Ignore, etc) */
|
||||
){
|
||||
TriggerStep *pTriggerStep = sqlite3DbMallocZero(db, sizeof(TriggerStep));
|
||||
if( pTriggerStep==0 ){
|
||||
sqlite3ExprListDelete(db, pEList);
|
||||
sqlite3ExprDelete(db, pWhere);
|
||||
return 0;
|
||||
}
|
||||
|
||||
pTriggerStep->op = TK_UPDATE;
|
||||
pTriggerStep->target = *pTableName;
|
||||
pTriggerStep->pExprList = pEList;
|
||||
pTriggerStep->pWhere = pWhere;
|
||||
pTriggerStep->orconf = orconf;
|
||||
sqlitePersistTriggerStep(db, pTriggerStep);
|
||||
|
||||
return pTriggerStep;
|
||||
}
|
||||
|
||||
/*
|
||||
** Construct a trigger step that implements a DELETE statement and return
|
||||
** a pointer to that trigger step. The parser calls this routine when it
|
||||
** sees a DELETE statement inside the body of a CREATE TRIGGER.
|
||||
*/
|
||||
TriggerStep *sqlite3TriggerDeleteStep(
|
||||
sqlite3 *db, /* Database connection */
|
||||
Token *pTableName, /* The table from which rows are deleted */
|
||||
Expr *pWhere /* The WHERE clause */
|
||||
){
|
||||
TriggerStep *pTriggerStep = sqlite3DbMallocZero(db, sizeof(TriggerStep));
|
||||
if( pTriggerStep==0 ){
|
||||
sqlite3ExprDelete(db, pWhere);
|
||||
return 0;
|
||||
}
|
||||
|
||||
pTriggerStep->op = TK_DELETE;
|
||||
pTriggerStep->target = *pTableName;
|
||||
pTriggerStep->pWhere = pWhere;
|
||||
pTriggerStep->orconf = OE_Default;
|
||||
sqlitePersistTriggerStep(db, pTriggerStep);
|
||||
|
||||
return pTriggerStep;
|
||||
}
|
||||
|
||||
/*
|
||||
** Recursively delete a Trigger structure
|
||||
*/
|
||||
void sqlite3DeleteTrigger(sqlite3 *db, Trigger *pTrigger){
|
||||
if( pTrigger==0 ) return;
|
||||
sqlite3DeleteTriggerStep(db, pTrigger->step_list);
|
||||
sqlite3DbFree(db, pTrigger->name);
|
||||
sqlite3DbFree(db, pTrigger->table);
|
||||
sqlite3ExprDelete(db, pTrigger->pWhen);
|
||||
sqlite3IdListDelete(db, pTrigger->pColumns);
|
||||
if( pTrigger->nameToken.dyn ) sqlite3DbFree(db, (char*)pTrigger->nameToken.z);
|
||||
sqlite3DbFree(db, pTrigger);
|
||||
}
|
||||
|
||||
/*
|
||||
** This function is called to drop a trigger from the database schema.
|
||||
**
|
||||
** This may be called directly from the parser and therefore identifies
|
||||
** the trigger by name. The sqlite3DropTriggerPtr() routine does the
|
||||
** same job as this routine except it takes a pointer to the trigger
|
||||
** instead of the trigger name.
|
||||
**/
|
||||
void sqlite3DropTrigger(Parse *pParse, SrcList *pName, int noErr){
|
||||
Trigger *pTrigger = 0;
|
||||
int i;
|
||||
const char *zDb;
|
||||
const char *zName;
|
||||
int nName;
|
||||
sqlite3 *db = pParse->db;
|
||||
|
||||
if( db->mallocFailed ) goto drop_trigger_cleanup;
|
||||
if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
|
||||
goto drop_trigger_cleanup;
|
||||
}
|
||||
|
||||
assert( pName->nSrc==1 );
|
||||
zDb = pName->a[0].zDatabase;
|
||||
zName = pName->a[0].zName;
|
||||
nName = sqlite3Strlen30(zName);
|
||||
for(i=OMIT_TEMPDB; i<db->nDb; i++){
|
||||
int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
|
||||
if( zDb && sqlite3StrICmp(db->aDb[j].zName, zDb) ) continue;
|
||||
pTrigger = sqlite3HashFind(&(db->aDb[j].pSchema->trigHash), zName, nName);
|
||||
if( pTrigger ) break;
|
||||
}
|
||||
if( !pTrigger ){
|
||||
if( !noErr ){
|
||||
sqlite3ErrorMsg(pParse, "no such trigger: %S", pName, 0);
|
||||
}
|
||||
goto drop_trigger_cleanup;
|
||||
}
|
||||
sqlite3DropTriggerPtr(pParse, pTrigger);
|
||||
|
||||
drop_trigger_cleanup:
|
||||
sqlite3SrcListDelete(db, pName);
|
||||
}
|
||||
|
||||
/*
|
||||
** Return a pointer to the Table structure for the table that a trigger
|
||||
** is set on.
|
||||
*/
|
||||
static Table *tableOfTrigger(Trigger *pTrigger){
|
||||
int n = sqlite3Strlen30(pTrigger->table) + 1;
|
||||
return sqlite3HashFind(&pTrigger->pTabSchema->tblHash, pTrigger->table, n);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** Drop a trigger given a pointer to that trigger.
|
||||
*/
|
||||
void sqlite3DropTriggerPtr(Parse *pParse, Trigger *pTrigger){
|
||||
Table *pTable;
|
||||
Vdbe *v;
|
||||
sqlite3 *db = pParse->db;
|
||||
int iDb;
|
||||
|
||||
iDb = sqlite3SchemaToIndex(pParse->db, pTrigger->pSchema);
|
||||
assert( iDb>=0 && iDb<db->nDb );
|
||||
pTable = tableOfTrigger(pTrigger);
|
||||
assert( pTable );
|
||||
assert( pTable->pSchema==pTrigger->pSchema || iDb==1 );
|
||||
#ifndef SQLITE_OMIT_AUTHORIZATION
|
||||
{
|
||||
int code = SQLITE_DROP_TRIGGER;
|
||||
const char *zDb = db->aDb[iDb].zName;
|
||||
const char *zTab = SCHEMA_TABLE(iDb);
|
||||
if( iDb==1 ) code = SQLITE_DROP_TEMP_TRIGGER;
|
||||
if( sqlite3AuthCheck(pParse, code, pTrigger->name, pTable->zName, zDb) ||
|
||||
sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
|
||||
return;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Generate code to destroy the database record of the trigger.
|
||||
*/
|
||||
assert( pTable!=0 );
|
||||
if( (v = sqlite3GetVdbe(pParse))!=0 ){
|
||||
int base;
|
||||
static const VdbeOpList dropTrigger[] = {
|
||||
{ OP_Rewind, 0, ADDR(9), 0},
|
||||
{ OP_String8, 0, 1, 0}, /* 1 */
|
||||
{ OP_Column, 0, 1, 2},
|
||||
{ OP_Ne, 2, ADDR(8), 1},
|
||||
{ OP_String8, 0, 1, 0}, /* 4: "trigger" */
|
||||
{ OP_Column, 0, 0, 2},
|
||||
{ OP_Ne, 2, ADDR(8), 1},
|
||||
{ OP_Delete, 0, 0, 0},
|
||||
{ OP_Next, 0, ADDR(1), 0}, /* 8 */
|
||||
};
|
||||
|
||||
sqlite3BeginWriteOperation(pParse, 0, iDb);
|
||||
sqlite3OpenMasterTable(pParse, iDb);
|
||||
base = sqlite3VdbeAddOpList(v, ArraySize(dropTrigger), dropTrigger);
|
||||
sqlite3VdbeChangeP4(v, base+1, pTrigger->name, 0);
|
||||
sqlite3VdbeChangeP4(v, base+4, "trigger", P4_STATIC);
|
||||
sqlite3ChangeCookie(pParse, iDb);
|
||||
sqlite3VdbeAddOp2(v, OP_Close, 0, 0);
|
||||
sqlite3VdbeAddOp4(v, OP_DropTrigger, iDb, 0, 0, pTrigger->name, 0);
|
||||
if( pParse->nMem<3 ){
|
||||
pParse->nMem = 3;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Remove a trigger from the hash tables of the sqlite* pointer.
|
||||
*/
|
||||
void sqlite3UnlinkAndDeleteTrigger(sqlite3 *db, int iDb, const char *zName){
|
||||
Hash *pHash = &(db->aDb[iDb].pSchema->trigHash);
|
||||
Trigger *pTrigger;
|
||||
pTrigger = sqlite3HashInsert(pHash, zName, sqlite3Strlen30(zName), 0);
|
||||
if( pTrigger ){
|
||||
if( pTrigger->pSchema==pTrigger->pTabSchema ){
|
||||
Table *pTab = tableOfTrigger(pTrigger);
|
||||
Trigger **pp;
|
||||
for(pp=&pTab->pTrigger; *pp!=pTrigger; pp=&((*pp)->pNext));
|
||||
*pp = (*pp)->pNext;
|
||||
}
|
||||
sqlite3DeleteTrigger(db, pTrigger);
|
||||
db->flags |= SQLITE_InternChanges;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** pEList is the SET clause of an UPDATE statement. Each entry
|
||||
** in pEList is of the format <id>=<expr>. If any of the entries
|
||||
** in pEList have an <id> which matches an identifier in pIdList,
|
||||
** then return TRUE. If pIdList==NULL, then it is considered a
|
||||
** wildcard that matches anything. Likewise if pEList==NULL then
|
||||
** it matches anything so always return true. Return false only
|
||||
** if there is no match.
|
||||
*/
|
||||
static int checkColumnOverLap(IdList *pIdList, ExprList *pEList){
|
||||
int e;
|
||||
if( !pIdList || !pEList ) return 1;
|
||||
for(e=0; e<pEList->nExpr; e++){
|
||||
if( sqlite3IdListIndex(pIdList, pEList->a[e].zName)>=0 ) return 1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
** Return a list of all triggers on table pTab if there exists at least
|
||||
** one trigger that must be fired when an operation of type 'op' is
|
||||
** performed on the table, and, if that operation is an UPDATE, if at
|
||||
** least one of the columns in pChanges is being modified.
|
||||
*/
|
||||
Trigger *sqlite3TriggersExist(
|
||||
Parse *pParse, /* Parse context */
|
||||
Table *pTab, /* The table the contains the triggers */
|
||||
int op, /* one of TK_DELETE, TK_INSERT, TK_UPDATE */
|
||||
ExprList *pChanges, /* Columns that change in an UPDATE statement */
|
||||
int *pMask /* OUT: Mask of TRIGGER_BEFORE|TRIGGER_AFTER */
|
||||
){
|
||||
int mask = 0;
|
||||
Trigger *pList = sqlite3TriggerList(pParse, pTab);
|
||||
Trigger *p;
|
||||
assert( pList==0 || IsVirtual(pTab)==0 );
|
||||
for(p=pList; p; p=p->pNext){
|
||||
if( p->op==op && checkColumnOverLap(p->pColumns, pChanges) ){
|
||||
mask |= p->tr_tm;
|
||||
}
|
||||
}
|
||||
if( pMask ){
|
||||
*pMask = mask;
|
||||
}
|
||||
return (mask ? pList : 0);
|
||||
}
|
||||
|
||||
/*
|
||||
** Convert the pStep->target token into a SrcList and return a pointer
|
||||
** to that SrcList.
|
||||
**
|
||||
** This routine adds a specific database name, if needed, to the target when
|
||||
** forming the SrcList. This prevents a trigger in one database from
|
||||
** referring to a target in another database. An exception is when the
|
||||
** trigger is in TEMP in which case it can refer to any other database it
|
||||
** wants.
|
||||
*/
|
||||
static SrcList *targetSrcList(
|
||||
Parse *pParse, /* The parsing context */
|
||||
TriggerStep *pStep /* The trigger containing the target token */
|
||||
){
|
||||
Token sDb; /* Dummy database name token */
|
||||
int iDb; /* Index of the database to use */
|
||||
SrcList *pSrc; /* SrcList to be returned */
|
||||
|
||||
iDb = sqlite3SchemaToIndex(pParse->db, pStep->pTrig->pSchema);
|
||||
if( iDb==0 || iDb>=2 ){
|
||||
assert( iDb<pParse->db->nDb );
|
||||
sDb.z = (u8*)pParse->db->aDb[iDb].zName;
|
||||
sDb.n = sqlite3Strlen30((char*)sDb.z);
|
||||
pSrc = sqlite3SrcListAppend(pParse->db, 0, &sDb, &pStep->target);
|
||||
} else {
|
||||
pSrc = sqlite3SrcListAppend(pParse->db, 0, &pStep->target, 0);
|
||||
}
|
||||
return pSrc;
|
||||
}
|
||||
|
||||
/*
|
||||
** Generate VDBE code for zero or more statements inside the body of a
|
||||
** trigger.
|
||||
*/
|
||||
static int codeTriggerProgram(
|
||||
Parse *pParse, /* The parser context */
|
||||
TriggerStep *pStepList, /* List of statements inside the trigger body */
|
||||
int orconfin /* Conflict algorithm. (OE_Abort, etc) */
|
||||
){
|
||||
TriggerStep * pTriggerStep = pStepList;
|
||||
int orconf;
|
||||
Vdbe *v = pParse->pVdbe;
|
||||
sqlite3 *db = pParse->db;
|
||||
|
||||
assert( pTriggerStep!=0 );
|
||||
assert( v!=0 );
|
||||
sqlite3VdbeAddOp2(v, OP_ContextPush, 0, 0);
|
||||
VdbeComment((v, "begin trigger %s", pStepList->pTrig->name));
|
||||
while( pTriggerStep ){
|
||||
sqlite3ExprClearColumnCache(pParse, -1);
|
||||
orconf = (orconfin == OE_Default)?pTriggerStep->orconf:orconfin;
|
||||
pParse->trigStack->orconf = orconf;
|
||||
switch( pTriggerStep->op ){
|
||||
case TK_SELECT: {
|
||||
Select *ss = sqlite3SelectDup(db, pTriggerStep->pSelect, 0);
|
||||
if( ss ){
|
||||
SelectDest dest;
|
||||
|
||||
sqlite3SelectDestInit(&dest, SRT_Discard, 0);
|
||||
sqlite3Select(pParse, ss, &dest);
|
||||
sqlite3SelectDelete(db, ss);
|
||||
}
|
||||
break;
|
||||
}
|
||||
case TK_UPDATE: {
|
||||
SrcList *pSrc;
|
||||
pSrc = targetSrcList(pParse, pTriggerStep);
|
||||
sqlite3VdbeAddOp2(v, OP_ResetCount, 0, 0);
|
||||
sqlite3Update(pParse, pSrc,
|
||||
sqlite3ExprListDup(db, pTriggerStep->pExprList, 0),
|
||||
sqlite3ExprDup(db, pTriggerStep->pWhere, 0), orconf);
|
||||
sqlite3VdbeAddOp2(v, OP_ResetCount, 1, 0);
|
||||
break;
|
||||
}
|
||||
case TK_INSERT: {
|
||||
SrcList *pSrc;
|
||||
pSrc = targetSrcList(pParse, pTriggerStep);
|
||||
sqlite3VdbeAddOp2(v, OP_ResetCount, 0, 0);
|
||||
sqlite3Insert(pParse, pSrc,
|
||||
sqlite3ExprListDup(db, pTriggerStep->pExprList, 0),
|
||||
sqlite3SelectDup(db, pTriggerStep->pSelect, 0),
|
||||
sqlite3IdListDup(db, pTriggerStep->pIdList), orconf);
|
||||
sqlite3VdbeAddOp2(v, OP_ResetCount, 1, 0);
|
||||
break;
|
||||
}
|
||||
case TK_DELETE: {
|
||||
SrcList *pSrc;
|
||||
sqlite3VdbeAddOp2(v, OP_ResetCount, 0, 0);
|
||||
pSrc = targetSrcList(pParse, pTriggerStep);
|
||||
sqlite3DeleteFrom(pParse, pSrc,
|
||||
sqlite3ExprDup(db, pTriggerStep->pWhere, 0));
|
||||
sqlite3VdbeAddOp2(v, OP_ResetCount, 1, 0);
|
||||
break;
|
||||
}
|
||||
default:
|
||||
assert(0);
|
||||
}
|
||||
pTriggerStep = pTriggerStep->pNext;
|
||||
}
|
||||
sqlite3VdbeAddOp2(v, OP_ContextPop, 0, 0);
|
||||
VdbeComment((v, "end trigger %s", pStepList->pTrig->name));
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
** This is called to code FOR EACH ROW triggers.
|
||||
**
|
||||
** When the code that this function generates is executed, the following
|
||||
** must be true:
|
||||
**
|
||||
** 1. No cursors may be open in the main database. (But newIdx and oldIdx
|
||||
** can be indices of cursors in temporary tables. See below.)
|
||||
**
|
||||
** 2. If the triggers being coded are ON INSERT or ON UPDATE triggers, then
|
||||
** a temporary vdbe cursor (index newIdx) must be open and pointing at
|
||||
** a row containing values to be substituted for new.* expressions in the
|
||||
** trigger program(s).
|
||||
**
|
||||
** 3. If the triggers being coded are ON DELETE or ON UPDATE triggers, then
|
||||
** a temporary vdbe cursor (index oldIdx) must be open and pointing at
|
||||
** a row containing values to be substituted for old.* expressions in the
|
||||
** trigger program(s).
|
||||
**
|
||||
** If they are not NULL, the piOldColMask and piNewColMask output variables
|
||||
** are set to values that describe the columns used by the trigger program
|
||||
** in the OLD.* and NEW.* tables respectively. If column N of the
|
||||
** pseudo-table is read at least once, the corresponding bit of the output
|
||||
** mask is set. If a column with an index greater than 32 is read, the
|
||||
** output mask is set to the special value 0xffffffff.
|
||||
**
|
||||
*/
|
||||
int sqlite3CodeRowTrigger(
|
||||
Parse *pParse, /* Parse context */
|
||||
Trigger *pTrigger, /* List of triggers on table pTab */
|
||||
int op, /* One of TK_UPDATE, TK_INSERT, TK_DELETE */
|
||||
ExprList *pChanges, /* Changes list for any UPDATE OF triggers */
|
||||
int tr_tm, /* One of TRIGGER_BEFORE, TRIGGER_AFTER */
|
||||
Table *pTab, /* The table to code triggers from */
|
||||
int newIdx, /* The indice of the "new" row to access */
|
||||
int oldIdx, /* The indice of the "old" row to access */
|
||||
int orconf, /* ON CONFLICT policy */
|
||||
int ignoreJump, /* Instruction to jump to for RAISE(IGNORE) */
|
||||
u32 *piOldColMask, /* OUT: Mask of columns used from the OLD.* table */
|
||||
u32 *piNewColMask /* OUT: Mask of columns used from the NEW.* table */
|
||||
){
|
||||
Trigger *p;
|
||||
sqlite3 *db = pParse->db;
|
||||
TriggerStack trigStackEntry;
|
||||
|
||||
trigStackEntry.oldColMask = 0;
|
||||
trigStackEntry.newColMask = 0;
|
||||
|
||||
assert(op == TK_UPDATE || op == TK_INSERT || op == TK_DELETE);
|
||||
assert(tr_tm == TRIGGER_BEFORE || tr_tm == TRIGGER_AFTER );
|
||||
|
||||
assert(newIdx != -1 || oldIdx != -1);
|
||||
|
||||
for(p=pTrigger; p; p=p->pNext){
|
||||
int fire_this = 0;
|
||||
|
||||
/* Determine whether we should code this trigger */
|
||||
if(
|
||||
p->op==op &&
|
||||
p->tr_tm==tr_tm &&
|
||||
(p->pSchema==p->pTabSchema || p->pSchema==db->aDb[1].pSchema) &&
|
||||
(op!=TK_UPDATE||!p->pColumns||checkColumnOverLap(p->pColumns,pChanges))
|
||||
){
|
||||
TriggerStack *pS; /* Pointer to trigger-stack entry */
|
||||
for(pS=pParse->trigStack; pS && p!=pS->pTrigger; pS=pS->pNext){}
|
||||
if( !pS ){
|
||||
fire_this = 1;
|
||||
}
|
||||
#if 0 /* Give no warning for recursive triggers. Just do not do them */
|
||||
else{
|
||||
sqlite3ErrorMsg(pParse, "recursive triggers not supported (%s)",
|
||||
p->name);
|
||||
return SQLITE_ERROR;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
if( fire_this ){
|
||||
int endTrigger;
|
||||
Expr * whenExpr;
|
||||
AuthContext sContext;
|
||||
NameContext sNC;
|
||||
|
||||
#ifndef SQLITE_OMIT_TRACE
|
||||
sqlite3VdbeAddOp4(pParse->pVdbe, OP_Trace, 0, 0, 0,
|
||||
sqlite3MPrintf(db, "-- TRIGGER %s", p->name),
|
||||
P4_DYNAMIC);
|
||||
#endif
|
||||
memset(&sNC, 0, sizeof(sNC));
|
||||
sNC.pParse = pParse;
|
||||
|
||||
/* Push an entry on to the trigger stack */
|
||||
trigStackEntry.pTrigger = p;
|
||||
trigStackEntry.newIdx = newIdx;
|
||||
trigStackEntry.oldIdx = oldIdx;
|
||||
trigStackEntry.pTab = pTab;
|
||||
trigStackEntry.pNext = pParse->trigStack;
|
||||
trigStackEntry.ignoreJump = ignoreJump;
|
||||
pParse->trigStack = &trigStackEntry;
|
||||
sqlite3AuthContextPush(pParse, &sContext, p->name);
|
||||
|
||||
/* code the WHEN clause */
|
||||
endTrigger = sqlite3VdbeMakeLabel(pParse->pVdbe);
|
||||
whenExpr = sqlite3ExprDup(db, p->pWhen, 0);
|
||||
if( db->mallocFailed || sqlite3ResolveExprNames(&sNC, whenExpr) ){
|
||||
pParse->trigStack = trigStackEntry.pNext;
|
||||
sqlite3ExprDelete(db, whenExpr);
|
||||
return 1;
|
||||
}
|
||||
sqlite3ExprIfFalse(pParse, whenExpr, endTrigger, SQLITE_JUMPIFNULL);
|
||||
sqlite3ExprDelete(db, whenExpr);
|
||||
|
||||
codeTriggerProgram(pParse, p->step_list, orconf);
|
||||
|
||||
/* Pop the entry off the trigger stack */
|
||||
pParse->trigStack = trigStackEntry.pNext;
|
||||
sqlite3AuthContextPop(&sContext);
|
||||
|
||||
sqlite3VdbeResolveLabel(pParse->pVdbe, endTrigger);
|
||||
}
|
||||
}
|
||||
if( piOldColMask ) *piOldColMask |= trigStackEntry.oldColMask;
|
||||
if( piNewColMask ) *piNewColMask |= trigStackEntry.newColMask;
|
||||
return 0;
|
||||
}
|
||||
#endif /* !defined(SQLITE_OMIT_TRIGGER) */
|
685
update.c
685
update.c
|
@ -1,685 +0,0 @@
|
|||
/*
|
||||
** 2001 September 15
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This file contains C code routines that are called by the parser
|
||||
** to handle UPDATE statements.
|
||||
**
|
||||
** $Id: update.c,v 1.196 2009/02/28 10:47:42 danielk1977 Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
||||
/* Forward declaration */
|
||||
static void updateVirtualTable(
|
||||
Parse *pParse, /* The parsing context */
|
||||
SrcList *pSrc, /* The virtual table to be modified */
|
||||
Table *pTab, /* The virtual table */
|
||||
ExprList *pChanges, /* The columns to change in the UPDATE statement */
|
||||
Expr *pRowidExpr, /* Expression used to recompute the rowid */
|
||||
int *aXRef, /* Mapping from columns of pTab to entries in pChanges */
|
||||
Expr *pWhere /* WHERE clause of the UPDATE statement */
|
||||
);
|
||||
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
||||
|
||||
/*
|
||||
** The most recently coded instruction was an OP_Column to retrieve the
|
||||
** i-th column of table pTab. This routine sets the P4 parameter of the
|
||||
** OP_Column to the default value, if any.
|
||||
**
|
||||
** The default value of a column is specified by a DEFAULT clause in the
|
||||
** column definition. This was either supplied by the user when the table
|
||||
** was created, or added later to the table definition by an ALTER TABLE
|
||||
** command. If the latter, then the row-records in the table btree on disk
|
||||
** may not contain a value for the column and the default value, taken
|
||||
** from the P4 parameter of the OP_Column instruction, is returned instead.
|
||||
** If the former, then all row-records are guaranteed to include a value
|
||||
** for the column and the P4 value is not required.
|
||||
**
|
||||
** Column definitions created by an ALTER TABLE command may only have
|
||||
** literal default values specified: a number, null or a string. (If a more
|
||||
** complicated default expression value was provided, it is evaluated
|
||||
** when the ALTER TABLE is executed and one of the literal values written
|
||||
** into the sqlite_master table.)
|
||||
**
|
||||
** Therefore, the P4 parameter is only required if the default value for
|
||||
** the column is a literal number, string or null. The sqlite3ValueFromExpr()
|
||||
** function is capable of transforming these types of expressions into
|
||||
** sqlite3_value objects.
|
||||
*/
|
||||
void sqlite3ColumnDefault(Vdbe *v, Table *pTab, int i){
|
||||
if( pTab && !pTab->pSelect ){
|
||||
sqlite3_value *pValue;
|
||||
u8 enc = ENC(sqlite3VdbeDb(v));
|
||||
Column *pCol = &pTab->aCol[i];
|
||||
VdbeComment((v, "%s.%s", pTab->zName, pCol->zName));
|
||||
assert( i<pTab->nCol );
|
||||
sqlite3ValueFromExpr(sqlite3VdbeDb(v), pCol->pDflt, enc,
|
||||
pCol->affinity, &pValue);
|
||||
if( pValue ){
|
||||
sqlite3VdbeChangeP4(v, -1, (const char *)pValue, P4_MEM);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Process an UPDATE statement.
|
||||
**
|
||||
** UPDATE OR IGNORE table_wxyz SET a=b, c=d WHERE e<5 AND f NOT NULL;
|
||||
** \_______/ \________/ \______/ \________________/
|
||||
* onError pTabList pChanges pWhere
|
||||
*/
|
||||
void sqlite3Update(
|
||||
Parse *pParse, /* The parser context */
|
||||
SrcList *pTabList, /* The table in which we should change things */
|
||||
ExprList *pChanges, /* Things to be changed */
|
||||
Expr *pWhere, /* The WHERE clause. May be null */
|
||||
int onError /* How to handle constraint errors */
|
||||
){
|
||||
int i, j; /* Loop counters */
|
||||
Table *pTab; /* The table to be updated */
|
||||
int addr = 0; /* VDBE instruction address of the start of the loop */
|
||||
WhereInfo *pWInfo; /* Information about the WHERE clause */
|
||||
Vdbe *v; /* The virtual database engine */
|
||||
Index *pIdx; /* For looping over indices */
|
||||
int nIdx; /* Number of indices that need updating */
|
||||
int iCur; /* VDBE Cursor number of pTab */
|
||||
sqlite3 *db; /* The database structure */
|
||||
int *aRegIdx = 0; /* One register assigned to each index to be updated */
|
||||
int *aXRef = 0; /* aXRef[i] is the index in pChanges->a[] of the
|
||||
** an expression for the i-th column of the table.
|
||||
** aXRef[i]==-1 if the i-th column is not changed. */
|
||||
int chngRowid; /* True if the record number is being changed */
|
||||
Expr *pRowidExpr = 0; /* Expression defining the new record number */
|
||||
int openAll = 0; /* True if all indices need to be opened */
|
||||
AuthContext sContext; /* The authorization context */
|
||||
NameContext sNC; /* The name-context to resolve expressions in */
|
||||
int iDb; /* Database containing the table being updated */
|
||||
int j1; /* Addresses of jump instructions */
|
||||
int okOnePass; /* True for one-pass algorithm without the FIFO */
|
||||
|
||||
#ifndef SQLITE_OMIT_TRIGGER
|
||||
int isView; /* Trying to update a view */
|
||||
Trigger *pTrigger; /* List of triggers on pTab, if required */
|
||||
#endif
|
||||
int iBeginAfterTrigger = 0; /* Address of after trigger program */
|
||||
int iEndAfterTrigger = 0; /* Exit of after trigger program */
|
||||
int iBeginBeforeTrigger = 0; /* Address of before trigger program */
|
||||
int iEndBeforeTrigger = 0; /* Exit of before trigger program */
|
||||
u32 old_col_mask = 0; /* Mask of OLD.* columns in use */
|
||||
u32 new_col_mask = 0; /* Mask of NEW.* columns in use */
|
||||
|
||||
int newIdx = -1; /* index of trigger "new" temp table */
|
||||
int oldIdx = -1; /* index of trigger "old" temp table */
|
||||
|
||||
/* Register Allocations */
|
||||
int regRowCount = 0; /* A count of rows changed */
|
||||
int regOldRowid; /* The old rowid */
|
||||
int regNewRowid; /* The new rowid */
|
||||
int regData; /* New data for the row */
|
||||
int regRowSet = 0; /* Rowset of rows to be updated */
|
||||
|
||||
sContext.pParse = 0;
|
||||
db = pParse->db;
|
||||
if( pParse->nErr || db->mallocFailed ){
|
||||
goto update_cleanup;
|
||||
}
|
||||
assert( pTabList->nSrc==1 );
|
||||
|
||||
/* Locate the table which we want to update.
|
||||
*/
|
||||
pTab = sqlite3SrcListLookup(pParse, pTabList);
|
||||
if( pTab==0 ) goto update_cleanup;
|
||||
iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
|
||||
|
||||
/* Figure out if we have any triggers and if the table being
|
||||
** updated is a view
|
||||
*/
|
||||
#ifndef SQLITE_OMIT_TRIGGER
|
||||
pTrigger = sqlite3TriggersExist(pParse, pTab, TK_UPDATE, pChanges, 0);
|
||||
isView = pTab->pSelect!=0;
|
||||
#else
|
||||
# define pTrigger 0
|
||||
# define isView 0
|
||||
#endif
|
||||
#ifdef SQLITE_OMIT_VIEW
|
||||
# undef isView
|
||||
# define isView 0
|
||||
#endif
|
||||
|
||||
if( sqlite3IsReadOnly(pParse, pTab, (pTrigger?1:0)) ){
|
||||
goto update_cleanup;
|
||||
}
|
||||
if( sqlite3ViewGetColumnNames(pParse, pTab) ){
|
||||
goto update_cleanup;
|
||||
}
|
||||
aXRef = sqlite3DbMallocRaw(db, sizeof(int) * pTab->nCol );
|
||||
if( aXRef==0 ) goto update_cleanup;
|
||||
for(i=0; i<pTab->nCol; i++) aXRef[i] = -1;
|
||||
|
||||
/* If there are FOR EACH ROW triggers, allocate cursors for the
|
||||
** special OLD and NEW tables
|
||||
*/
|
||||
if( pTrigger ){
|
||||
newIdx = pParse->nTab++;
|
||||
oldIdx = pParse->nTab++;
|
||||
}
|
||||
|
||||
/* Allocate a cursors for the main database table and for all indices.
|
||||
** The index cursors might not be used, but if they are used they
|
||||
** need to occur right after the database cursor. So go ahead and
|
||||
** allocate enough space, just in case.
|
||||
*/
|
||||
pTabList->a[0].iCursor = iCur = pParse->nTab++;
|
||||
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
||||
pParse->nTab++;
|
||||
}
|
||||
|
||||
/* Initialize the name-context */
|
||||
memset(&sNC, 0, sizeof(sNC));
|
||||
sNC.pParse = pParse;
|
||||
sNC.pSrcList = pTabList;
|
||||
|
||||
/* Resolve the column names in all the expressions of the
|
||||
** of the UPDATE statement. Also find the column index
|
||||
** for each column to be updated in the pChanges array. For each
|
||||
** column to be updated, make sure we have authorization to change
|
||||
** that column.
|
||||
*/
|
||||
chngRowid = 0;
|
||||
for(i=0; i<pChanges->nExpr; i++){
|
||||
if( sqlite3ResolveExprNames(&sNC, pChanges->a[i].pExpr) ){
|
||||
goto update_cleanup;
|
||||
}
|
||||
for(j=0; j<pTab->nCol; j++){
|
||||
if( sqlite3StrICmp(pTab->aCol[j].zName, pChanges->a[i].zName)==0 ){
|
||||
if( j==pTab->iPKey ){
|
||||
chngRowid = 1;
|
||||
pRowidExpr = pChanges->a[i].pExpr;
|
||||
}
|
||||
aXRef[j] = i;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if( j>=pTab->nCol ){
|
||||
if( sqlite3IsRowid(pChanges->a[i].zName) ){
|
||||
chngRowid = 1;
|
||||
pRowidExpr = pChanges->a[i].pExpr;
|
||||
}else{
|
||||
sqlite3ErrorMsg(pParse, "no such column: %s", pChanges->a[i].zName);
|
||||
goto update_cleanup;
|
||||
}
|
||||
}
|
||||
#ifndef SQLITE_OMIT_AUTHORIZATION
|
||||
{
|
||||
int rc;
|
||||
rc = sqlite3AuthCheck(pParse, SQLITE_UPDATE, pTab->zName,
|
||||
pTab->aCol[j].zName, db->aDb[iDb].zName);
|
||||
if( rc==SQLITE_DENY ){
|
||||
goto update_cleanup;
|
||||
}else if( rc==SQLITE_IGNORE ){
|
||||
aXRef[j] = -1;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
/* Allocate memory for the array aRegIdx[]. There is one entry in the
|
||||
** array for each index associated with table being updated. Fill in
|
||||
** the value with a register number for indices that are to be used
|
||||
** and with zero for unused indices.
|
||||
*/
|
||||
for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){}
|
||||
if( nIdx>0 ){
|
||||
aRegIdx = sqlite3DbMallocRaw(db, sizeof(Index*) * nIdx );
|
||||
if( aRegIdx==0 ) goto update_cleanup;
|
||||
}
|
||||
for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
|
||||
int reg;
|
||||
if( chngRowid ){
|
||||
reg = ++pParse->nMem;
|
||||
}else{
|
||||
reg = 0;
|
||||
for(i=0; i<pIdx->nColumn; i++){
|
||||
if( aXRef[pIdx->aiColumn[i]]>=0 ){
|
||||
reg = ++pParse->nMem;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
aRegIdx[j] = reg;
|
||||
}
|
||||
|
||||
/* Allocate a block of register used to store the change record
|
||||
** sent to sqlite3GenerateConstraintChecks(). There are either
|
||||
** one or two registers for holding the rowid. One rowid register
|
||||
** is used if chngRowid is false and two are used if chngRowid is
|
||||
** true. Following these are pTab->nCol register holding column
|
||||
** data.
|
||||
*/
|
||||
regOldRowid = regNewRowid = pParse->nMem + 1;
|
||||
pParse->nMem += pTab->nCol + 1;
|
||||
if( chngRowid ){
|
||||
regNewRowid++;
|
||||
pParse->nMem++;
|
||||
}
|
||||
regData = regNewRowid+1;
|
||||
|
||||
|
||||
/* Begin generating code.
|
||||
*/
|
||||
v = sqlite3GetVdbe(pParse);
|
||||
if( v==0 ) goto update_cleanup;
|
||||
if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
|
||||
sqlite3BeginWriteOperation(pParse, 1, iDb);
|
||||
|
||||
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
||||
/* Virtual tables must be handled separately */
|
||||
if( IsVirtual(pTab) ){
|
||||
updateVirtualTable(pParse, pTabList, pTab, pChanges, pRowidExpr, aXRef,
|
||||
pWhere);
|
||||
pWhere = 0;
|
||||
pTabList = 0;
|
||||
goto update_cleanup;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Start the view context
|
||||
*/
|
||||
if( isView ){
|
||||
sqlite3AuthContextPush(pParse, &sContext, pTab->zName);
|
||||
}
|
||||
|
||||
/* Generate the code for triggers.
|
||||
*/
|
||||
if( pTrigger ){
|
||||
int iGoto;
|
||||
|
||||
/* Create pseudo-tables for NEW and OLD
|
||||
*/
|
||||
sqlite3VdbeAddOp3(v, OP_OpenPseudo, oldIdx, 0, pTab->nCol);
|
||||
sqlite3VdbeAddOp3(v, OP_OpenPseudo, newIdx, 0, pTab->nCol);
|
||||
|
||||
iGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
|
||||
addr = sqlite3VdbeMakeLabel(v);
|
||||
iBeginBeforeTrigger = sqlite3VdbeCurrentAddr(v);
|
||||
if( sqlite3CodeRowTrigger(pParse, pTrigger, TK_UPDATE, pChanges,
|
||||
TRIGGER_BEFORE, pTab, newIdx, oldIdx, onError, addr,
|
||||
&old_col_mask, &new_col_mask) ){
|
||||
goto update_cleanup;
|
||||
}
|
||||
iEndBeforeTrigger = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
|
||||
iBeginAfterTrigger = sqlite3VdbeCurrentAddr(v);
|
||||
if( sqlite3CodeRowTrigger(pParse, pTrigger, TK_UPDATE, pChanges,
|
||||
TRIGGER_AFTER, pTab, newIdx, oldIdx, onError, addr,
|
||||
&old_col_mask, &new_col_mask) ){
|
||||
goto update_cleanup;
|
||||
}
|
||||
iEndAfterTrigger = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
|
||||
sqlite3VdbeJumpHere(v, iGoto);
|
||||
}
|
||||
|
||||
/* If we are trying to update a view, realize that view into
|
||||
** a ephemeral table.
|
||||
*/
|
||||
#if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
|
||||
if( isView ){
|
||||
sqlite3MaterializeView(pParse, pTab, pWhere, iCur);
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Resolve the column names in all the expressions in the
|
||||
** WHERE clause.
|
||||
*/
|
||||
if( sqlite3ResolveExprNames(&sNC, pWhere) ){
|
||||
goto update_cleanup;
|
||||
}
|
||||
|
||||
/* Begin the database scan
|
||||
*/
|
||||
sqlite3VdbeAddOp2(v, OP_Null, 0, regOldRowid);
|
||||
pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0,
|
||||
WHERE_ONEPASS_DESIRED, 0);
|
||||
if( pWInfo==0 ) goto update_cleanup;
|
||||
okOnePass = pWInfo->okOnePass;
|
||||
|
||||
/* Remember the rowid of every item to be updated.
|
||||
*/
|
||||
sqlite3VdbeAddOp2(v, IsVirtual(pTab)?OP_VRowid:OP_Rowid, iCur, regOldRowid);
|
||||
if( !okOnePass ){
|
||||
regRowSet = ++pParse->nMem;
|
||||
sqlite3VdbeAddOp2(v, OP_RowSetAdd, regRowSet, regOldRowid);
|
||||
}
|
||||
|
||||
/* End the database scan loop.
|
||||
*/
|
||||
sqlite3WhereEnd(pWInfo);
|
||||
|
||||
/* Initialize the count of updated rows
|
||||
*/
|
||||
if( db->flags & SQLITE_CountRows && !pParse->trigStack ){
|
||||
regRowCount = ++pParse->nMem;
|
||||
sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
|
||||
}
|
||||
|
||||
if( !isView && !IsVirtual(pTab) ){
|
||||
/*
|
||||
** Open every index that needs updating. Note that if any
|
||||
** index could potentially invoke a REPLACE conflict resolution
|
||||
** action, then we need to open all indices because we might need
|
||||
** to be deleting some records.
|
||||
*/
|
||||
if( !okOnePass ) sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenWrite);
|
||||
if( onError==OE_Replace ){
|
||||
openAll = 1;
|
||||
}else{
|
||||
openAll = 0;
|
||||
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
||||
if( pIdx->onError==OE_Replace ){
|
||||
openAll = 1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
|
||||
if( openAll || aRegIdx[i]>0 ){
|
||||
KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
|
||||
sqlite3VdbeAddOp4(v, OP_OpenWrite, iCur+i+1, pIdx->tnum, iDb,
|
||||
(char*)pKey, P4_KEYINFO_HANDOFF);
|
||||
assert( pParse->nTab>iCur+i+1 );
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Jump back to this point if a trigger encounters an IGNORE constraint. */
|
||||
if( pTrigger ){
|
||||
sqlite3VdbeResolveLabel(v, addr);
|
||||
}
|
||||
|
||||
/* Top of the update loop */
|
||||
if( okOnePass ){
|
||||
int a1 = sqlite3VdbeAddOp1(v, OP_NotNull, regOldRowid);
|
||||
addr = sqlite3VdbeAddOp0(v, OP_Goto);
|
||||
sqlite3VdbeJumpHere(v, a1);
|
||||
}else{
|
||||
addr = sqlite3VdbeAddOp3(v, OP_RowSetRead, regRowSet, 0, regOldRowid);
|
||||
}
|
||||
|
||||
if( pTrigger ){
|
||||
int regRowid;
|
||||
int regRow;
|
||||
int regCols;
|
||||
|
||||
/* Make cursor iCur point to the record that is being updated.
|
||||
*/
|
||||
sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addr, regOldRowid);
|
||||
|
||||
/* Generate the OLD table
|
||||
*/
|
||||
regRowid = sqlite3GetTempReg(pParse);
|
||||
regRow = sqlite3GetTempReg(pParse);
|
||||
sqlite3VdbeAddOp2(v, OP_Rowid, iCur, regRowid);
|
||||
if( !old_col_mask ){
|
||||
sqlite3VdbeAddOp2(v, OP_Null, 0, regRow);
|
||||
}else{
|
||||
sqlite3VdbeAddOp2(v, OP_RowData, iCur, regRow);
|
||||
}
|
||||
sqlite3VdbeAddOp3(v, OP_Insert, oldIdx, regRow, regRowid);
|
||||
|
||||
/* Generate the NEW table
|
||||
*/
|
||||
if( chngRowid ){
|
||||
sqlite3ExprCodeAndCache(pParse, pRowidExpr, regRowid);
|
||||
sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid);
|
||||
}else{
|
||||
sqlite3VdbeAddOp2(v, OP_Rowid, iCur, regRowid);
|
||||
}
|
||||
regCols = sqlite3GetTempRange(pParse, pTab->nCol);
|
||||
for(i=0; i<pTab->nCol; i++){
|
||||
if( i==pTab->iPKey ){
|
||||
sqlite3VdbeAddOp2(v, OP_Null, 0, regCols+i);
|
||||
continue;
|
||||
}
|
||||
j = aXRef[i];
|
||||
if( new_col_mask&((u32)1<<i) || new_col_mask==0xffffffff ){
|
||||
if( j<0 ){
|
||||
sqlite3VdbeAddOp3(v, OP_Column, iCur, i, regCols+i);
|
||||
sqlite3ColumnDefault(v, pTab, i);
|
||||
}else{
|
||||
sqlite3ExprCodeAndCache(pParse, pChanges->a[j].pExpr, regCols+i);
|
||||
}
|
||||
}else{
|
||||
sqlite3VdbeAddOp2(v, OP_Null, 0, regCols+i);
|
||||
}
|
||||
}
|
||||
sqlite3VdbeAddOp3(v, OP_MakeRecord, regCols, pTab->nCol, regRow);
|
||||
if( !isView ){
|
||||
sqlite3TableAffinityStr(v, pTab);
|
||||
sqlite3ExprCacheAffinityChange(pParse, regCols, pTab->nCol);
|
||||
}
|
||||
sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol);
|
||||
/* if( pParse->nErr ) goto update_cleanup; */
|
||||
sqlite3VdbeAddOp3(v, OP_Insert, newIdx, regRow, regRowid);
|
||||
sqlite3ReleaseTempReg(pParse, regRowid);
|
||||
sqlite3ReleaseTempReg(pParse, regRow);
|
||||
|
||||
sqlite3VdbeAddOp2(v, OP_Goto, 0, iBeginBeforeTrigger);
|
||||
sqlite3VdbeJumpHere(v, iEndBeforeTrigger);
|
||||
}
|
||||
|
||||
if( !isView && !IsVirtual(pTab) ){
|
||||
/* Loop over every record that needs updating. We have to load
|
||||
** the old data for each record to be updated because some columns
|
||||
** might not change and we will need to copy the old value.
|
||||
** Also, the old data is needed to delete the old index entries.
|
||||
** So make the cursor point at the old record.
|
||||
*/
|
||||
sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addr, regOldRowid);
|
||||
|
||||
/* If the record number will change, push the record number as it
|
||||
** will be after the update. (The old record number is currently
|
||||
** on top of the stack.)
|
||||
*/
|
||||
if( chngRowid ){
|
||||
sqlite3ExprCode(pParse, pRowidExpr, regNewRowid);
|
||||
sqlite3VdbeAddOp1(v, OP_MustBeInt, regNewRowid);
|
||||
}
|
||||
|
||||
/* Compute new data for this record.
|
||||
*/
|
||||
for(i=0; i<pTab->nCol; i++){
|
||||
if( i==pTab->iPKey ){
|
||||
sqlite3VdbeAddOp2(v, OP_Null, 0, regData+i);
|
||||
continue;
|
||||
}
|
||||
j = aXRef[i];
|
||||
if( j<0 ){
|
||||
sqlite3VdbeAddOp3(v, OP_Column, iCur, i, regData+i);
|
||||
sqlite3ColumnDefault(v, pTab, i);
|
||||
}else{
|
||||
sqlite3ExprCode(pParse, pChanges->a[j].pExpr, regData+i);
|
||||
}
|
||||
}
|
||||
|
||||
/* Do constraint checks
|
||||
*/
|
||||
sqlite3GenerateConstraintChecks(pParse, pTab, iCur, regNewRowid,
|
||||
aRegIdx, chngRowid, 1,
|
||||
onError, addr);
|
||||
|
||||
/* Delete the old indices for the current record.
|
||||
*/
|
||||
j1 = sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regOldRowid);
|
||||
sqlite3GenerateRowIndexDelete(pParse, pTab, iCur, aRegIdx);
|
||||
|
||||
/* If changing the record number, delete the old record.
|
||||
*/
|
||||
if( chngRowid ){
|
||||
sqlite3VdbeAddOp2(v, OP_Delete, iCur, 0);
|
||||
}
|
||||
sqlite3VdbeJumpHere(v, j1);
|
||||
|
||||
/* Create the new index entries and the new record.
|
||||
*/
|
||||
sqlite3CompleteInsertion(pParse, pTab, iCur, regNewRowid,
|
||||
aRegIdx, 1, -1, 0);
|
||||
}
|
||||
|
||||
/* Increment the row counter
|
||||
*/
|
||||
if( db->flags & SQLITE_CountRows && !pParse->trigStack){
|
||||
sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
|
||||
}
|
||||
|
||||
/* If there are triggers, close all the cursors after each iteration
|
||||
** through the loop. The fire the after triggers.
|
||||
*/
|
||||
if( pTrigger ){
|
||||
sqlite3VdbeAddOp2(v, OP_Goto, 0, iBeginAfterTrigger);
|
||||
sqlite3VdbeJumpHere(v, iEndAfterTrigger);
|
||||
}
|
||||
|
||||
/* Repeat the above with the next record to be updated, until
|
||||
** all record selected by the WHERE clause have been updated.
|
||||
*/
|
||||
sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
|
||||
sqlite3VdbeJumpHere(v, addr);
|
||||
|
||||
/* Close all tables */
|
||||
for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
|
||||
if( openAll || aRegIdx[i]>0 ){
|
||||
sqlite3VdbeAddOp2(v, OP_Close, iCur+i+1, 0);
|
||||
}
|
||||
}
|
||||
sqlite3VdbeAddOp2(v, OP_Close, iCur, 0);
|
||||
if( pTrigger ){
|
||||
sqlite3VdbeAddOp2(v, OP_Close, newIdx, 0);
|
||||
sqlite3VdbeAddOp2(v, OP_Close, oldIdx, 0);
|
||||
}
|
||||
|
||||
/*
|
||||
** Return the number of rows that were changed. If this routine is
|
||||
** generating code because of a call to sqlite3NestedParse(), do not
|
||||
** invoke the callback function.
|
||||
*/
|
||||
if( db->flags & SQLITE_CountRows && !pParse->trigStack && pParse->nested==0 ){
|
||||
sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1);
|
||||
sqlite3VdbeSetNumCols(v, 1);
|
||||
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows updated", SQLITE_STATIC);
|
||||
}
|
||||
|
||||
update_cleanup:
|
||||
sqlite3AuthContextPop(&sContext);
|
||||
sqlite3DbFree(db, aRegIdx);
|
||||
sqlite3DbFree(db, aXRef);
|
||||
sqlite3SrcListDelete(db, pTabList);
|
||||
sqlite3ExprListDelete(db, pChanges);
|
||||
sqlite3ExprDelete(db, pWhere);
|
||||
return;
|
||||
}
|
||||
|
||||
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
||||
/*
|
||||
** Generate code for an UPDATE of a virtual table.
|
||||
**
|
||||
** The strategy is that we create an ephemerial table that contains
|
||||
** for each row to be changed:
|
||||
**
|
||||
** (A) The original rowid of that row.
|
||||
** (B) The revised rowid for the row. (note1)
|
||||
** (C) The content of every column in the row.
|
||||
**
|
||||
** Then we loop over this ephemeral table and for each row in
|
||||
** the ephermeral table call VUpdate.
|
||||
**
|
||||
** When finished, drop the ephemeral table.
|
||||
**
|
||||
** (note1) Actually, if we know in advance that (A) is always the same
|
||||
** as (B) we only store (A), then duplicate (A) when pulling
|
||||
** it out of the ephemeral table before calling VUpdate.
|
||||
*/
|
||||
static void updateVirtualTable(
|
||||
Parse *pParse, /* The parsing context */
|
||||
SrcList *pSrc, /* The virtual table to be modified */
|
||||
Table *pTab, /* The virtual table */
|
||||
ExprList *pChanges, /* The columns to change in the UPDATE statement */
|
||||
Expr *pRowid, /* Expression used to recompute the rowid */
|
||||
int *aXRef, /* Mapping from columns of pTab to entries in pChanges */
|
||||
Expr *pWhere /* WHERE clause of the UPDATE statement */
|
||||
){
|
||||
Vdbe *v = pParse->pVdbe; /* Virtual machine under construction */
|
||||
ExprList *pEList = 0; /* The result set of the SELECT statement */
|
||||
Select *pSelect = 0; /* The SELECT statement */
|
||||
Expr *pExpr; /* Temporary expression */
|
||||
int ephemTab; /* Table holding the result of the SELECT */
|
||||
int i; /* Loop counter */
|
||||
int addr; /* Address of top of loop */
|
||||
int iReg; /* First register in set passed to OP_VUpdate */
|
||||
sqlite3 *db = pParse->db; /* Database connection */
|
||||
const char *pVtab = (const char*)pTab->pVtab;
|
||||
SelectDest dest;
|
||||
|
||||
/* Construct the SELECT statement that will find the new values for
|
||||
** all updated rows.
|
||||
*/
|
||||
pEList = sqlite3ExprListAppend(pParse, 0,
|
||||
sqlite3CreateIdExpr(pParse, "_rowid_"), 0);
|
||||
if( pRowid ){
|
||||
pEList = sqlite3ExprListAppend(pParse, pEList,
|
||||
sqlite3ExprDup(db, pRowid, 0), 0);
|
||||
}
|
||||
assert( pTab->iPKey<0 );
|
||||
for(i=0; i<pTab->nCol; i++){
|
||||
if( aXRef[i]>=0 ){
|
||||
pExpr = sqlite3ExprDup(db, pChanges->a[aXRef[i]].pExpr, 0);
|
||||
}else{
|
||||
pExpr = sqlite3CreateIdExpr(pParse, pTab->aCol[i].zName);
|
||||
}
|
||||
pEList = sqlite3ExprListAppend(pParse, pEList, pExpr, 0);
|
||||
}
|
||||
pSelect = sqlite3SelectNew(pParse, pEList, pSrc, pWhere, 0, 0, 0, 0, 0, 0);
|
||||
|
||||
/* Create the ephemeral table into which the update results will
|
||||
** be stored.
|
||||
*/
|
||||
assert( v );
|
||||
ephemTab = pParse->nTab++;
|
||||
sqlite3VdbeAddOp2(v, OP_OpenEphemeral, ephemTab, pTab->nCol+1+(pRowid!=0));
|
||||
|
||||
/* fill the ephemeral table
|
||||
*/
|
||||
sqlite3SelectDestInit(&dest, SRT_Table, ephemTab);
|
||||
sqlite3Select(pParse, pSelect, &dest);
|
||||
|
||||
/* Generate code to scan the ephemeral table and call VUpdate. */
|
||||
iReg = ++pParse->nMem;
|
||||
pParse->nMem += pTab->nCol+1;
|
||||
sqlite3VdbeAddOp2(v, OP_Rewind, ephemTab, 0);
|
||||
addr = sqlite3VdbeCurrentAddr(v);
|
||||
sqlite3VdbeAddOp3(v, OP_Column, ephemTab, 0, iReg);
|
||||
sqlite3VdbeAddOp3(v, OP_Column, ephemTab, (pRowid?1:0), iReg+1);
|
||||
for(i=0; i<pTab->nCol; i++){
|
||||
sqlite3VdbeAddOp3(v, OP_Column, ephemTab, i+1+(pRowid!=0), iReg+2+i);
|
||||
}
|
||||
sqlite3VtabMakeWritable(pParse, pTab);
|
||||
sqlite3VdbeAddOp4(v, OP_VUpdate, 0, pTab->nCol+2, iReg, pVtab, P4_VTAB);
|
||||
sqlite3VdbeAddOp2(v, OP_Next, ephemTab, addr);
|
||||
sqlite3VdbeJumpHere(v, addr-1);
|
||||
sqlite3VdbeAddOp2(v, OP_Close, ephemTab, 0);
|
||||
|
||||
/* Cleanup */
|
||||
sqlite3SelectDelete(db, pSelect);
|
||||
}
|
||||
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
||||
|
||||
/* Make sure "isView" gets undefined in case this file becomes part of
|
||||
** the amalgamation - so that subsequent files do not see isView as a
|
||||
** macro. */
|
||||
#undef isView
|
542
utf.c
542
utf.c
|
@ -1,542 +0,0 @@
|
|||
/*
|
||||
** 2004 April 13
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This file contains routines used to translate between UTF-8,
|
||||
** UTF-16, UTF-16BE, and UTF-16LE.
|
||||
**
|
||||
** $Id: utf.c,v 1.73 2009/04/01 18:40:32 drh Exp $
|
||||
**
|
||||
** Notes on UTF-8:
|
||||
**
|
||||
** Byte-0 Byte-1 Byte-2 Byte-3 Value
|
||||
** 0xxxxxxx 00000000 00000000 0xxxxxxx
|
||||
** 110yyyyy 10xxxxxx 00000000 00000yyy yyxxxxxx
|
||||
** 1110zzzz 10yyyyyy 10xxxxxx 00000000 zzzzyyyy yyxxxxxx
|
||||
** 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx 000uuuuu zzzzyyyy yyxxxxxx
|
||||
**
|
||||
**
|
||||
** Notes on UTF-16: (with wwww+1==uuuuu)
|
||||
**
|
||||
** Word-0 Word-1 Value
|
||||
** 110110ww wwzzzzyy 110111yy yyxxxxxx 000uuuuu zzzzyyyy yyxxxxxx
|
||||
** zzzzyyyy yyxxxxxx 00000000 zzzzyyyy yyxxxxxx
|
||||
**
|
||||
**
|
||||
** BOM or Byte Order Mark:
|
||||
** 0xff 0xfe little-endian utf-16 follows
|
||||
** 0xfe 0xff big-endian utf-16 follows
|
||||
**
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
#include <assert.h>
|
||||
#include "vdbeInt.h"
|
||||
|
||||
#ifndef SQLITE_AMALGAMATION
|
||||
/*
|
||||
** The following constant value is used by the SQLITE_BIGENDIAN and
|
||||
** SQLITE_LITTLEENDIAN macros.
|
||||
*/
|
||||
const int sqlite3one = 1;
|
||||
#endif /* SQLITE_AMALGAMATION */
|
||||
|
||||
/*
|
||||
** This lookup table is used to help decode the first byte of
|
||||
** a multi-byte UTF8 character.
|
||||
*/
|
||||
static const unsigned char sqlite3Utf8Trans1[] = {
|
||||
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
|
||||
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
|
||||
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
|
||||
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
|
||||
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
|
||||
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
|
||||
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
|
||||
0x00, 0x01, 0x02, 0x03, 0x00, 0x01, 0x00, 0x00,
|
||||
};
|
||||
|
||||
|
||||
#define WRITE_UTF8(zOut, c) { \
|
||||
if( c<0x00080 ){ \
|
||||
*zOut++ = (u8)(c&0xFF); \
|
||||
} \
|
||||
else if( c<0x00800 ){ \
|
||||
*zOut++ = 0xC0 + (u8)((c>>6)&0x1F); \
|
||||
*zOut++ = 0x80 + (u8)(c & 0x3F); \
|
||||
} \
|
||||
else if( c<0x10000 ){ \
|
||||
*zOut++ = 0xE0 + (u8)((c>>12)&0x0F); \
|
||||
*zOut++ = 0x80 + (u8)((c>>6) & 0x3F); \
|
||||
*zOut++ = 0x80 + (u8)(c & 0x3F); \
|
||||
}else{ \
|
||||
*zOut++ = 0xF0 + (u8)((c>>18) & 0x07); \
|
||||
*zOut++ = 0x80 + (u8)((c>>12) & 0x3F); \
|
||||
*zOut++ = 0x80 + (u8)((c>>6) & 0x3F); \
|
||||
*zOut++ = 0x80 + (u8)(c & 0x3F); \
|
||||
} \
|
||||
}
|
||||
|
||||
#define WRITE_UTF16LE(zOut, c) { \
|
||||
if( c<=0xFFFF ){ \
|
||||
*zOut++ = (u8)(c&0x00FF); \
|
||||
*zOut++ = (u8)((c>>8)&0x00FF); \
|
||||
}else{ \
|
||||
*zOut++ = (u8)(((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \
|
||||
*zOut++ = (u8)(0x00D8 + (((c-0x10000)>>18)&0x03)); \
|
||||
*zOut++ = (u8)(c&0x00FF); \
|
||||
*zOut++ = (u8)(0x00DC + ((c>>8)&0x03)); \
|
||||
} \
|
||||
}
|
||||
|
||||
#define WRITE_UTF16BE(zOut, c) { \
|
||||
if( c<=0xFFFF ){ \
|
||||
*zOut++ = (u8)((c>>8)&0x00FF); \
|
||||
*zOut++ = (u8)(c&0x00FF); \
|
||||
}else{ \
|
||||
*zOut++ = (u8)(0x00D8 + (((c-0x10000)>>18)&0x03)); \
|
||||
*zOut++ = (u8)(((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \
|
||||
*zOut++ = (u8)(0x00DC + ((c>>8)&0x03)); \
|
||||
*zOut++ = (u8)(c&0x00FF); \
|
||||
} \
|
||||
}
|
||||
|
||||
#define READ_UTF16LE(zIn, c){ \
|
||||
c = (*zIn++); \
|
||||
c += ((*zIn++)<<8); \
|
||||
if( c>=0xD800 && c<0xE000 ){ \
|
||||
int c2 = (*zIn++); \
|
||||
c2 += ((*zIn++)<<8); \
|
||||
c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10); \
|
||||
} \
|
||||
}
|
||||
|
||||
#define READ_UTF16BE(zIn, c){ \
|
||||
c = ((*zIn++)<<8); \
|
||||
c += (*zIn++); \
|
||||
if( c>=0xD800 && c<0xE000 ){ \
|
||||
int c2 = ((*zIn++)<<8); \
|
||||
c2 += (*zIn++); \
|
||||
c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10); \
|
||||
} \
|
||||
}
|
||||
|
||||
/*
|
||||
** Translate a single UTF-8 character. Return the unicode value.
|
||||
**
|
||||
** During translation, assume that the byte that zTerm points
|
||||
** is a 0x00.
|
||||
**
|
||||
** Write a pointer to the next unread byte back into *pzNext.
|
||||
**
|
||||
** Notes On Invalid UTF-8:
|
||||
**
|
||||
** * This routine never allows a 7-bit character (0x00 through 0x7f) to
|
||||
** be encoded as a multi-byte character. Any multi-byte character that
|
||||
** attempts to encode a value between 0x00 and 0x7f is rendered as 0xfffd.
|
||||
**
|
||||
** * This routine never allows a UTF16 surrogate value to be encoded.
|
||||
** If a multi-byte character attempts to encode a value between
|
||||
** 0xd800 and 0xe000 then it is rendered as 0xfffd.
|
||||
**
|
||||
** * Bytes in the range of 0x80 through 0xbf which occur as the first
|
||||
** byte of a character are interpreted as single-byte characters
|
||||
** and rendered as themselves even though they are technically
|
||||
** invalid characters.
|
||||
**
|
||||
** * This routine accepts an infinite number of different UTF8 encodings
|
||||
** for unicode values 0x80 and greater. It do not change over-length
|
||||
** encodings to 0xfffd as some systems recommend.
|
||||
*/
|
||||
#define READ_UTF8(zIn, zTerm, c) \
|
||||
c = *(zIn++); \
|
||||
if( c>=0xc0 ){ \
|
||||
c = sqlite3Utf8Trans1[c-0xc0]; \
|
||||
while( zIn!=zTerm && (*zIn & 0xc0)==0x80 ){ \
|
||||
c = (c<<6) + (0x3f & *(zIn++)); \
|
||||
} \
|
||||
if( c<0x80 \
|
||||
|| (c&0xFFFFF800)==0xD800 \
|
||||
|| (c&0xFFFFFFFE)==0xFFFE ){ c = 0xFFFD; } \
|
||||
}
|
||||
int sqlite3Utf8Read(
|
||||
const unsigned char *zIn, /* First byte of UTF-8 character */
|
||||
const unsigned char **pzNext /* Write first byte past UTF-8 char here */
|
||||
){
|
||||
int c;
|
||||
|
||||
/* Same as READ_UTF8() above but without the zTerm parameter.
|
||||
** For this routine, we assume the UTF8 string is always zero-terminated.
|
||||
*/
|
||||
c = *(zIn++);
|
||||
if( c>=0xc0 ){
|
||||
c = sqlite3Utf8Trans1[c-0xc0];
|
||||
while( (*zIn & 0xc0)==0x80 ){
|
||||
c = (c<<6) + (0x3f & *(zIn++));
|
||||
}
|
||||
if( c<0x80
|
||||
|| (c&0xFFFFF800)==0xD800
|
||||
|| (c&0xFFFFFFFE)==0xFFFE ){ c = 0xFFFD; }
|
||||
}
|
||||
*pzNext = zIn;
|
||||
return c;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/*
|
||||
** If the TRANSLATE_TRACE macro is defined, the value of each Mem is
|
||||
** printed on stderr on the way into and out of sqlite3VdbeMemTranslate().
|
||||
*/
|
||||
/* #define TRANSLATE_TRACE 1 */
|
||||
|
||||
#ifndef SQLITE_OMIT_UTF16
|
||||
/*
|
||||
** This routine transforms the internal text encoding used by pMem to
|
||||
** desiredEnc. It is an error if the string is already of the desired
|
||||
** encoding, or if *pMem does not contain a string value.
|
||||
*/
|
||||
int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){
|
||||
int len; /* Maximum length of output string in bytes */
|
||||
unsigned char *zOut; /* Output buffer */
|
||||
unsigned char *zIn; /* Input iterator */
|
||||
unsigned char *zTerm; /* End of input */
|
||||
unsigned char *z; /* Output iterator */
|
||||
unsigned int c;
|
||||
|
||||
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
|
||||
assert( pMem->flags&MEM_Str );
|
||||
assert( pMem->enc!=desiredEnc );
|
||||
assert( pMem->enc!=0 );
|
||||
assert( pMem->n>=0 );
|
||||
|
||||
#if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
|
||||
{
|
||||
char zBuf[100];
|
||||
sqlite3VdbeMemPrettyPrint(pMem, zBuf);
|
||||
fprintf(stderr, "INPUT: %s\n", zBuf);
|
||||
}
|
||||
#endif
|
||||
|
||||
/* If the translation is between UTF-16 little and big endian, then
|
||||
** all that is required is to swap the byte order. This case is handled
|
||||
** differently from the others.
|
||||
*/
|
||||
if( pMem->enc!=SQLITE_UTF8 && desiredEnc!=SQLITE_UTF8 ){
|
||||
u8 temp;
|
||||
int rc;
|
||||
rc = sqlite3VdbeMemMakeWriteable(pMem);
|
||||
if( rc!=SQLITE_OK ){
|
||||
assert( rc==SQLITE_NOMEM );
|
||||
return SQLITE_NOMEM;
|
||||
}
|
||||
zIn = (u8*)pMem->z;
|
||||
zTerm = &zIn[pMem->n&~1];
|
||||
while( zIn<zTerm ){
|
||||
temp = *zIn;
|
||||
*zIn = *(zIn+1);
|
||||
zIn++;
|
||||
*zIn++ = temp;
|
||||
}
|
||||
pMem->enc = desiredEnc;
|
||||
goto translate_out;
|
||||
}
|
||||
|
||||
/* Set len to the maximum number of bytes required in the output buffer. */
|
||||
if( desiredEnc==SQLITE_UTF8 ){
|
||||
/* When converting from UTF-16, the maximum growth results from
|
||||
** translating a 2-byte character to a 4-byte UTF-8 character.
|
||||
** A single byte is required for the output string
|
||||
** nul-terminator.
|
||||
*/
|
||||
pMem->n &= ~1;
|
||||
len = pMem->n * 2 + 1;
|
||||
}else{
|
||||
/* When converting from UTF-8 to UTF-16 the maximum growth is caused
|
||||
** when a 1-byte UTF-8 character is translated into a 2-byte UTF-16
|
||||
** character. Two bytes are required in the output buffer for the
|
||||
** nul-terminator.
|
||||
*/
|
||||
len = pMem->n * 2 + 2;
|
||||
}
|
||||
|
||||
/* Set zIn to point at the start of the input buffer and zTerm to point 1
|
||||
** byte past the end.
|
||||
**
|
||||
** Variable zOut is set to point at the output buffer, space obtained
|
||||
** from sqlite3_malloc().
|
||||
*/
|
||||
zIn = (u8*)pMem->z;
|
||||
zTerm = &zIn[pMem->n];
|
||||
zOut = sqlite3DbMallocRaw(pMem->db, len);
|
||||
if( !zOut ){
|
||||
return SQLITE_NOMEM;
|
||||
}
|
||||
z = zOut;
|
||||
|
||||
if( pMem->enc==SQLITE_UTF8 ){
|
||||
if( desiredEnc==SQLITE_UTF16LE ){
|
||||
/* UTF-8 -> UTF-16 Little-endian */
|
||||
while( zIn<zTerm ){
|
||||
/* c = sqlite3Utf8Read(zIn, zTerm, (const u8**)&zIn); */
|
||||
READ_UTF8(zIn, zTerm, c);
|
||||
WRITE_UTF16LE(z, c);
|
||||
}
|
||||
}else{
|
||||
assert( desiredEnc==SQLITE_UTF16BE );
|
||||
/* UTF-8 -> UTF-16 Big-endian */
|
||||
while( zIn<zTerm ){
|
||||
/* c = sqlite3Utf8Read(zIn, zTerm, (const u8**)&zIn); */
|
||||
READ_UTF8(zIn, zTerm, c);
|
||||
WRITE_UTF16BE(z, c);
|
||||
}
|
||||
}
|
||||
pMem->n = (int)(z - zOut);
|
||||
*z++ = 0;
|
||||
}else{
|
||||
assert( desiredEnc==SQLITE_UTF8 );
|
||||
if( pMem->enc==SQLITE_UTF16LE ){
|
||||
/* UTF-16 Little-endian -> UTF-8 */
|
||||
while( zIn<zTerm ){
|
||||
READ_UTF16LE(zIn, c);
|
||||
WRITE_UTF8(z, c);
|
||||
}
|
||||
}else{
|
||||
/* UTF-16 Big-endian -> UTF-8 */
|
||||
while( zIn<zTerm ){
|
||||
READ_UTF16BE(zIn, c);
|
||||
WRITE_UTF8(z, c);
|
||||
}
|
||||
}
|
||||
pMem->n = (int)(z - zOut);
|
||||
}
|
||||
*z = 0;
|
||||
assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len );
|
||||
|
||||
sqlite3VdbeMemRelease(pMem);
|
||||
pMem->flags &= ~(MEM_Static|MEM_Dyn|MEM_Ephem);
|
||||
pMem->enc = desiredEnc;
|
||||
pMem->flags |= (MEM_Term|MEM_Dyn);
|
||||
pMem->z = (char*)zOut;
|
||||
pMem->zMalloc = pMem->z;
|
||||
|
||||
translate_out:
|
||||
#if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
|
||||
{
|
||||
char zBuf[100];
|
||||
sqlite3VdbeMemPrettyPrint(pMem, zBuf);
|
||||
fprintf(stderr, "OUTPUT: %s\n", zBuf);
|
||||
}
|
||||
#endif
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** This routine checks for a byte-order mark at the beginning of the
|
||||
** UTF-16 string stored in *pMem. If one is present, it is removed and
|
||||
** the encoding of the Mem adjusted. This routine does not do any
|
||||
** byte-swapping, it just sets Mem.enc appropriately.
|
||||
**
|
||||
** The allocation (static, dynamic etc.) and encoding of the Mem may be
|
||||
** changed by this function.
|
||||
*/
|
||||
int sqlite3VdbeMemHandleBom(Mem *pMem){
|
||||
int rc = SQLITE_OK;
|
||||
u8 bom = 0;
|
||||
|
||||
assert( pMem->n>=0 );
|
||||
if( pMem->n>1 ){
|
||||
u8 b1 = *(u8 *)pMem->z;
|
||||
u8 b2 = *(((u8 *)pMem->z) + 1);
|
||||
if( b1==0xFE && b2==0xFF ){
|
||||
bom = SQLITE_UTF16BE;
|
||||
}
|
||||
if( b1==0xFF && b2==0xFE ){
|
||||
bom = SQLITE_UTF16LE;
|
||||
}
|
||||
}
|
||||
|
||||
if( bom ){
|
||||
rc = sqlite3VdbeMemMakeWriteable(pMem);
|
||||
if( rc==SQLITE_OK ){
|
||||
pMem->n -= 2;
|
||||
memmove(pMem->z, &pMem->z[2], pMem->n);
|
||||
pMem->z[pMem->n] = '\0';
|
||||
pMem->z[pMem->n+1] = '\0';
|
||||
pMem->flags |= MEM_Term;
|
||||
pMem->enc = bom;
|
||||
}
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
#endif /* SQLITE_OMIT_UTF16 */
|
||||
|
||||
/*
|
||||
** pZ is a UTF-8 encoded unicode string. If nByte is less than zero,
|
||||
** return the number of unicode characters in pZ up to (but not including)
|
||||
** the first 0x00 byte. If nByte is not less than zero, return the
|
||||
** number of unicode characters in the first nByte of pZ (or up to
|
||||
** the first 0x00, whichever comes first).
|
||||
*/
|
||||
int sqlite3Utf8CharLen(const char *zIn, int nByte){
|
||||
int r = 0;
|
||||
const u8 *z = (const u8*)zIn;
|
||||
const u8 *zTerm;
|
||||
if( nByte>=0 ){
|
||||
zTerm = &z[nByte];
|
||||
}else{
|
||||
zTerm = (const u8*)(-1);
|
||||
}
|
||||
assert( z<=zTerm );
|
||||
while( *z!=0 && z<zTerm ){
|
||||
SQLITE_SKIP_UTF8(z);
|
||||
r++;
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
/* This test function is not currently used by the automated test-suite.
|
||||
** Hence it is only available in debug builds.
|
||||
*/
|
||||
#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
|
||||
/*
|
||||
** Translate UTF-8 to UTF-8.
|
||||
**
|
||||
** This has the effect of making sure that the string is well-formed
|
||||
** UTF-8. Miscoded characters are removed.
|
||||
**
|
||||
** The translation is done in-place (since it is impossible for the
|
||||
** correct UTF-8 encoding to be longer than a malformed encoding).
|
||||
*/
|
||||
int sqlite3Utf8To8(unsigned char *zIn){
|
||||
unsigned char *zOut = zIn;
|
||||
unsigned char *zStart = zIn;
|
||||
u32 c;
|
||||
|
||||
while( zIn[0] ){
|
||||
c = sqlite3Utf8Read(zIn, (const u8**)&zIn);
|
||||
if( c!=0xfffd ){
|
||||
WRITE_UTF8(zOut, c);
|
||||
}
|
||||
}
|
||||
*zOut = 0;
|
||||
return (int)(zOut - zStart);
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifndef SQLITE_OMIT_UTF16
|
||||
/*
|
||||
** Convert a UTF-16 string in the native encoding into a UTF-8 string.
|
||||
** Memory to hold the UTF-8 string is obtained from sqlite3_malloc and must
|
||||
** be freed by the calling function.
|
||||
**
|
||||
** NULL is returned if there is an allocation error.
|
||||
*/
|
||||
char *sqlite3Utf16to8(sqlite3 *db, const void *z, int nByte){
|
||||
Mem m;
|
||||
memset(&m, 0, sizeof(m));
|
||||
m.db = db;
|
||||
sqlite3VdbeMemSetStr(&m, z, nByte, SQLITE_UTF16NATIVE, SQLITE_STATIC);
|
||||
sqlite3VdbeChangeEncoding(&m, SQLITE_UTF8);
|
||||
if( db->mallocFailed ){
|
||||
sqlite3VdbeMemRelease(&m);
|
||||
m.z = 0;
|
||||
}
|
||||
assert( (m.flags & MEM_Term)!=0 || db->mallocFailed );
|
||||
assert( (m.flags & MEM_Str)!=0 || db->mallocFailed );
|
||||
return (m.flags & MEM_Dyn)!=0 ? m.z : sqlite3DbStrDup(db, m.z);
|
||||
}
|
||||
|
||||
/*
|
||||
** pZ is a UTF-16 encoded unicode string at least nChar characters long.
|
||||
** Return the number of bytes in the first nChar unicode characters
|
||||
** in pZ. nChar must be non-negative.
|
||||
*/
|
||||
int sqlite3Utf16ByteLen(const void *zIn, int nChar){
|
||||
int c;
|
||||
unsigned char const *z = zIn;
|
||||
int n = 0;
|
||||
if( SQLITE_UTF16NATIVE==SQLITE_UTF16BE ){
|
||||
/* Using an "if (SQLITE_UTF16NATIVE==SQLITE_UTF16BE)" construct here
|
||||
** and in other parts of this file means that at one branch will
|
||||
** not be covered by coverage testing on any single host. But coverage
|
||||
** will be complete if the tests are run on both a little-endian and
|
||||
** big-endian host. Because both the UTF16NATIVE and SQLITE_UTF16BE
|
||||
** macros are constant at compile time the compiler can determine
|
||||
** which branch will be followed. It is therefore assumed that no runtime
|
||||
** penalty is paid for this "if" statement.
|
||||
*/
|
||||
while( n<nChar ){
|
||||
READ_UTF16BE(z, c);
|
||||
n++;
|
||||
}
|
||||
}else{
|
||||
while( n<nChar ){
|
||||
READ_UTF16LE(z, c);
|
||||
n++;
|
||||
}
|
||||
}
|
||||
return (int)(z-(unsigned char const *)zIn);
|
||||
}
|
||||
|
||||
#if defined(SQLITE_TEST)
|
||||
/*
|
||||
** This routine is called from the TCL test function "translate_selftest".
|
||||
** It checks that the primitives for serializing and deserializing
|
||||
** characters in each encoding are inverses of each other.
|
||||
*/
|
||||
void sqlite3UtfSelfTest(void){
|
||||
unsigned int i, t;
|
||||
unsigned char zBuf[20];
|
||||
unsigned char *z;
|
||||
int n;
|
||||
unsigned int c;
|
||||
|
||||
for(i=0; i<0x00110000; i++){
|
||||
z = zBuf;
|
||||
WRITE_UTF8(z, i);
|
||||
n = (int)(z-zBuf);
|
||||
assert( n>0 && n<=4 );
|
||||
z[0] = 0;
|
||||
z = zBuf;
|
||||
c = sqlite3Utf8Read(z, (const u8**)&z);
|
||||
t = i;
|
||||
if( i>=0xD800 && i<=0xDFFF ) t = 0xFFFD;
|
||||
if( (i&0xFFFFFFFE)==0xFFFE ) t = 0xFFFD;
|
||||
assert( c==t );
|
||||
assert( (z-zBuf)==n );
|
||||
}
|
||||
for(i=0; i<0x00110000; i++){
|
||||
if( i>=0xD800 && i<0xE000 ) continue;
|
||||
z = zBuf;
|
||||
WRITE_UTF16LE(z, i);
|
||||
n = (int)(z-zBuf);
|
||||
assert( n>0 && n<=4 );
|
||||
z[0] = 0;
|
||||
z = zBuf;
|
||||
READ_UTF16LE(z, c);
|
||||
assert( c==i );
|
||||
assert( (z-zBuf)==n );
|
||||
}
|
||||
for(i=0; i<0x00110000; i++){
|
||||
if( i>=0xD800 && i<0xE000 ) continue;
|
||||
z = zBuf;
|
||||
WRITE_UTF16BE(z, i);
|
||||
n = (int)(z-zBuf);
|
||||
assert( n>0 && n<=4 );
|
||||
z[0] = 0;
|
||||
z = zBuf;
|
||||
READ_UTF16BE(z, c);
|
||||
assert( c==i );
|
||||
assert( (z-zBuf)==n );
|
||||
}
|
||||
}
|
||||
#endif /* SQLITE_TEST */
|
||||
#endif /* SQLITE_OMIT_UTF16 */
|
991
util.c
991
util.c
|
@ -1,991 +0,0 @@
|
|||
/*
|
||||
** 2001 September 15
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** Utility functions used throughout sqlite.
|
||||
**
|
||||
** This file contains functions for allocating memory, comparing
|
||||
** strings, and stuff like that.
|
||||
**
|
||||
** $Id: util.c,v 1.249 2009/03/01 22:29:20 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
#include <stdarg.h>
|
||||
|
||||
/*
|
||||
** Routine needed to support the testcase() macro.
|
||||
*/
|
||||
#ifdef SQLITE_COVERAGE_TEST
|
||||
void sqlite3Coverage(int x){
|
||||
static int dummy = 0;
|
||||
dummy += x;
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
** Routine needed to support the ALWAYS() and NEVER() macros.
|
||||
**
|
||||
** The argument to ALWAYS() should always be true and the argument
|
||||
** to NEVER() should always be false. If either is not the case
|
||||
** then this routine is called in order to throw an error.
|
||||
**
|
||||
** This routine only exists if assert() is operational. It always
|
||||
** throws an assert on its first invocation. The variable has a long
|
||||
** name to help the assert() message be more readable. The variable
|
||||
** is used to prevent a too-clever optimizer from optimizing out the
|
||||
** entire call.
|
||||
*/
|
||||
#ifndef NDEBUG
|
||||
int sqlite3Assert(void){
|
||||
static volatile int ALWAYS_was_false_or_NEVER_was_true = 0;
|
||||
assert( ALWAYS_was_false_or_NEVER_was_true ); /* Always fails */
|
||||
return ALWAYS_was_false_or_NEVER_was_true++; /* Not Reached */
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
** Return true if the floating point value is Not a Number (NaN).
|
||||
*/
|
||||
int sqlite3IsNaN(double x){
|
||||
/* This NaN test sometimes fails if compiled on GCC with -ffast-math.
|
||||
** On the other hand, the use of -ffast-math comes with the following
|
||||
** warning:
|
||||
**
|
||||
** This option [-ffast-math] should never be turned on by any
|
||||
** -O option since it can result in incorrect output for programs
|
||||
** which depend on an exact implementation of IEEE or ISO
|
||||
** rules/specifications for math functions.
|
||||
**
|
||||
** Under MSVC, this NaN test may fail if compiled with a floating-
|
||||
** point precision mode other than /fp:precise. From the MSDN
|
||||
** documentation:
|
||||
**
|
||||
** The compiler [with /fp:precise] will properly handle comparisons
|
||||
** involving NaN. For example, x != x evaluates to true if x is NaN
|
||||
** ...
|
||||
*/
|
||||
#ifdef __FAST_MATH__
|
||||
# error SQLite will not work correctly with the -ffast-math option of GCC.
|
||||
#endif
|
||||
volatile double y = x;
|
||||
volatile double z = y;
|
||||
return y!=z;
|
||||
}
|
||||
|
||||
/*
|
||||
** Compute a string length that is limited to what can be stored in
|
||||
** lower 30 bits of a 32-bit signed integer.
|
||||
*/
|
||||
int sqlite3Strlen30(const char *z){
|
||||
const char *z2 = z;
|
||||
while( *z2 ){ z2++; }
|
||||
return 0x3fffffff & (int)(z2 - z);
|
||||
}
|
||||
|
||||
/*
|
||||
** Return the length of a string, except do not allow the string length
|
||||
** to exceed the SQLITE_LIMIT_LENGTH setting.
|
||||
*/
|
||||
int sqlite3Strlen(sqlite3 *db, const char *z){
|
||||
const char *z2 = z;
|
||||
int len;
|
||||
int x;
|
||||
while( *z2 ){ z2++; }
|
||||
x = (int)(z2 - z);
|
||||
len = 0x7fffffff & x;
|
||||
if( len!=x || len > db->aLimit[SQLITE_LIMIT_LENGTH] ){
|
||||
return db->aLimit[SQLITE_LIMIT_LENGTH];
|
||||
}else{
|
||||
return len;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Set the most recent error code and error string for the sqlite
|
||||
** handle "db". The error code is set to "err_code".
|
||||
**
|
||||
** If it is not NULL, string zFormat specifies the format of the
|
||||
** error string in the style of the printf functions: The following
|
||||
** format characters are allowed:
|
||||
**
|
||||
** %s Insert a string
|
||||
** %z A string that should be freed after use
|
||||
** %d Insert an integer
|
||||
** %T Insert a token
|
||||
** %S Insert the first element of a SrcList
|
||||
**
|
||||
** zFormat and any string tokens that follow it are assumed to be
|
||||
** encoded in UTF-8.
|
||||
**
|
||||
** To clear the most recent error for sqlite handle "db", sqlite3Error
|
||||
** should be called with err_code set to SQLITE_OK and zFormat set
|
||||
** to NULL.
|
||||
*/
|
||||
void sqlite3Error(sqlite3 *db, int err_code, const char *zFormat, ...){
|
||||
if( db && (db->pErr || (db->pErr = sqlite3ValueNew(db))!=0) ){
|
||||
db->errCode = err_code;
|
||||
if( zFormat ){
|
||||
char *z;
|
||||
va_list ap;
|
||||
va_start(ap, zFormat);
|
||||
z = sqlite3VMPrintf(db, zFormat, ap);
|
||||
va_end(ap);
|
||||
sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
|
||||
}else{
|
||||
sqlite3ValueSetStr(db->pErr, 0, 0, SQLITE_UTF8, SQLITE_STATIC);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Add an error message to pParse->zErrMsg and increment pParse->nErr.
|
||||
** The following formatting characters are allowed:
|
||||
**
|
||||
** %s Insert a string
|
||||
** %z A string that should be freed after use
|
||||
** %d Insert an integer
|
||||
** %T Insert a token
|
||||
** %S Insert the first element of a SrcList
|
||||
**
|
||||
** This function should be used to report any error that occurs whilst
|
||||
** compiling an SQL statement (i.e. within sqlite3_prepare()). The
|
||||
** last thing the sqlite3_prepare() function does is copy the error
|
||||
** stored by this function into the database handle using sqlite3Error().
|
||||
** Function sqlite3Error() should be used during statement execution
|
||||
** (sqlite3_step() etc.).
|
||||
*/
|
||||
void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
|
||||
va_list ap;
|
||||
sqlite3 *db = pParse->db;
|
||||
pParse->nErr++;
|
||||
sqlite3DbFree(db, pParse->zErrMsg);
|
||||
va_start(ap, zFormat);
|
||||
pParse->zErrMsg = sqlite3VMPrintf(db, zFormat, ap);
|
||||
va_end(ap);
|
||||
if( pParse->rc==SQLITE_OK ){
|
||||
pParse->rc = SQLITE_ERROR;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Clear the error message in pParse, if any
|
||||
*/
|
||||
void sqlite3ErrorClear(Parse *pParse){
|
||||
sqlite3DbFree(pParse->db, pParse->zErrMsg);
|
||||
pParse->zErrMsg = 0;
|
||||
pParse->nErr = 0;
|
||||
}
|
||||
|
||||
/*
|
||||
** Convert an SQL-style quoted string into a normal string by removing
|
||||
** the quote characters. The conversion is done in-place. If the
|
||||
** input does not begin with a quote character, then this routine
|
||||
** is a no-op.
|
||||
**
|
||||
** 2002-Feb-14: This routine is extended to remove MS-Access style
|
||||
** brackets from around identifers. For example: "[a-b-c]" becomes
|
||||
** "a-b-c".
|
||||
*/
|
||||
void sqlite3Dequote(char *z){
|
||||
char quote;
|
||||
int i, j;
|
||||
if( z==0 ) return;
|
||||
quote = z[0];
|
||||
switch( quote ){
|
||||
case '\'': break;
|
||||
case '"': break;
|
||||
case '`': break; /* For MySQL compatibility */
|
||||
case '[': quote = ']'; break; /* For MS SqlServer compatibility */
|
||||
default: return;
|
||||
}
|
||||
for(i=1, j=0; z[i]; i++){
|
||||
if( z[i]==quote ){
|
||||
if( z[i+1]==quote ){
|
||||
z[j++] = quote;
|
||||
i++;
|
||||
}else{
|
||||
z[j++] = 0;
|
||||
break;
|
||||
}
|
||||
}else{
|
||||
z[j++] = z[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Convenient short-hand */
|
||||
#define UpperToLower sqlite3UpperToLower
|
||||
|
||||
/*
|
||||
** Some systems have stricmp(). Others have strcasecmp(). Because
|
||||
** there is no consistency, we will define our own.
|
||||
*/
|
||||
int sqlite3StrICmp(const char *zLeft, const char *zRight){
|
||||
register unsigned char *a, *b;
|
||||
a = (unsigned char *)zLeft;
|
||||
b = (unsigned char *)zRight;
|
||||
while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
|
||||
return UpperToLower[*a] - UpperToLower[*b];
|
||||
}
|
||||
int sqlite3StrNICmp(const char *zLeft, const char *zRight, int N){
|
||||
register unsigned char *a, *b;
|
||||
a = (unsigned char *)zLeft;
|
||||
b = (unsigned char *)zRight;
|
||||
while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
|
||||
return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
|
||||
}
|
||||
|
||||
/*
|
||||
** Return TRUE if z is a pure numeric string. Return FALSE if the
|
||||
** string contains any character which is not part of a number. If
|
||||
** the string is numeric and contains the '.' character, set *realnum
|
||||
** to TRUE (otherwise FALSE).
|
||||
**
|
||||
** An empty string is considered non-numeric.
|
||||
*/
|
||||
int sqlite3IsNumber(const char *z, int *realnum, u8 enc){
|
||||
int incr = (enc==SQLITE_UTF8?1:2);
|
||||
if( enc==SQLITE_UTF16BE ) z++;
|
||||
if( *z=='-' || *z=='+' ) z += incr;
|
||||
if( !sqlite3Isdigit(*z) ){
|
||||
return 0;
|
||||
}
|
||||
z += incr;
|
||||
if( realnum ) *realnum = 0;
|
||||
while( sqlite3Isdigit(*z) ){ z += incr; }
|
||||
if( *z=='.' ){
|
||||
z += incr;
|
||||
if( !sqlite3Isdigit(*z) ) return 0;
|
||||
while( sqlite3Isdigit(*z) ){ z += incr; }
|
||||
if( realnum ) *realnum = 1;
|
||||
}
|
||||
if( *z=='e' || *z=='E' ){
|
||||
z += incr;
|
||||
if( *z=='+' || *z=='-' ) z += incr;
|
||||
if( !sqlite3Isdigit(*z) ) return 0;
|
||||
while( sqlite3Isdigit(*z) ){ z += incr; }
|
||||
if( realnum ) *realnum = 1;
|
||||
}
|
||||
return *z==0;
|
||||
}
|
||||
|
||||
/*
|
||||
** The string z[] is an ascii representation of a real number.
|
||||
** Convert this string to a double.
|
||||
**
|
||||
** This routine assumes that z[] really is a valid number. If it
|
||||
** is not, the result is undefined.
|
||||
**
|
||||
** This routine is used instead of the library atof() function because
|
||||
** the library atof() might want to use "," as the decimal point instead
|
||||
** of "." depending on how locale is set. But that would cause problems
|
||||
** for SQL. So this routine always uses "." regardless of locale.
|
||||
*/
|
||||
int sqlite3AtoF(const char *z, double *pResult){
|
||||
#ifndef SQLITE_OMIT_FLOATING_POINT
|
||||
int sign = 1;
|
||||
const char *zBegin = z;
|
||||
LONGDOUBLE_TYPE v1 = 0.0;
|
||||
int nSignificant = 0;
|
||||
while( sqlite3Isspace(*z) ) z++;
|
||||
if( *z=='-' ){
|
||||
sign = -1;
|
||||
z++;
|
||||
}else if( *z=='+' ){
|
||||
z++;
|
||||
}
|
||||
while( z[0]=='0' ){
|
||||
z++;
|
||||
}
|
||||
while( sqlite3Isdigit(*z) ){
|
||||
v1 = v1*10.0 + (*z - '0');
|
||||
z++;
|
||||
nSignificant++;
|
||||
}
|
||||
if( *z=='.' ){
|
||||
LONGDOUBLE_TYPE divisor = 1.0;
|
||||
z++;
|
||||
if( nSignificant==0 ){
|
||||
while( z[0]=='0' ){
|
||||
divisor *= 10.0;
|
||||
z++;
|
||||
}
|
||||
}
|
||||
while( sqlite3Isdigit(*z) ){
|
||||
if( nSignificant<18 ){
|
||||
v1 = v1*10.0 + (*z - '0');
|
||||
divisor *= 10.0;
|
||||
nSignificant++;
|
||||
}
|
||||
z++;
|
||||
}
|
||||
v1 /= divisor;
|
||||
}
|
||||
if( *z=='e' || *z=='E' ){
|
||||
int esign = 1;
|
||||
int eval = 0;
|
||||
LONGDOUBLE_TYPE scale = 1.0;
|
||||
z++;
|
||||
if( *z=='-' ){
|
||||
esign = -1;
|
||||
z++;
|
||||
}else if( *z=='+' ){
|
||||
z++;
|
||||
}
|
||||
while( sqlite3Isdigit(*z) ){
|
||||
eval = eval*10 + *z - '0';
|
||||
z++;
|
||||
}
|
||||
while( eval>=64 ){ scale *= 1.0e+64; eval -= 64; }
|
||||
while( eval>=16 ){ scale *= 1.0e+16; eval -= 16; }
|
||||
while( eval>=4 ){ scale *= 1.0e+4; eval -= 4; }
|
||||
while( eval>=1 ){ scale *= 1.0e+1; eval -= 1; }
|
||||
if( esign<0 ){
|
||||
v1 /= scale;
|
||||
}else{
|
||||
v1 *= scale;
|
||||
}
|
||||
}
|
||||
*pResult = (double)(sign<0 ? -v1 : v1);
|
||||
return (int)(z - zBegin);
|
||||
#else
|
||||
return sqlite3Atoi64(z, pResult);
|
||||
#endif /* SQLITE_OMIT_FLOATING_POINT */
|
||||
}
|
||||
|
||||
/*
|
||||
** Compare the 19-character string zNum against the text representation
|
||||
** value 2^63: 9223372036854775808. Return negative, zero, or positive
|
||||
** if zNum is less than, equal to, or greater than the string.
|
||||
**
|
||||
** Unlike memcmp() this routine is guaranteed to return the difference
|
||||
** in the values of the last digit if the only difference is in the
|
||||
** last digit. So, for example,
|
||||
**
|
||||
** compare2pow63("9223372036854775800")
|
||||
**
|
||||
** will return -8.
|
||||
*/
|
||||
static int compare2pow63(const char *zNum){
|
||||
int c;
|
||||
c = memcmp(zNum,"922337203685477580",18);
|
||||
if( c==0 ){
|
||||
c = zNum[18] - '8';
|
||||
}
|
||||
return c;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** Return TRUE if zNum is a 64-bit signed integer and write
|
||||
** the value of the integer into *pNum. If zNum is not an integer
|
||||
** or is an integer that is too large to be expressed with 64 bits,
|
||||
** then return false.
|
||||
**
|
||||
** When this routine was originally written it dealt with only
|
||||
** 32-bit numbers. At that time, it was much faster than the
|
||||
** atoi() library routine in RedHat 7.2.
|
||||
*/
|
||||
int sqlite3Atoi64(const char *zNum, i64 *pNum){
|
||||
i64 v = 0;
|
||||
int neg;
|
||||
int i, c;
|
||||
const char *zStart;
|
||||
while( sqlite3Isspace(*zNum) ) zNum++;
|
||||
if( *zNum=='-' ){
|
||||
neg = 1;
|
||||
zNum++;
|
||||
}else if( *zNum=='+' ){
|
||||
neg = 0;
|
||||
zNum++;
|
||||
}else{
|
||||
neg = 0;
|
||||
}
|
||||
zStart = zNum;
|
||||
while( zNum[0]=='0' ){ zNum++; } /* Skip over leading zeros. Ticket #2454 */
|
||||
for(i=0; (c=zNum[i])>='0' && c<='9'; i++){
|
||||
v = v*10 + c - '0';
|
||||
}
|
||||
*pNum = neg ? -v : v;
|
||||
if( c!=0 || (i==0 && zStart==zNum) || i>19 ){
|
||||
/* zNum is empty or contains non-numeric text or is longer
|
||||
** than 19 digits (thus guaranting that it is too large) */
|
||||
return 0;
|
||||
}else if( i<19 ){
|
||||
/* Less than 19 digits, so we know that it fits in 64 bits */
|
||||
return 1;
|
||||
}else{
|
||||
/* 19-digit numbers must be no larger than 9223372036854775807 if positive
|
||||
** or 9223372036854775808 if negative. Note that 9223372036854665808
|
||||
** is 2^63. */
|
||||
return compare2pow63(zNum)<neg;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** The string zNum represents an integer. There might be some other
|
||||
** information following the integer too, but that part is ignored.
|
||||
** If the integer that the prefix of zNum represents will fit in a
|
||||
** 64-bit signed integer, return TRUE. Otherwise return FALSE.
|
||||
**
|
||||
** This routine returns FALSE for the string -9223372036854775808 even that
|
||||
** that number will, in theory fit in a 64-bit integer. Positive
|
||||
** 9223373036854775808 will not fit in 64 bits. So it seems safer to return
|
||||
** false.
|
||||
*/
|
||||
int sqlite3FitsIn64Bits(const char *zNum, int negFlag){
|
||||
int i, c;
|
||||
int neg = 0;
|
||||
if( *zNum=='-' ){
|
||||
neg = 1;
|
||||
zNum++;
|
||||
}else if( *zNum=='+' ){
|
||||
zNum++;
|
||||
}
|
||||
if( negFlag ) neg = 1-neg;
|
||||
while( *zNum=='0' ){
|
||||
zNum++; /* Skip leading zeros. Ticket #2454 */
|
||||
}
|
||||
for(i=0; (c=zNum[i])>='0' && c<='9'; i++){}
|
||||
if( i<19 ){
|
||||
/* Guaranteed to fit if less than 19 digits */
|
||||
return 1;
|
||||
}else if( i>19 ){
|
||||
/* Guaranteed to be too big if greater than 19 digits */
|
||||
return 0;
|
||||
}else{
|
||||
/* Compare against 2^63. */
|
||||
return compare2pow63(zNum)<neg;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** If zNum represents an integer that will fit in 32-bits, then set
|
||||
** *pValue to that integer and return true. Otherwise return false.
|
||||
**
|
||||
** Any non-numeric characters that following zNum are ignored.
|
||||
** This is different from sqlite3Atoi64() which requires the
|
||||
** input number to be zero-terminated.
|
||||
*/
|
||||
int sqlite3GetInt32(const char *zNum, int *pValue){
|
||||
sqlite_int64 v = 0;
|
||||
int i, c;
|
||||
int neg = 0;
|
||||
if( zNum[0]=='-' ){
|
||||
neg = 1;
|
||||
zNum++;
|
||||
}else if( zNum[0]=='+' ){
|
||||
zNum++;
|
||||
}
|
||||
while( zNum[0]=='0' ) zNum++;
|
||||
for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
|
||||
v = v*10 + c;
|
||||
}
|
||||
|
||||
/* The longest decimal representation of a 32 bit integer is 10 digits:
|
||||
**
|
||||
** 1234567890
|
||||
** 2^31 -> 2147483648
|
||||
*/
|
||||
if( i>10 ){
|
||||
return 0;
|
||||
}
|
||||
if( v-neg>2147483647 ){
|
||||
return 0;
|
||||
}
|
||||
if( neg ){
|
||||
v = -v;
|
||||
}
|
||||
*pValue = (int)v;
|
||||
return 1;
|
||||
}
|
||||
|
||||
/*
|
||||
** The variable-length integer encoding is as follows:
|
||||
**
|
||||
** KEY:
|
||||
** A = 0xxxxxxx 7 bits of data and one flag bit
|
||||
** B = 1xxxxxxx 7 bits of data and one flag bit
|
||||
** C = xxxxxxxx 8 bits of data
|
||||
**
|
||||
** 7 bits - A
|
||||
** 14 bits - BA
|
||||
** 21 bits - BBA
|
||||
** 28 bits - BBBA
|
||||
** 35 bits - BBBBA
|
||||
** 42 bits - BBBBBA
|
||||
** 49 bits - BBBBBBA
|
||||
** 56 bits - BBBBBBBA
|
||||
** 64 bits - BBBBBBBBC
|
||||
*/
|
||||
|
||||
/*
|
||||
** Write a 64-bit variable-length integer to memory starting at p[0].
|
||||
** The length of data write will be between 1 and 9 bytes. The number
|
||||
** of bytes written is returned.
|
||||
**
|
||||
** A variable-length integer consists of the lower 7 bits of each byte
|
||||
** for all bytes that have the 8th bit set and one byte with the 8th
|
||||
** bit clear. Except, if we get to the 9th byte, it stores the full
|
||||
** 8 bits and is the last byte.
|
||||
*/
|
||||
int sqlite3PutVarint(unsigned char *p, u64 v){
|
||||
int i, j, n;
|
||||
u8 buf[10];
|
||||
if( v & (((u64)0xff000000)<<32) ){
|
||||
p[8] = (u8)v;
|
||||
v >>= 8;
|
||||
for(i=7; i>=0; i--){
|
||||
p[i] = (u8)((v & 0x7f) | 0x80);
|
||||
v >>= 7;
|
||||
}
|
||||
return 9;
|
||||
}
|
||||
n = 0;
|
||||
do{
|
||||
buf[n++] = (u8)((v & 0x7f) | 0x80);
|
||||
v >>= 7;
|
||||
}while( v!=0 );
|
||||
buf[0] &= 0x7f;
|
||||
assert( n<=9 );
|
||||
for(i=0, j=n-1; j>=0; j--, i++){
|
||||
p[i] = buf[j];
|
||||
}
|
||||
return n;
|
||||
}
|
||||
|
||||
/*
|
||||
** This routine is a faster version of sqlite3PutVarint() that only
|
||||
** works for 32-bit positive integers and which is optimized for
|
||||
** the common case of small integers. A MACRO version, putVarint32,
|
||||
** is provided which inlines the single-byte case. All code should use
|
||||
** the MACRO version as this function assumes the single-byte case has
|
||||
** already been handled.
|
||||
*/
|
||||
int sqlite3PutVarint32(unsigned char *p, u32 v){
|
||||
#ifndef putVarint32
|
||||
if( (v & ~0x7f)==0 ){
|
||||
p[0] = v;
|
||||
return 1;
|
||||
}
|
||||
#endif
|
||||
if( (v & ~0x3fff)==0 ){
|
||||
p[0] = (u8)((v>>7) | 0x80);
|
||||
p[1] = (u8)(v & 0x7f);
|
||||
return 2;
|
||||
}
|
||||
return sqlite3PutVarint(p, v);
|
||||
}
|
||||
|
||||
/*
|
||||
** Read a 64-bit variable-length integer from memory starting at p[0].
|
||||
** Return the number of bytes read. The value is stored in *v.
|
||||
*/
|
||||
u8 sqlite3GetVarint(const unsigned char *p, u64 *v){
|
||||
u32 a,b,s;
|
||||
|
||||
a = *p;
|
||||
/* a: p0 (unmasked) */
|
||||
if (!(a&0x80))
|
||||
{
|
||||
*v = a;
|
||||
return 1;
|
||||
}
|
||||
|
||||
p++;
|
||||
b = *p;
|
||||
/* b: p1 (unmasked) */
|
||||
if (!(b&0x80))
|
||||
{
|
||||
a &= 0x7f;
|
||||
a = a<<7;
|
||||
a |= b;
|
||||
*v = a;
|
||||
return 2;
|
||||
}
|
||||
|
||||
p++;
|
||||
a = a<<14;
|
||||
a |= *p;
|
||||
/* a: p0<<14 | p2 (unmasked) */
|
||||
if (!(a&0x80))
|
||||
{
|
||||
a &= (0x7f<<14)|(0x7f);
|
||||
b &= 0x7f;
|
||||
b = b<<7;
|
||||
a |= b;
|
||||
*v = a;
|
||||
return 3;
|
||||
}
|
||||
|
||||
/* CSE1 from below */
|
||||
a &= (0x7f<<14)|(0x7f);
|
||||
p++;
|
||||
b = b<<14;
|
||||
b |= *p;
|
||||
/* b: p1<<14 | p3 (unmasked) */
|
||||
if (!(b&0x80))
|
||||
{
|
||||
b &= (0x7f<<14)|(0x7f);
|
||||
/* moved CSE1 up */
|
||||
/* a &= (0x7f<<14)|(0x7f); */
|
||||
a = a<<7;
|
||||
a |= b;
|
||||
*v = a;
|
||||
return 4;
|
||||
}
|
||||
|
||||
/* a: p0<<14 | p2 (masked) */
|
||||
/* b: p1<<14 | p3 (unmasked) */
|
||||
/* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
|
||||
/* moved CSE1 up */
|
||||
/* a &= (0x7f<<14)|(0x7f); */
|
||||
b &= (0x7f<<14)|(0x7f);
|
||||
s = a;
|
||||
/* s: p0<<14 | p2 (masked) */
|
||||
|
||||
p++;
|
||||
a = a<<14;
|
||||
a |= *p;
|
||||
/* a: p0<<28 | p2<<14 | p4 (unmasked) */
|
||||
if (!(a&0x80))
|
||||
{
|
||||
/* we can skip these cause they were (effectively) done above in calc'ing s */
|
||||
/* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
|
||||
/* b &= (0x7f<<14)|(0x7f); */
|
||||
b = b<<7;
|
||||
a |= b;
|
||||
s = s>>18;
|
||||
*v = ((u64)s)<<32 | a;
|
||||
return 5;
|
||||
}
|
||||
|
||||
/* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
|
||||
s = s<<7;
|
||||
s |= b;
|
||||
/* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
|
||||
|
||||
p++;
|
||||
b = b<<14;
|
||||
b |= *p;
|
||||
/* b: p1<<28 | p3<<14 | p5 (unmasked) */
|
||||
if (!(b&0x80))
|
||||
{
|
||||
/* we can skip this cause it was (effectively) done above in calc'ing s */
|
||||
/* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
|
||||
a &= (0x7f<<14)|(0x7f);
|
||||
a = a<<7;
|
||||
a |= b;
|
||||
s = s>>18;
|
||||
*v = ((u64)s)<<32 | a;
|
||||
return 6;
|
||||
}
|
||||
|
||||
p++;
|
||||
a = a<<14;
|
||||
a |= *p;
|
||||
/* a: p2<<28 | p4<<14 | p6 (unmasked) */
|
||||
if (!(a&0x80))
|
||||
{
|
||||
a &= (0x1f<<28)|(0x7f<<14)|(0x7f);
|
||||
b &= (0x7f<<14)|(0x7f);
|
||||
b = b<<7;
|
||||
a |= b;
|
||||
s = s>>11;
|
||||
*v = ((u64)s)<<32 | a;
|
||||
return 7;
|
||||
}
|
||||
|
||||
/* CSE2 from below */
|
||||
a &= (0x7f<<14)|(0x7f);
|
||||
p++;
|
||||
b = b<<14;
|
||||
b |= *p;
|
||||
/* b: p3<<28 | p5<<14 | p7 (unmasked) */
|
||||
if (!(b&0x80))
|
||||
{
|
||||
b &= (0x1f<<28)|(0x7f<<14)|(0x7f);
|
||||
/* moved CSE2 up */
|
||||
/* a &= (0x7f<<14)|(0x7f); */
|
||||
a = a<<7;
|
||||
a |= b;
|
||||
s = s>>4;
|
||||
*v = ((u64)s)<<32 | a;
|
||||
return 8;
|
||||
}
|
||||
|
||||
p++;
|
||||
a = a<<15;
|
||||
a |= *p;
|
||||
/* a: p4<<29 | p6<<15 | p8 (unmasked) */
|
||||
|
||||
/* moved CSE2 up */
|
||||
/* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
|
||||
b &= (0x7f<<14)|(0x7f);
|
||||
b = b<<8;
|
||||
a |= b;
|
||||
|
||||
s = s<<4;
|
||||
b = p[-4];
|
||||
b &= 0x7f;
|
||||
b = b>>3;
|
||||
s |= b;
|
||||
|
||||
*v = ((u64)s)<<32 | a;
|
||||
|
||||
return 9;
|
||||
}
|
||||
|
||||
/*
|
||||
** Read a 32-bit variable-length integer from memory starting at p[0].
|
||||
** Return the number of bytes read. The value is stored in *v.
|
||||
** A MACRO version, getVarint32, is provided which inlines the
|
||||
** single-byte case. All code should use the MACRO version as
|
||||
** this function assumes the single-byte case has already been handled.
|
||||
*/
|
||||
u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){
|
||||
u32 a,b;
|
||||
|
||||
a = *p;
|
||||
/* a: p0 (unmasked) */
|
||||
#ifndef getVarint32
|
||||
if (!(a&0x80))
|
||||
{
|
||||
*v = a;
|
||||
return 1;
|
||||
}
|
||||
#endif
|
||||
|
||||
p++;
|
||||
b = *p;
|
||||
/* b: p1 (unmasked) */
|
||||
if (!(b&0x80))
|
||||
{
|
||||
a &= 0x7f;
|
||||
a = a<<7;
|
||||
*v = a | b;
|
||||
return 2;
|
||||
}
|
||||
|
||||
p++;
|
||||
a = a<<14;
|
||||
a |= *p;
|
||||
/* a: p0<<14 | p2 (unmasked) */
|
||||
if (!(a&0x80))
|
||||
{
|
||||
a &= (0x7f<<14)|(0x7f);
|
||||
b &= 0x7f;
|
||||
b = b<<7;
|
||||
*v = a | b;
|
||||
return 3;
|
||||
}
|
||||
|
||||
p++;
|
||||
b = b<<14;
|
||||
b |= *p;
|
||||
/* b: p1<<14 | p3 (unmasked) */
|
||||
if (!(b&0x80))
|
||||
{
|
||||
b &= (0x7f<<14)|(0x7f);
|
||||
a &= (0x7f<<14)|(0x7f);
|
||||
a = a<<7;
|
||||
*v = a | b;
|
||||
return 4;
|
||||
}
|
||||
|
||||
p++;
|
||||
a = a<<14;
|
||||
a |= *p;
|
||||
/* a: p0<<28 | p2<<14 | p4 (unmasked) */
|
||||
if (!(a&0x80))
|
||||
{
|
||||
a &= (0x1f<<28)|(0x7f<<14)|(0x7f);
|
||||
b &= (0x1f<<28)|(0x7f<<14)|(0x7f);
|
||||
b = b<<7;
|
||||
*v = a | b;
|
||||
return 5;
|
||||
}
|
||||
|
||||
/* We can only reach this point when reading a corrupt database
|
||||
** file. In that case we are not in any hurry. Use the (relatively
|
||||
** slow) general-purpose sqlite3GetVarint() routine to extract the
|
||||
** value. */
|
||||
{
|
||||
u64 v64;
|
||||
u8 n;
|
||||
|
||||
p -= 4;
|
||||
n = sqlite3GetVarint(p, &v64);
|
||||
assert( n>5 && n<=9 );
|
||||
*v = (u32)v64;
|
||||
return n;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Return the number of bytes that will be needed to store the given
|
||||
** 64-bit integer.
|
||||
*/
|
||||
int sqlite3VarintLen(u64 v){
|
||||
int i = 0;
|
||||
do{
|
||||
i++;
|
||||
v >>= 7;
|
||||
}while( v!=0 && i<9 );
|
||||
return i;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** Read or write a four-byte big-endian integer value.
|
||||
*/
|
||||
u32 sqlite3Get4byte(const u8 *p){
|
||||
return (p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
|
||||
}
|
||||
void sqlite3Put4byte(unsigned char *p, u32 v){
|
||||
p[0] = (u8)(v>>24);
|
||||
p[1] = (u8)(v>>16);
|
||||
p[2] = (u8)(v>>8);
|
||||
p[3] = (u8)v;
|
||||
}
|
||||
|
||||
|
||||
|
||||
#if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
|
||||
/*
|
||||
** Translate a single byte of Hex into an integer.
|
||||
** This routinen only works if h really is a valid hexadecimal
|
||||
** character: 0..9a..fA..F
|
||||
*/
|
||||
static u8 hexToInt(int h){
|
||||
assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') );
|
||||
#ifdef SQLITE_ASCII
|
||||
h += 9*(1&(h>>6));
|
||||
#endif
|
||||
#ifdef SQLITE_EBCDIC
|
||||
h += 9*(1&~(h>>4));
|
||||
#endif
|
||||
return (u8)(h & 0xf);
|
||||
}
|
||||
#endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
|
||||
|
||||
#if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
|
||||
/*
|
||||
** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
|
||||
** value. Return a pointer to its binary value. Space to hold the
|
||||
** binary value has been obtained from malloc and must be freed by
|
||||
** the calling routine.
|
||||
*/
|
||||
void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
|
||||
char *zBlob;
|
||||
int i;
|
||||
|
||||
zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1);
|
||||
n--;
|
||||
if( zBlob ){
|
||||
for(i=0; i<n; i+=2){
|
||||
zBlob[i/2] = (hexToInt(z[i])<<4) | hexToInt(z[i+1]);
|
||||
}
|
||||
zBlob[i/2] = 0;
|
||||
}
|
||||
return zBlob;
|
||||
}
|
||||
#endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
|
||||
|
||||
|
||||
/*
|
||||
** Change the sqlite.magic from SQLITE_MAGIC_OPEN to SQLITE_MAGIC_BUSY.
|
||||
** Return an error (non-zero) if the magic was not SQLITE_MAGIC_OPEN
|
||||
** when this routine is called.
|
||||
**
|
||||
** This routine is called when entering an SQLite API. The SQLITE_MAGIC_OPEN
|
||||
** value indicates that the database connection passed into the API is
|
||||
** open and is not being used by another thread. By changing the value
|
||||
** to SQLITE_MAGIC_BUSY we indicate that the connection is in use.
|
||||
** sqlite3SafetyOff() below will change the value back to SQLITE_MAGIC_OPEN
|
||||
** when the API exits.
|
||||
**
|
||||
** This routine is a attempt to detect if two threads use the
|
||||
** same sqlite* pointer at the same time. There is a race
|
||||
** condition so it is possible that the error is not detected.
|
||||
** But usually the problem will be seen. The result will be an
|
||||
** error which can be used to debug the application that is
|
||||
** using SQLite incorrectly.
|
||||
**
|
||||
** Ticket #202: If db->magic is not a valid open value, take care not
|
||||
** to modify the db structure at all. It could be that db is a stale
|
||||
** pointer. In other words, it could be that there has been a prior
|
||||
** call to sqlite3_close(db) and db has been deallocated. And we do
|
||||
** not want to write into deallocated memory.
|
||||
*/
|
||||
#ifdef SQLITE_DEBUG
|
||||
int sqlite3SafetyOn(sqlite3 *db){
|
||||
if( db->magic==SQLITE_MAGIC_OPEN ){
|
||||
db->magic = SQLITE_MAGIC_BUSY;
|
||||
assert( sqlite3_mutex_held(db->mutex) );
|
||||
return 0;
|
||||
}else if( db->magic==SQLITE_MAGIC_BUSY ){
|
||||
db->magic = SQLITE_MAGIC_ERROR;
|
||||
db->u1.isInterrupted = 1;
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
** Change the magic from SQLITE_MAGIC_BUSY to SQLITE_MAGIC_OPEN.
|
||||
** Return an error (non-zero) if the magic was not SQLITE_MAGIC_BUSY
|
||||
** when this routine is called.
|
||||
*/
|
||||
#ifdef SQLITE_DEBUG
|
||||
int sqlite3SafetyOff(sqlite3 *db){
|
||||
if( db->magic==SQLITE_MAGIC_BUSY ){
|
||||
db->magic = SQLITE_MAGIC_OPEN;
|
||||
assert( sqlite3_mutex_held(db->mutex) );
|
||||
return 0;
|
||||
}else{
|
||||
db->magic = SQLITE_MAGIC_ERROR;
|
||||
db->u1.isInterrupted = 1;
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
** Check to make sure we have a valid db pointer. This test is not
|
||||
** foolproof but it does provide some measure of protection against
|
||||
** misuse of the interface such as passing in db pointers that are
|
||||
** NULL or which have been previously closed. If this routine returns
|
||||
** 1 it means that the db pointer is valid and 0 if it should not be
|
||||
** dereferenced for any reason. The calling function should invoke
|
||||
** SQLITE_MISUSE immediately.
|
||||
**
|
||||
** sqlite3SafetyCheckOk() requires that the db pointer be valid for
|
||||
** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
|
||||
** open properly and is not fit for general use but which can be
|
||||
** used as an argument to sqlite3_errmsg() or sqlite3_close().
|
||||
*/
|
||||
int sqlite3SafetyCheckOk(sqlite3 *db){
|
||||
u32 magic;
|
||||
if( db==0 ) return 0;
|
||||
magic = db->magic;
|
||||
if( magic!=SQLITE_MAGIC_OPEN &&
|
||||
magic!=SQLITE_MAGIC_BUSY ) return 0;
|
||||
return 1;
|
||||
}
|
||||
int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
|
||||
u32 magic;
|
||||
if( db==0 ) return 0;
|
||||
magic = db->magic;
|
||||
if( magic!=SQLITE_MAGIC_SICK &&
|
||||
magic!=SQLITE_MAGIC_OPEN &&
|
||||
magic!=SQLITE_MAGIC_BUSY ) return 0;
|
||||
return 1;
|
||||
}
|
299
vacuum.c
299
vacuum.c
|
@ -1,299 +0,0 @@
|
|||
/*
|
||||
** 2003 April 6
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This file contains code used to implement the VACUUM command.
|
||||
**
|
||||
** Most of the code in this file may be omitted by defining the
|
||||
** SQLITE_OMIT_VACUUM macro.
|
||||
**
|
||||
** $Id: vacuum.c,v 1.87 2009/04/02 20:16:59 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
#include "vdbeInt.h"
|
||||
|
||||
#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
|
||||
/*
|
||||
** Execute zSql on database db. Return an error code.
|
||||
*/
|
||||
static int execSql(sqlite3 *db, const char *zSql){
|
||||
sqlite3_stmt *pStmt;
|
||||
if( !zSql ){
|
||||
return SQLITE_NOMEM;
|
||||
}
|
||||
if( SQLITE_OK!=sqlite3_prepare(db, zSql, -1, &pStmt, 0) ){
|
||||
return sqlite3_errcode(db);
|
||||
}
|
||||
while( SQLITE_ROW==sqlite3_step(pStmt) ){}
|
||||
return sqlite3_finalize(pStmt);
|
||||
}
|
||||
|
||||
/*
|
||||
** Execute zSql on database db. The statement returns exactly
|
||||
** one column. Execute this as SQL on the same database.
|
||||
*/
|
||||
static int execExecSql(sqlite3 *db, const char *zSql){
|
||||
sqlite3_stmt *pStmt;
|
||||
int rc;
|
||||
|
||||
rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
|
||||
if( rc!=SQLITE_OK ) return rc;
|
||||
|
||||
while( SQLITE_ROW==sqlite3_step(pStmt) ){
|
||||
rc = execSql(db, (char*)sqlite3_column_text(pStmt, 0));
|
||||
if( rc!=SQLITE_OK ){
|
||||
sqlite3_finalize(pStmt);
|
||||
return rc;
|
||||
}
|
||||
}
|
||||
|
||||
return sqlite3_finalize(pStmt);
|
||||
}
|
||||
|
||||
/*
|
||||
** The non-standard VACUUM command is used to clean up the database,
|
||||
** collapse free space, etc. It is modelled after the VACUUM command
|
||||
** in PostgreSQL.
|
||||
**
|
||||
** In version 1.0.x of SQLite, the VACUUM command would call
|
||||
** gdbm_reorganize() on all the database tables. But beginning
|
||||
** with 2.0.0, SQLite no longer uses GDBM so this command has
|
||||
** become a no-op.
|
||||
*/
|
||||
void sqlite3Vacuum(Parse *pParse){
|
||||
Vdbe *v = sqlite3GetVdbe(pParse);
|
||||
if( v ){
|
||||
sqlite3VdbeAddOp2(v, OP_Vacuum, 0, 0);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
** This routine implements the OP_Vacuum opcode of the VDBE.
|
||||
*/
|
||||
int sqlite3RunVacuum(char **pzErrMsg, sqlite3 *db){
|
||||
int rc = SQLITE_OK; /* Return code from service routines */
|
||||
Btree *pMain; /* The database being vacuumed */
|
||||
Pager *pMainPager; /* Pager for database being vacuumed */
|
||||
Btree *pTemp; /* The temporary database we vacuum into */
|
||||
char *zSql = 0; /* SQL statements */
|
||||
int saved_flags; /* Saved value of the db->flags */
|
||||
int saved_nChange; /* Saved value of db->nChange */
|
||||
int saved_nTotalChange; /* Saved value of db->nTotalChange */
|
||||
Db *pDb = 0; /* Database to detach at end of vacuum */
|
||||
int isMemDb; /* True is vacuuming a :memory: database */
|
||||
int nRes;
|
||||
|
||||
if( !db->autoCommit ){
|
||||
sqlite3SetString(pzErrMsg, db, "cannot VACUUM from within a transaction");
|
||||
return SQLITE_ERROR;
|
||||
}
|
||||
|
||||
/* Save the current value of the write-schema flag before setting it. */
|
||||
saved_flags = db->flags;
|
||||
saved_nChange = db->nChange;
|
||||
saved_nTotalChange = db->nTotalChange;
|
||||
db->flags |= SQLITE_WriteSchema | SQLITE_IgnoreChecks;
|
||||
|
||||
pMain = db->aDb[0].pBt;
|
||||
pMainPager = sqlite3BtreePager(pMain);
|
||||
isMemDb = sqlite3PagerFile(pMainPager)->pMethods==0;
|
||||
|
||||
/* Attach the temporary database as 'vacuum_db'. The synchronous pragma
|
||||
** can be set to 'off' for this file, as it is not recovered if a crash
|
||||
** occurs anyway. The integrity of the database is maintained by a
|
||||
** (possibly synchronous) transaction opened on the main database before
|
||||
** sqlite3BtreeCopyFile() is called.
|
||||
**
|
||||
** An optimisation would be to use a non-journaled pager.
|
||||
** (Later:) I tried setting "PRAGMA vacuum_db.journal_mode=OFF" but
|
||||
** that actually made the VACUUM run slower. Very little journalling
|
||||
** actually occurs when doing a vacuum since the vacuum_db is initially
|
||||
** empty. Only the journal header is written. Apparently it takes more
|
||||
** time to parse and run the PRAGMA to turn journalling off than it does
|
||||
** to write the journal header file.
|
||||
*/
|
||||
zSql = "ATTACH '' AS vacuum_db;";
|
||||
rc = execSql(db, zSql);
|
||||
if( rc!=SQLITE_OK ) goto end_of_vacuum;
|
||||
pDb = &db->aDb[db->nDb-1];
|
||||
assert( strcmp(db->aDb[db->nDb-1].zName,"vacuum_db")==0 );
|
||||
pTemp = db->aDb[db->nDb-1].pBt;
|
||||
|
||||
nRes = sqlite3BtreeGetReserve(pMain);
|
||||
|
||||
/* A VACUUM cannot change the pagesize of an encrypted database. */
|
||||
#ifdef SQLITE_HAS_CODEC
|
||||
if( db->nextPagesize ){
|
||||
extern void sqlite3CodecGetKey(sqlite3*, int, void**, int*);
|
||||
int nKey;
|
||||
char *zKey;
|
||||
sqlite3CodecGetKey(db, 0, (void**)&zKey, &nKey);
|
||||
if( nKey ) db->nextPagesize = 0;
|
||||
}
|
||||
#endif
|
||||
|
||||
if( sqlite3BtreeSetPageSize(pTemp, sqlite3BtreeGetPageSize(pMain), nRes, 0)
|
||||
|| (!isMemDb && sqlite3BtreeSetPageSize(pTemp, db->nextPagesize, nRes, 0))
|
||||
|| db->mallocFailed
|
||||
){
|
||||
rc = SQLITE_NOMEM;
|
||||
goto end_of_vacuum;
|
||||
}
|
||||
rc = execSql(db, "PRAGMA vacuum_db.synchronous=OFF");
|
||||
if( rc!=SQLITE_OK ){
|
||||
goto end_of_vacuum;
|
||||
}
|
||||
|
||||
#ifndef SQLITE_OMIT_AUTOVACUUM
|
||||
sqlite3BtreeSetAutoVacuum(pTemp, db->nextAutovac>=0 ? db->nextAutovac :
|
||||
sqlite3BtreeGetAutoVacuum(pMain));
|
||||
#endif
|
||||
|
||||
/* Begin a transaction */
|
||||
rc = execSql(db, "BEGIN EXCLUSIVE;");
|
||||
if( rc!=SQLITE_OK ) goto end_of_vacuum;
|
||||
|
||||
/* Query the schema of the main database. Create a mirror schema
|
||||
** in the temporary database.
|
||||
*/
|
||||
rc = execExecSql(db,
|
||||
"SELECT 'CREATE TABLE vacuum_db.' || substr(sql,14) "
|
||||
" FROM sqlite_master WHERE type='table' AND name!='sqlite_sequence'"
|
||||
" AND rootpage>0"
|
||||
);
|
||||
if( rc!=SQLITE_OK ) goto end_of_vacuum;
|
||||
rc = execExecSql(db,
|
||||
"SELECT 'CREATE INDEX vacuum_db.' || substr(sql,14)"
|
||||
" FROM sqlite_master WHERE sql LIKE 'CREATE INDEX %' ");
|
||||
if( rc!=SQLITE_OK ) goto end_of_vacuum;
|
||||
rc = execExecSql(db,
|
||||
"SELECT 'CREATE UNIQUE INDEX vacuum_db.' || substr(sql,21) "
|
||||
" FROM sqlite_master WHERE sql LIKE 'CREATE UNIQUE INDEX %'");
|
||||
if( rc!=SQLITE_OK ) goto end_of_vacuum;
|
||||
|
||||
/* Loop through the tables in the main database. For each, do
|
||||
** an "INSERT INTO vacuum_db.xxx SELECT * FROM xxx;" to copy
|
||||
** the contents to the temporary database.
|
||||
*/
|
||||
rc = execExecSql(db,
|
||||
"SELECT 'INSERT INTO vacuum_db.' || quote(name) "
|
||||
"|| ' SELECT * FROM ' || quote(name) || ';'"
|
||||
"FROM sqlite_master "
|
||||
"WHERE type = 'table' AND name!='sqlite_sequence' "
|
||||
" AND rootpage>0"
|
||||
|
||||
);
|
||||
if( rc!=SQLITE_OK ) goto end_of_vacuum;
|
||||
|
||||
/* Copy over the sequence table
|
||||
*/
|
||||
rc = execExecSql(db,
|
||||
"SELECT 'DELETE FROM vacuum_db.' || quote(name) || ';' "
|
||||
"FROM vacuum_db.sqlite_master WHERE name='sqlite_sequence' "
|
||||
);
|
||||
if( rc!=SQLITE_OK ) goto end_of_vacuum;
|
||||
rc = execExecSql(db,
|
||||
"SELECT 'INSERT INTO vacuum_db.' || quote(name) "
|
||||
"|| ' SELECT * FROM ' || quote(name) || ';' "
|
||||
"FROM vacuum_db.sqlite_master WHERE name=='sqlite_sequence';"
|
||||
);
|
||||
if( rc!=SQLITE_OK ) goto end_of_vacuum;
|
||||
|
||||
|
||||
/* Copy the triggers, views, and virtual tables from the main database
|
||||
** over to the temporary database. None of these objects has any
|
||||
** associated storage, so all we have to do is copy their entries
|
||||
** from the SQLITE_MASTER table.
|
||||
*/
|
||||
rc = execSql(db,
|
||||
"INSERT INTO vacuum_db.sqlite_master "
|
||||
" SELECT type, name, tbl_name, rootpage, sql"
|
||||
" FROM sqlite_master"
|
||||
" WHERE type='view' OR type='trigger'"
|
||||
" OR (type='table' AND rootpage=0)"
|
||||
);
|
||||
if( rc ) goto end_of_vacuum;
|
||||
|
||||
/* At this point, unless the main db was completely empty, there is now a
|
||||
** transaction open on the vacuum database, but not on the main database.
|
||||
** Open a btree level transaction on the main database. This allows a
|
||||
** call to sqlite3BtreeCopyFile(). The main database btree level
|
||||
** transaction is then committed, so the SQL level never knows it was
|
||||
** opened for writing. This way, the SQL transaction used to create the
|
||||
** temporary database never needs to be committed.
|
||||
*/
|
||||
if( rc==SQLITE_OK ){
|
||||
u32 meta;
|
||||
int i;
|
||||
|
||||
/* This array determines which meta meta values are preserved in the
|
||||
** vacuum. Even entries are the meta value number and odd entries
|
||||
** are an increment to apply to the meta value after the vacuum.
|
||||
** The increment is used to increase the schema cookie so that other
|
||||
** connections to the same database will know to reread the schema.
|
||||
*/
|
||||
static const unsigned char aCopy[] = {
|
||||
1, 1, /* Add one to the old schema cookie */
|
||||
3, 0, /* Preserve the default page cache size */
|
||||
5, 0, /* Preserve the default text encoding */
|
||||
6, 0, /* Preserve the user version */
|
||||
};
|
||||
|
||||
assert( 1==sqlite3BtreeIsInTrans(pTemp) );
|
||||
assert( 1==sqlite3BtreeIsInTrans(pMain) );
|
||||
|
||||
/* Copy Btree meta values */
|
||||
for(i=0; i<ArraySize(aCopy); i+=2){
|
||||
rc = sqlite3BtreeGetMeta(pMain, aCopy[i], &meta);
|
||||
if( rc!=SQLITE_OK ) goto end_of_vacuum;
|
||||
rc = sqlite3BtreeUpdateMeta(pTemp, aCopy[i], meta+aCopy[i+1]);
|
||||
if( rc!=SQLITE_OK ) goto end_of_vacuum;
|
||||
}
|
||||
|
||||
rc = sqlite3BtreeCopyFile(pMain, pTemp);
|
||||
if( rc!=SQLITE_OK ) goto end_of_vacuum;
|
||||
rc = sqlite3BtreeCommit(pTemp);
|
||||
if( rc!=SQLITE_OK ) goto end_of_vacuum;
|
||||
#ifndef SQLITE_OMIT_AUTOVACUUM
|
||||
sqlite3BtreeSetAutoVacuum(pMain, sqlite3BtreeGetAutoVacuum(pTemp));
|
||||
#endif
|
||||
}
|
||||
|
||||
if( rc==SQLITE_OK ){
|
||||
rc = sqlite3BtreeSetPageSize(pMain, sqlite3BtreeGetPageSize(pTemp), nRes,1);
|
||||
}
|
||||
|
||||
end_of_vacuum:
|
||||
/* Restore the original value of db->flags */
|
||||
db->flags = saved_flags;
|
||||
db->nChange = saved_nChange;
|
||||
db->nTotalChange = saved_nTotalChange;
|
||||
|
||||
/* Currently there is an SQL level transaction open on the vacuum
|
||||
** database. No locks are held on any other files (since the main file
|
||||
** was committed at the btree level). So it safe to end the transaction
|
||||
** by manually setting the autoCommit flag to true and detaching the
|
||||
** vacuum database. The vacuum_db journal file is deleted when the pager
|
||||
** is closed by the DETACH.
|
||||
*/
|
||||
db->autoCommit = 1;
|
||||
|
||||
if( pDb ){
|
||||
sqlite3BtreeClose(pDb->pBt);
|
||||
pDb->pBt = 0;
|
||||
pDb->pSchema = 0;
|
||||
}
|
||||
|
||||
sqlite3ResetInternalSchema(db, 0);
|
||||
|
||||
return rc;
|
||||
}
|
||||
#endif /* SQLITE_OMIT_VACUUM && SQLITE_OMIT_ATTACH */
|
205
vdbe.h
205
vdbe.h
|
@ -1,205 +0,0 @@
|
|||
/*
|
||||
** 2001 September 15
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** Header file for the Virtual DataBase Engine (VDBE)
|
||||
**
|
||||
** This header defines the interface to the virtual database engine
|
||||
** or VDBE. The VDBE implements an abstract machine that runs a
|
||||
** simple program to access and modify the underlying database.
|
||||
**
|
||||
** $Id: vdbe.h,v 1.141 2009/04/10 00:56:29 drh Exp $
|
||||
*/
|
||||
#ifndef _SQLITE_VDBE_H_
|
||||
#define _SQLITE_VDBE_H_
|
||||
#include <stdio.h>
|
||||
|
||||
/*
|
||||
** A single VDBE is an opaque structure named "Vdbe". Only routines
|
||||
** in the source file sqliteVdbe.c are allowed to see the insides
|
||||
** of this structure.
|
||||
*/
|
||||
typedef struct Vdbe Vdbe;
|
||||
|
||||
/*
|
||||
** The names of the following types declared in vdbeInt.h are required
|
||||
** for the VdbeOp definition.
|
||||
*/
|
||||
typedef struct VdbeFunc VdbeFunc;
|
||||
typedef struct Mem Mem;
|
||||
|
||||
/*
|
||||
** A single instruction of the virtual machine has an opcode
|
||||
** and as many as three operands. The instruction is recorded
|
||||
** as an instance of the following structure:
|
||||
*/
|
||||
struct VdbeOp {
|
||||
u8 opcode; /* What operation to perform */
|
||||
signed char p4type; /* One of the P4_xxx constants for p4 */
|
||||
u8 opflags; /* Not currently used */
|
||||
u8 p5; /* Fifth parameter is an unsigned character */
|
||||
int p1; /* First operand */
|
||||
int p2; /* Second parameter (often the jump destination) */
|
||||
int p3; /* The third parameter */
|
||||
union { /* forth parameter */
|
||||
int i; /* Integer value if p4type==P4_INT32 */
|
||||
void *p; /* Generic pointer */
|
||||
char *z; /* Pointer to data for string (char array) types */
|
||||
i64 *pI64; /* Used when p4type is P4_INT64 */
|
||||
double *pReal; /* Used when p4type is P4_REAL */
|
||||
FuncDef *pFunc; /* Used when p4type is P4_FUNCDEF */
|
||||
VdbeFunc *pVdbeFunc; /* Used when p4type is P4_VDBEFUNC */
|
||||
CollSeq *pColl; /* Used when p4type is P4_COLLSEQ */
|
||||
Mem *pMem; /* Used when p4type is P4_MEM */
|
||||
sqlite3_vtab *pVtab; /* Used when p4type is P4_VTAB */
|
||||
KeyInfo *pKeyInfo; /* Used when p4type is P4_KEYINFO */
|
||||
int *ai; /* Used when p4type is P4_INTARRAY */
|
||||
} p4;
|
||||
#ifdef SQLITE_DEBUG
|
||||
char *zComment; /* Comment to improve readability */
|
||||
#endif
|
||||
#ifdef VDBE_PROFILE
|
||||
int cnt; /* Number of times this instruction was executed */
|
||||
u64 cycles; /* Total time spent executing this instruction */
|
||||
#endif
|
||||
};
|
||||
typedef struct VdbeOp VdbeOp;
|
||||
|
||||
/*
|
||||
** A smaller version of VdbeOp used for the VdbeAddOpList() function because
|
||||
** it takes up less space.
|
||||
*/
|
||||
struct VdbeOpList {
|
||||
u8 opcode; /* What operation to perform */
|
||||
signed char p1; /* First operand */
|
||||
signed char p2; /* Second parameter (often the jump destination) */
|
||||
signed char p3; /* Third parameter */
|
||||
};
|
||||
typedef struct VdbeOpList VdbeOpList;
|
||||
|
||||
/*
|
||||
** Allowed values of VdbeOp.p3type
|
||||
*/
|
||||
#define P4_NOTUSED 0 /* The P4 parameter is not used */
|
||||
#define P4_DYNAMIC (-1) /* Pointer to a string obtained from sqliteMalloc() */
|
||||
#define P4_STATIC (-2) /* Pointer to a static string */
|
||||
#define P4_COLLSEQ (-4) /* P4 is a pointer to a CollSeq structure */
|
||||
#define P4_FUNCDEF (-5) /* P4 is a pointer to a FuncDef structure */
|
||||
#define P4_KEYINFO (-6) /* P4 is a pointer to a KeyInfo structure */
|
||||
#define P4_VDBEFUNC (-7) /* P4 is a pointer to a VdbeFunc structure */
|
||||
#define P4_MEM (-8) /* P4 is a pointer to a Mem* structure */
|
||||
#define P4_TRANSIENT (-9) /* P4 is a pointer to a transient string */
|
||||
#define P4_VTAB (-10) /* P4 is a pointer to an sqlite3_vtab structure */
|
||||
#define P4_MPRINTF (-11) /* P4 is a string obtained from sqlite3_mprintf() */
|
||||
#define P4_REAL (-12) /* P4 is a 64-bit floating point value */
|
||||
#define P4_INT64 (-13) /* P4 is a 64-bit signed integer */
|
||||
#define P4_INT32 (-14) /* P4 is a 32-bit signed integer */
|
||||
#define P4_INTARRAY (-15) /* P4 is a vector of 32-bit integers */
|
||||
|
||||
/* When adding a P4 argument using P4_KEYINFO, a copy of the KeyInfo structure
|
||||
** is made. That copy is freed when the Vdbe is finalized. But if the
|
||||
** argument is P4_KEYINFO_HANDOFF, the passed in pointer is used. It still
|
||||
** gets freed when the Vdbe is finalized so it still should be obtained
|
||||
** from a single sqliteMalloc(). But no copy is made and the calling
|
||||
** function should *not* try to free the KeyInfo.
|
||||
*/
|
||||
#define P4_KEYINFO_HANDOFF (-16)
|
||||
#define P4_KEYINFO_STATIC (-17)
|
||||
|
||||
/*
|
||||
** The Vdbe.aColName array contains 5n Mem structures, where n is the
|
||||
** number of columns of data returned by the statement.
|
||||
*/
|
||||
#define COLNAME_NAME 0
|
||||
#define COLNAME_DECLTYPE 1
|
||||
#define COLNAME_DATABASE 2
|
||||
#define COLNAME_TABLE 3
|
||||
#define COLNAME_COLUMN 4
|
||||
#ifdef SQLITE_ENABLE_COLUMN_METADATA
|
||||
# define COLNAME_N 5 /* Number of COLNAME_xxx symbols */
|
||||
#else
|
||||
# ifdef SQLITE_OMIT_DECLTYPE
|
||||
# define COLNAME_N 1 /* Store only the name */
|
||||
# else
|
||||
# define COLNAME_N 2 /* Store the name and decltype */
|
||||
# endif
|
||||
#endif
|
||||
|
||||
/*
|
||||
** The following macro converts a relative address in the p2 field
|
||||
** of a VdbeOp structure into a negative number so that
|
||||
** sqlite3VdbeAddOpList() knows that the address is relative. Calling
|
||||
** the macro again restores the address.
|
||||
*/
|
||||
#define ADDR(X) (-1-(X))
|
||||
|
||||
/*
|
||||
** The makefile scans the vdbe.c source file and creates the "opcodes.h"
|
||||
** header file that defines a number for each opcode used by the VDBE.
|
||||
*/
|
||||
#include "opcodes.h"
|
||||
|
||||
/*
|
||||
** Prototypes for the VDBE interface. See comments on the implementation
|
||||
** for a description of what each of these routines does.
|
||||
*/
|
||||
Vdbe *sqlite3VdbeCreate(sqlite3*);
|
||||
int sqlite3VdbeAddOp0(Vdbe*,int);
|
||||
int sqlite3VdbeAddOp1(Vdbe*,int,int);
|
||||
int sqlite3VdbeAddOp2(Vdbe*,int,int,int);
|
||||
int sqlite3VdbeAddOp3(Vdbe*,int,int,int,int);
|
||||
int sqlite3VdbeAddOp4(Vdbe*,int,int,int,int,const char *zP4,int);
|
||||
int sqlite3VdbeAddOpList(Vdbe*, int nOp, VdbeOpList const *aOp);
|
||||
void sqlite3VdbeChangeP1(Vdbe*, int addr, int P1);
|
||||
void sqlite3VdbeChangeP2(Vdbe*, int addr, int P2);
|
||||
void sqlite3VdbeChangeP3(Vdbe*, int addr, int P3);
|
||||
void sqlite3VdbeChangeP5(Vdbe*, u8 P5);
|
||||
void sqlite3VdbeJumpHere(Vdbe*, int addr);
|
||||
void sqlite3VdbeChangeToNoop(Vdbe*, int addr, int N);
|
||||
void sqlite3VdbeChangeP4(Vdbe*, int addr, const char *zP4, int N);
|
||||
void sqlite3VdbeUsesBtree(Vdbe*, int);
|
||||
VdbeOp *sqlite3VdbeGetOp(Vdbe*, int);
|
||||
int sqlite3VdbeMakeLabel(Vdbe*);
|
||||
void sqlite3VdbeDelete(Vdbe*);
|
||||
void sqlite3VdbeMakeReady(Vdbe*,int,int,int,int);
|
||||
int sqlite3VdbeFinalize(Vdbe*);
|
||||
void sqlite3VdbeResolveLabel(Vdbe*, int);
|
||||
int sqlite3VdbeCurrentAddr(Vdbe*);
|
||||
#ifdef SQLITE_DEBUG
|
||||
void sqlite3VdbeTrace(Vdbe*,FILE*);
|
||||
#endif
|
||||
void sqlite3VdbeResetStepResult(Vdbe*);
|
||||
int sqlite3VdbeReset(Vdbe*);
|
||||
void sqlite3VdbeSetNumCols(Vdbe*,int);
|
||||
int sqlite3VdbeSetColName(Vdbe*, int, int, const char *, void(*)(void*));
|
||||
void sqlite3VdbeCountChanges(Vdbe*);
|
||||
sqlite3 *sqlite3VdbeDb(Vdbe*);
|
||||
void sqlite3VdbeSetSql(Vdbe*, const char *z, int n, int);
|
||||
void sqlite3VdbeSwap(Vdbe*,Vdbe*);
|
||||
|
||||
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
|
||||
int sqlite3VdbeReleaseMemory(int);
|
||||
#endif
|
||||
UnpackedRecord *sqlite3VdbeRecordUnpack(KeyInfo*,int,const void*,char*,int);
|
||||
void sqlite3VdbeDeleteUnpackedRecord(UnpackedRecord*);
|
||||
int sqlite3VdbeRecordCompare(int,const void*,UnpackedRecord*);
|
||||
|
||||
|
||||
#ifndef NDEBUG
|
||||
void sqlite3VdbeComment(Vdbe*, const char*, ...);
|
||||
# define VdbeComment(X) sqlite3VdbeComment X
|
||||
void sqlite3VdbeNoopComment(Vdbe*, const char*, ...);
|
||||
# define VdbeNoopComment(X) sqlite3VdbeNoopComment X
|
||||
#else
|
||||
# define VdbeComment(X)
|
||||
# define VdbeNoopComment(X)
|
||||
#endif
|
||||
|
||||
#endif
|
401
vdbeInt.h
401
vdbeInt.h
|
@ -1,401 +0,0 @@
|
|||
/*
|
||||
** 2003 September 6
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This is the header file for information that is private to the
|
||||
** VDBE. This information used to all be at the top of the single
|
||||
** source code file "vdbe.c". When that file became too big (over
|
||||
** 6000 lines long) it was split up into several smaller files and
|
||||
** this header information was factored out.
|
||||
**
|
||||
** $Id: vdbeInt.h,v 1.167 2009/04/10 12:55:17 danielk1977 Exp $
|
||||
*/
|
||||
#ifndef _VDBEINT_H_
|
||||
#define _VDBEINT_H_
|
||||
|
||||
/*
|
||||
** intToKey() and keyToInt() used to transform the rowid. But with
|
||||
** the latest versions of the design they are no-ops.
|
||||
*/
|
||||
#define keyToInt(X) (X)
|
||||
#define intToKey(X) (X)
|
||||
|
||||
|
||||
/*
|
||||
** SQL is translated into a sequence of instructions to be
|
||||
** executed by a virtual machine. Each instruction is an instance
|
||||
** of the following structure.
|
||||
*/
|
||||
typedef struct VdbeOp Op;
|
||||
|
||||
/*
|
||||
** Boolean values
|
||||
*/
|
||||
typedef unsigned char Bool;
|
||||
|
||||
/*
|
||||
** A cursor is a pointer into a single BTree within a database file.
|
||||
** The cursor can seek to a BTree entry with a particular key, or
|
||||
** loop over all entries of the Btree. You can also insert new BTree
|
||||
** entries or retrieve the key or data from the entry that the cursor
|
||||
** is currently pointing to.
|
||||
**
|
||||
** Every cursor that the virtual machine has open is represented by an
|
||||
** instance of the following structure.
|
||||
**
|
||||
** If the VdbeCursor.isTriggerRow flag is set it means that this cursor is
|
||||
** really a single row that represents the NEW or OLD pseudo-table of
|
||||
** a row trigger. The data for the row is stored in VdbeCursor.pData and
|
||||
** the rowid is in VdbeCursor.iKey.
|
||||
*/
|
||||
struct VdbeCursor {
|
||||
BtCursor *pCursor; /* The cursor structure of the backend */
|
||||
int iDb; /* Index of cursor database in db->aDb[] (or -1) */
|
||||
i64 lastRowid; /* Last rowid from a Next or NextIdx operation */
|
||||
Bool zeroed; /* True if zeroed out and ready for reuse */
|
||||
Bool rowidIsValid; /* True if lastRowid is valid */
|
||||
Bool atFirst; /* True if pointing to first entry */
|
||||
Bool useRandomRowid; /* Generate new record numbers semi-randomly */
|
||||
Bool nullRow; /* True if pointing to a row with no data */
|
||||
Bool pseudoTable; /* This is a NEW or OLD pseudo-tables of a trigger */
|
||||
Bool ephemPseudoTable;
|
||||
Bool deferredMoveto; /* A call to sqlite3BtreeMoveto() is needed */
|
||||
Bool isTable; /* True if a table requiring integer keys */
|
||||
Bool isIndex; /* True if an index containing keys only - no data */
|
||||
i64 movetoTarget; /* Argument to the deferred sqlite3BtreeMoveto() */
|
||||
Btree *pBt; /* Separate file holding temporary table */
|
||||
int nData; /* Number of bytes in pData */
|
||||
char *pData; /* Data for a NEW or OLD pseudo-table */
|
||||
i64 iKey; /* Key for the NEW or OLD pseudo-table row */
|
||||
KeyInfo *pKeyInfo; /* Info about index keys needed by index cursors */
|
||||
int nField; /* Number of fields in the header */
|
||||
i64 seqCount; /* Sequence counter */
|
||||
sqlite3_vtab_cursor *pVtabCursor; /* The cursor for a virtual table */
|
||||
const sqlite3_module *pModule; /* Module for cursor pVtabCursor */
|
||||
|
||||
/* Cached information about the header for the data record that the
|
||||
** cursor is currently pointing to. Only valid if cacheValid is true.
|
||||
** aRow might point to (ephemeral) data for the current row, or it might
|
||||
** be NULL.
|
||||
*/
|
||||
int cacheStatus; /* Cache is valid if this matches Vdbe.cacheCtr */
|
||||
int payloadSize; /* Total number of bytes in the record */
|
||||
u32 *aType; /* Type values for all entries in the record */
|
||||
u32 *aOffset; /* Cached offsets to the start of each columns data */
|
||||
u8 *aRow; /* Data for the current row, if all on one page */
|
||||
};
|
||||
typedef struct VdbeCursor VdbeCursor;
|
||||
|
||||
/*
|
||||
** A value for VdbeCursor.cacheValid that means the cache is always invalid.
|
||||
*/
|
||||
#define CACHE_STALE 0
|
||||
|
||||
/*
|
||||
** Internally, the vdbe manipulates nearly all SQL values as Mem
|
||||
** structures. Each Mem struct may cache multiple representations (string,
|
||||
** integer etc.) of the same value. A value (and therefore Mem structure)
|
||||
** has the following properties:
|
||||
**
|
||||
** Each value has a manifest type. The manifest type of the value stored
|
||||
** in a Mem struct is returned by the MemType(Mem*) macro. The type is
|
||||
** one of SQLITE_NULL, SQLITE_INTEGER, SQLITE_REAL, SQLITE_TEXT or
|
||||
** SQLITE_BLOB.
|
||||
*/
|
||||
struct Mem {
|
||||
union {
|
||||
i64 i; /* Integer value. */
|
||||
int nZero; /* Used when bit MEM_Zero is set in flags */
|
||||
FuncDef *pDef; /* Used only when flags==MEM_Agg */
|
||||
RowSet *pRowSet; /* Used only when flags==MEM_RowSet */
|
||||
} u;
|
||||
double r; /* Real value */
|
||||
sqlite3 *db; /* The associated database connection */
|
||||
char *z; /* String or BLOB value */
|
||||
int n; /* Number of characters in string value, excluding '\0' */
|
||||
u16 flags; /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */
|
||||
u8 type; /* One of SQLITE_NULL, SQLITE_TEXT, SQLITE_INTEGER, etc */
|
||||
u8 enc; /* SQLITE_UTF8, SQLITE_UTF16BE, SQLITE_UTF16LE */
|
||||
void (*xDel)(void *); /* If not null, call this function to delete Mem.z */
|
||||
char *zMalloc; /* Dynamic buffer allocated by sqlite3_malloc() */
|
||||
};
|
||||
|
||||
/* One or more of the following flags are set to indicate the validOK
|
||||
** representations of the value stored in the Mem struct.
|
||||
**
|
||||
** If the MEM_Null flag is set, then the value is an SQL NULL value.
|
||||
** No other flags may be set in this case.
|
||||
**
|
||||
** If the MEM_Str flag is set then Mem.z points at a string representation.
|
||||
** Usually this is encoded in the same unicode encoding as the main
|
||||
** database (see below for exceptions). If the MEM_Term flag is also
|
||||
** set, then the string is nul terminated. The MEM_Int and MEM_Real
|
||||
** flags may coexist with the MEM_Str flag.
|
||||
**
|
||||
** Multiple of these values can appear in Mem.flags. But only one
|
||||
** at a time can appear in Mem.type.
|
||||
*/
|
||||
#define MEM_Null 0x0001 /* Value is NULL */
|
||||
#define MEM_Str 0x0002 /* Value is a string */
|
||||
#define MEM_Int 0x0004 /* Value is an integer */
|
||||
#define MEM_Real 0x0008 /* Value is a real number */
|
||||
#define MEM_Blob 0x0010 /* Value is a BLOB */
|
||||
#define MEM_RowSet 0x0020 /* Value is a RowSet object */
|
||||
#define MEM_TypeMask 0x00ff /* Mask of type bits */
|
||||
|
||||
/* Whenever Mem contains a valid string or blob representation, one of
|
||||
** the following flags must be set to determine the memory management
|
||||
** policy for Mem.z. The MEM_Term flag tells us whether or not the
|
||||
** string is \000 or \u0000 terminated
|
||||
*/
|
||||
#define MEM_Term 0x0200 /* String rep is nul terminated */
|
||||
#define MEM_Dyn 0x0400 /* Need to call sqliteFree() on Mem.z */
|
||||
#define MEM_Static 0x0800 /* Mem.z points to a static string */
|
||||
#define MEM_Ephem 0x1000 /* Mem.z points to an ephemeral string */
|
||||
#define MEM_Agg 0x2000 /* Mem.z points to an agg function context */
|
||||
#define MEM_Zero 0x4000 /* Mem.i contains count of 0s appended to blob */
|
||||
|
||||
#ifdef SQLITE_OMIT_INCRBLOB
|
||||
#undef MEM_Zero
|
||||
#define MEM_Zero 0x0000
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
** Clear any existing type flags from a Mem and replace them with f
|
||||
*/
|
||||
#define MemSetTypeFlag(p, f) \
|
||||
((p)->flags = ((p)->flags&~(MEM_TypeMask|MEM_Zero))|f)
|
||||
|
||||
|
||||
/* A VdbeFunc is just a FuncDef (defined in sqliteInt.h) that contains
|
||||
** additional information about auxiliary information bound to arguments
|
||||
** of the function. This is used to implement the sqlite3_get_auxdata()
|
||||
** and sqlite3_set_auxdata() APIs. The "auxdata" is some auxiliary data
|
||||
** that can be associated with a constant argument to a function. This
|
||||
** allows functions such as "regexp" to compile their constant regular
|
||||
** expression argument once and reused the compiled code for multiple
|
||||
** invocations.
|
||||
*/
|
||||
struct VdbeFunc {
|
||||
FuncDef *pFunc; /* The definition of the function */
|
||||
int nAux; /* Number of entries allocated for apAux[] */
|
||||
struct AuxData {
|
||||
void *pAux; /* Aux data for the i-th argument */
|
||||
void (*xDelete)(void *); /* Destructor for the aux data */
|
||||
} apAux[1]; /* One slot for each function argument */
|
||||
};
|
||||
|
||||
/*
|
||||
** The "context" argument for a installable function. A pointer to an
|
||||
** instance of this structure is the first argument to the routines used
|
||||
** implement the SQL functions.
|
||||
**
|
||||
** There is a typedef for this structure in sqlite.h. So all routines,
|
||||
** even the public interface to SQLite, can use a pointer to this structure.
|
||||
** But this file is the only place where the internal details of this
|
||||
** structure are known.
|
||||
**
|
||||
** This structure is defined inside of vdbeInt.h because it uses substructures
|
||||
** (Mem) which are only defined there.
|
||||
*/
|
||||
struct sqlite3_context {
|
||||
FuncDef *pFunc; /* Pointer to function information. MUST BE FIRST */
|
||||
VdbeFunc *pVdbeFunc; /* Auxilary data, if created. */
|
||||
Mem s; /* The return value is stored here */
|
||||
Mem *pMem; /* Memory cell used to store aggregate context */
|
||||
int isError; /* Error code returned by the function. */
|
||||
CollSeq *pColl; /* Collating sequence */
|
||||
};
|
||||
|
||||
/*
|
||||
** A Set structure is used for quick testing to see if a value
|
||||
** is part of a small set. Sets are used to implement code like
|
||||
** this:
|
||||
** x.y IN ('hi','hoo','hum')
|
||||
*/
|
||||
typedef struct Set Set;
|
||||
struct Set {
|
||||
Hash hash; /* A set is just a hash table */
|
||||
HashElem *prev; /* Previously accessed hash elemen */
|
||||
};
|
||||
|
||||
/*
|
||||
** A Context stores the last insert rowid, the last statement change count,
|
||||
** and the current statement change count (i.e. changes since last statement).
|
||||
** The current keylist is also stored in the context.
|
||||
** Elements of Context structure type make up the ContextStack, which is
|
||||
** updated by the ContextPush and ContextPop opcodes (used by triggers).
|
||||
** The context is pushed before executing a trigger a popped when the
|
||||
** trigger finishes.
|
||||
*/
|
||||
typedef struct Context Context;
|
||||
struct Context {
|
||||
i64 lastRowid; /* Last insert rowid (sqlite3.lastRowid) */
|
||||
int nChange; /* Statement changes (Vdbe.nChanges) */
|
||||
};
|
||||
|
||||
/*
|
||||
** An instance of the virtual machine. This structure contains the complete
|
||||
** state of the virtual machine.
|
||||
**
|
||||
** The "sqlite3_stmt" structure pointer that is returned by sqlite3_compile()
|
||||
** is really a pointer to an instance of this structure.
|
||||
**
|
||||
** The Vdbe.inVtabMethod variable is set to non-zero for the duration of
|
||||
** any virtual table method invocations made by the vdbe program. It is
|
||||
** set to 2 for xDestroy method calls and 1 for all other methods. This
|
||||
** variable is used for two purposes: to allow xDestroy methods to execute
|
||||
** "DROP TABLE" statements and to prevent some nasty side effects of
|
||||
** malloc failure when SQLite is invoked recursively by a virtual table
|
||||
** method function.
|
||||
*/
|
||||
struct Vdbe {
|
||||
sqlite3 *db; /* The whole database */
|
||||
Vdbe *pPrev,*pNext; /* Linked list of VDBEs with the same Vdbe.db */
|
||||
int nOp; /* Number of instructions in the program */
|
||||
int nOpAlloc; /* Number of slots allocated for aOp[] */
|
||||
Op *aOp; /* Space to hold the virtual machine's program */
|
||||
int nLabel; /* Number of labels used */
|
||||
int nLabelAlloc; /* Number of slots allocated in aLabel[] */
|
||||
int *aLabel; /* Space to hold the labels */
|
||||
Mem **apArg; /* Arguments to currently executing user function */
|
||||
Mem *aColName; /* Column names to return */
|
||||
int nCursor; /* Number of slots in apCsr[] */
|
||||
VdbeCursor **apCsr; /* One element of this array for each open cursor */
|
||||
int nVar; /* Number of entries in aVar[] */
|
||||
Mem *aVar; /* Values for the OP_Variable opcode. */
|
||||
char **azVar; /* Name of variables */
|
||||
int okVar; /* True if azVar[] has been initialized */
|
||||
u32 magic; /* Magic number for sanity checking */
|
||||
int nMem; /* Number of memory locations currently allocated */
|
||||
Mem *aMem; /* The memory locations */
|
||||
int cacheCtr; /* VdbeCursor row cache generation counter */
|
||||
int contextStackTop; /* Index of top element in the context stack */
|
||||
int contextStackDepth; /* The size of the "context" stack */
|
||||
Context *contextStack; /* Stack used by opcodes ContextPush & ContextPop*/
|
||||
int pc; /* The program counter */
|
||||
int rc; /* Value to return */
|
||||
int errorAction; /* Recovery action to do in case of an error */
|
||||
int nResColumn; /* Number of columns in one row of the result set */
|
||||
char **azResColumn; /* Values for one row of result */
|
||||
char *zErrMsg; /* Error message written here */
|
||||
Mem *pResultSet; /* Pointer to an array of results */
|
||||
u8 explain; /* True if EXPLAIN present on SQL command */
|
||||
u8 changeCntOn; /* True to update the change-counter */
|
||||
u8 expired; /* True if the VM needs to be recompiled */
|
||||
u8 minWriteFileFormat; /* Minimum file format for writable database files */
|
||||
u8 inVtabMethod; /* See comments above */
|
||||
u8 usesStmtJournal; /* True if uses a statement journal */
|
||||
u8 readOnly; /* True for read-only statements */
|
||||
u8 isPrepareV2; /* True if prepared with prepare_v2() */
|
||||
int nChange; /* Number of db changes made since last reset */
|
||||
i64 startTime; /* Time when query started - used for profiling */
|
||||
int btreeMask; /* Bitmask of db->aDb[] entries referenced */
|
||||
BtreeMutexArray aMutex; /* An array of Btree used here and needing locks */
|
||||
int aCounter[2]; /* Counters used by sqlite3_stmt_status() */
|
||||
char *zSql; /* Text of the SQL statement that generated this */
|
||||
void *pFree; /* Free this when deleting the vdbe */
|
||||
#ifdef SQLITE_DEBUG
|
||||
FILE *trace; /* Write an execution trace here, if not NULL */
|
||||
#endif
|
||||
int iStatement; /* Statement number (or 0 if has not opened stmt) */
|
||||
#ifdef SQLITE_SSE
|
||||
int fetchId; /* Statement number used by sqlite3_fetch_statement */
|
||||
int lru; /* Counter used for LRU cache replacement */
|
||||
#endif
|
||||
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
|
||||
Vdbe *pLruPrev;
|
||||
Vdbe *pLruNext;
|
||||
#endif
|
||||
};
|
||||
|
||||
/*
|
||||
** The following are allowed values for Vdbe.magic
|
||||
*/
|
||||
#define VDBE_MAGIC_INIT 0x26bceaa5 /* Building a VDBE program */
|
||||
#define VDBE_MAGIC_RUN 0xbdf20da3 /* VDBE is ready to execute */
|
||||
#define VDBE_MAGIC_HALT 0x519c2973 /* VDBE has completed execution */
|
||||
#define VDBE_MAGIC_DEAD 0xb606c3c8 /* The VDBE has been deallocated */
|
||||
|
||||
/*
|
||||
** Function prototypes
|
||||
*/
|
||||
void sqlite3VdbeFreeCursor(Vdbe *, VdbeCursor*);
|
||||
void sqliteVdbePopStack(Vdbe*,int);
|
||||
int sqlite3VdbeCursorMoveto(VdbeCursor*);
|
||||
#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
|
||||
void sqlite3VdbePrintOp(FILE*, int, Op*);
|
||||
#endif
|
||||
int sqlite3VdbeSerialTypeLen(u32);
|
||||
u32 sqlite3VdbeSerialType(Mem*, int);
|
||||
int sqlite3VdbeSerialPut(unsigned char*, int, Mem*, int);
|
||||
int sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*);
|
||||
void sqlite3VdbeDeleteAuxData(VdbeFunc*, int);
|
||||
|
||||
int sqlite2BtreeKeyCompare(BtCursor *, const void *, int, int, int *);
|
||||
int sqlite3VdbeIdxKeyCompare(VdbeCursor*,UnpackedRecord*,int*);
|
||||
int sqlite3VdbeIdxRowid(BtCursor *, i64 *);
|
||||
int sqlite3MemCompare(const Mem*, const Mem*, const CollSeq*);
|
||||
int sqlite3VdbeExec(Vdbe*);
|
||||
int sqlite3VdbeList(Vdbe*);
|
||||
int sqlite3VdbeHalt(Vdbe*);
|
||||
int sqlite3VdbeChangeEncoding(Mem *, int);
|
||||
int sqlite3VdbeMemTooBig(Mem*);
|
||||
int sqlite3VdbeMemCopy(Mem*, const Mem*);
|
||||
void sqlite3VdbeMemShallowCopy(Mem*, const Mem*, int);
|
||||
void sqlite3VdbeMemMove(Mem*, Mem*);
|
||||
int sqlite3VdbeMemNulTerminate(Mem*);
|
||||
int sqlite3VdbeMemSetStr(Mem*, const char*, int, u8, void(*)(void*));
|
||||
void sqlite3VdbeMemSetInt64(Mem*, i64);
|
||||
void sqlite3VdbeMemSetDouble(Mem*, double);
|
||||
void sqlite3VdbeMemSetNull(Mem*);
|
||||
void sqlite3VdbeMemSetZeroBlob(Mem*,int);
|
||||
void sqlite3VdbeMemSetRowSet(Mem*);
|
||||
int sqlite3VdbeMemMakeWriteable(Mem*);
|
||||
int sqlite3VdbeMemStringify(Mem*, int);
|
||||
i64 sqlite3VdbeIntValue(Mem*);
|
||||
int sqlite3VdbeMemIntegerify(Mem*);
|
||||
double sqlite3VdbeRealValue(Mem*);
|
||||
void sqlite3VdbeIntegerAffinity(Mem*);
|
||||
int sqlite3VdbeMemRealify(Mem*);
|
||||
int sqlite3VdbeMemNumerify(Mem*);
|
||||
int sqlite3VdbeMemFromBtree(BtCursor*,int,int,int,Mem*);
|
||||
void sqlite3VdbeMemRelease(Mem *p);
|
||||
void sqlite3VdbeMemReleaseExternal(Mem *p);
|
||||
int sqlite3VdbeMemFinalize(Mem*, FuncDef*);
|
||||
const char *sqlite3OpcodeName(int);
|
||||
int sqlite3VdbeOpcodeHasProperty(int, int);
|
||||
int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve);
|
||||
int sqlite3VdbeCloseStatement(Vdbe *, int);
|
||||
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
|
||||
int sqlite3VdbeReleaseBuffers(Vdbe *p);
|
||||
#endif
|
||||
|
||||
#ifndef SQLITE_OMIT_SHARED_CACHE
|
||||
void sqlite3VdbeMutexArrayEnter(Vdbe *p);
|
||||
#else
|
||||
# define sqlite3VdbeMutexArrayEnter(p)
|
||||
#endif
|
||||
|
||||
int sqlite3VdbeMemTranslate(Mem*, u8);
|
||||
#ifdef SQLITE_DEBUG
|
||||
void sqlite3VdbePrintSql(Vdbe*);
|
||||
void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf);
|
||||
#endif
|
||||
int sqlite3VdbeMemHandleBom(Mem *pMem);
|
||||
|
||||
#ifndef SQLITE_OMIT_INCRBLOB
|
||||
int sqlite3VdbeMemExpandBlob(Mem *);
|
||||
#else
|
||||
#define sqlite3VdbeMemExpandBlob(x) SQLITE_OK
|
||||
#endif
|
||||
|
||||
#endif /* !defined(_VDBEINT_H_) */
|
350
vdbeblob.c
350
vdbeblob.c
|
@ -1,350 +0,0 @@
|
|||
/*
|
||||
** 2007 May 1
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
**
|
||||
** This file contains code used to implement incremental BLOB I/O.
|
||||
**
|
||||
** $Id: vdbeblob.c,v 1.31 2009/03/24 15:08:10 drh Exp $
|
||||
*/
|
||||
|
||||
#include "sqliteInt.h"
|
||||
#include "vdbeInt.h"
|
||||
|
||||
#ifndef SQLITE_OMIT_INCRBLOB
|
||||
|
||||
/*
|
||||
** Valid sqlite3_blob* handles point to Incrblob structures.
|
||||
*/
|
||||
typedef struct Incrblob Incrblob;
|
||||
struct Incrblob {
|
||||
int flags; /* Copy of "flags" passed to sqlite3_blob_open() */
|
||||
int nByte; /* Size of open blob, in bytes */
|
||||
int iOffset; /* Byte offset of blob in cursor data */
|
||||
BtCursor *pCsr; /* Cursor pointing at blob row */
|
||||
sqlite3_stmt *pStmt; /* Statement holding cursor open */
|
||||
sqlite3 *db; /* The associated database */
|
||||
};
|
||||
|
||||
/*
|
||||
** Open a blob handle.
|
||||
*/
|
||||
int sqlite3_blob_open(
|
||||
sqlite3* db, /* The database connection */
|
||||
const char *zDb, /* The attached database containing the blob */
|
||||
const char *zTable, /* The table containing the blob */
|
||||
const char *zColumn, /* The column containing the blob */
|
||||
sqlite_int64 iRow, /* The row containing the glob */
|
||||
int flags, /* True -> read/write access, false -> read-only */
|
||||
sqlite3_blob **ppBlob /* Handle for accessing the blob returned here */
|
||||
){
|
||||
int nAttempt = 0;
|
||||
int iCol; /* Index of zColumn in row-record */
|
||||
|
||||
/* This VDBE program seeks a btree cursor to the identified
|
||||
** db/table/row entry. The reason for using a vdbe program instead
|
||||
** of writing code to use the b-tree layer directly is that the
|
||||
** vdbe program will take advantage of the various transaction,
|
||||
** locking and error handling infrastructure built into the vdbe.
|
||||
**
|
||||
** After seeking the cursor, the vdbe executes an OP_ResultRow.
|
||||
** Code external to the Vdbe then "borrows" the b-tree cursor and
|
||||
** uses it to implement the blob_read(), blob_write() and
|
||||
** blob_bytes() functions.
|
||||
**
|
||||
** The sqlite3_blob_close() function finalizes the vdbe program,
|
||||
** which closes the b-tree cursor and (possibly) commits the
|
||||
** transaction.
|
||||
*/
|
||||
static const VdbeOpList openBlob[] = {
|
||||
{OP_Transaction, 0, 0, 0}, /* 0: Start a transaction */
|
||||
{OP_VerifyCookie, 0, 0, 0}, /* 1: Check the schema cookie */
|
||||
|
||||
/* One of the following two instructions is replaced by an
|
||||
** OP_Noop before exection.
|
||||
*/
|
||||
{OP_OpenRead, 0, 0, 0}, /* 2: Open cursor 0 for reading */
|
||||
{OP_OpenWrite, 0, 0, 0}, /* 3: Open cursor 0 for read/write */
|
||||
|
||||
{OP_Variable, 1, 1, 1}, /* 4: Push the rowid to the stack */
|
||||
{OP_NotExists, 0, 8, 1}, /* 5: Seek the cursor */
|
||||
{OP_Column, 0, 0, 1}, /* 6 */
|
||||
{OP_ResultRow, 1, 0, 0}, /* 7 */
|
||||
{OP_Close, 0, 0, 0}, /* 8 */
|
||||
{OP_Halt, 0, 0, 0}, /* 9 */
|
||||
};
|
||||
|
||||
Vdbe *v = 0;
|
||||
int rc = SQLITE_OK;
|
||||
char zErr[128];
|
||||
|
||||
zErr[0] = 0;
|
||||
sqlite3_mutex_enter(db->mutex);
|
||||
do {
|
||||
Parse sParse;
|
||||
Table *pTab;
|
||||
|
||||
memset(&sParse, 0, sizeof(Parse));
|
||||
sParse.db = db;
|
||||
|
||||
if( sqlite3SafetyOn(db) ){
|
||||
sqlite3_mutex_leave(db->mutex);
|
||||
return SQLITE_MISUSE;
|
||||
}
|
||||
|
||||
sqlite3BtreeEnterAll(db);
|
||||
pTab = sqlite3LocateTable(&sParse, 0, zTable, zDb);
|
||||
if( pTab && IsVirtual(pTab) ){
|
||||
pTab = 0;
|
||||
sqlite3ErrorMsg(&sParse, "cannot open virtual table: %s", zTable);
|
||||
}
|
||||
#ifndef SQLITE_OMIT_VIEW
|
||||
if( pTab && pTab->pSelect ){
|
||||
pTab = 0;
|
||||
sqlite3ErrorMsg(&sParse, "cannot open view: %s", zTable);
|
||||
}
|
||||
#endif
|
||||
if( !pTab ){
|
||||
if( sParse.zErrMsg ){
|
||||
sqlite3_snprintf(sizeof(zErr), zErr, "%s", sParse.zErrMsg);
|
||||
}
|
||||
sqlite3DbFree(db, sParse.zErrMsg);
|
||||
rc = SQLITE_ERROR;
|
||||
(void)sqlite3SafetyOff(db);
|
||||
sqlite3BtreeLeaveAll(db);
|
||||
goto blob_open_out;
|
||||
}
|
||||
|
||||
/* Now search pTab for the exact column. */
|
||||
for(iCol=0; iCol < pTab->nCol; iCol++) {
|
||||
if( sqlite3StrICmp(pTab->aCol[iCol].zName, zColumn)==0 ){
|
||||
break;
|
||||
}
|
||||
}
|
||||
if( iCol==pTab->nCol ){
|
||||
sqlite3_snprintf(sizeof(zErr), zErr, "no such column: \"%s\"", zColumn);
|
||||
rc = SQLITE_ERROR;
|
||||
(void)sqlite3SafetyOff(db);
|
||||
sqlite3BtreeLeaveAll(db);
|
||||
goto blob_open_out;
|
||||
}
|
||||
|
||||
/* If the value is being opened for writing, check that the
|
||||
** column is not indexed. It is against the rules to open an
|
||||
** indexed column for writing.
|
||||
*/
|
||||
if( flags ){
|
||||
Index *pIdx;
|
||||
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
||||
int j;
|
||||
for(j=0; j<pIdx->nColumn; j++){
|
||||
if( pIdx->aiColumn[j]==iCol ){
|
||||
sqlite3_snprintf(sizeof(zErr), zErr,
|
||||
"cannot open indexed column for writing");
|
||||
rc = SQLITE_ERROR;
|
||||
(void)sqlite3SafetyOff(db);
|
||||
sqlite3BtreeLeaveAll(db);
|
||||
goto blob_open_out;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
v = sqlite3VdbeCreate(db);
|
||||
if( v ){
|
||||
int iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
|
||||
sqlite3VdbeAddOpList(v, sizeof(openBlob)/sizeof(VdbeOpList), openBlob);
|
||||
|
||||
/* Configure the OP_Transaction */
|
||||
sqlite3VdbeChangeP1(v, 0, iDb);
|
||||
sqlite3VdbeChangeP2(v, 0, (flags ? 1 : 0));
|
||||
|
||||
/* Configure the OP_VerifyCookie */
|
||||
sqlite3VdbeChangeP1(v, 1, iDb);
|
||||
sqlite3VdbeChangeP2(v, 1, pTab->pSchema->schema_cookie);
|
||||
|
||||
/* Make sure a mutex is held on the table to be accessed */
|
||||
sqlite3VdbeUsesBtree(v, iDb);
|
||||
|
||||
/* Remove either the OP_OpenWrite or OpenRead. Set the P2
|
||||
** parameter of the other to pTab->tnum.
|
||||
*/
|
||||
sqlite3VdbeChangeToNoop(v, (flags ? 2 : 3), 1);
|
||||
sqlite3VdbeChangeP2(v, (flags ? 3 : 2), pTab->tnum);
|
||||
sqlite3VdbeChangeP3(v, (flags ? 3 : 2), iDb);
|
||||
|
||||
/* Configure the number of columns. Configure the cursor to
|
||||
** think that the table has one more column than it really
|
||||
** does. An OP_Column to retrieve this imaginary column will
|
||||
** always return an SQL NULL. This is useful because it means
|
||||
** we can invoke OP_Column to fill in the vdbe cursors type
|
||||
** and offset cache without causing any IO.
|
||||
*/
|
||||
sqlite3VdbeChangeP4(v, flags ? 3 : 2, SQLITE_INT_TO_PTR(pTab->nCol+1), P4_INT32);
|
||||
sqlite3VdbeChangeP2(v, 6, pTab->nCol);
|
||||
if( !db->mallocFailed ){
|
||||
sqlite3VdbeMakeReady(v, 1, 1, 1, 0);
|
||||
}
|
||||
}
|
||||
|
||||
sqlite3BtreeLeaveAll(db);
|
||||
rc = sqlite3SafetyOff(db);
|
||||
if( rc!=SQLITE_OK || db->mallocFailed ){
|
||||
goto blob_open_out;
|
||||
}
|
||||
|
||||
sqlite3_bind_int64((sqlite3_stmt *)v, 1, iRow);
|
||||
rc = sqlite3_step((sqlite3_stmt *)v);
|
||||
if( rc!=SQLITE_ROW ){
|
||||
nAttempt++;
|
||||
rc = sqlite3_finalize((sqlite3_stmt *)v);
|
||||
sqlite3_snprintf(sizeof(zErr), zErr, sqlite3_errmsg(db));
|
||||
v = 0;
|
||||
}
|
||||
} while( nAttempt<5 && rc==SQLITE_SCHEMA );
|
||||
|
||||
if( rc==SQLITE_ROW ){
|
||||
/* The row-record has been opened successfully. Check that the
|
||||
** column in question contains text or a blob. If it contains
|
||||
** text, it is up to the caller to get the encoding right.
|
||||
*/
|
||||
Incrblob *pBlob;
|
||||
u32 type = v->apCsr[0]->aType[iCol];
|
||||
|
||||
if( type<12 ){
|
||||
sqlite3_snprintf(sizeof(zErr), zErr, "cannot open value of type %s",
|
||||
type==0?"null": type==7?"real": "integer"
|
||||
);
|
||||
rc = SQLITE_ERROR;
|
||||
goto blob_open_out;
|
||||
}
|
||||
pBlob = (Incrblob *)sqlite3DbMallocZero(db, sizeof(Incrblob));
|
||||
if( db->mallocFailed ){
|
||||
sqlite3DbFree(db, pBlob);
|
||||
goto blob_open_out;
|
||||
}
|
||||
pBlob->flags = flags;
|
||||
pBlob->pCsr = v->apCsr[0]->pCursor;
|
||||
sqlite3BtreeEnterCursor(pBlob->pCsr);
|
||||
sqlite3BtreeCacheOverflow(pBlob->pCsr);
|
||||
sqlite3BtreeLeaveCursor(pBlob->pCsr);
|
||||
pBlob->pStmt = (sqlite3_stmt *)v;
|
||||
pBlob->iOffset = v->apCsr[0]->aOffset[iCol];
|
||||
pBlob->nByte = sqlite3VdbeSerialTypeLen(type);
|
||||
pBlob->db = db;
|
||||
*ppBlob = (sqlite3_blob *)pBlob;
|
||||
rc = SQLITE_OK;
|
||||
}else if( rc==SQLITE_OK ){
|
||||
sqlite3_snprintf(sizeof(zErr), zErr, "no such rowid: %lld", iRow);
|
||||
rc = SQLITE_ERROR;
|
||||
}
|
||||
|
||||
blob_open_out:
|
||||
zErr[sizeof(zErr)-1] = '\0';
|
||||
if( v && (rc!=SQLITE_OK || db->mallocFailed) ){
|
||||
sqlite3VdbeFinalize(v);
|
||||
}
|
||||
sqlite3Error(db, rc, (rc==SQLITE_OK?0:zErr));
|
||||
rc = sqlite3ApiExit(db, rc);
|
||||
sqlite3_mutex_leave(db->mutex);
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** Close a blob handle that was previously created using
|
||||
** sqlite3_blob_open().
|
||||
*/
|
||||
int sqlite3_blob_close(sqlite3_blob *pBlob){
|
||||
Incrblob *p = (Incrblob *)pBlob;
|
||||
int rc;
|
||||
sqlite3 *db;
|
||||
|
||||
db = p->db;
|
||||
sqlite3_mutex_enter(db->mutex);
|
||||
rc = sqlite3_finalize(p->pStmt);
|
||||
sqlite3DbFree(db, p);
|
||||
sqlite3_mutex_leave(db->mutex);
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** Perform a read or write operation on a blob
|
||||
*/
|
||||
static int blobReadWrite(
|
||||
sqlite3_blob *pBlob,
|
||||
void *z,
|
||||
int n,
|
||||
int iOffset,
|
||||
int (*xCall)(BtCursor*, u32, u32, void*)
|
||||
){
|
||||
int rc;
|
||||
Incrblob *p = (Incrblob *)pBlob;
|
||||
Vdbe *v;
|
||||
sqlite3 *db = p->db;
|
||||
|
||||
sqlite3_mutex_enter(db->mutex);
|
||||
v = (Vdbe*)p->pStmt;
|
||||
|
||||
if( n<0 || iOffset<0 || (iOffset+n)>p->nByte ){
|
||||
/* Request is out of range. Return a transient error. */
|
||||
rc = SQLITE_ERROR;
|
||||
sqlite3Error(db, SQLITE_ERROR, 0);
|
||||
} else if( v==0 ){
|
||||
/* If there is no statement handle, then the blob-handle has
|
||||
** already been invalidated. Return SQLITE_ABORT in this case.
|
||||
*/
|
||||
rc = SQLITE_ABORT;
|
||||
}else{
|
||||
/* Call either BtreeData() or BtreePutData(). If SQLITE_ABORT is
|
||||
** returned, clean-up the statement handle.
|
||||
*/
|
||||
assert( db == v->db );
|
||||
sqlite3BtreeEnterCursor(p->pCsr);
|
||||
rc = xCall(p->pCsr, iOffset+p->iOffset, n, z);
|
||||
sqlite3BtreeLeaveCursor(p->pCsr);
|
||||
if( rc==SQLITE_ABORT ){
|
||||
sqlite3VdbeFinalize(v);
|
||||
p->pStmt = 0;
|
||||
}else{
|
||||
db->errCode = rc;
|
||||
v->rc = rc;
|
||||
}
|
||||
}
|
||||
rc = sqlite3ApiExit(db, rc);
|
||||
sqlite3_mutex_leave(db->mutex);
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** Read data from a blob handle.
|
||||
*/
|
||||
int sqlite3_blob_read(sqlite3_blob *pBlob, void *z, int n, int iOffset){
|
||||
return blobReadWrite(pBlob, z, n, iOffset, sqlite3BtreeData);
|
||||
}
|
||||
|
||||
/*
|
||||
** Write data to a blob handle.
|
||||
*/
|
||||
int sqlite3_blob_write(sqlite3_blob *pBlob, const void *z, int n, int iOffset){
|
||||
return blobReadWrite(pBlob, (void *)z, n, iOffset, sqlite3BtreePutData);
|
||||
}
|
||||
|
||||
/*
|
||||
** Query a blob handle for the size of the data.
|
||||
**
|
||||
** The Incrblob.nByte field is fixed for the lifetime of the Incrblob
|
||||
** so no mutex is required for access.
|
||||
*/
|
||||
int sqlite3_blob_bytes(sqlite3_blob *pBlob){
|
||||
Incrblob *p = (Incrblob *)pBlob;
|
||||
return p->nByte;
|
||||
}
|
||||
|
||||
#endif /* #ifndef SQLITE_OMIT_INCRBLOB */
|
852
vtab.c
852
vtab.c
|
@ -1,852 +0,0 @@
|
|||
/*
|
||||
** 2006 June 10
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This file contains code used to help implement virtual tables.
|
||||
**
|
||||
** $Id: vtab.c,v 1.85 2009/04/11 16:27:20 drh Exp $
|
||||
*/
|
||||
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
||||
#include "sqliteInt.h"
|
||||
|
||||
/*
|
||||
** The actual function that does the work of creating a new module.
|
||||
** This function implements the sqlite3_create_module() and
|
||||
** sqlite3_create_module_v2() interfaces.
|
||||
*/
|
||||
static int createModule(
|
||||
sqlite3 *db, /* Database in which module is registered */
|
||||
const char *zName, /* Name assigned to this module */
|
||||
const sqlite3_module *pModule, /* The definition of the module */
|
||||
void *pAux, /* Context pointer for xCreate/xConnect */
|
||||
void (*xDestroy)(void *) /* Module destructor function */
|
||||
) {
|
||||
int rc, nName;
|
||||
Module *pMod;
|
||||
|
||||
sqlite3_mutex_enter(db->mutex);
|
||||
nName = sqlite3Strlen30(zName);
|
||||
pMod = (Module *)sqlite3DbMallocRaw(db, sizeof(Module) + nName + 1);
|
||||
if( pMod ){
|
||||
Module *pDel;
|
||||
char *zCopy = (char *)(&pMod[1]);
|
||||
memcpy(zCopy, zName, nName+1);
|
||||
pMod->zName = zCopy;
|
||||
pMod->pModule = pModule;
|
||||
pMod->pAux = pAux;
|
||||
pMod->xDestroy = xDestroy;
|
||||
pDel = (Module *)sqlite3HashInsert(&db->aModule, zCopy, nName, (void*)pMod);
|
||||
if( pDel && pDel->xDestroy ){
|
||||
pDel->xDestroy(pDel->pAux);
|
||||
}
|
||||
sqlite3DbFree(db, pDel);
|
||||
if( pDel==pMod ){
|
||||
db->mallocFailed = 1;
|
||||
}
|
||||
sqlite3ResetInternalSchema(db, 0);
|
||||
}else if( xDestroy ){
|
||||
xDestroy(pAux);
|
||||
}
|
||||
rc = sqlite3ApiExit(db, SQLITE_OK);
|
||||
sqlite3_mutex_leave(db->mutex);
|
||||
return rc;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** External API function used to create a new virtual-table module.
|
||||
*/
|
||||
int sqlite3_create_module(
|
||||
sqlite3 *db, /* Database in which module is registered */
|
||||
const char *zName, /* Name assigned to this module */
|
||||
const sqlite3_module *pModule, /* The definition of the module */
|
||||
void *pAux /* Context pointer for xCreate/xConnect */
|
||||
){
|
||||
return createModule(db, zName, pModule, pAux, 0);
|
||||
}
|
||||
|
||||
/*
|
||||
** External API function used to create a new virtual-table module.
|
||||
*/
|
||||
int sqlite3_create_module_v2(
|
||||
sqlite3 *db, /* Database in which module is registered */
|
||||
const char *zName, /* Name assigned to this module */
|
||||
const sqlite3_module *pModule, /* The definition of the module */
|
||||
void *pAux, /* Context pointer for xCreate/xConnect */
|
||||
void (*xDestroy)(void *) /* Module destructor function */
|
||||
){
|
||||
return createModule(db, zName, pModule, pAux, xDestroy);
|
||||
}
|
||||
|
||||
/*
|
||||
** Lock the virtual table so that it cannot be disconnected.
|
||||
** Locks nest. Every lock should have a corresponding unlock.
|
||||
** If an unlock is omitted, resources leaks will occur.
|
||||
**
|
||||
** If a disconnect is attempted while a virtual table is locked,
|
||||
** the disconnect is deferred until all locks have been removed.
|
||||
*/
|
||||
void sqlite3VtabLock(sqlite3_vtab *pVtab){
|
||||
pVtab->nRef++;
|
||||
}
|
||||
|
||||
/*
|
||||
** Unlock a virtual table. When the last lock is removed,
|
||||
** disconnect the virtual table.
|
||||
*/
|
||||
void sqlite3VtabUnlock(sqlite3 *db, sqlite3_vtab *pVtab){
|
||||
assert( pVtab->nRef>0 );
|
||||
pVtab->nRef--;
|
||||
assert(db);
|
||||
assert( sqlite3SafetyCheckOk(db) );
|
||||
if( pVtab->nRef==0 ){
|
||||
if( db->magic==SQLITE_MAGIC_BUSY ){
|
||||
(void)sqlite3SafetyOff(db);
|
||||
pVtab->pModule->xDisconnect(pVtab);
|
||||
(void)sqlite3SafetyOn(db);
|
||||
} else {
|
||||
pVtab->pModule->xDisconnect(pVtab);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Clear any and all virtual-table information from the Table record.
|
||||
** This routine is called, for example, just before deleting the Table
|
||||
** record.
|
||||
*/
|
||||
void sqlite3VtabClear(Table *p){
|
||||
sqlite3_vtab *pVtab = p->pVtab;
|
||||
Schema *pSchema = p->pSchema;
|
||||
sqlite3 *db = pSchema ? pSchema->db : 0;
|
||||
if( pVtab ){
|
||||
assert( p->pMod && p->pMod->pModule );
|
||||
sqlite3VtabUnlock(db, pVtab);
|
||||
p->pVtab = 0;
|
||||
}
|
||||
if( p->azModuleArg ){
|
||||
int i;
|
||||
for(i=0; i<p->nModuleArg; i++){
|
||||
sqlite3DbFree(db, p->azModuleArg[i]);
|
||||
}
|
||||
sqlite3DbFree(db, p->azModuleArg);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Add a new module argument to pTable->azModuleArg[].
|
||||
** The string is not copied - the pointer is stored. The
|
||||
** string will be freed automatically when the table is
|
||||
** deleted.
|
||||
*/
|
||||
static void addModuleArgument(sqlite3 *db, Table *pTable, char *zArg){
|
||||
int i = pTable->nModuleArg++;
|
||||
int nBytes = sizeof(char *)*(1+pTable->nModuleArg);
|
||||
char **azModuleArg;
|
||||
azModuleArg = sqlite3DbRealloc(db, pTable->azModuleArg, nBytes);
|
||||
if( azModuleArg==0 ){
|
||||
int j;
|
||||
for(j=0; j<i; j++){
|
||||
sqlite3DbFree(db, pTable->azModuleArg[j]);
|
||||
}
|
||||
sqlite3DbFree(db, zArg);
|
||||
sqlite3DbFree(db, pTable->azModuleArg);
|
||||
pTable->nModuleArg = 0;
|
||||
}else{
|
||||
azModuleArg[i] = zArg;
|
||||
azModuleArg[i+1] = 0;
|
||||
}
|
||||
pTable->azModuleArg = azModuleArg;
|
||||
}
|
||||
|
||||
/*
|
||||
** The parser calls this routine when it first sees a CREATE VIRTUAL TABLE
|
||||
** statement. The module name has been parsed, but the optional list
|
||||
** of parameters that follow the module name are still pending.
|
||||
*/
|
||||
void sqlite3VtabBeginParse(
|
||||
Parse *pParse, /* Parsing context */
|
||||
Token *pName1, /* Name of new table, or database name */
|
||||
Token *pName2, /* Name of new table or NULL */
|
||||
Token *pModuleName /* Name of the module for the virtual table */
|
||||
){
|
||||
int iDb; /* The database the table is being created in */
|
||||
Table *pTable; /* The new virtual table */
|
||||
sqlite3 *db; /* Database connection */
|
||||
|
||||
if( pParse->db->flags & SQLITE_SharedCache ){
|
||||
sqlite3ErrorMsg(pParse, "Cannot use virtual tables in shared-cache mode");
|
||||
return;
|
||||
}
|
||||
|
||||
sqlite3StartTable(pParse, pName1, pName2, 0, 0, 1, 0);
|
||||
pTable = pParse->pNewTable;
|
||||
if( pTable==0 || pParse->nErr ) return;
|
||||
assert( 0==pTable->pIndex );
|
||||
|
||||
db = pParse->db;
|
||||
iDb = sqlite3SchemaToIndex(db, pTable->pSchema);
|
||||
assert( iDb>=0 );
|
||||
|
||||
pTable->tabFlags |= TF_Virtual;
|
||||
pTable->nModuleArg = 0;
|
||||
addModuleArgument(db, pTable, sqlite3NameFromToken(db, pModuleName));
|
||||
addModuleArgument(db, pTable, sqlite3DbStrDup(db, db->aDb[iDb].zName));
|
||||
addModuleArgument(db, pTable, sqlite3DbStrDup(db, pTable->zName));
|
||||
pParse->sNameToken.n = (int)(&pModuleName->z[pModuleName->n] - pName1->z);
|
||||
|
||||
#ifndef SQLITE_OMIT_AUTHORIZATION
|
||||
/* Creating a virtual table invokes the authorization callback twice.
|
||||
** The first invocation, to obtain permission to INSERT a row into the
|
||||
** sqlite_master table, has already been made by sqlite3StartTable().
|
||||
** The second call, to obtain permission to create the table, is made now.
|
||||
*/
|
||||
if( pTable->azModuleArg ){
|
||||
sqlite3AuthCheck(pParse, SQLITE_CREATE_VTABLE, pTable->zName,
|
||||
pTable->azModuleArg[0], pParse->db->aDb[iDb].zName);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
/*
|
||||
** This routine takes the module argument that has been accumulating
|
||||
** in pParse->zArg[] and appends it to the list of arguments on the
|
||||
** virtual table currently under construction in pParse->pTable.
|
||||
*/
|
||||
static void addArgumentToVtab(Parse *pParse){
|
||||
if( pParse->sArg.z && pParse->pNewTable ){
|
||||
const char *z = (const char*)pParse->sArg.z;
|
||||
int n = pParse->sArg.n;
|
||||
sqlite3 *db = pParse->db;
|
||||
addModuleArgument(db, pParse->pNewTable, sqlite3DbStrNDup(db, z, n));
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** The parser calls this routine after the CREATE VIRTUAL TABLE statement
|
||||
** has been completely parsed.
|
||||
*/
|
||||
void sqlite3VtabFinishParse(Parse *pParse, Token *pEnd){
|
||||
Table *pTab; /* The table being constructed */
|
||||
sqlite3 *db; /* The database connection */
|
||||
char *zModule; /* The module name of the table: USING modulename */
|
||||
Module *pMod = 0;
|
||||
|
||||
addArgumentToVtab(pParse);
|
||||
pParse->sArg.z = 0;
|
||||
|
||||
/* Lookup the module name. */
|
||||
pTab = pParse->pNewTable;
|
||||
if( pTab==0 ) return;
|
||||
db = pParse->db;
|
||||
if( pTab->nModuleArg<1 ) return;
|
||||
zModule = pTab->azModuleArg[0];
|
||||
pMod = (Module*)sqlite3HashFind(&db->aModule, zModule,
|
||||
sqlite3Strlen30(zModule));
|
||||
pTab->pMod = pMod;
|
||||
|
||||
/* If the CREATE VIRTUAL TABLE statement is being entered for the
|
||||
** first time (in other words if the virtual table is actually being
|
||||
** created now instead of just being read out of sqlite_master) then
|
||||
** do additional initialization work and store the statement text
|
||||
** in the sqlite_master table.
|
||||
*/
|
||||
if( !db->init.busy ){
|
||||
char *zStmt;
|
||||
char *zWhere;
|
||||
int iDb;
|
||||
Vdbe *v;
|
||||
|
||||
/* Compute the complete text of the CREATE VIRTUAL TABLE statement */
|
||||
if( pEnd ){
|
||||
pParse->sNameToken.n = (int)(pEnd->z - pParse->sNameToken.z) + pEnd->n;
|
||||
}
|
||||
zStmt = sqlite3MPrintf(db, "CREATE VIRTUAL TABLE %T", &pParse->sNameToken);
|
||||
|
||||
/* A slot for the record has already been allocated in the
|
||||
** SQLITE_MASTER table. We just need to update that slot with all
|
||||
** the information we've collected.
|
||||
**
|
||||
** The VM register number pParse->regRowid holds the rowid of an
|
||||
** entry in the sqlite_master table tht was created for this vtab
|
||||
** by sqlite3StartTable().
|
||||
*/
|
||||
iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
|
||||
sqlite3NestedParse(pParse,
|
||||
"UPDATE %Q.%s "
|
||||
"SET type='table', name=%Q, tbl_name=%Q, rootpage=0, sql=%Q "
|
||||
"WHERE rowid=#%d",
|
||||
db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
|
||||
pTab->zName,
|
||||
pTab->zName,
|
||||
zStmt,
|
||||
pParse->regRowid
|
||||
);
|
||||
sqlite3DbFree(db, zStmt);
|
||||
v = sqlite3GetVdbe(pParse);
|
||||
sqlite3ChangeCookie(pParse, iDb);
|
||||
|
||||
sqlite3VdbeAddOp2(v, OP_Expire, 0, 0);
|
||||
zWhere = sqlite3MPrintf(db, "name='%q'", pTab->zName);
|
||||
sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 1, 0, zWhere, P4_DYNAMIC);
|
||||
sqlite3VdbeAddOp4(v, OP_VCreate, iDb, 0, 0,
|
||||
pTab->zName, sqlite3Strlen30(pTab->zName) + 1);
|
||||
}
|
||||
|
||||
/* If we are rereading the sqlite_master table create the in-memory
|
||||
** record of the table. If the module has already been registered,
|
||||
** also call the xConnect method here.
|
||||
*/
|
||||
else {
|
||||
Table *pOld;
|
||||
Schema *pSchema = pTab->pSchema;
|
||||
const char *zName = pTab->zName;
|
||||
int nName = sqlite3Strlen30(zName) + 1;
|
||||
pOld = sqlite3HashInsert(&pSchema->tblHash, zName, nName, pTab);
|
||||
if( pOld ){
|
||||
db->mallocFailed = 1;
|
||||
assert( pTab==pOld ); /* Malloc must have failed inside HashInsert() */
|
||||
return;
|
||||
}
|
||||
pSchema->db = pParse->db;
|
||||
pParse->pNewTable = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** The parser calls this routine when it sees the first token
|
||||
** of an argument to the module name in a CREATE VIRTUAL TABLE statement.
|
||||
*/
|
||||
void sqlite3VtabArgInit(Parse *pParse){
|
||||
addArgumentToVtab(pParse);
|
||||
pParse->sArg.z = 0;
|
||||
pParse->sArg.n = 0;
|
||||
}
|
||||
|
||||
/*
|
||||
** The parser calls this routine for each token after the first token
|
||||
** in an argument to the module name in a CREATE VIRTUAL TABLE statement.
|
||||
*/
|
||||
void sqlite3VtabArgExtend(Parse *pParse, Token *p){
|
||||
Token *pArg = &pParse->sArg;
|
||||
if( pArg->z==0 ){
|
||||
pArg->z = p->z;
|
||||
pArg->n = p->n;
|
||||
}else{
|
||||
assert(pArg->z < p->z);
|
||||
pArg->n = (int)(&p->z[p->n] - pArg->z);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Invoke a virtual table constructor (either xCreate or xConnect). The
|
||||
** pointer to the function to invoke is passed as the fourth parameter
|
||||
** to this procedure.
|
||||
*/
|
||||
static int vtabCallConstructor(
|
||||
sqlite3 *db,
|
||||
Table *pTab,
|
||||
Module *pMod,
|
||||
int (*xConstruct)(sqlite3*,void*,int,const char*const*,sqlite3_vtab**,char**),
|
||||
char **pzErr
|
||||
){
|
||||
int rc;
|
||||
int rc2;
|
||||
sqlite3_vtab *pVtab = 0;
|
||||
const char *const*azArg = (const char *const*)pTab->azModuleArg;
|
||||
int nArg = pTab->nModuleArg;
|
||||
char *zErr = 0;
|
||||
char *zModuleName = sqlite3MPrintf(db, "%s", pTab->zName);
|
||||
|
||||
if( !zModuleName ){
|
||||
return SQLITE_NOMEM;
|
||||
}
|
||||
|
||||
assert( !db->pVTab );
|
||||
assert( xConstruct );
|
||||
|
||||
db->pVTab = pTab;
|
||||
rc = sqlite3SafetyOff(db);
|
||||
assert( rc==SQLITE_OK );
|
||||
rc = xConstruct(db, pMod->pAux, nArg, azArg, &pVtab, &zErr);
|
||||
rc2 = sqlite3SafetyOn(db);
|
||||
if( rc==SQLITE_OK && pVtab ){
|
||||
pVtab->pModule = pMod->pModule;
|
||||
pVtab->nRef = 1;
|
||||
pTab->pVtab = pVtab;
|
||||
}
|
||||
|
||||
if( SQLITE_OK!=rc ){
|
||||
if( zErr==0 ){
|
||||
*pzErr = sqlite3MPrintf(db, "vtable constructor failed: %s", zModuleName);
|
||||
}else {
|
||||
*pzErr = sqlite3MPrintf(db, "%s", zErr);
|
||||
sqlite3DbFree(db, zErr);
|
||||
}
|
||||
}else if( db->pVTab ){
|
||||
const char *zFormat = "vtable constructor did not declare schema: %s";
|
||||
*pzErr = sqlite3MPrintf(db, zFormat, pTab->zName);
|
||||
rc = SQLITE_ERROR;
|
||||
}
|
||||
if( rc==SQLITE_OK ){
|
||||
rc = rc2;
|
||||
}
|
||||
db->pVTab = 0;
|
||||
sqlite3DbFree(db, zModuleName);
|
||||
|
||||
/* If everything went according to plan, loop through the columns
|
||||
** of the table to see if any of them contain the token "hidden".
|
||||
** If so, set the Column.isHidden flag and remove the token from
|
||||
** the type string.
|
||||
*/
|
||||
if( rc==SQLITE_OK ){
|
||||
int iCol;
|
||||
for(iCol=0; iCol<pTab->nCol; iCol++){
|
||||
char *zType = pTab->aCol[iCol].zType;
|
||||
int nType;
|
||||
int i = 0;
|
||||
if( !zType ) continue;
|
||||
nType = sqlite3Strlen30(zType);
|
||||
if( sqlite3StrNICmp("hidden", zType, 6) || (zType[6] && zType[6]!=' ') ){
|
||||
for(i=0; i<nType; i++){
|
||||
if( (0==sqlite3StrNICmp(" hidden", &zType[i], 7))
|
||||
&& (zType[i+7]=='\0' || zType[i+7]==' ')
|
||||
){
|
||||
i++;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
if( i<nType ){
|
||||
int j;
|
||||
int nDel = 6 + (zType[i+6] ? 1 : 0);
|
||||
for(j=i; (j+nDel)<=nType; j++){
|
||||
zType[j] = zType[j+nDel];
|
||||
}
|
||||
if( zType[i]=='\0' && i>0 ){
|
||||
assert(zType[i-1]==' ');
|
||||
zType[i-1] = '\0';
|
||||
}
|
||||
pTab->aCol[iCol].isHidden = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** This function is invoked by the parser to call the xConnect() method
|
||||
** of the virtual table pTab. If an error occurs, an error code is returned
|
||||
** and an error left in pParse.
|
||||
**
|
||||
** This call is a no-op if table pTab is not a virtual table.
|
||||
*/
|
||||
int sqlite3VtabCallConnect(Parse *pParse, Table *pTab){
|
||||
Module *pMod;
|
||||
int rc = SQLITE_OK;
|
||||
|
||||
if( !pTab || (pTab->tabFlags & TF_Virtual)==0 || pTab->pVtab ){
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
pMod = pTab->pMod;
|
||||
if( !pMod ){
|
||||
const char *zModule = pTab->azModuleArg[0];
|
||||
sqlite3ErrorMsg(pParse, "no such module: %s", zModule);
|
||||
rc = SQLITE_ERROR;
|
||||
} else {
|
||||
char *zErr = 0;
|
||||
sqlite3 *db = pParse->db;
|
||||
rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xConnect, &zErr);
|
||||
if( rc!=SQLITE_OK ){
|
||||
sqlite3ErrorMsg(pParse, "%s", zErr);
|
||||
}
|
||||
sqlite3DbFree(db, zErr);
|
||||
}
|
||||
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** Add the virtual table pVtab to the array sqlite3.aVTrans[].
|
||||
*/
|
||||
static int addToVTrans(sqlite3 *db, sqlite3_vtab *pVtab){
|
||||
const int ARRAY_INCR = 5;
|
||||
|
||||
/* Grow the sqlite3.aVTrans array if required */
|
||||
if( (db->nVTrans%ARRAY_INCR)==0 ){
|
||||
sqlite3_vtab **aVTrans;
|
||||
int nBytes = sizeof(sqlite3_vtab *) * (db->nVTrans + ARRAY_INCR);
|
||||
aVTrans = sqlite3DbRealloc(db, (void *)db->aVTrans, nBytes);
|
||||
if( !aVTrans ){
|
||||
return SQLITE_NOMEM;
|
||||
}
|
||||
memset(&aVTrans[db->nVTrans], 0, sizeof(sqlite3_vtab *)*ARRAY_INCR);
|
||||
db->aVTrans = aVTrans;
|
||||
}
|
||||
|
||||
/* Add pVtab to the end of sqlite3.aVTrans */
|
||||
db->aVTrans[db->nVTrans++] = pVtab;
|
||||
sqlite3VtabLock(pVtab);
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** This function is invoked by the vdbe to call the xCreate method
|
||||
** of the virtual table named zTab in database iDb.
|
||||
**
|
||||
** If an error occurs, *pzErr is set to point an an English language
|
||||
** description of the error and an SQLITE_XXX error code is returned.
|
||||
** In this case the caller must call sqlite3DbFree(db, ) on *pzErr.
|
||||
*/
|
||||
int sqlite3VtabCallCreate(sqlite3 *db, int iDb, const char *zTab, char **pzErr){
|
||||
int rc = SQLITE_OK;
|
||||
Table *pTab;
|
||||
Module *pMod;
|
||||
const char *zModule;
|
||||
|
||||
pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName);
|
||||
assert(pTab && (pTab->tabFlags & TF_Virtual)!=0 && !pTab->pVtab);
|
||||
pMod = pTab->pMod;
|
||||
zModule = pTab->azModuleArg[0];
|
||||
|
||||
/* If the module has been registered and includes a Create method,
|
||||
** invoke it now. If the module has not been registered, return an
|
||||
** error. Otherwise, do nothing.
|
||||
*/
|
||||
if( !pMod ){
|
||||
*pzErr = sqlite3MPrintf(db, "no such module: %s", zModule);
|
||||
rc = SQLITE_ERROR;
|
||||
}else{
|
||||
rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xCreate, pzErr);
|
||||
}
|
||||
|
||||
if( rc==SQLITE_OK && pTab->pVtab ){
|
||||
rc = addToVTrans(db, pTab->pVtab);
|
||||
}
|
||||
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** This function is used to set the schema of a virtual table. It is only
|
||||
** valid to call this function from within the xCreate() or xConnect() of a
|
||||
** virtual table module.
|
||||
*/
|
||||
int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){
|
||||
Parse sParse;
|
||||
|
||||
int rc = SQLITE_OK;
|
||||
Table *pTab;
|
||||
char *zErr = 0;
|
||||
|
||||
sqlite3_mutex_enter(db->mutex);
|
||||
pTab = db->pVTab;
|
||||
if( !pTab ){
|
||||
sqlite3Error(db, SQLITE_MISUSE, 0);
|
||||
sqlite3_mutex_leave(db->mutex);
|
||||
return SQLITE_MISUSE;
|
||||
}
|
||||
assert((pTab->tabFlags & TF_Virtual)!=0 && pTab->nCol==0 && pTab->aCol==0);
|
||||
|
||||
memset(&sParse, 0, sizeof(Parse));
|
||||
sParse.declareVtab = 1;
|
||||
sParse.db = db;
|
||||
|
||||
if(
|
||||
SQLITE_OK == sqlite3RunParser(&sParse, zCreateTable, &zErr) &&
|
||||
sParse.pNewTable &&
|
||||
!sParse.pNewTable->pSelect &&
|
||||
(sParse.pNewTable->tabFlags & TF_Virtual)==0
|
||||
){
|
||||
pTab->aCol = sParse.pNewTable->aCol;
|
||||
pTab->nCol = sParse.pNewTable->nCol;
|
||||
sParse.pNewTable->nCol = 0;
|
||||
sParse.pNewTable->aCol = 0;
|
||||
db->pVTab = 0;
|
||||
} else {
|
||||
sqlite3Error(db, SQLITE_ERROR, zErr);
|
||||
sqlite3DbFree(db, zErr);
|
||||
rc = SQLITE_ERROR;
|
||||
}
|
||||
sParse.declareVtab = 0;
|
||||
|
||||
if( sParse.pVdbe ){
|
||||
sqlite3VdbeFinalize(sParse.pVdbe);
|
||||
}
|
||||
sqlite3DeleteTable(sParse.pNewTable);
|
||||
sParse.pNewTable = 0;
|
||||
|
||||
assert( (rc&0xff)==rc );
|
||||
rc = sqlite3ApiExit(db, rc);
|
||||
sqlite3_mutex_leave(db->mutex);
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** This function is invoked by the vdbe to call the xDestroy method
|
||||
** of the virtual table named zTab in database iDb. This occurs
|
||||
** when a DROP TABLE is mentioned.
|
||||
**
|
||||
** This call is a no-op if zTab is not a virtual table.
|
||||
*/
|
||||
int sqlite3VtabCallDestroy(sqlite3 *db, int iDb, const char *zTab)
|
||||
{
|
||||
int rc = SQLITE_OK;
|
||||
Table *pTab;
|
||||
|
||||
pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName);
|
||||
assert(pTab);
|
||||
if( pTab->pVtab ){
|
||||
int (*xDestroy)(sqlite3_vtab *pVTab) = pTab->pMod->pModule->xDestroy;
|
||||
rc = sqlite3SafetyOff(db);
|
||||
assert( rc==SQLITE_OK );
|
||||
if( xDestroy ){
|
||||
rc = xDestroy(pTab->pVtab);
|
||||
}
|
||||
(void)sqlite3SafetyOn(db);
|
||||
if( rc==SQLITE_OK ){
|
||||
int i;
|
||||
for(i=0; i<db->nVTrans; i++){
|
||||
if( db->aVTrans[i]==pTab->pVtab ){
|
||||
db->aVTrans[i] = db->aVTrans[--db->nVTrans];
|
||||
break;
|
||||
}
|
||||
}
|
||||
pTab->pVtab = 0;
|
||||
}
|
||||
}
|
||||
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** This function invokes either the xRollback or xCommit method
|
||||
** of each of the virtual tables in the sqlite3.aVTrans array. The method
|
||||
** called is identified by the second argument, "offset", which is
|
||||
** the offset of the method to call in the sqlite3_module structure.
|
||||
**
|
||||
** The array is cleared after invoking the callbacks.
|
||||
*/
|
||||
static void callFinaliser(sqlite3 *db, int offset){
|
||||
int i;
|
||||
if( db->aVTrans ){
|
||||
for(i=0; i<db->nVTrans && db->aVTrans[i]; i++){
|
||||
sqlite3_vtab *pVtab = db->aVTrans[i];
|
||||
int (*x)(sqlite3_vtab *);
|
||||
x = *(int (**)(sqlite3_vtab *))((char *)pVtab->pModule + offset);
|
||||
if( x ) x(pVtab);
|
||||
sqlite3VtabUnlock(db, pVtab);
|
||||
}
|
||||
sqlite3DbFree(db, db->aVTrans);
|
||||
db->nVTrans = 0;
|
||||
db->aVTrans = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Invoke the xSync method of all virtual tables in the sqlite3.aVTrans
|
||||
** array. Return the error code for the first error that occurs, or
|
||||
** SQLITE_OK if all xSync operations are successful.
|
||||
**
|
||||
** Set *pzErrmsg to point to a buffer that should be released using
|
||||
** sqlite3DbFree() containing an error message, if one is available.
|
||||
*/
|
||||
int sqlite3VtabSync(sqlite3 *db, char **pzErrmsg){
|
||||
int i;
|
||||
int rc = SQLITE_OK;
|
||||
int rcsafety;
|
||||
sqlite3_vtab **aVTrans = db->aVTrans;
|
||||
|
||||
rc = sqlite3SafetyOff(db);
|
||||
db->aVTrans = 0;
|
||||
for(i=0; rc==SQLITE_OK && i<db->nVTrans && aVTrans[i]; i++){
|
||||
sqlite3_vtab *pVtab = aVTrans[i];
|
||||
int (*x)(sqlite3_vtab *);
|
||||
x = pVtab->pModule->xSync;
|
||||
if( x ){
|
||||
rc = x(pVtab);
|
||||
sqlite3DbFree(db, *pzErrmsg);
|
||||
*pzErrmsg = pVtab->zErrMsg;
|
||||
pVtab->zErrMsg = 0;
|
||||
}
|
||||
}
|
||||
db->aVTrans = aVTrans;
|
||||
rcsafety = sqlite3SafetyOn(db);
|
||||
|
||||
if( rc==SQLITE_OK ){
|
||||
rc = rcsafety;
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** Invoke the xRollback method of all virtual tables in the
|
||||
** sqlite3.aVTrans array. Then clear the array itself.
|
||||
*/
|
||||
int sqlite3VtabRollback(sqlite3 *db){
|
||||
callFinaliser(db, offsetof(sqlite3_module,xRollback));
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Invoke the xCommit method of all virtual tables in the
|
||||
** sqlite3.aVTrans array. Then clear the array itself.
|
||||
*/
|
||||
int sqlite3VtabCommit(sqlite3 *db){
|
||||
callFinaliser(db, offsetof(sqlite3_module,xCommit));
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** If the virtual table pVtab supports the transaction interface
|
||||
** (xBegin/xRollback/xCommit and optionally xSync) and a transaction is
|
||||
** not currently open, invoke the xBegin method now.
|
||||
**
|
||||
** If the xBegin call is successful, place the sqlite3_vtab pointer
|
||||
** in the sqlite3.aVTrans array.
|
||||
*/
|
||||
int sqlite3VtabBegin(sqlite3 *db, sqlite3_vtab *pVtab){
|
||||
int rc = SQLITE_OK;
|
||||
const sqlite3_module *pModule;
|
||||
|
||||
/* Special case: If db->aVTrans is NULL and db->nVTrans is greater
|
||||
** than zero, then this function is being called from within a
|
||||
** virtual module xSync() callback. It is illegal to write to
|
||||
** virtual module tables in this case, so return SQLITE_MISUSE.
|
||||
*/
|
||||
if( sqlite3VtabInSync(db) ){
|
||||
return SQLITE_LOCKED;
|
||||
}
|
||||
if( !pVtab ){
|
||||
return SQLITE_OK;
|
||||
}
|
||||
pModule = pVtab->pModule;
|
||||
|
||||
if( pModule->xBegin ){
|
||||
int i;
|
||||
|
||||
|
||||
/* If pVtab is already in the aVTrans array, return early */
|
||||
for(i=0; (i<db->nVTrans) && 0!=db->aVTrans[i]; i++){
|
||||
if( db->aVTrans[i]==pVtab ){
|
||||
return SQLITE_OK;
|
||||
}
|
||||
}
|
||||
|
||||
/* Invoke the xBegin method */
|
||||
rc = pModule->xBegin(pVtab);
|
||||
if( rc==SQLITE_OK ){
|
||||
rc = addToVTrans(db, pVtab);
|
||||
}
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** The first parameter (pDef) is a function implementation. The
|
||||
** second parameter (pExpr) is the first argument to this function.
|
||||
** If pExpr is a column in a virtual table, then let the virtual
|
||||
** table implementation have an opportunity to overload the function.
|
||||
**
|
||||
** This routine is used to allow virtual table implementations to
|
||||
** overload MATCH, LIKE, GLOB, and REGEXP operators.
|
||||
**
|
||||
** Return either the pDef argument (indicating no change) or a
|
||||
** new FuncDef structure that is marked as ephemeral using the
|
||||
** SQLITE_FUNC_EPHEM flag.
|
||||
*/
|
||||
FuncDef *sqlite3VtabOverloadFunction(
|
||||
sqlite3 *db, /* Database connection for reporting malloc problems */
|
||||
FuncDef *pDef, /* Function to possibly overload */
|
||||
int nArg, /* Number of arguments to the function */
|
||||
Expr *pExpr /* First argument to the function */
|
||||
){
|
||||
Table *pTab;
|
||||
sqlite3_vtab *pVtab;
|
||||
sqlite3_module *pMod;
|
||||
void (*xFunc)(sqlite3_context*,int,sqlite3_value**) = 0;
|
||||
void *pArg = 0;
|
||||
FuncDef *pNew;
|
||||
int rc = 0;
|
||||
char *zLowerName;
|
||||
unsigned char *z;
|
||||
|
||||
|
||||
/* Check to see the left operand is a column in a virtual table */
|
||||
if( pExpr==0 ) return pDef;
|
||||
if( pExpr->op!=TK_COLUMN ) return pDef;
|
||||
pTab = pExpr->pTab;
|
||||
if( pTab==0 ) return pDef;
|
||||
if( (pTab->tabFlags & TF_Virtual)==0 ) return pDef;
|
||||
pVtab = pTab->pVtab;
|
||||
assert( pVtab!=0 );
|
||||
assert( pVtab->pModule!=0 );
|
||||
pMod = (sqlite3_module *)pVtab->pModule;
|
||||
if( pMod->xFindFunction==0 ) return pDef;
|
||||
|
||||
/* Call the xFindFunction method on the virtual table implementation
|
||||
** to see if the implementation wants to overload this function
|
||||
*/
|
||||
zLowerName = sqlite3DbStrDup(db, pDef->zName);
|
||||
if( zLowerName ){
|
||||
for(z=(unsigned char*)zLowerName; *z; z++){
|
||||
*z = sqlite3UpperToLower[*z];
|
||||
}
|
||||
rc = pMod->xFindFunction(pVtab, nArg, zLowerName, &xFunc, &pArg);
|
||||
sqlite3DbFree(db, zLowerName);
|
||||
if( pVtab->zErrMsg ){
|
||||
sqlite3Error(db, rc, "%s", pVtab->zErrMsg);
|
||||
sqlite3DbFree(db, pVtab->zErrMsg);
|
||||
pVtab->zErrMsg = 0;
|
||||
}
|
||||
}
|
||||
if( rc==0 ){
|
||||
return pDef;
|
||||
}
|
||||
|
||||
/* Create a new ephemeral function definition for the overloaded
|
||||
** function */
|
||||
pNew = sqlite3DbMallocZero(db, sizeof(*pNew)
|
||||
+ sqlite3Strlen30(pDef->zName) );
|
||||
if( pNew==0 ){
|
||||
return pDef;
|
||||
}
|
||||
*pNew = *pDef;
|
||||
pNew->zName = (char *)&pNew[1];
|
||||
memcpy(pNew->zName, pDef->zName, sqlite3Strlen30(pDef->zName)+1);
|
||||
pNew->xFunc = xFunc;
|
||||
pNew->pUserData = pArg;
|
||||
pNew->flags |= SQLITE_FUNC_EPHEM;
|
||||
return pNew;
|
||||
}
|
||||
|
||||
/*
|
||||
** Make sure virtual table pTab is contained in the pParse->apVirtualLock[]
|
||||
** array so that an OP_VBegin will get generated for it. Add pTab to the
|
||||
** array if it is missing. If pTab is already in the array, this routine
|
||||
** is a no-op.
|
||||
*/
|
||||
void sqlite3VtabMakeWritable(Parse *pParse, Table *pTab){
|
||||
int i, n;
|
||||
assert( IsVirtual(pTab) );
|
||||
for(i=0; i<pParse->nVtabLock; i++){
|
||||
if( pTab==pParse->apVtabLock[i] ) return;
|
||||
}
|
||||
n = (pParse->nVtabLock+1)*sizeof(pParse->apVtabLock[0]);
|
||||
pParse->apVtabLock = sqlite3_realloc(pParse->apVtabLock, n);
|
||||
if( pParse->apVtabLock ){
|
||||
pParse->apVtabLock[pParse->nVtabLock++] = pTab;
|
||||
}else{
|
||||
pParse->db->mallocFailed = 1;
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
139
walker.c
139
walker.c
|
@ -1,139 +0,0 @@
|
|||
/*
|
||||
** 2008 August 16
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This file contains routines used for walking the parser tree for
|
||||
** an SQL statement.
|
||||
**
|
||||
** $Id: walker.c,v 1.4 2009/04/08 13:51:52 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
|
||||
/*
|
||||
** Walk an expression tree. Invoke the callback once for each node
|
||||
** of the expression, while decending. (In other words, the callback
|
||||
** is invoked before visiting children.)
|
||||
**
|
||||
** The return value from the callback should be one of the WRC_*
|
||||
** constants to specify how to proceed with the walk.
|
||||
**
|
||||
** WRC_Continue Continue descending down the tree.
|
||||
**
|
||||
** WRC_Prune Do not descend into child nodes. But allow
|
||||
** the walk to continue with sibling nodes.
|
||||
**
|
||||
** WRC_Abort Do no more callbacks. Unwind the stack and
|
||||
** return the top-level walk call.
|
||||
**
|
||||
** The return value from this routine is WRC_Abort to abandon the tree walk
|
||||
** and WRC_Continue to continue.
|
||||
*/
|
||||
int sqlite3WalkExpr(Walker *pWalker, Expr *pExpr){
|
||||
int rc;
|
||||
if( pExpr==0 ) return WRC_Continue;
|
||||
testcase( ExprHasProperty(pExpr, EP_TokenOnly) );
|
||||
testcase( ExprHasProperty(pExpr, EP_SpanToken) );
|
||||
testcase( ExprHasProperty(pExpr, EP_Reduced) );
|
||||
rc = pWalker->xExprCallback(pWalker, pExpr);
|
||||
if( rc==WRC_Continue
|
||||
&& !ExprHasAnyProperty(pExpr,EP_TokenOnly|EP_SpanToken) ){
|
||||
if( sqlite3WalkExpr(pWalker, pExpr->pLeft) ) return WRC_Abort;
|
||||
if( sqlite3WalkExpr(pWalker, pExpr->pRight) ) return WRC_Abort;
|
||||
if( ExprHasProperty(pExpr, EP_xIsSelect) ){
|
||||
if( sqlite3WalkSelect(pWalker, pExpr->x.pSelect) ) return WRC_Abort;
|
||||
}else{
|
||||
if( sqlite3WalkExprList(pWalker, pExpr->x.pList) ) return WRC_Abort;
|
||||
}
|
||||
}
|
||||
return rc & WRC_Abort;
|
||||
}
|
||||
|
||||
/*
|
||||
** Call sqlite3WalkExpr() for every expression in list p or until
|
||||
** an abort request is seen.
|
||||
*/
|
||||
int sqlite3WalkExprList(Walker *pWalker, ExprList *p){
|
||||
int i, rc = WRC_Continue;
|
||||
struct ExprList_item *pItem;
|
||||
if( p ){
|
||||
for(i=p->nExpr, pItem=p->a; i>0; i--, pItem++){
|
||||
if( sqlite3WalkExpr(pWalker, pItem->pExpr) ) return WRC_Abort;
|
||||
}
|
||||
}
|
||||
return rc & WRC_Continue;
|
||||
}
|
||||
|
||||
/*
|
||||
** Walk all expressions associated with SELECT statement p. Do
|
||||
** not invoke the SELECT callback on p, but do (of course) invoke
|
||||
** any expr callbacks and SELECT callbacks that come from subqueries.
|
||||
** Return WRC_Abort or WRC_Continue.
|
||||
*/
|
||||
int sqlite3WalkSelectExpr(Walker *pWalker, Select *p){
|
||||
if( sqlite3WalkExprList(pWalker, p->pEList) ) return WRC_Abort;
|
||||
if( sqlite3WalkExpr(pWalker, p->pWhere) ) return WRC_Abort;
|
||||
if( sqlite3WalkExprList(pWalker, p->pGroupBy) ) return WRC_Abort;
|
||||
if( sqlite3WalkExpr(pWalker, p->pHaving) ) return WRC_Abort;
|
||||
if( sqlite3WalkExprList(pWalker, p->pOrderBy) ) return WRC_Abort;
|
||||
if( sqlite3WalkExpr(pWalker, p->pLimit) ) return WRC_Abort;
|
||||
if( sqlite3WalkExpr(pWalker, p->pOffset) ) return WRC_Abort;
|
||||
return WRC_Continue;
|
||||
}
|
||||
|
||||
/*
|
||||
** Walk the parse trees associated with all subqueries in the
|
||||
** FROM clause of SELECT statement p. Do not invoke the select
|
||||
** callback on p, but do invoke it on each FROM clause subquery
|
||||
** and on any subqueries further down in the tree. Return
|
||||
** WRC_Abort or WRC_Continue;
|
||||
*/
|
||||
int sqlite3WalkSelectFrom(Walker *pWalker, Select *p){
|
||||
SrcList *pSrc;
|
||||
int i;
|
||||
struct SrcList_item *pItem;
|
||||
|
||||
pSrc = p->pSrc;
|
||||
if( pSrc ){
|
||||
for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
|
||||
if( sqlite3WalkSelect(pWalker, pItem->pSelect) ){
|
||||
return WRC_Abort;
|
||||
}
|
||||
}
|
||||
}
|
||||
return WRC_Continue;
|
||||
}
|
||||
|
||||
/*
|
||||
** Call sqlite3WalkExpr() for every expression in Select statement p.
|
||||
** Invoke sqlite3WalkSelect() for subqueries in the FROM clause and
|
||||
** on the compound select chain, p->pPrior.
|
||||
**
|
||||
** Return WRC_Continue under normal conditions. Return WRC_Abort if
|
||||
** there is an abort request.
|
||||
**
|
||||
** If the Walker does not have an xSelectCallback() then this routine
|
||||
** is a no-op returning WRC_Continue.
|
||||
*/
|
||||
int sqlite3WalkSelect(Walker *pWalker, Select *p){
|
||||
int rc;
|
||||
if( p==0 || pWalker->xSelectCallback==0 ) return WRC_Continue;
|
||||
rc = WRC_Continue;
|
||||
while( p ){
|
||||
rc = pWalker->xSelectCallback(pWalker, p);
|
||||
if( rc ) break;
|
||||
if( sqlite3WalkSelectExpr(pWalker, p) ) return WRC_Abort;
|
||||
if( sqlite3WalkSelectFrom(pWalker, p) ) return WRC_Abort;
|
||||
p = p->pPrior;
|
||||
}
|
||||
return rc & WRC_Abort;
|
||||
}
|
Loading…
Add table
Reference in a new issue