mirror of
https://github.com/DBD-SQLite/DBD-SQLite
synced 2025-06-07 14:19:10 -04:00
DBD::SQLite: updated bundled SQLite to 3.6.10, and bumped up the version requirement for installed SQLite to 3.6.0 as 3.6.x has backward incompatibility (cont.)
This commit is contained in:
parent
22dc86ddcb
commit
e366c24c23
101 changed files with 55510 additions and 25960 deletions
5
Changes
5
Changes
|
@ -1,5 +1,10 @@
|
|||
Revision history for Perl extension DBD::SQLite.
|
||||
|
||||
1.15
|
||||
- Updated to SQLite 3.6.10, and bumped up the version
|
||||
requirement for installed sqlite3 to 3.6.0 as 3.6.x
|
||||
has backward incompatiblity (ISHIGAKI)
|
||||
|
||||
1.14
|
||||
- Updated to SQLite 3.4.2
|
||||
- Switch to sqlite3_prepare_v2 which fixes a number of bugs
|
||||
|
|
52
MANIFEST
52
MANIFEST
|
@ -2,6 +2,8 @@ alter.c
|
|||
analyze.c
|
||||
attach.c
|
||||
auth.c
|
||||
bitvec.c
|
||||
btmutex.c
|
||||
btree.c
|
||||
btree.h
|
||||
btreeInt.h
|
||||
|
@ -14,20 +16,26 @@ dbdimp.c
|
|||
dbdimp.h
|
||||
delete.c
|
||||
expr.c
|
||||
fault.c
|
||||
fts3.c
|
||||
fts3.h
|
||||
fts3_expr.c
|
||||
fts3_expr.h
|
||||
fts3_hash.c
|
||||
fts3_hash.h
|
||||
fts3_icu.c
|
||||
fts3_porter.c
|
||||
fts3_tokenizer.c
|
||||
fts3_tokenizer.h
|
||||
fts3_tokenizer1.c
|
||||
func.c
|
||||
fts2.c
|
||||
fts2.h
|
||||
fts2_hash.c
|
||||
fts2_hash.h
|
||||
fts2_icu.c
|
||||
fts2_porter.c
|
||||
fts2_tokenizer.c
|
||||
fts2_tokenizer.h
|
||||
fts2_tokenizer1.c
|
||||
getsqlite.pl
|
||||
global.c
|
||||
hash.c
|
||||
hash.h
|
||||
hwtime.h
|
||||
insert.c
|
||||
journal.c
|
||||
keywordhash.h
|
||||
legacy.c
|
||||
lib/DBD/SQLite.pm
|
||||
|
@ -35,35 +43,53 @@ loadext.c
|
|||
main.c
|
||||
Makefile.PL
|
||||
malloc.c
|
||||
MANIFEST
|
||||
MANIFEST This list of files
|
||||
MANIFEST.SKIP
|
||||
META.yml Module meta-data (added by MakeMaker)
|
||||
mem0.c
|
||||
mem1.c
|
||||
mem2.c
|
||||
mem3.c
|
||||
mem5.c
|
||||
memjournal.c
|
||||
META.yml
|
||||
mutex.c
|
||||
mutex.h
|
||||
mutex_noop.c
|
||||
mutex_os2.c
|
||||
mutex_unix.c
|
||||
mutex_w32.c
|
||||
opcodes.c
|
||||
opcodes.h
|
||||
os.c
|
||||
os.h
|
||||
os_common.h
|
||||
os_os2.c
|
||||
os_os2.h
|
||||
os_unix.c
|
||||
os_win.c
|
||||
pager.c
|
||||
pager.h
|
||||
parse.c
|
||||
parse.h
|
||||
pcache.c
|
||||
pcache.h
|
||||
pcache1.c
|
||||
ppport.h
|
||||
pragma.c
|
||||
prepare.c
|
||||
printf.c
|
||||
random.c
|
||||
README
|
||||
resolve.c
|
||||
rowset.c
|
||||
select.c
|
||||
shell.c
|
||||
SQLite.xs
|
||||
sqlite3.h
|
||||
sqlite3ext.h
|
||||
sqliteInt.h
|
||||
sqliteLimit.h
|
||||
SQLiteXS.h
|
||||
status.c
|
||||
t/00basic.t
|
||||
t/01logon.t
|
||||
t/02cr_table.t
|
||||
|
@ -107,8 +133,8 @@ vdbe.h
|
|||
vdbeapi.c
|
||||
vdbeaux.c
|
||||
vdbeblob.c
|
||||
vdbefifo.c
|
||||
vdbeInt.h
|
||||
vdbemem.c
|
||||
vtab.c
|
||||
walker.c
|
||||
where.c
|
||||
|
|
|
@ -18,3 +18,5 @@ output/.*
|
|||
^Makefile\.[a-z]+$
|
||||
^pm_to_blib$
|
||||
~$
|
||||
^sqlite\-
|
||||
\.svn
|
||||
|
|
|
@ -89,8 +89,8 @@ unless ( $force_local ) {
|
|||
last if $version;
|
||||
}
|
||||
}
|
||||
unless ( $version && ($version >= 3003009) ) {
|
||||
warn "SQLite version must be at least 3.3.9. No header file at that\n";
|
||||
unless ( $version && ($version >= 3006000) ) {
|
||||
warn "SQLite version must be at least 3.6.0. No header file at that\n";
|
||||
warn "version or higher was found. Using the local version instead.\n";
|
||||
$force_local = 1;
|
||||
undef $sqlite_lib;
|
||||
|
@ -127,7 +127,7 @@ if ( $sqlite_inc ) {
|
|||
|
||||
my @CC_DEFINE = (
|
||||
'-DSQLITE_CORE',
|
||||
'-DSQLITE_ENABLE_FTS2',
|
||||
'-DSQLITE_ENABLE_FTS3',
|
||||
'-DNDEBUG=1',
|
||||
"-DSQLITE_PTR_SZ=$Config{ptrsize}"
|
||||
);
|
||||
|
|
147
alter.c
147
alter.c
|
@ -12,7 +12,7 @@
|
|||
** This file contains C code routines that used to generate VDBE code
|
||||
** that implements the ALTER TABLE command.
|
||||
**
|
||||
** $Id: alter.c,v 1.27 2007/06/27 17:09:24 danielk1977 Exp $
|
||||
** $Id: alter.c,v 1.51 2008/12/10 19:26:22 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
#include <ctype.h>
|
||||
|
@ -39,7 +39,7 @@
|
|||
*/
|
||||
static void renameTableFunc(
|
||||
sqlite3_context *context,
|
||||
int argc,
|
||||
int NotUsed,
|
||||
sqlite3_value **argv
|
||||
){
|
||||
unsigned char const *zSql = sqlite3_value_text(argv[0]);
|
||||
|
@ -51,9 +51,13 @@ static void renameTableFunc(
|
|||
int len = 0;
|
||||
char *zRet;
|
||||
|
||||
sqlite3 *db = sqlite3_context_db_handle(context);
|
||||
|
||||
UNUSED_PARAMETER(NotUsed);
|
||||
|
||||
/* The principle used to locate the table name in the CREATE TABLE
|
||||
** statement is that the table name is the first token that is immediatedly
|
||||
** followed by a left parenthesis - TK_LP - or "USING" TK_USING.
|
||||
** statement is that the table name is the first non-space token that
|
||||
** is immediately followed by a TK_LP or TK_USING token.
|
||||
*/
|
||||
if( zSql ){
|
||||
do {
|
||||
|
@ -67,7 +71,7 @@ static void renameTableFunc(
|
|||
tname.n = len;
|
||||
|
||||
/* Advance zCsr to the next token. Store that token type in 'token',
|
||||
** and it's length in 'len' (to be used next iteration of this loop).
|
||||
** and its length in 'len' (to be used next iteration of this loop).
|
||||
*/
|
||||
do {
|
||||
zCsr += len;
|
||||
|
@ -76,9 +80,9 @@ static void renameTableFunc(
|
|||
assert( len>0 );
|
||||
} while( token!=TK_LP && token!=TK_USING );
|
||||
|
||||
zRet = sqlite3MPrintf("%.*s%Q%s", tname.z - zSql, zSql,
|
||||
zRet = sqlite3MPrintf(db, "%.*s\"%w\"%s", tname.z - zSql, zSql,
|
||||
zTableName, tname.z+tname.n);
|
||||
sqlite3_result_text(context, zRet, -1, sqlite3FreeX);
|
||||
sqlite3_result_text(context, zRet, -1, SQLITE_DYNAMIC);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -92,7 +96,7 @@ static void renameTableFunc(
|
|||
*/
|
||||
static void renameTriggerFunc(
|
||||
sqlite3_context *context,
|
||||
int argc,
|
||||
int NotUsed,
|
||||
sqlite3_value **argv
|
||||
){
|
||||
unsigned char const *zSql = sqlite3_value_text(argv[0]);
|
||||
|
@ -104,6 +108,9 @@ static void renameTriggerFunc(
|
|||
unsigned char const *zCsr = zSql;
|
||||
int len = 0;
|
||||
char *zRet;
|
||||
sqlite3 *db = sqlite3_context_db_handle(context);
|
||||
|
||||
UNUSED_PARAMETER(NotUsed);
|
||||
|
||||
/* The principle used to locate the table name in the CREATE TRIGGER
|
||||
** statement is that the table name is the first token that is immediatedly
|
||||
|
@ -123,7 +130,7 @@ static void renameTriggerFunc(
|
|||
tname.n = len;
|
||||
|
||||
/* Advance zCsr to the next token. Store that token type in 'token',
|
||||
** and it's length in 'len' (to be used next iteration of this loop).
|
||||
** and its length in 'len' (to be used next iteration of this loop).
|
||||
*/
|
||||
do {
|
||||
zCsr += len;
|
||||
|
@ -149,9 +156,9 @@ static void renameTriggerFunc(
|
|||
/* Variable tname now contains the token that is the old table-name
|
||||
** in the CREATE TRIGGER statement.
|
||||
*/
|
||||
zRet = sqlite3MPrintf("%.*s%Q%s", tname.z - zSql, zSql,
|
||||
zRet = sqlite3MPrintf(db, "%.*s\"%w\"%s", tname.z - zSql, zSql,
|
||||
zTableName, tname.z+tname.n);
|
||||
sqlite3_result_text(context, zRet, -1, sqlite3FreeX);
|
||||
sqlite3_result_text(context, zRet, -1, SQLITE_DYNAMIC);
|
||||
}
|
||||
}
|
||||
#endif /* !SQLITE_OMIT_TRIGGER */
|
||||
|
@ -160,22 +167,12 @@ static void renameTriggerFunc(
|
|||
** Register built-in functions used to help implement ALTER TABLE
|
||||
*/
|
||||
void sqlite3AlterFunctions(sqlite3 *db){
|
||||
static const struct {
|
||||
char *zName;
|
||||
signed char nArg;
|
||||
void (*xFunc)(sqlite3_context*,int,sqlite3_value **);
|
||||
} aFuncs[] = {
|
||||
{ "sqlite_rename_table", 2, renameTableFunc},
|
||||
sqlite3CreateFunc(db, "sqlite_rename_table", 2, SQLITE_UTF8, 0,
|
||||
renameTableFunc, 0, 0);
|
||||
#ifndef SQLITE_OMIT_TRIGGER
|
||||
{ "sqlite_rename_trigger", 2, renameTriggerFunc},
|
||||
sqlite3CreateFunc(db, "sqlite_rename_trigger", 2, SQLITE_UTF8, 0,
|
||||
renameTriggerFunc, 0, 0);
|
||||
#endif
|
||||
};
|
||||
int i;
|
||||
|
||||
for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
|
||||
sqlite3CreateFunc(db, aFuncs[i].zName, aFuncs[i].nArg,
|
||||
SQLITE_UTF8, 0, aFuncs[i].xFunc, 0, 0);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -196,14 +193,15 @@ static char *whereTempTriggers(Parse *pParse, Table *pTab){
|
|||
** expression being built up in zWhere.
|
||||
*/
|
||||
if( pTab->pSchema!=pTempSchema ){
|
||||
sqlite3 *db = pParse->db;
|
||||
for( pTrig=pTab->pTrigger; pTrig; pTrig=pTrig->pNext ){
|
||||
if( pTrig->pSchema==pTempSchema ){
|
||||
if( !zWhere ){
|
||||
zWhere = sqlite3MPrintf("name=%Q", pTrig->name);
|
||||
zWhere = sqlite3MPrintf(db, "name=%Q", pTrig->name);
|
||||
}else{
|
||||
tmp = zWhere;
|
||||
zWhere = sqlite3MPrintf("%s OR name=%Q", zWhere, pTrig->name);
|
||||
sqliteFree(tmp);
|
||||
zWhere = sqlite3MPrintf(db, "%s OR name=%Q", zWhere, pTrig->name);
|
||||
sqlite3DbFree(db, tmp);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -229,6 +227,7 @@ static void reloadTableSchema(Parse *pParse, Table *pTab, const char *zName){
|
|||
|
||||
v = sqlite3GetVdbe(pParse);
|
||||
if( !v ) return;
|
||||
assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
|
||||
iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
|
||||
assert( iDb>=0 );
|
||||
|
||||
|
@ -237,24 +236,24 @@ static void reloadTableSchema(Parse *pParse, Table *pTab, const char *zName){
|
|||
for(pTrig=pTab->pTrigger; pTrig; pTrig=pTrig->pNext){
|
||||
int iTrigDb = sqlite3SchemaToIndex(pParse->db, pTrig->pSchema);
|
||||
assert( iTrigDb==iDb || iTrigDb==1 );
|
||||
sqlite3VdbeOp3(v, OP_DropTrigger, iTrigDb, 0, pTrig->name, 0);
|
||||
sqlite3VdbeAddOp4(v, OP_DropTrigger, iTrigDb, 0, 0, pTrig->name, 0);
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Drop the table and index from the internal schema */
|
||||
sqlite3VdbeOp3(v, OP_DropTable, iDb, 0, pTab->zName, 0);
|
||||
sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
|
||||
|
||||
/* Reload the table, index and permanent trigger schemas. */
|
||||
zWhere = sqlite3MPrintf("tbl_name=%Q", zName);
|
||||
zWhere = sqlite3MPrintf(pParse->db, "tbl_name=%Q", zName);
|
||||
if( !zWhere ) return;
|
||||
sqlite3VdbeOp3(v, OP_ParseSchema, iDb, 0, zWhere, P3_DYNAMIC);
|
||||
sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);
|
||||
|
||||
#ifndef SQLITE_OMIT_TRIGGER
|
||||
/* Now, if the table is not stored in the temp database, reload any temp
|
||||
** triggers. Don't use IN(...) in case SQLITE_OMIT_SUBQUERY is defined.
|
||||
*/
|
||||
if( (zWhere=whereTempTriggers(pParse, pTab))!=0 ){
|
||||
sqlite3VdbeOp3(v, OP_ParseSchema, 1, 0, zWhere, P3_DYNAMIC);
|
||||
sqlite3VdbeAddOp4(v, OP_ParseSchema, 1, 0, 0, zWhere, P4_DYNAMIC);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
@ -281,16 +280,17 @@ void sqlite3AlterRenameTable(
|
|||
#endif
|
||||
int isVirtualRename = 0; /* True if this is a v-table with an xRename() */
|
||||
|
||||
if( sqlite3MallocFailed() ) goto exit_rename_table;
|
||||
if( db->mallocFailed ) goto exit_rename_table;
|
||||
assert( pSrc->nSrc==1 );
|
||||
assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
|
||||
|
||||
pTab = sqlite3LocateTable(pParse, pSrc->a[0].zName, pSrc->a[0].zDatabase);
|
||||
pTab = sqlite3LocateTable(pParse, 0, pSrc->a[0].zName, pSrc->a[0].zDatabase);
|
||||
if( !pTab ) goto exit_rename_table;
|
||||
iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
|
||||
zDb = db->aDb[iDb].zName;
|
||||
|
||||
/* Get a NULL terminated version of the new table name. */
|
||||
zName = sqlite3NameFromToken(pName);
|
||||
zName = sqlite3NameFromToken(db, pName);
|
||||
if( !zName ) goto exit_rename_table;
|
||||
|
||||
/* Check that a table or index named 'zName' does not already exist
|
||||
|
@ -305,7 +305,9 @@ void sqlite3AlterRenameTable(
|
|||
/* Make sure it is not a system table being altered, or a reserved name
|
||||
** that the table is being renamed to.
|
||||
*/
|
||||
if( strlen(pTab->zName)>6 && 0==sqlite3StrNICmp(pTab->zName, "sqlite_", 7) ){
|
||||
if( sqlite3Strlen30(pTab->zName)>6
|
||||
&& 0==sqlite3StrNICmp(pTab->zName, "sqlite_", 7)
|
||||
){
|
||||
sqlite3ErrorMsg(pParse, "table %s may not be altered", pTab->zName);
|
||||
goto exit_rename_table;
|
||||
}
|
||||
|
@ -313,6 +315,13 @@ void sqlite3AlterRenameTable(
|
|||
goto exit_rename_table;
|
||||
}
|
||||
|
||||
#ifndef SQLITE_OMIT_VIEW
|
||||
if( pTab->pSelect ){
|
||||
sqlite3ErrorMsg(pParse, "view %s may not be altered", pTab->zName);
|
||||
goto exit_rename_table;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifndef SQLITE_OMIT_AUTHORIZATION
|
||||
/* Invoke the authorization callback. */
|
||||
if( sqlite3AuthCheck(pParse, SQLITE_ALTER_TABLE, zDb, pTab->zName, 0) ){
|
||||
|
@ -339,7 +348,7 @@ void sqlite3AlterRenameTable(
|
|||
goto exit_rename_table;
|
||||
}
|
||||
sqlite3BeginWriteOperation(pParse, isVirtualRename, iDb);
|
||||
sqlite3ChangeCookie(db, v, iDb);
|
||||
sqlite3ChangeCookie(pParse, iDb);
|
||||
|
||||
/* If this is a virtual table, invoke the xRename() function if
|
||||
** one is defined. The xRename() callback will modify the names
|
||||
|
@ -348,8 +357,9 @@ void sqlite3AlterRenameTable(
|
|||
*/
|
||||
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
||||
if( isVirtualRename ){
|
||||
sqlite3VdbeOp3(v, OP_String8, 0, 0, zName, 0);
|
||||
sqlite3VdbeOp3(v, OP_VRename, 0, 0, (const char*)pTab->pVtab, P3_VTAB);
|
||||
int i = ++pParse->nMem;
|
||||
sqlite3VdbeAddOp4(v, OP_String8, 0, i, 0, zName, 0);
|
||||
sqlite3VdbeAddOp4(v, OP_VRename, i, 0, 0,(const char*)pTab->pVtab, P4_VTAB);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
@ -371,7 +381,7 @@ void sqlite3AlterRenameTable(
|
|||
"name = CASE "
|
||||
"WHEN type='table' THEN %Q "
|
||||
"WHEN name LIKE 'sqlite_autoindex%%' AND type='index' THEN "
|
||||
"'sqlite_autoindex_' || %Q || substr(name,%d+18,10) "
|
||||
"'sqlite_autoindex_' || %Q || substr(name,%d+18) "
|
||||
"ELSE name END "
|
||||
"WHERE tbl_name=%Q AND "
|
||||
"(type='table' OR type='index' OR type='trigger');",
|
||||
|
@ -388,7 +398,7 @@ void sqlite3AlterRenameTable(
|
|||
*/
|
||||
if( sqlite3FindTable(db, "sqlite_sequence", zDb) ){
|
||||
sqlite3NestedParse(pParse,
|
||||
"UPDATE %Q.sqlite_sequence set name = %Q WHERE name = %Q",
|
||||
"UPDATE \"%w\".sqlite_sequence set name = %Q WHERE name = %Q",
|
||||
zDb, zName, pTab->zName);
|
||||
}
|
||||
#endif
|
||||
|
@ -404,7 +414,7 @@ void sqlite3AlterRenameTable(
|
|||
"sql = sqlite_rename_trigger(sql, %Q), "
|
||||
"tbl_name = %Q "
|
||||
"WHERE %s;", zName, zName, zWhere);
|
||||
sqliteFree(zWhere);
|
||||
sqlite3DbFree(db, zWhere);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
@ -412,8 +422,8 @@ void sqlite3AlterRenameTable(
|
|||
reloadTableSchema(pParse, pTab, zName);
|
||||
|
||||
exit_rename_table:
|
||||
sqlite3SrcListDelete(pSrc);
|
||||
sqliteFree(zName);
|
||||
sqlite3SrcListDelete(db, pSrc);
|
||||
sqlite3DbFree(db, zName);
|
||||
}
|
||||
|
||||
|
||||
|
@ -434,17 +444,20 @@ void sqlite3AlterFinishAddColumn(Parse *pParse, Token *pColDef){
|
|||
char *zCol; /* Null-terminated column definition */
|
||||
Column *pCol; /* The new column */
|
||||
Expr *pDflt; /* Default value for the new column */
|
||||
sqlite3 *db; /* The database connection; */
|
||||
|
||||
if( pParse->nErr ) return;
|
||||
db = pParse->db;
|
||||
if( pParse->nErr || db->mallocFailed ) return;
|
||||
pNew = pParse->pNewTable;
|
||||
assert( pNew );
|
||||
|
||||
iDb = sqlite3SchemaToIndex(pParse->db, pNew->pSchema);
|
||||
zDb = pParse->db->aDb[iDb].zName;
|
||||
assert( sqlite3BtreeHoldsAllMutexes(db) );
|
||||
iDb = sqlite3SchemaToIndex(db, pNew->pSchema);
|
||||
zDb = db->aDb[iDb].zName;
|
||||
zTab = pNew->zName;
|
||||
pCol = &pNew->aCol[pNew->nCol-1];
|
||||
pDflt = pCol->pDflt;
|
||||
pTab = sqlite3FindTable(pParse->db, zTab, zDb);
|
||||
pTab = sqlite3FindTable(db, zTab, zDb);
|
||||
assert( pTab );
|
||||
|
||||
#ifndef SQLITE_OMIT_AUTHORIZATION
|
||||
|
@ -485,8 +498,8 @@ void sqlite3AlterFinishAddColumn(Parse *pParse, Token *pColDef){
|
|||
*/
|
||||
if( pDflt ){
|
||||
sqlite3_value *pVal;
|
||||
if( sqlite3ValueFromExpr(pDflt, SQLITE_UTF8, SQLITE_AFF_NONE, &pVal) ){
|
||||
/* malloc() has failed */
|
||||
if( sqlite3ValueFromExpr(db, pDflt, SQLITE_UTF8, SQLITE_AFF_NONE, &pVal) ){
|
||||
db->mallocFailed = 1;
|
||||
return;
|
||||
}
|
||||
if( !pVal ){
|
||||
|
@ -497,20 +510,20 @@ void sqlite3AlterFinishAddColumn(Parse *pParse, Token *pColDef){
|
|||
}
|
||||
|
||||
/* Modify the CREATE TABLE statement. */
|
||||
zCol = sqliteStrNDup((char*)pColDef->z, pColDef->n);
|
||||
zCol = sqlite3DbStrNDup(db, (char*)pColDef->z, pColDef->n);
|
||||
if( zCol ){
|
||||
char *zEnd = &zCol[pColDef->n-1];
|
||||
while( (zEnd>zCol && *zEnd==';') || isspace(*(unsigned char *)zEnd) ){
|
||||
*zEnd-- = '\0';
|
||||
}
|
||||
sqlite3NestedParse(pParse,
|
||||
"UPDATE %Q.%s SET "
|
||||
"sql = substr(sql,1,%d) || ', ' || %Q || substr(sql,%d,length(sql)) "
|
||||
"UPDATE \"%w\".%s SET "
|
||||
"sql = substr(sql,1,%d) || ', ' || %Q || substr(sql,%d) "
|
||||
"WHERE type = 'table' AND name = %Q",
|
||||
zDb, SCHEMA_TABLE(iDb), pNew->addColOffset, zCol, pNew->addColOffset+1,
|
||||
zTab
|
||||
);
|
||||
sqliteFree(zCol);
|
||||
sqlite3DbFree(db, zCol);
|
||||
}
|
||||
|
||||
/* If the default value of the new column is NULL, then set the file
|
||||
|
@ -545,11 +558,13 @@ void sqlite3AlterBeginAddColumn(Parse *pParse, SrcList *pSrc){
|
|||
int iDb;
|
||||
int i;
|
||||
int nAlloc;
|
||||
sqlite3 *db = pParse->db;
|
||||
|
||||
/* Look up the table being altered. */
|
||||
assert( pParse->pNewTable==0 );
|
||||
if( sqlite3MallocFailed() ) goto exit_begin_add_column;
|
||||
pTab = sqlite3LocateTable(pParse, pSrc->a[0].zName, pSrc->a[0].zDatabase);
|
||||
assert( sqlite3BtreeHoldsAllMutexes(db) );
|
||||
if( db->mallocFailed ) goto exit_begin_add_column;
|
||||
pTab = sqlite3LocateTable(pParse, 0, pSrc->a[0].zName, pSrc->a[0].zDatabase);
|
||||
if( !pTab ) goto exit_begin_add_column;
|
||||
|
||||
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
||||
|
@ -566,33 +581,35 @@ void sqlite3AlterBeginAddColumn(Parse *pParse, SrcList *pSrc){
|
|||
}
|
||||
|
||||
assert( pTab->addColOffset>0 );
|
||||
iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
|
||||
iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
|
||||
|
||||
/* Put a copy of the Table struct in Parse.pNewTable for the
|
||||
** sqlite3AddColumn() function and friends to modify.
|
||||
*/
|
||||
pNew = (Table *)sqliteMalloc(sizeof(Table));
|
||||
pNew = (Table*)sqlite3DbMallocZero(db, sizeof(Table));
|
||||
if( !pNew ) goto exit_begin_add_column;
|
||||
pParse->pNewTable = pNew;
|
||||
pNew->nRef = 1;
|
||||
pNew->db = db;
|
||||
pNew->nCol = pTab->nCol;
|
||||
assert( pNew->nCol>0 );
|
||||
nAlloc = (((pNew->nCol-1)/8)*8)+8;
|
||||
assert( nAlloc>=pNew->nCol && nAlloc%8==0 && nAlloc-pNew->nCol<8 );
|
||||
pNew->aCol = (Column *)sqliteMalloc(sizeof(Column)*nAlloc);
|
||||
pNew->zName = sqliteStrDup(pTab->zName);
|
||||
pNew->aCol = (Column*)sqlite3DbMallocZero(db, sizeof(Column)*nAlloc);
|
||||
pNew->zName = sqlite3DbStrDup(db, pTab->zName);
|
||||
if( !pNew->aCol || !pNew->zName ){
|
||||
db->mallocFailed = 1;
|
||||
goto exit_begin_add_column;
|
||||
}
|
||||
memcpy(pNew->aCol, pTab->aCol, sizeof(Column)*pNew->nCol);
|
||||
for(i=0; i<pNew->nCol; i++){
|
||||
Column *pCol = &pNew->aCol[i];
|
||||
pCol->zName = sqliteStrDup(pCol->zName);
|
||||
pCol->zName = sqlite3DbStrDup(db, pCol->zName);
|
||||
pCol->zColl = 0;
|
||||
pCol->zType = 0;
|
||||
pCol->pDflt = 0;
|
||||
}
|
||||
pNew->pSchema = pParse->db->aDb[iDb].pSchema;
|
||||
pNew->pSchema = db->aDb[iDb].pSchema;
|
||||
pNew->addColOffset = pTab->addColOffset;
|
||||
pNew->nRef = 1;
|
||||
|
||||
|
@ -600,10 +617,10 @@ void sqlite3AlterBeginAddColumn(Parse *pParse, SrcList *pSrc){
|
|||
sqlite3BeginWriteOperation(pParse, 0, iDb);
|
||||
v = sqlite3GetVdbe(pParse);
|
||||
if( !v ) goto exit_begin_add_column;
|
||||
sqlite3ChangeCookie(pParse->db, v, iDb);
|
||||
sqlite3ChangeCookie(pParse, iDb);
|
||||
|
||||
exit_begin_add_column:
|
||||
sqlite3SrcListDelete(pSrc);
|
||||
sqlite3SrcListDelete(db, pSrc);
|
||||
return;
|
||||
}
|
||||
#endif /* SQLITE_ALTER_TABLE */
|
||||
|
|
151
analyze.c
151
analyze.c
|
@ -11,7 +11,7 @@
|
|||
*************************************************************************
|
||||
** This file contains code associated with the ANALYZE command.
|
||||
**
|
||||
** @(#) $Id: analyze.c,v 1.19 2007/06/20 13:37:31 drh Exp $
|
||||
** @(#) $Id: analyze.c,v 1.47 2008/12/10 16:45:51 drh Exp $
|
||||
*/
|
||||
#ifndef SQLITE_OMIT_ANALYZE
|
||||
#include "sqliteInt.h"
|
||||
|
@ -33,21 +33,25 @@ static void openStatTable(
|
|||
sqlite3 *db = pParse->db;
|
||||
Db *pDb;
|
||||
int iRootPage;
|
||||
u8 createStat1 = 0;
|
||||
Table *pStat;
|
||||
Vdbe *v = sqlite3GetVdbe(pParse);
|
||||
|
||||
if( v==0 ) return;
|
||||
assert( sqlite3BtreeHoldsAllMutexes(db) );
|
||||
assert( sqlite3VdbeDb(v)==db );
|
||||
pDb = &db->aDb[iDb];
|
||||
if( (pStat = sqlite3FindTable(db, "sqlite_stat1", pDb->zName))==0 ){
|
||||
/* The sqlite_stat1 tables does not exist. Create it.
|
||||
** Note that a side-effect of the CREATE TABLE statement is to leave
|
||||
** the rootpage of the new table on the top of the stack. This is
|
||||
** the rootpage of the new table in register pParse->regRoot. This is
|
||||
** important because the OpenWrite opcode below will be needing it. */
|
||||
sqlite3NestedParse(pParse,
|
||||
"CREATE TABLE %Q.sqlite_stat1(tbl,idx,stat)",
|
||||
pDb->zName
|
||||
);
|
||||
iRootPage = 0; /* Cause rootpage to be taken from top of stack */
|
||||
iRootPage = pParse->regRoot;
|
||||
createStat1 = 1; /* Cause rootpage to be taken from top of stack */
|
||||
}else if( zWhere ){
|
||||
/* The sqlite_stat1 table exists. Delete all entries associated with
|
||||
** the table zWhere. */
|
||||
|
@ -59,7 +63,7 @@ static void openStatTable(
|
|||
}else{
|
||||
/* The sqlite_stat1 table already exists. Delete all rows. */
|
||||
iRootPage = pStat->tnum;
|
||||
sqlite3VdbeAddOp(v, OP_Clear, pStat->tnum, iDb);
|
||||
sqlite3VdbeAddOp2(v, OP_Clear, pStat->tnum, iDb);
|
||||
}
|
||||
|
||||
/* Open the sqlite_stat1 table for writing. Unless it was created
|
||||
|
@ -67,12 +71,12 @@ static void openStatTable(
|
|||
** If this vdbe did create the sqlite_stat1 table, then it must have
|
||||
** already obtained a schema-lock, making the write-lock redundant.
|
||||
*/
|
||||
if( iRootPage>0 ){
|
||||
if( !createStat1 ){
|
||||
sqlite3TableLock(pParse, iDb, iRootPage, 1, "sqlite_stat1");
|
||||
}
|
||||
sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
|
||||
sqlite3VdbeAddOp(v, OP_OpenWrite, iStatCur, iRootPage);
|
||||
sqlite3VdbeAddOp(v, OP_SetNumColumns, iStatCur, 3);
|
||||
sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, 3);
|
||||
sqlite3VdbeAddOp3(v, OP_OpenWrite, iStatCur, iRootPage, iDb);
|
||||
sqlite3VdbeChangeP5(v, createStat1);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -82,11 +86,11 @@ static void openStatTable(
|
|||
static void analyzeOneTable(
|
||||
Parse *pParse, /* Parser context */
|
||||
Table *pTab, /* Table whose indices are to be analyzed */
|
||||
int iStatCur, /* Cursor that writes to the sqlite_stat1 table */
|
||||
int iStatCur, /* Index of VdbeCursor that writes the sqlite_stat1 table */
|
||||
int iMem /* Available memory locations begin here */
|
||||
){
|
||||
Index *pIdx; /* An index to being analyzed */
|
||||
int iIdxCur; /* Cursor number for index being analyzed */
|
||||
int iIdxCur; /* Index of VdbeCursor for index being analyzed */
|
||||
int nCol; /* Number of columns in the index */
|
||||
Vdbe *v; /* The virtual machine being built up */
|
||||
int i; /* Loop counter */
|
||||
|
@ -100,7 +104,7 @@ static void analyzeOneTable(
|
|||
/* Do no analysis for tables that have no indices */
|
||||
return;
|
||||
}
|
||||
|
||||
assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
|
||||
iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
|
||||
assert( iDb>=0 );
|
||||
#ifndef SQLITE_OMIT_AUTHORIZATION
|
||||
|
@ -116,19 +120,27 @@ static void analyzeOneTable(
|
|||
iIdxCur = pParse->nTab;
|
||||
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
||||
KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
|
||||
int regFields; /* Register block for building records */
|
||||
int regRec; /* Register holding completed record */
|
||||
int regTemp; /* Temporary use register */
|
||||
int regCol; /* Content of a column from the table being analyzed */
|
||||
int regRowid; /* Rowid for the inserted record */
|
||||
int regF2;
|
||||
|
||||
/* Open a cursor to the index to be analyzed
|
||||
*/
|
||||
assert( iDb==sqlite3SchemaToIndex(pParse->db, pIdx->pSchema) );
|
||||
sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
|
||||
VdbeComment((v, "# %s", pIdx->zName));
|
||||
sqlite3VdbeOp3(v, OP_OpenRead, iIdxCur, pIdx->tnum,
|
||||
(char *)pKey, P3_KEYINFO_HANDOFF);
|
||||
nCol = pIdx->nColumn;
|
||||
if( iMem+nCol*2>=pParse->nMem ){
|
||||
pParse->nMem = iMem+nCol*2+1;
|
||||
sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, nCol+1);
|
||||
sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb,
|
||||
(char *)pKey, P4_KEYINFO_HANDOFF);
|
||||
VdbeComment((v, "%s", pIdx->zName));
|
||||
regFields = iMem+nCol*2;
|
||||
regTemp = regRowid = regCol = regFields+3;
|
||||
regRec = regCol+1;
|
||||
if( regRec>pParse->nMem ){
|
||||
pParse->nMem = regRec;
|
||||
}
|
||||
sqlite3VdbeAddOp(v, OP_SetNumColumns, iIdxCur, nCol+1);
|
||||
|
||||
/* Memory cells are used as follows:
|
||||
**
|
||||
|
@ -144,33 +156,33 @@ static void analyzeOneTable(
|
|||
** are initialized to NULL.
|
||||
*/
|
||||
for(i=0; i<=nCol; i++){
|
||||
sqlite3VdbeAddOp(v, OP_MemInt, 0, iMem+i);
|
||||
sqlite3VdbeAddOp2(v, OP_Integer, 0, iMem+i);
|
||||
}
|
||||
for(i=0; i<nCol; i++){
|
||||
sqlite3VdbeAddOp(v, OP_MemNull, iMem+nCol+i+1, 0);
|
||||
sqlite3VdbeAddOp2(v, OP_Null, 0, iMem+nCol+i+1);
|
||||
}
|
||||
|
||||
/* Do the analysis.
|
||||
*/
|
||||
endOfLoop = sqlite3VdbeMakeLabel(v);
|
||||
sqlite3VdbeAddOp(v, OP_Rewind, iIdxCur, endOfLoop);
|
||||
sqlite3VdbeAddOp2(v, OP_Rewind, iIdxCur, endOfLoop);
|
||||
topOfLoop = sqlite3VdbeCurrentAddr(v);
|
||||
sqlite3VdbeAddOp(v, OP_MemIncr, 1, iMem);
|
||||
sqlite3VdbeAddOp2(v, OP_AddImm, iMem, 1);
|
||||
for(i=0; i<nCol; i++){
|
||||
sqlite3VdbeAddOp(v, OP_Column, iIdxCur, i);
|
||||
sqlite3VdbeAddOp(v, OP_MemLoad, iMem+nCol+i+1, 0);
|
||||
sqlite3VdbeAddOp(v, OP_Ne, 0x100, 0);
|
||||
sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regCol);
|
||||
sqlite3VdbeAddOp3(v, OP_Ne, regCol, 0, iMem+nCol+i+1);
|
||||
/**** TODO: add collating sequence *****/
|
||||
sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
|
||||
}
|
||||
sqlite3VdbeAddOp(v, OP_Goto, 0, endOfLoop);
|
||||
sqlite3VdbeAddOp2(v, OP_Goto, 0, endOfLoop);
|
||||
for(i=0; i<nCol; i++){
|
||||
addr = sqlite3VdbeAddOp(v, OP_MemIncr, 1, iMem+i+1);
|
||||
sqlite3VdbeChangeP2(v, topOfLoop + 3*i + 3, addr);
|
||||
sqlite3VdbeAddOp(v, OP_Column, iIdxCur, i);
|
||||
sqlite3VdbeAddOp(v, OP_MemStore, iMem+nCol+i+1, 1);
|
||||
sqlite3VdbeJumpHere(v, topOfLoop + 2*(i + 1));
|
||||
sqlite3VdbeAddOp2(v, OP_AddImm, iMem+i+1, 1);
|
||||
sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, iMem+nCol+i+1);
|
||||
}
|
||||
sqlite3VdbeResolveLabel(v, endOfLoop);
|
||||
sqlite3VdbeAddOp(v, OP_Next, iIdxCur, topOfLoop);
|
||||
sqlite3VdbeAddOp(v, OP_Close, iIdxCur, 0);
|
||||
sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, topOfLoop);
|
||||
sqlite3VdbeAddOp1(v, OP_Close, iIdxCur);
|
||||
|
||||
/* Store the results.
|
||||
**
|
||||
|
@ -190,29 +202,24 @@ static void analyzeOneTable(
|
|||
** If K>0 then it is always the case the D>0 so division by zero
|
||||
** is never possible.
|
||||
*/
|
||||
sqlite3VdbeAddOp(v, OP_MemLoad, iMem, 0);
|
||||
addr = sqlite3VdbeAddOp(v, OP_IfNot, 0, 0);
|
||||
sqlite3VdbeAddOp(v, OP_NewRowid, iStatCur, 0);
|
||||
sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->zName, 0);
|
||||
sqlite3VdbeOp3(v, OP_String8, 0, 0, pIdx->zName, 0);
|
||||
sqlite3VdbeAddOp(v, OP_MemLoad, iMem, 0);
|
||||
sqlite3VdbeOp3(v, OP_String8, 0, 0, " ", 0);
|
||||
addr = sqlite3VdbeAddOp1(v, OP_IfNot, iMem);
|
||||
sqlite3VdbeAddOp4(v, OP_String8, 0, regFields, 0, pTab->zName, 0);
|
||||
sqlite3VdbeAddOp4(v, OP_String8, 0, regFields+1, 0, pIdx->zName, 0);
|
||||
regF2 = regFields+2;
|
||||
sqlite3VdbeAddOp2(v, OP_SCopy, iMem, regF2);
|
||||
for(i=0; i<nCol; i++){
|
||||
sqlite3VdbeAddOp(v, OP_MemLoad, iMem, 0);
|
||||
sqlite3VdbeAddOp(v, OP_MemLoad, iMem+i+1, 0);
|
||||
sqlite3VdbeAddOp(v, OP_Add, 0, 0);
|
||||
sqlite3VdbeAddOp(v, OP_AddImm, -1, 0);
|
||||
sqlite3VdbeAddOp(v, OP_MemLoad, iMem+i+1, 0);
|
||||
sqlite3VdbeAddOp(v, OP_Divide, 0, 0);
|
||||
sqlite3VdbeAddOp(v, OP_ToInt, 0, 0);
|
||||
if( i==nCol-1 ){
|
||||
sqlite3VdbeAddOp(v, OP_Concat, nCol*2-1, 0);
|
||||
}else{
|
||||
sqlite3VdbeAddOp(v, OP_Dup, 1, 0);
|
||||
sqlite3VdbeAddOp4(v, OP_String8, 0, regTemp, 0, " ", 0);
|
||||
sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regF2, regF2);
|
||||
sqlite3VdbeAddOp3(v, OP_Add, iMem, iMem+i+1, regTemp);
|
||||
sqlite3VdbeAddOp2(v, OP_AddImm, regTemp, -1);
|
||||
sqlite3VdbeAddOp3(v, OP_Divide, iMem+i+1, regTemp, regTemp);
|
||||
sqlite3VdbeAddOp1(v, OP_ToInt, regTemp);
|
||||
sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regF2, regF2);
|
||||
}
|
||||
}
|
||||
sqlite3VdbeOp3(v, OP_MakeRecord, 3, 0, "aaa", 0);
|
||||
sqlite3VdbeAddOp(v, OP_Insert, iStatCur, OPFLAG_APPEND);
|
||||
sqlite3VdbeAddOp4(v, OP_MakeRecord, regFields, 3, regRec, "aaa", 0);
|
||||
sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regRowid);
|
||||
sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regRowid);
|
||||
sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
|
||||
sqlite3VdbeJumpHere(v, addr);
|
||||
}
|
||||
}
|
||||
|
@ -224,7 +231,7 @@ static void analyzeOneTable(
|
|||
static void loadAnalysis(Parse *pParse, int iDb){
|
||||
Vdbe *v = sqlite3GetVdbe(pParse);
|
||||
if( v ){
|
||||
sqlite3VdbeAddOp(v, OP_LoadAnalysis, iDb, 0);
|
||||
sqlite3VdbeAddOp1(v, OP_LoadAnalysis, iDb);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -241,7 +248,7 @@ static void analyzeDatabase(Parse *pParse, int iDb){
|
|||
sqlite3BeginWriteOperation(pParse, 0, iDb);
|
||||
iStatCur = pParse->nTab++;
|
||||
openStatTable(pParse, iDb, iStatCur, 0);
|
||||
iMem = pParse->nMem;
|
||||
iMem = pParse->nMem+1;
|
||||
for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
|
||||
Table *pTab = (Table*)sqliteHashData(k);
|
||||
analyzeOneTable(pParse, pTab, iStatCur, iMem);
|
||||
|
@ -258,11 +265,12 @@ static void analyzeTable(Parse *pParse, Table *pTab){
|
|||
int iStatCur;
|
||||
|
||||
assert( pTab!=0 );
|
||||
assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
|
||||
iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
|
||||
sqlite3BeginWriteOperation(pParse, 0, iDb);
|
||||
iStatCur = pParse->nTab++;
|
||||
openStatTable(pParse, iDb, iStatCur, pTab->zName);
|
||||
analyzeOneTable(pParse, pTab, iStatCur, pParse->nMem);
|
||||
analyzeOneTable(pParse, pTab, iStatCur, pParse->nMem+1);
|
||||
loadAnalysis(pParse, iDb);
|
||||
}
|
||||
|
||||
|
@ -288,6 +296,7 @@ void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){
|
|||
|
||||
/* Read the database schema. If an error occurs, leave an error message
|
||||
** and code in pParse and return NULL. */
|
||||
assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
|
||||
if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
|
||||
return;
|
||||
}
|
||||
|
@ -304,22 +313,24 @@ void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){
|
|||
if( iDb>=0 ){
|
||||
analyzeDatabase(pParse, iDb);
|
||||
}else{
|
||||
z = sqlite3NameFromToken(pName1);
|
||||
pTab = sqlite3LocateTable(pParse, z, 0);
|
||||
sqliteFree(z);
|
||||
z = sqlite3NameFromToken(db, pName1);
|
||||
if( z ){
|
||||
pTab = sqlite3LocateTable(pParse, 0, z, 0);
|
||||
sqlite3DbFree(db, z);
|
||||
if( pTab ){
|
||||
analyzeTable(pParse, pTab);
|
||||
}
|
||||
}
|
||||
}
|
||||
}else{
|
||||
/* Form 3: Analyze the fully qualified table name */
|
||||
iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName);
|
||||
if( iDb>=0 ){
|
||||
zDb = db->aDb[iDb].zName;
|
||||
z = sqlite3NameFromToken(pTableName);
|
||||
z = sqlite3NameFromToken(db, pTableName);
|
||||
if( z ){
|
||||
pTab = sqlite3LocateTable(pParse, z, zDb);
|
||||
sqliteFree(z);
|
||||
pTab = sqlite3LocateTable(pParse, 0, z, zDb);
|
||||
sqlite3DbFree(db, z);
|
||||
if( pTab ){
|
||||
analyzeTable(pParse, pTab);
|
||||
}
|
||||
|
@ -345,7 +356,7 @@ struct analysisInfo {
|
|||
** argv[0] = name of the index
|
||||
** argv[1] = results of analysis - on integer for each column
|
||||
*/
|
||||
static int analysisLoader(void *pData, int argc, char **argv, char **azNotUsed){
|
||||
static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){
|
||||
analysisInfo *pInfo = (analysisInfo*)pData;
|
||||
Index *pIndex;
|
||||
int i, c;
|
||||
|
@ -353,6 +364,8 @@ static int analysisLoader(void *pData, int argc, char **argv, char **azNotUsed){
|
|||
const char *z;
|
||||
|
||||
assert( argc==2 );
|
||||
UNUSED_PARAMETER2(NotUsed, argc);
|
||||
|
||||
if( argv==0 || argv[0]==0 || argv[1]==0 ){
|
||||
return 0;
|
||||
}
|
||||
|
@ -382,6 +395,10 @@ int sqlite3AnalysisLoad(sqlite3 *db, int iDb){
|
|||
char *zSql;
|
||||
int rc;
|
||||
|
||||
assert( iDb>=0 && iDb<db->nDb );
|
||||
assert( db->aDb[iDb].pBt!=0 );
|
||||
assert( sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
|
||||
|
||||
/* Clear any prior statistics */
|
||||
for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){
|
||||
Index *pIdx = sqliteHashData(i);
|
||||
|
@ -397,12 +414,12 @@ int sqlite3AnalysisLoad(sqlite3 *db, int iDb){
|
|||
|
||||
|
||||
/* Load new statistics out of the sqlite_stat1 table */
|
||||
zSql = sqlite3MPrintf("SELECT idx, stat FROM %Q.sqlite_stat1",
|
||||
zSql = sqlite3MPrintf(db, "SELECT idx, stat FROM %Q.sqlite_stat1",
|
||||
sInfo.zDatabase);
|
||||
sqlite3SafetyOff(db);
|
||||
(void)sqlite3SafetyOff(db);
|
||||
rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0);
|
||||
sqlite3SafetyOn(db);
|
||||
sqliteFree(zSql);
|
||||
(void)sqlite3SafetyOn(db);
|
||||
sqlite3DbFree(db, zSql);
|
||||
return rc;
|
||||
}
|
||||
|
||||
|
|
141
attach.c
141
attach.c
|
@ -11,7 +11,7 @@
|
|||
*************************************************************************
|
||||
** This file contains code used to implement the ATTACH and DETACH commands.
|
||||
**
|
||||
** $Id: attach.c,v 1.60 2007/05/09 20:31:30 drh Exp $
|
||||
** $Id: attach.c,v 1.81 2008/12/10 16:45:51 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
|
@ -39,7 +39,7 @@ static int resolveAttachExpr(NameContext *pName, Expr *pExpr)
|
|||
int rc = SQLITE_OK;
|
||||
if( pExpr ){
|
||||
if( pExpr->op!=TK_ID ){
|
||||
rc = sqlite3ExprResolveNames(pName, pExpr);
|
||||
rc = sqlite3ResolveExprNames(pName, pExpr);
|
||||
if( rc==SQLITE_OK && !sqlite3ExprIsConstant(pExpr) ){
|
||||
sqlite3ErrorMsg(pName->pParse, "invalid name: \"%T\"", &pExpr->span);
|
||||
return SQLITE_ERROR;
|
||||
|
@ -64,17 +64,19 @@ static int resolveAttachExpr(NameContext *pName, Expr *pExpr)
|
|||
*/
|
||||
static void attachFunc(
|
||||
sqlite3_context *context,
|
||||
int argc,
|
||||
int NotUsed,
|
||||
sqlite3_value **argv
|
||||
){
|
||||
int i;
|
||||
int rc = 0;
|
||||
sqlite3 *db = sqlite3_user_data(context);
|
||||
sqlite3 *db = sqlite3_context_db_handle(context);
|
||||
const char *zName;
|
||||
const char *zFile;
|
||||
Db *aNew;
|
||||
char zErr[128];
|
||||
char *zErrDyn = 0;
|
||||
char zErr[128];
|
||||
|
||||
UNUSED_PARAMETER(NotUsed);
|
||||
|
||||
zFile = (const char *)sqlite3_value_text(argv[0]);
|
||||
zName = (const char *)sqlite3_value_text(argv[1]);
|
||||
|
@ -87,10 +89,10 @@ static void attachFunc(
|
|||
** * Transaction currently open
|
||||
** * Specified database name already being used.
|
||||
*/
|
||||
if( db->nDb>=SQLITE_MAX_ATTACHED+2 ){
|
||||
if( db->nDb>=db->aLimit[SQLITE_LIMIT_ATTACHED]+2 ){
|
||||
sqlite3_snprintf(
|
||||
sizeof(zErr), zErr, "too many attached databases - max %d",
|
||||
SQLITE_MAX_ATTACHED
|
||||
db->aLimit[SQLITE_LIMIT_ATTACHED]
|
||||
);
|
||||
goto attach_error;
|
||||
}
|
||||
|
@ -102,7 +104,8 @@ static void attachFunc(
|
|||
for(i=0; i<db->nDb; i++){
|
||||
char *z = db->aDb[i].zName;
|
||||
if( z && zName && sqlite3StrICmp(z, zName)==0 ){
|
||||
sqlite3_snprintf(sizeof(zErr), zErr, "database %s is already in use", zName);
|
||||
sqlite3_snprintf(sizeof(zErr), zErr,
|
||||
"database %s is already in use", zName);
|
||||
goto attach_error;
|
||||
}
|
||||
}
|
||||
|
@ -111,16 +114,12 @@ static void attachFunc(
|
|||
** hash tables.
|
||||
*/
|
||||
if( db->aDb==db->aDbStatic ){
|
||||
aNew = sqliteMalloc( sizeof(db->aDb[0])*3 );
|
||||
if( aNew==0 ){
|
||||
return;
|
||||
}
|
||||
aNew = sqlite3DbMallocRaw(db, sizeof(db->aDb[0])*3 );
|
||||
if( aNew==0 ) return;
|
||||
memcpy(aNew, db->aDb, sizeof(db->aDb[0])*2);
|
||||
}else{
|
||||
aNew = sqliteRealloc(db->aDb, sizeof(db->aDb[0])*(db->nDb+1) );
|
||||
if( aNew==0 ){
|
||||
return;
|
||||
}
|
||||
aNew = sqlite3DbRealloc(db, db->aDb, sizeof(db->aDb[0])*(db->nDb+1) );
|
||||
if( aNew==0 ) return;
|
||||
}
|
||||
db->aDb = aNew;
|
||||
aNew = &db->aDb[db->nDb++];
|
||||
|
@ -130,9 +129,12 @@ static void attachFunc(
|
|||
** it to obtain the database schema. At this point the schema may
|
||||
** or may not be initialised.
|
||||
*/
|
||||
rc = sqlite3BtreeFactory(db, zFile, 0, SQLITE_DEFAULT_CACHE_SIZE, &aNew->pBt);
|
||||
rc = sqlite3BtreeFactory(db, zFile, 0, SQLITE_DEFAULT_CACHE_SIZE,
|
||||
db->openFlags | SQLITE_OPEN_MAIN_DB,
|
||||
&aNew->pBt);
|
||||
if( rc==SQLITE_OK ){
|
||||
aNew->pSchema = sqlite3SchemaGet(aNew->pBt);
|
||||
Pager *pPager;
|
||||
aNew->pSchema = sqlite3SchemaGet(db, aNew->pBt);
|
||||
if( !aNew->pSchema ){
|
||||
rc = SQLITE_NOMEM;
|
||||
}else if( aNew->pSchema->file_format && aNew->pSchema->enc!=ENC(db) ){
|
||||
|
@ -140,9 +142,11 @@ static void attachFunc(
|
|||
"attached databases must use the same text encoding as main database");
|
||||
goto attach_error;
|
||||
}
|
||||
sqlite3PagerLockingMode(sqlite3BtreePager(aNew->pBt), db->dfltLockMode);
|
||||
pPager = sqlite3BtreePager(aNew->pBt);
|
||||
sqlite3PagerLockingMode(pPager, db->dfltLockMode);
|
||||
sqlite3PagerJournalMode(pPager, db->dfltJournalMode);
|
||||
}
|
||||
aNew->zName = sqliteStrDup(zName);
|
||||
aNew->zName = sqlite3DbStrDup(db, zName);
|
||||
aNew->safety_level = 3;
|
||||
|
||||
#if SQLITE_HAS_CODEC
|
||||
|
@ -155,7 +159,7 @@ static void attachFunc(
|
|||
switch( t ){
|
||||
case SQLITE_INTEGER:
|
||||
case SQLITE_FLOAT:
|
||||
zErrDyn = sqliteStrDup("Invalid key value");
|
||||
zErrDyn = sqlite3DbStrDup(db, "Invalid key value");
|
||||
rc = SQLITE_ERROR;
|
||||
break;
|
||||
|
||||
|
@ -181,9 +185,11 @@ static void attachFunc(
|
|||
** we found it.
|
||||
*/
|
||||
if( rc==SQLITE_OK ){
|
||||
sqlite3SafetyOn(db);
|
||||
(void)sqlite3SafetyOn(db);
|
||||
sqlite3BtreeEnterAll(db);
|
||||
rc = sqlite3Init(db, &zErrDyn);
|
||||
sqlite3SafetyOff(db);
|
||||
sqlite3BtreeLeaveAll(db);
|
||||
(void)sqlite3SafetyOff(db);
|
||||
}
|
||||
if( rc ){
|
||||
int iDb = db->nDb - 1;
|
||||
|
@ -195,8 +201,8 @@ static void attachFunc(
|
|||
}
|
||||
sqlite3ResetInternalSchema(db, 0);
|
||||
db->nDb = iDb;
|
||||
if( rc==SQLITE_NOMEM ){
|
||||
sqlite3FailedMalloc();
|
||||
if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){
|
||||
db->mallocFailed = 1;
|
||||
sqlite3_snprintf(sizeof(zErr),zErr, "out of memory");
|
||||
}else{
|
||||
sqlite3_snprintf(sizeof(zErr),zErr, "unable to open database: %s", zFile);
|
||||
|
@ -210,11 +216,12 @@ attach_error:
|
|||
/* Return an error if we get here */
|
||||
if( zErrDyn ){
|
||||
sqlite3_result_error(context, zErrDyn, -1);
|
||||
sqliteFree(zErrDyn);
|
||||
sqlite3DbFree(db, zErrDyn);
|
||||
}else{
|
||||
zErr[sizeof(zErr)-1] = 0;
|
||||
sqlite3_result_error(context, zErr, -1);
|
||||
}
|
||||
if( rc ) sqlite3_result_error_code(context, rc);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -227,15 +234,17 @@ attach_error:
|
|||
*/
|
||||
static void detachFunc(
|
||||
sqlite3_context *context,
|
||||
int argc,
|
||||
int NotUsed,
|
||||
sqlite3_value **argv
|
||||
){
|
||||
const char *zName = (const char *)sqlite3_value_text(argv[0]);
|
||||
sqlite3 *db = sqlite3_user_data(context);
|
||||
sqlite3 *db = sqlite3_context_db_handle(context);
|
||||
int i;
|
||||
Db *pDb = 0;
|
||||
char zErr[128];
|
||||
|
||||
UNUSED_PARAMETER(NotUsed);
|
||||
|
||||
if( zName==0 ) zName = "";
|
||||
for(i=0; i<db->nDb; i++){
|
||||
pDb = &db->aDb[i];
|
||||
|
@ -278,8 +287,7 @@ detach_error:
|
|||
static void codeAttach(
|
||||
Parse *pParse, /* The parser context */
|
||||
int type, /* Either SQLITE_ATTACH or SQLITE_DETACH */
|
||||
const char *zFunc, /* Either "sqlite_attach" or "sqlite_detach */
|
||||
int nFunc, /* Number of args to pass to zFunc */
|
||||
FuncDef *pFunc, /* FuncDef wrapper for detachFunc() or attachFunc() */
|
||||
Expr *pAuthArg, /* Expression to pass to authorization callback */
|
||||
Expr *pFilename, /* Name of database file */
|
||||
Expr *pDbname, /* Name of the database to use internally */
|
||||
|
@ -288,18 +296,18 @@ static void codeAttach(
|
|||
int rc;
|
||||
NameContext sName;
|
||||
Vdbe *v;
|
||||
FuncDef *pFunc;
|
||||
sqlite3* db = pParse->db;
|
||||
int regArgs;
|
||||
|
||||
#ifndef SQLITE_OMIT_AUTHORIZATION
|
||||
assert( sqlite3MallocFailed() || pAuthArg );
|
||||
assert( db->mallocFailed || pAuthArg );
|
||||
if( pAuthArg ){
|
||||
char *zAuthArg = sqlite3NameFromToken(&pAuthArg->span);
|
||||
char *zAuthArg = sqlite3NameFromToken(db, &pAuthArg->span);
|
||||
if( !zAuthArg ){
|
||||
goto attach_end;
|
||||
}
|
||||
rc = sqlite3AuthCheck(pParse, type, zAuthArg, 0, 0);
|
||||
sqliteFree(zAuthArg);
|
||||
sqlite3DbFree(db, zAuthArg);
|
||||
if(rc!=SQLITE_OK ){
|
||||
goto attach_end;
|
||||
}
|
||||
|
@ -319,27 +327,29 @@ static void codeAttach(
|
|||
}
|
||||
|
||||
v = sqlite3GetVdbe(pParse);
|
||||
sqlite3ExprCode(pParse, pFilename);
|
||||
sqlite3ExprCode(pParse, pDbname);
|
||||
sqlite3ExprCode(pParse, pKey);
|
||||
regArgs = sqlite3GetTempRange(pParse, 4);
|
||||
sqlite3ExprCode(pParse, pFilename, regArgs);
|
||||
sqlite3ExprCode(pParse, pDbname, regArgs+1);
|
||||
sqlite3ExprCode(pParse, pKey, regArgs+2);
|
||||
|
||||
assert( v || sqlite3MallocFailed() );
|
||||
assert( v || db->mallocFailed );
|
||||
if( v ){
|
||||
sqlite3VdbeAddOp(v, OP_Function, 0, nFunc);
|
||||
pFunc = sqlite3FindFunction(db, zFunc, strlen(zFunc), nFunc, SQLITE_UTF8,0);
|
||||
sqlite3VdbeChangeP3(v, -1, (char *)pFunc, P3_FUNCDEF);
|
||||
sqlite3VdbeAddOp3(v, OP_Function, 0, regArgs+3-pFunc->nArg, regArgs+3);
|
||||
assert( pFunc->nArg==-1 || (pFunc->nArg&0xff)==pFunc->nArg );
|
||||
sqlite3VdbeChangeP5(v, (u8)(pFunc->nArg));
|
||||
sqlite3VdbeChangeP4(v, -1, (char *)pFunc, P4_FUNCDEF);
|
||||
|
||||
/* Code an OP_Expire. For an ATTACH statement, set P1 to true (expire this
|
||||
** statement only). For DETACH, set it to false (expire all existing
|
||||
** statements).
|
||||
*/
|
||||
sqlite3VdbeAddOp(v, OP_Expire, (type==SQLITE_ATTACH), 0);
|
||||
sqlite3VdbeAddOp1(v, OP_Expire, (type==SQLITE_ATTACH));
|
||||
}
|
||||
|
||||
attach_end:
|
||||
sqlite3ExprDelete(pFilename);
|
||||
sqlite3ExprDelete(pDbname);
|
||||
sqlite3ExprDelete(pKey);
|
||||
sqlite3ExprDelete(db, pFilename);
|
||||
sqlite3ExprDelete(db, pDbname);
|
||||
sqlite3ExprDelete(db, pKey);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -348,7 +358,19 @@ attach_end:
|
|||
** DETACH pDbname
|
||||
*/
|
||||
void sqlite3Detach(Parse *pParse, Expr *pDbname){
|
||||
codeAttach(pParse, SQLITE_DETACH, "sqlite_detach", 1, pDbname, 0, 0, pDbname);
|
||||
static FuncDef detach_func = {
|
||||
1, /* nArg */
|
||||
SQLITE_UTF8, /* iPrefEnc */
|
||||
0, /* flags */
|
||||
0, /* pUserData */
|
||||
0, /* pNext */
|
||||
detachFunc, /* xFunc */
|
||||
0, /* xStep */
|
||||
0, /* xFinalize */
|
||||
"sqlite_detach", /* zName */
|
||||
0 /* pHash */
|
||||
};
|
||||
codeAttach(pParse, SQLITE_DETACH, &detach_func, pDbname, 0, 0, pDbname);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -357,21 +379,22 @@ void sqlite3Detach(Parse *pParse, Expr *pDbname){
|
|||
** ATTACH p AS pDbname KEY pKey
|
||||
*/
|
||||
void sqlite3Attach(Parse *pParse, Expr *p, Expr *pDbname, Expr *pKey){
|
||||
codeAttach(pParse, SQLITE_ATTACH, "sqlite_attach", 3, p, p, pDbname, pKey);
|
||||
static FuncDef attach_func = {
|
||||
3, /* nArg */
|
||||
SQLITE_UTF8, /* iPrefEnc */
|
||||
0, /* flags */
|
||||
0, /* pUserData */
|
||||
0, /* pNext */
|
||||
attachFunc, /* xFunc */
|
||||
0, /* xStep */
|
||||
0, /* xFinalize */
|
||||
"sqlite_attach", /* zName */
|
||||
0 /* pHash */
|
||||
};
|
||||
codeAttach(pParse, SQLITE_ATTACH, &attach_func, p, p, pDbname, pKey);
|
||||
}
|
||||
#endif /* SQLITE_OMIT_ATTACH */
|
||||
|
||||
/*
|
||||
** Register the functions sqlite_attach and sqlite_detach.
|
||||
*/
|
||||
void sqlite3AttachFunctions(sqlite3 *db){
|
||||
#ifndef SQLITE_OMIT_ATTACH
|
||||
static const int enc = SQLITE_UTF8;
|
||||
sqlite3CreateFunc(db, "sqlite_attach", 3, enc, db, attachFunc, 0, 0);
|
||||
sqlite3CreateFunc(db, "sqlite_detach", 1, enc, db, detachFunc, 0, 0);
|
||||
#endif
|
||||
}
|
||||
|
||||
/*
|
||||
** Initialize a DbFixer structure. This routine must be called prior
|
||||
** to passing the structure to one of the sqliteFixAAAA() routines below.
|
||||
|
@ -424,7 +447,7 @@ int sqlite3FixSrcList(
|
|||
zDb = pFix->zDb;
|
||||
for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
|
||||
if( pItem->zDatabase==0 ){
|
||||
pItem->zDatabase = sqliteStrDup(zDb);
|
||||
pItem->zDatabase = sqlite3DbStrDup(pFix->pParse->db, zDb);
|
||||
}else if( sqlite3StrICmp(pItem->zDatabase,zDb)!=0 ){
|
||||
sqlite3ErrorMsg(pFix->pParse,
|
||||
"%s %T cannot reference objects in database %s",
|
||||
|
|
11
auth.c
11
auth.c
|
@ -14,7 +14,7 @@
|
|||
** systems that do not need this facility may omit it by recompiling
|
||||
** the library with -DSQLITE_OMIT_AUTHORIZATION=1
|
||||
**
|
||||
** $Id: auth.c,v 1.26 2007/05/14 11:34:47 drh Exp $
|
||||
** $Id: auth.c,v 1.29 2007/09/18 15:55:07 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
|
@ -74,9 +74,11 @@ int sqlite3_set_authorizer(
|
|||
int (*xAuth)(void*,int,const char*,const char*,const char*,const char*),
|
||||
void *pArg
|
||||
){
|
||||
sqlite3_mutex_enter(db->mutex);
|
||||
db->xAuth = xAuth;
|
||||
db->pAuthArg = pArg;
|
||||
sqlite3ExpirePreparedStatements(db);
|
||||
sqlite3_mutex_leave(db->mutex);
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
|
@ -103,11 +105,12 @@ static void sqliteAuthBadReturnCode(Parse *pParse, int rc){
|
|||
void sqlite3AuthRead(
|
||||
Parse *pParse, /* The parser context */
|
||||
Expr *pExpr, /* The expression to check authorization on */
|
||||
Schema *pSchema, /* The schema of the expression */
|
||||
SrcList *pTabList /* All table that pExpr might refer to */
|
||||
){
|
||||
sqlite3 *db = pParse->db;
|
||||
int rc;
|
||||
Table *pTab; /* The table being read */
|
||||
Table *pTab = 0; /* The table being read */
|
||||
const char *zCol; /* Name of the column of the table */
|
||||
int iSrc; /* Index in pTabList->a[] of table being read */
|
||||
const char *zDBase; /* Name of database being accessed */
|
||||
|
@ -116,7 +119,7 @@ void sqlite3AuthRead(
|
|||
|
||||
if( db->xAuth==0 ) return;
|
||||
if( pExpr->op!=TK_COLUMN ) return;
|
||||
iDb = sqlite3SchemaToIndex(pParse->db, pExpr->pSchema);
|
||||
iDb = sqlite3SchemaToIndex(pParse->db, pSchema);
|
||||
if( iDb<0 ){
|
||||
/* An attempt to read a column out of a subquery or other
|
||||
** temporary table. */
|
||||
|
@ -133,8 +136,6 @@ void sqlite3AuthRead(
|
|||
*/
|
||||
assert( pExpr->iTable==pStack->newIdx || pExpr->iTable==pStack->oldIdx );
|
||||
pTab = pStack->pTab;
|
||||
}else{
|
||||
return;
|
||||
}
|
||||
if( pTab==0 ) return;
|
||||
if( pExpr->iColumn>=0 ){
|
||||
|
|
386
bitvec.c
Normal file
386
bitvec.c
Normal file
|
@ -0,0 +1,386 @@
|
|||
/*
|
||||
** 2008 February 16
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This file implements an object that represents a fixed-length
|
||||
** bitmap. Bits are numbered starting with 1.
|
||||
**
|
||||
** A bitmap is used to record which pages of a database file have been
|
||||
** journalled during a transaction, or which pages have the "dont-write"
|
||||
** property. Usually only a few pages are meet either condition.
|
||||
** So the bitmap is usually sparse and has low cardinality.
|
||||
** But sometimes (for example when during a DROP of a large table) most
|
||||
** or all of the pages in a database can get journalled. In those cases,
|
||||
** the bitmap becomes dense with high cardinality. The algorithm needs
|
||||
** to handle both cases well.
|
||||
**
|
||||
** The size of the bitmap is fixed when the object is created.
|
||||
**
|
||||
** All bits are clear when the bitmap is created. Individual bits
|
||||
** may be set or cleared one at a time.
|
||||
**
|
||||
** Test operations are about 100 times more common that set operations.
|
||||
** Clear operations are exceedingly rare. There are usually between
|
||||
** 5 and 500 set operations per Bitvec object, though the number of sets can
|
||||
** sometimes grow into tens of thousands or larger. The size of the
|
||||
** Bitvec object is the number of pages in the database file at the
|
||||
** start of a transaction, and is thus usually less than a few thousand,
|
||||
** but can be as large as 2 billion for a really big database.
|
||||
**
|
||||
** @(#) $Id: bitvec.c,v 1.10 2009/01/02 21:39:39 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
/* Size of the Bitvec structure in bytes. */
|
||||
#define BITVEC_SZ 512
|
||||
|
||||
/* Round the union size down to the nearest pointer boundary, since that's how
|
||||
** it will be aligned within the Bitvec struct. */
|
||||
#define BITVEC_USIZE (((BITVEC_SZ-(3*sizeof(u32)))/sizeof(Bitvec*))*sizeof(Bitvec*))
|
||||
|
||||
/* Type of the array "element" for the bitmap representation.
|
||||
** Should be a power of 2, and ideally, evenly divide into BITVEC_USIZE.
|
||||
** Setting this to the "natural word" size of your CPU may improve
|
||||
** performance. */
|
||||
#define BITVEC_TELEM u8
|
||||
/* Size, in bits, of the bitmap element. */
|
||||
#define BITVEC_SZELEM 8
|
||||
/* Number of elements in a bitmap array. */
|
||||
#define BITVEC_NELEM (BITVEC_USIZE/sizeof(BITVEC_TELEM))
|
||||
/* Number of bits in the bitmap array. */
|
||||
#define BITVEC_NBIT (BITVEC_NELEM*BITVEC_SZELEM)
|
||||
|
||||
/* Number of u32 values in hash table. */
|
||||
#define BITVEC_NINT (BITVEC_USIZE/sizeof(u32))
|
||||
/* Maximum number of entries in hash table before
|
||||
** sub-dividing and re-hashing. */
|
||||
#define BITVEC_MXHASH (BITVEC_NINT/2)
|
||||
/* Hashing function for the aHash representation.
|
||||
** Empirical testing showed that the *37 multiplier
|
||||
** (an arbitrary prime)in the hash function provided
|
||||
** no fewer collisions than the no-op *1. */
|
||||
#define BITVEC_HASH(X) (((X)*1)%BITVEC_NINT)
|
||||
|
||||
#define BITVEC_NPTR (BITVEC_USIZE/sizeof(Bitvec *))
|
||||
|
||||
|
||||
/*
|
||||
** A bitmap is an instance of the following structure.
|
||||
**
|
||||
** This bitmap records the existance of zero or more bits
|
||||
** with values between 1 and iSize, inclusive.
|
||||
**
|
||||
** There are three possible representations of the bitmap.
|
||||
** If iSize<=BITVEC_NBIT, then Bitvec.u.aBitmap[] is a straight
|
||||
** bitmap. The least significant bit is bit 1.
|
||||
**
|
||||
** If iSize>BITVEC_NBIT and iDivisor==0 then Bitvec.u.aHash[] is
|
||||
** a hash table that will hold up to BITVEC_MXHASH distinct values.
|
||||
**
|
||||
** Otherwise, the value i is redirected into one of BITVEC_NPTR
|
||||
** sub-bitmaps pointed to by Bitvec.u.apSub[]. Each subbitmap
|
||||
** handles up to iDivisor separate values of i. apSub[0] holds
|
||||
** values between 1 and iDivisor. apSub[1] holds values between
|
||||
** iDivisor+1 and 2*iDivisor. apSub[N] holds values between
|
||||
** N*iDivisor+1 and (N+1)*iDivisor. Each subbitmap is normalized
|
||||
** to hold deal with values between 1 and iDivisor.
|
||||
*/
|
||||
struct Bitvec {
|
||||
u32 iSize; /* Maximum bit index. Max iSize is 4,294,967,296. */
|
||||
u32 nSet; /* Number of bits that are set - only valid for aHash element */
|
||||
/* Max nSet is BITVEC_NINT. For BITVEC_SZ of 512, this would be 125. */
|
||||
u32 iDivisor; /* Number of bits handled by each apSub[] entry. */
|
||||
/* Should >=0 for apSub element. */
|
||||
/* Max iDivisor is max(u32) / BITVEC_NPTR + 1. */
|
||||
/* For a BITVEC_SZ of 512, this would be 34,359,739. */
|
||||
union {
|
||||
BITVEC_TELEM aBitmap[BITVEC_NELEM]; /* Bitmap representation */
|
||||
u32 aHash[BITVEC_NINT]; /* Hash table representation */
|
||||
Bitvec *apSub[BITVEC_NPTR]; /* Recursive representation */
|
||||
} u;
|
||||
};
|
||||
|
||||
/*
|
||||
** Create a new bitmap object able to handle bits between 0 and iSize,
|
||||
** inclusive. Return a pointer to the new object. Return NULL if
|
||||
** malloc fails.
|
||||
*/
|
||||
Bitvec *sqlite3BitvecCreate(u32 iSize){
|
||||
Bitvec *p;
|
||||
assert( sizeof(*p)==BITVEC_SZ );
|
||||
p = sqlite3MallocZero( sizeof(*p) );
|
||||
if( p ){
|
||||
p->iSize = iSize;
|
||||
}
|
||||
return p;
|
||||
}
|
||||
|
||||
/*
|
||||
** Check to see if the i-th bit is set. Return true or false.
|
||||
** If p is NULL (if the bitmap has not been created) or if
|
||||
** i is out of range, then return false.
|
||||
*/
|
||||
int sqlite3BitvecTest(Bitvec *p, u32 i){
|
||||
if( p==0 ) return 0;
|
||||
if( i>p->iSize || i==0 ) return 0;
|
||||
i--;
|
||||
while( p->iDivisor ){
|
||||
u32 bin = i/p->iDivisor;
|
||||
i = i%p->iDivisor;
|
||||
p = p->u.apSub[bin];
|
||||
if (!p) {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
if( p->iSize<=BITVEC_NBIT ){
|
||||
return (p->u.aBitmap[i/BITVEC_SZELEM] & (1<<(i&(BITVEC_SZELEM-1))))!=0;
|
||||
} else{
|
||||
u32 h = BITVEC_HASH(i++);
|
||||
while( p->u.aHash[h] ){
|
||||
if( p->u.aHash[h]==i ) return 1;
|
||||
h++;
|
||||
if( h>=BITVEC_NINT ) h = 0;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Set the i-th bit. Return 0 on success and an error code if
|
||||
** anything goes wrong.
|
||||
**
|
||||
** This routine might cause sub-bitmaps to be allocated. Failing
|
||||
** to get the memory needed to hold the sub-bitmap is the only
|
||||
** that can go wrong with an insert, assuming p and i are valid.
|
||||
**
|
||||
** The calling function must ensure that p is a valid Bitvec object
|
||||
** and that the value for "i" is within range of the Bitvec object.
|
||||
** Otherwise the behavior is undefined.
|
||||
*/
|
||||
int sqlite3BitvecSet(Bitvec *p, u32 i){
|
||||
u32 h;
|
||||
assert( p!=0 );
|
||||
assert( i>0 );
|
||||
assert( i<=p->iSize );
|
||||
i--;
|
||||
while((p->iSize > BITVEC_NBIT) && p->iDivisor) {
|
||||
u32 bin = i/p->iDivisor;
|
||||
i = i%p->iDivisor;
|
||||
if( p->u.apSub[bin]==0 ){
|
||||
p->u.apSub[bin] = sqlite3BitvecCreate( p->iDivisor );
|
||||
if( p->u.apSub[bin]==0 ) return SQLITE_NOMEM;
|
||||
}
|
||||
p = p->u.apSub[bin];
|
||||
}
|
||||
if( p->iSize<=BITVEC_NBIT ){
|
||||
p->u.aBitmap[i/BITVEC_SZELEM] |= 1 << (i&(BITVEC_SZELEM-1));
|
||||
return SQLITE_OK;
|
||||
}
|
||||
h = BITVEC_HASH(i++);
|
||||
/* if there wasn't a hash collision, and this doesn't */
|
||||
/* completely fill the hash, then just add it without */
|
||||
/* worring about sub-dividing and re-hashing. */
|
||||
if( !p->u.aHash[h] ){
|
||||
if (p->nSet<(BITVEC_NINT-1)) {
|
||||
goto bitvec_set_end;
|
||||
} else {
|
||||
goto bitvec_set_rehash;
|
||||
}
|
||||
}
|
||||
/* there was a collision, check to see if it's already */
|
||||
/* in hash, if not, try to find a spot for it */
|
||||
do {
|
||||
if( p->u.aHash[h]==i ) return SQLITE_OK;
|
||||
h++;
|
||||
if( h>=BITVEC_NINT ) h = 0;
|
||||
} while( p->u.aHash[h] );
|
||||
/* we didn't find it in the hash. h points to the first */
|
||||
/* available free spot. check to see if this is going to */
|
||||
/* make our hash too "full". */
|
||||
bitvec_set_rehash:
|
||||
if( p->nSet>=BITVEC_MXHASH ){
|
||||
unsigned int j;
|
||||
int rc;
|
||||
u32 aiValues[BITVEC_NINT];
|
||||
memcpy(aiValues, p->u.aHash, sizeof(aiValues));
|
||||
memset(p->u.apSub, 0, sizeof(aiValues));
|
||||
p->iDivisor = (p->iSize + BITVEC_NPTR - 1)/BITVEC_NPTR;
|
||||
rc = sqlite3BitvecSet(p, i);
|
||||
for(j=0; j<BITVEC_NINT; j++){
|
||||
if( aiValues[j] ) rc |= sqlite3BitvecSet(p, aiValues[j]);
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
bitvec_set_end:
|
||||
p->nSet++;
|
||||
p->u.aHash[h] = i;
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Clear the i-th bit.
|
||||
*/
|
||||
void sqlite3BitvecClear(Bitvec *p, u32 i){
|
||||
assert( p!=0 );
|
||||
assert( i>0 );
|
||||
i--;
|
||||
while( p->iDivisor ){
|
||||
u32 bin = i/p->iDivisor;
|
||||
i = i%p->iDivisor;
|
||||
p = p->u.apSub[bin];
|
||||
if (!p) {
|
||||
return;
|
||||
}
|
||||
}
|
||||
if( p->iSize<=BITVEC_NBIT ){
|
||||
p->u.aBitmap[i/BITVEC_SZELEM] &= ~(1 << (i&(BITVEC_SZELEM-1)));
|
||||
}else{
|
||||
unsigned int j;
|
||||
u32 aiValues[BITVEC_NINT];
|
||||
memcpy(aiValues, p->u.aHash, sizeof(aiValues));
|
||||
memset(p->u.aHash, 0, sizeof(aiValues));
|
||||
p->nSet = 0;
|
||||
for(j=0; j<BITVEC_NINT; j++){
|
||||
if( aiValues[j] && aiValues[j]!=(i+1) ){
|
||||
u32 h = BITVEC_HASH(aiValues[j]-1);
|
||||
p->nSet++;
|
||||
while( p->u.aHash[h] ){
|
||||
h++;
|
||||
if( h>=BITVEC_NINT ) h = 0;
|
||||
}
|
||||
p->u.aHash[h] = aiValues[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Destroy a bitmap object. Reclaim all memory used.
|
||||
*/
|
||||
void sqlite3BitvecDestroy(Bitvec *p){
|
||||
if( p==0 ) return;
|
||||
if( p->iDivisor ){
|
||||
unsigned int i;
|
||||
for(i=0; i<BITVEC_NPTR; i++){
|
||||
sqlite3BitvecDestroy(p->u.apSub[i]);
|
||||
}
|
||||
}
|
||||
sqlite3_free(p);
|
||||
}
|
||||
|
||||
#ifndef SQLITE_OMIT_BUILTIN_TEST
|
||||
/*
|
||||
** Let V[] be an array of unsigned characters sufficient to hold
|
||||
** up to N bits. Let I be an integer between 0 and N. 0<=I<N.
|
||||
** Then the following macros can be used to set, clear, or test
|
||||
** individual bits within V.
|
||||
*/
|
||||
#define SETBIT(V,I) V[I>>3] |= (1<<(I&7))
|
||||
#define CLEARBIT(V,I) V[I>>3] &= ~(1<<(I&7))
|
||||
#define TESTBIT(V,I) (V[I>>3]&(1<<(I&7)))!=0
|
||||
|
||||
/*
|
||||
** This routine runs an extensive test of the Bitvec code.
|
||||
**
|
||||
** The input is an array of integers that acts as a program
|
||||
** to test the Bitvec. The integers are opcodes followed
|
||||
** by 0, 1, or 3 operands, depending on the opcode. Another
|
||||
** opcode follows immediately after the last operand.
|
||||
**
|
||||
** There are 6 opcodes numbered from 0 through 5. 0 is the
|
||||
** "halt" opcode and causes the test to end.
|
||||
**
|
||||
** 0 Halt and return the number of errors
|
||||
** 1 N S X Set N bits beginning with S and incrementing by X
|
||||
** 2 N S X Clear N bits beginning with S and incrementing by X
|
||||
** 3 N Set N randomly chosen bits
|
||||
** 4 N Clear N randomly chosen bits
|
||||
** 5 N S X Set N bits from S increment X in array only, not in bitvec
|
||||
**
|
||||
** The opcodes 1 through 4 perform set and clear operations are performed
|
||||
** on both a Bitvec object and on a linear array of bits obtained from malloc.
|
||||
** Opcode 5 works on the linear array only, not on the Bitvec.
|
||||
** Opcode 5 is used to deliberately induce a fault in order to
|
||||
** confirm that error detection works.
|
||||
**
|
||||
** At the conclusion of the test the linear array is compared
|
||||
** against the Bitvec object. If there are any differences,
|
||||
** an error is returned. If they are the same, zero is returned.
|
||||
**
|
||||
** If a memory allocation error occurs, return -1.
|
||||
*/
|
||||
int sqlite3BitvecBuiltinTest(int sz, int *aOp){
|
||||
Bitvec *pBitvec = 0;
|
||||
unsigned char *pV = 0;
|
||||
int rc = -1;
|
||||
int i, nx, pc, op;
|
||||
|
||||
/* Allocate the Bitvec to be tested and a linear array of
|
||||
** bits to act as the reference */
|
||||
pBitvec = sqlite3BitvecCreate( sz );
|
||||
pV = sqlite3_malloc( (sz+7)/8 + 1 );
|
||||
if( pBitvec==0 || pV==0 ) goto bitvec_end;
|
||||
memset(pV, 0, (sz+7)/8 + 1);
|
||||
|
||||
/* Run the program */
|
||||
pc = 0;
|
||||
while( (op = aOp[pc])!=0 ){
|
||||
switch( op ){
|
||||
case 1:
|
||||
case 2:
|
||||
case 5: {
|
||||
nx = 4;
|
||||
i = aOp[pc+2] - 1;
|
||||
aOp[pc+2] += aOp[pc+3];
|
||||
break;
|
||||
}
|
||||
case 3:
|
||||
case 4:
|
||||
default: {
|
||||
nx = 2;
|
||||
sqlite3_randomness(sizeof(i), &i);
|
||||
break;
|
||||
}
|
||||
}
|
||||
if( (--aOp[pc+1]) > 0 ) nx = 0;
|
||||
pc += nx;
|
||||
i = (i & 0x7fffffff)%sz;
|
||||
if( (op & 1)!=0 ){
|
||||
SETBIT(pV, (i+1));
|
||||
if( op!=5 ){
|
||||
if( sqlite3BitvecSet(pBitvec, i+1) ) goto bitvec_end;
|
||||
}
|
||||
}else{
|
||||
CLEARBIT(pV, (i+1));
|
||||
sqlite3BitvecClear(pBitvec, i+1);
|
||||
}
|
||||
}
|
||||
|
||||
/* Test to make sure the linear array exactly matches the
|
||||
** Bitvec object. Start with the assumption that they do
|
||||
** match (rc==0). Change rc to non-zero if a discrepancy
|
||||
** is found.
|
||||
*/
|
||||
rc = sqlite3BitvecTest(0,0) + sqlite3BitvecTest(pBitvec, sz+1)
|
||||
+ sqlite3BitvecTest(pBitvec, 0);
|
||||
for(i=1; i<=sz; i++){
|
||||
if( (TESTBIT(pV,i))!=sqlite3BitvecTest(pBitvec,i) ){
|
||||
rc = i;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
/* Free allocated structure */
|
||||
bitvec_end:
|
||||
sqlite3_free(pV);
|
||||
sqlite3BitvecDestroy(pBitvec);
|
||||
return rc;
|
||||
}
|
||||
#endif /* SQLITE_OMIT_BUILTIN_TEST */
|
315
btmutex.c
Normal file
315
btmutex.c
Normal file
|
@ -0,0 +1,315 @@
|
|||
/*
|
||||
** 2007 August 27
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
**
|
||||
** $Id: btmutex.c,v 1.12 2008/11/17 19:18:55 danielk1977 Exp $
|
||||
**
|
||||
** This file contains code used to implement mutexes on Btree objects.
|
||||
** This code really belongs in btree.c. But btree.c is getting too
|
||||
** big and we want to break it down some. This packaged seemed like
|
||||
** a good breakout.
|
||||
*/
|
||||
#include "btreeInt.h"
|
||||
#if SQLITE_THREADSAFE && !defined(SQLITE_OMIT_SHARED_CACHE)
|
||||
|
||||
|
||||
/*
|
||||
** Enter a mutex on the given BTree object.
|
||||
**
|
||||
** If the object is not sharable, then no mutex is ever required
|
||||
** and this routine is a no-op. The underlying mutex is non-recursive.
|
||||
** But we keep a reference count in Btree.wantToLock so the behavior
|
||||
** of this interface is recursive.
|
||||
**
|
||||
** To avoid deadlocks, multiple Btrees are locked in the same order
|
||||
** by all database connections. The p->pNext is a list of other
|
||||
** Btrees belonging to the same database connection as the p Btree
|
||||
** which need to be locked after p. If we cannot get a lock on
|
||||
** p, then first unlock all of the others on p->pNext, then wait
|
||||
** for the lock to become available on p, then relock all of the
|
||||
** subsequent Btrees that desire a lock.
|
||||
*/
|
||||
void sqlite3BtreeEnter(Btree *p){
|
||||
Btree *pLater;
|
||||
|
||||
/* Some basic sanity checking on the Btree. The list of Btrees
|
||||
** connected by pNext and pPrev should be in sorted order by
|
||||
** Btree.pBt value. All elements of the list should belong to
|
||||
** the same connection. Only shared Btrees are on the list. */
|
||||
assert( p->pNext==0 || p->pNext->pBt>p->pBt );
|
||||
assert( p->pPrev==0 || p->pPrev->pBt<p->pBt );
|
||||
assert( p->pNext==0 || p->pNext->db==p->db );
|
||||
assert( p->pPrev==0 || p->pPrev->db==p->db );
|
||||
assert( p->sharable || (p->pNext==0 && p->pPrev==0) );
|
||||
|
||||
/* Check for locking consistency */
|
||||
assert( !p->locked || p->wantToLock>0 );
|
||||
assert( p->sharable || p->wantToLock==0 );
|
||||
|
||||
/* We should already hold a lock on the database connection */
|
||||
assert( sqlite3_mutex_held(p->db->mutex) );
|
||||
|
||||
if( !p->sharable ) return;
|
||||
p->wantToLock++;
|
||||
if( p->locked ) return;
|
||||
|
||||
/* In most cases, we should be able to acquire the lock we
|
||||
** want without having to go throught the ascending lock
|
||||
** procedure that follows. Just be sure not to block.
|
||||
*/
|
||||
if( sqlite3_mutex_try(p->pBt->mutex)==SQLITE_OK ){
|
||||
p->locked = 1;
|
||||
return;
|
||||
}
|
||||
|
||||
/* To avoid deadlock, first release all locks with a larger
|
||||
** BtShared address. Then acquire our lock. Then reacquire
|
||||
** the other BtShared locks that we used to hold in ascending
|
||||
** order.
|
||||
*/
|
||||
for(pLater=p->pNext; pLater; pLater=pLater->pNext){
|
||||
assert( pLater->sharable );
|
||||
assert( pLater->pNext==0 || pLater->pNext->pBt>pLater->pBt );
|
||||
assert( !pLater->locked || pLater->wantToLock>0 );
|
||||
if( pLater->locked ){
|
||||
sqlite3_mutex_leave(pLater->pBt->mutex);
|
||||
pLater->locked = 0;
|
||||
}
|
||||
}
|
||||
sqlite3_mutex_enter(p->pBt->mutex);
|
||||
p->locked = 1;
|
||||
for(pLater=p->pNext; pLater; pLater=pLater->pNext){
|
||||
if( pLater->wantToLock ){
|
||||
sqlite3_mutex_enter(pLater->pBt->mutex);
|
||||
pLater->locked = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Exit the recursive mutex on a Btree.
|
||||
*/
|
||||
void sqlite3BtreeLeave(Btree *p){
|
||||
if( p->sharable ){
|
||||
assert( p->wantToLock>0 );
|
||||
p->wantToLock--;
|
||||
if( p->wantToLock==0 ){
|
||||
assert( p->locked );
|
||||
sqlite3_mutex_leave(p->pBt->mutex);
|
||||
p->locked = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#ifndef NDEBUG
|
||||
/*
|
||||
** Return true if the BtShared mutex is held on the btree.
|
||||
**
|
||||
** This routine makes no determination one why or another if the
|
||||
** database connection mutex is held.
|
||||
**
|
||||
** This routine is used only from within assert() statements.
|
||||
*/
|
||||
int sqlite3BtreeHoldsMutex(Btree *p){
|
||||
return (p->sharable==0 ||
|
||||
(p->locked && p->wantToLock && sqlite3_mutex_held(p->pBt->mutex)));
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
#ifndef SQLITE_OMIT_INCRBLOB
|
||||
/*
|
||||
** Enter and leave a mutex on a Btree given a cursor owned by that
|
||||
** Btree. These entry points are used by incremental I/O and can be
|
||||
** omitted if that module is not used.
|
||||
*/
|
||||
void sqlite3BtreeEnterCursor(BtCursor *pCur){
|
||||
sqlite3BtreeEnter(pCur->pBtree);
|
||||
}
|
||||
void sqlite3BtreeLeaveCursor(BtCursor *pCur){
|
||||
sqlite3BtreeLeave(pCur->pBtree);
|
||||
}
|
||||
#endif /* SQLITE_OMIT_INCRBLOB */
|
||||
|
||||
|
||||
/*
|
||||
** Enter the mutex on every Btree associated with a database
|
||||
** connection. This is needed (for example) prior to parsing
|
||||
** a statement since we will be comparing table and column names
|
||||
** against all schemas and we do not want those schemas being
|
||||
** reset out from under us.
|
||||
**
|
||||
** There is a corresponding leave-all procedures.
|
||||
**
|
||||
** Enter the mutexes in accending order by BtShared pointer address
|
||||
** to avoid the possibility of deadlock when two threads with
|
||||
** two or more btrees in common both try to lock all their btrees
|
||||
** at the same instant.
|
||||
*/
|
||||
void sqlite3BtreeEnterAll(sqlite3 *db){
|
||||
int i;
|
||||
Btree *p, *pLater;
|
||||
assert( sqlite3_mutex_held(db->mutex) );
|
||||
for(i=0; i<db->nDb; i++){
|
||||
p = db->aDb[i].pBt;
|
||||
if( p && p->sharable ){
|
||||
p->wantToLock++;
|
||||
if( !p->locked ){
|
||||
assert( p->wantToLock==1 );
|
||||
while( p->pPrev ) p = p->pPrev;
|
||||
while( p->locked && p->pNext ) p = p->pNext;
|
||||
for(pLater = p->pNext; pLater; pLater=pLater->pNext){
|
||||
if( pLater->locked ){
|
||||
sqlite3_mutex_leave(pLater->pBt->mutex);
|
||||
pLater->locked = 0;
|
||||
}
|
||||
}
|
||||
while( p ){
|
||||
sqlite3_mutex_enter(p->pBt->mutex);
|
||||
p->locked++;
|
||||
p = p->pNext;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
void sqlite3BtreeLeaveAll(sqlite3 *db){
|
||||
int i;
|
||||
Btree *p;
|
||||
assert( sqlite3_mutex_held(db->mutex) );
|
||||
for(i=0; i<db->nDb; i++){
|
||||
p = db->aDb[i].pBt;
|
||||
if( p && p->sharable ){
|
||||
assert( p->wantToLock>0 );
|
||||
p->wantToLock--;
|
||||
if( p->wantToLock==0 ){
|
||||
assert( p->locked );
|
||||
sqlite3_mutex_leave(p->pBt->mutex);
|
||||
p->locked = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#ifndef NDEBUG
|
||||
/*
|
||||
** Return true if the current thread holds the database connection
|
||||
** mutex and all required BtShared mutexes.
|
||||
**
|
||||
** This routine is used inside assert() statements only.
|
||||
*/
|
||||
int sqlite3BtreeHoldsAllMutexes(sqlite3 *db){
|
||||
int i;
|
||||
if( !sqlite3_mutex_held(db->mutex) ){
|
||||
return 0;
|
||||
}
|
||||
for(i=0; i<db->nDb; i++){
|
||||
Btree *p;
|
||||
p = db->aDb[i].pBt;
|
||||
if( p && p->sharable &&
|
||||
(p->wantToLock==0 || !sqlite3_mutex_held(p->pBt->mutex)) ){
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
#endif /* NDEBUG */
|
||||
|
||||
/*
|
||||
** Add a new Btree pointer to a BtreeMutexArray.
|
||||
** if the pointer can possibly be shared with
|
||||
** another database connection.
|
||||
**
|
||||
** The pointers are kept in sorted order by pBtree->pBt. That
|
||||
** way when we go to enter all the mutexes, we can enter them
|
||||
** in order without every having to backup and retry and without
|
||||
** worrying about deadlock.
|
||||
**
|
||||
** The number of shared btrees will always be small (usually 0 or 1)
|
||||
** so an insertion sort is an adequate algorithm here.
|
||||
*/
|
||||
void sqlite3BtreeMutexArrayInsert(BtreeMutexArray *pArray, Btree *pBtree){
|
||||
int i, j;
|
||||
BtShared *pBt;
|
||||
if( pBtree==0 || pBtree->sharable==0 ) return;
|
||||
#ifndef NDEBUG
|
||||
{
|
||||
for(i=0; i<pArray->nMutex; i++){
|
||||
assert( pArray->aBtree[i]!=pBtree );
|
||||
}
|
||||
}
|
||||
#endif
|
||||
assert( pArray->nMutex>=0 );
|
||||
assert( pArray->nMutex<ArraySize(pArray->aBtree)-1 );
|
||||
pBt = pBtree->pBt;
|
||||
for(i=0; i<pArray->nMutex; i++){
|
||||
assert( pArray->aBtree[i]!=pBtree );
|
||||
if( pArray->aBtree[i]->pBt>pBt ){
|
||||
for(j=pArray->nMutex; j>i; j--){
|
||||
pArray->aBtree[j] = pArray->aBtree[j-1];
|
||||
}
|
||||
pArray->aBtree[i] = pBtree;
|
||||
pArray->nMutex++;
|
||||
return;
|
||||
}
|
||||
}
|
||||
pArray->aBtree[pArray->nMutex++] = pBtree;
|
||||
}
|
||||
|
||||
/*
|
||||
** Enter the mutex of every btree in the array. This routine is
|
||||
** called at the beginning of sqlite3VdbeExec(). The mutexes are
|
||||
** exited at the end of the same function.
|
||||
*/
|
||||
void sqlite3BtreeMutexArrayEnter(BtreeMutexArray *pArray){
|
||||
int i;
|
||||
for(i=0; i<pArray->nMutex; i++){
|
||||
Btree *p = pArray->aBtree[i];
|
||||
/* Some basic sanity checking */
|
||||
assert( i==0 || pArray->aBtree[i-1]->pBt<p->pBt );
|
||||
assert( !p->locked || p->wantToLock>0 );
|
||||
|
||||
/* We should already hold a lock on the database connection */
|
||||
assert( sqlite3_mutex_held(p->db->mutex) );
|
||||
|
||||
p->wantToLock++;
|
||||
if( !p->locked && p->sharable ){
|
||||
sqlite3_mutex_enter(p->pBt->mutex);
|
||||
p->locked = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Leave the mutex of every btree in the group.
|
||||
*/
|
||||
void sqlite3BtreeMutexArrayLeave(BtreeMutexArray *pArray){
|
||||
int i;
|
||||
for(i=0; i<pArray->nMutex; i++){
|
||||
Btree *p = pArray->aBtree[i];
|
||||
/* Some basic sanity checking */
|
||||
assert( i==0 || pArray->aBtree[i-1]->pBt<p->pBt );
|
||||
assert( p->locked || !p->sharable );
|
||||
assert( p->wantToLock>0 );
|
||||
|
||||
/* We should already hold a lock on the database connection */
|
||||
assert( sqlite3_mutex_held(p->db->mutex) );
|
||||
|
||||
p->wantToLock--;
|
||||
if( p->wantToLock==0 && p->locked ){
|
||||
sqlite3_mutex_leave(p->pBt->mutex);
|
||||
p->locked = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#endif /* SQLITE_THREADSAFE && !SQLITE_OMIT_SHARED_CACHE */
|
94
btree.h
94
btree.h
|
@ -13,7 +13,7 @@
|
|||
** subsystem. See comments in the source code for a detailed description
|
||||
** of what each interface routine does.
|
||||
**
|
||||
** @(#) $Id: btree.h,v 1.82 2007/05/08 21:45:27 drh Exp $
|
||||
** @(#) $Id: btree.h,v 1.106 2008/12/17 17:30:26 danielk1977 Exp $
|
||||
*/
|
||||
#ifndef _BTREE_H_
|
||||
#define _BTREE_H_
|
||||
|
@ -41,13 +41,26 @@
|
|||
typedef struct Btree Btree;
|
||||
typedef struct BtCursor BtCursor;
|
||||
typedef struct BtShared BtShared;
|
||||
typedef struct BtreeMutexArray BtreeMutexArray;
|
||||
|
||||
/*
|
||||
** This structure records all of the Btrees that need to hold
|
||||
** a mutex before we enter sqlite3VdbeExec(). The Btrees are
|
||||
** are placed in aBtree[] in order of aBtree[]->pBt. That way,
|
||||
** we can always lock and unlock them all quickly.
|
||||
*/
|
||||
struct BtreeMutexArray {
|
||||
int nMutex;
|
||||
Btree *aBtree[SQLITE_MAX_ATTACHED+1];
|
||||
};
|
||||
|
||||
|
||||
int sqlite3BtreeOpen(
|
||||
const char *zFilename, /* Name of database file to open */
|
||||
sqlite3 *db, /* Associated database connection */
|
||||
Btree **, /* Return open Btree* here */
|
||||
int flags /* Flags */
|
||||
int flags, /* Flags */
|
||||
int vfsFlags /* Flags passed through to VFS open */
|
||||
);
|
||||
|
||||
/* The flags parameter to sqlite3BtreeOpen can be the bitwise or of the
|
||||
|
@ -59,9 +72,11 @@ int sqlite3BtreeOpen(
|
|||
#define BTREE_OMIT_JOURNAL 1 /* Do not use journal. No argument */
|
||||
#define BTREE_NO_READLOCK 2 /* Omit readlocks on readonly files */
|
||||
#define BTREE_MEMORY 4 /* In-memory DB. No argument */
|
||||
#define BTREE_READONLY 8 /* Open the database in read-only mode */
|
||||
#define BTREE_READWRITE 16 /* Open for both reading and writing */
|
||||
#define BTREE_CREATE 32 /* Create the database if it does not exist */
|
||||
|
||||
int sqlite3BtreeClose(Btree*);
|
||||
int sqlite3BtreeSetBusyHandler(Btree*,BusyHandler*);
|
||||
int sqlite3BtreeSetCacheSize(Btree*,int);
|
||||
int sqlite3BtreeSetSafetyLevel(Btree*,int,int);
|
||||
int sqlite3BtreeSyncDisabled(Btree*);
|
||||
|
@ -86,6 +101,7 @@ int sqlite3BtreeIsInReadTrans(Btree*);
|
|||
void *sqlite3BtreeSchema(Btree *, int, void(*)(void *));
|
||||
int sqlite3BtreeSchemaLocked(Btree *);
|
||||
int sqlite3BtreeLockTable(Btree *, int, u8);
|
||||
int sqlite3BtreeSavepoint(Btree *, int, int);
|
||||
|
||||
const char *sqlite3BtreeGetFilename(Btree *);
|
||||
const char *sqlite3BtreeGetDirname(Btree *);
|
||||
|
@ -102,21 +118,36 @@ int sqlite3BtreeIncrVacuum(Btree *);
|
|||
#define BTREE_LEAFDATA 4 /* Data stored in leaves only. Implies INTKEY */
|
||||
|
||||
int sqlite3BtreeDropTable(Btree*, int, int*);
|
||||
int sqlite3BtreeClearTable(Btree*, int);
|
||||
int sqlite3BtreeClearTable(Btree*, int, int*);
|
||||
int sqlite3BtreeGetMeta(Btree*, int idx, u32 *pValue);
|
||||
int sqlite3BtreeUpdateMeta(Btree*, int idx, u32 value);
|
||||
void sqlite3BtreeTripAllCursors(Btree*, int);
|
||||
|
||||
int sqlite3BtreeCursor(
|
||||
Btree*, /* BTree containing table to open */
|
||||
int iTable, /* Index of root page */
|
||||
int wrFlag, /* 1 for writing. 0 for read-only */
|
||||
int(*)(void*,int,const void*,int,const void*), /* Key comparison function */
|
||||
void*, /* First argument to compare function */
|
||||
BtCursor **ppCursor /* Returned cursor */
|
||||
struct KeyInfo*, /* First argument to compare function */
|
||||
BtCursor *pCursor /* Space to write cursor structure */
|
||||
);
|
||||
int sqlite3BtreeCursorSize(void);
|
||||
|
||||
int sqlite3BtreeCloseCursor(BtCursor*);
|
||||
int sqlite3BtreeMoveto(BtCursor*,const void *pKey,i64 nKey,int bias,int *pRes);
|
||||
int sqlite3BtreeMoveto(
|
||||
BtCursor*,
|
||||
const void *pKey,
|
||||
i64 nKey,
|
||||
int bias,
|
||||
int *pRes
|
||||
);
|
||||
int sqlite3BtreeMovetoUnpacked(
|
||||
BtCursor*,
|
||||
UnpackedRecord *pUnKey,
|
||||
i64 intKey,
|
||||
int bias,
|
||||
int *pRes
|
||||
);
|
||||
int sqlite3BtreeCursorHasMoved(BtCursor*, int*);
|
||||
int sqlite3BtreeDelete(BtCursor*);
|
||||
int sqlite3BtreeInsert(BtCursor*, const void *pKey, i64 nKey,
|
||||
const void *pData, int nData,
|
||||
|
@ -129,6 +160,7 @@ int sqlite3BtreeFlags(BtCursor*);
|
|||
int sqlite3BtreePrevious(BtCursor*, int *pRes);
|
||||
int sqlite3BtreeKeySize(BtCursor*, i64 *pSize);
|
||||
int sqlite3BtreeKey(BtCursor*, u32 offset, u32 amt, void*);
|
||||
sqlite3 *sqlite3BtreeCursorDb(const BtCursor*);
|
||||
const void *sqlite3BtreeKeyFetch(BtCursor*, int *pAmt);
|
||||
const void *sqlite3BtreeDataFetch(BtCursor*, int *pAmt);
|
||||
int sqlite3BtreeDataSize(BtCursor*, u32 *pSize);
|
||||
|
@ -139,11 +171,55 @@ struct Pager *sqlite3BtreePager(Btree*);
|
|||
|
||||
int sqlite3BtreePutData(BtCursor*, u32 offset, u32 amt, void*);
|
||||
void sqlite3BtreeCacheOverflow(BtCursor *);
|
||||
void sqlite3BtreeClearCursor(BtCursor *);
|
||||
|
||||
#ifdef SQLITE_TEST
|
||||
int sqlite3BtreeCursorInfo(BtCursor*, int*, int);
|
||||
void sqlite3BtreeCursorList(Btree*);
|
||||
int sqlite3BtreePageDump(Btree*, int, int recursive);
|
||||
#endif
|
||||
|
||||
/*
|
||||
** If we are not using shared cache, then there is no need to
|
||||
** use mutexes to access the BtShared structures. So make the
|
||||
** Enter and Leave procedures no-ops.
|
||||
*/
|
||||
#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE
|
||||
void sqlite3BtreeEnter(Btree*);
|
||||
void sqlite3BtreeLeave(Btree*);
|
||||
#ifndef NDEBUG
|
||||
/* This routine is used inside assert() statements only. */
|
||||
int sqlite3BtreeHoldsMutex(Btree*);
|
||||
#endif
|
||||
void sqlite3BtreeEnterCursor(BtCursor*);
|
||||
void sqlite3BtreeLeaveCursor(BtCursor*);
|
||||
void sqlite3BtreeEnterAll(sqlite3*);
|
||||
void sqlite3BtreeLeaveAll(sqlite3*);
|
||||
#ifndef NDEBUG
|
||||
/* This routine is used inside assert() statements only. */
|
||||
int sqlite3BtreeHoldsAllMutexes(sqlite3*);
|
||||
#endif
|
||||
void sqlite3BtreeMutexArrayEnter(BtreeMutexArray*);
|
||||
void sqlite3BtreeMutexArrayLeave(BtreeMutexArray*);
|
||||
void sqlite3BtreeMutexArrayInsert(BtreeMutexArray*, Btree*);
|
||||
#else
|
||||
# define sqlite3BtreeEnter(X)
|
||||
# define sqlite3BtreeLeave(X)
|
||||
#ifndef NDEBUG
|
||||
/* This routine is used inside assert() statements only. */
|
||||
# define sqlite3BtreeHoldsMutex(X) 1
|
||||
#endif
|
||||
# define sqlite3BtreeEnterCursor(X)
|
||||
# define sqlite3BtreeLeaveCursor(X)
|
||||
# define sqlite3BtreeEnterAll(X)
|
||||
# define sqlite3BtreeLeaveAll(X)
|
||||
#ifndef NDEBUG
|
||||
/* This routine is used inside assert() statements only. */
|
||||
# define sqlite3BtreeHoldsAllMutexes(X) 1
|
||||
#endif
|
||||
# define sqlite3BtreeMutexArrayEnter(X)
|
||||
# define sqlite3BtreeMutexArrayLeave(X)
|
||||
# define sqlite3BtreeMutexArrayInsert(X,Y)
|
||||
#endif
|
||||
|
||||
|
||||
#endif /* _BTREE_H_ */
|
||||
|
|
184
btreeInt.h
184
btreeInt.h
|
@ -9,7 +9,7 @@
|
|||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** $Id: btreeInt.h,v 1.5 2007/06/15 12:06:59 drh Exp $
|
||||
** $Id: btreeInt.h,v 1.38 2008/12/27 15:23:13 danielk1977 Exp $
|
||||
**
|
||||
** This file implements a external (disk-based) database using BTrees.
|
||||
** For a detailed discussion of BTrees, refer to
|
||||
|
@ -221,10 +221,11 @@
|
|||
#define MX_CELL_SIZE(pBt) (pBt->pageSize-8)
|
||||
|
||||
/* The maximum number of cells on a single page of the database. This
|
||||
** assumes a minimum cell size of 3 bytes. Such small cells will be
|
||||
** exceedingly rare, but they are possible.
|
||||
** assumes a minimum cell size of 6 bytes (4 bytes for the cell itself
|
||||
** plus 2 bytes for the index to the cell in the page header). Such
|
||||
** small cells will be rare, but they are possible.
|
||||
*/
|
||||
#define MX_CELL(pBt) ((pBt->pageSize-8)/3)
|
||||
#define MX_CELL(pBt) ((pBt->pageSize-8)/6)
|
||||
|
||||
/* Forward declarations */
|
||||
typedef struct MemPage MemPage;
|
||||
|
@ -248,7 +249,7 @@ typedef struct BtLock BtLock;
|
|||
|
||||
/*
|
||||
** Page type flags. An ORed combination of these flags appear as the
|
||||
** first byte of every BTree page.
|
||||
** first byte of on-disk image of every BTree page.
|
||||
*/
|
||||
#define PTF_INTKEY 0x01
|
||||
#define PTF_ZERODATA 0x02
|
||||
|
@ -264,33 +265,32 @@ typedef struct BtLock BtLock;
|
|||
** walk up the BTree from any leaf to the root. Care must be taken to
|
||||
** unref() the parent page pointer when this page is no longer referenced.
|
||||
** The pageDestructor() routine handles that chore.
|
||||
**
|
||||
** Access to all fields of this structure is controlled by the mutex
|
||||
** stored in MemPage.pBt->mutex.
|
||||
*/
|
||||
struct MemPage {
|
||||
u8 isInit; /* True if previously initialized. MUST BE FIRST! */
|
||||
u8 idxShift; /* True if Cell indices have changed */
|
||||
u8 nOverflow; /* Number of overflow cell bodies in aCell[] */
|
||||
u8 intKey; /* True if intkey flag is set */
|
||||
u8 leaf; /* True if leaf flag is set */
|
||||
u8 zeroData; /* True if table stores keys only */
|
||||
u8 leafData; /* True if tables stores data on leaves only */
|
||||
u8 hasData; /* True if this page stores data */
|
||||
u8 hdrOffset; /* 100 for page 1. 0 otherwise */
|
||||
u8 childPtrSize; /* 0 if leaf==1. 4 if leaf==0 */
|
||||
u16 maxLocal; /* Copy of Btree.maxLocal or Btree.maxLeaf */
|
||||
u16 minLocal; /* Copy of Btree.minLocal or Btree.minLeaf */
|
||||
u16 maxLocal; /* Copy of BtShared.maxLocal or BtShared.maxLeaf */
|
||||
u16 minLocal; /* Copy of BtShared.minLocal or BtShared.minLeaf */
|
||||
u16 cellOffset; /* Index in aData of first cell pointer */
|
||||
u16 idxParent; /* Index in parent of this node */
|
||||
u16 nFree; /* Number of free bytes on the page */
|
||||
u16 nCell; /* Number of cells on this page, local and ovfl */
|
||||
u16 maskPage; /* Mask for page offset */
|
||||
struct _OvflCell { /* Cells that will not fit on aData[] */
|
||||
u8 *pCell; /* Pointers to the body of the overflow cell */
|
||||
u16 idx; /* Insert this cell before idx-th non-overflow cell */
|
||||
} aOvfl[5];
|
||||
BtShared *pBt; /* Pointer back to BTree structure */
|
||||
u8 *aData; /* Pointer back to the start of the page */
|
||||
BtShared *pBt; /* Pointer to BtShared that this page is part of */
|
||||
u8 *aData; /* Pointer to disk image of the page data */
|
||||
DbPage *pDbPage; /* Pager page handle */
|
||||
Pgno pgno; /* Page number for this page */
|
||||
MemPage *pParent; /* The parent of this page. NULL for root */
|
||||
};
|
||||
|
||||
/*
|
||||
|
@ -300,11 +300,36 @@ struct MemPage {
|
|||
*/
|
||||
#define EXTRA_SIZE sizeof(MemPage)
|
||||
|
||||
/* Btree handle */
|
||||
/* A Btree handle
|
||||
**
|
||||
** A database connection contains a pointer to an instance of
|
||||
** this object for every database file that it has open. This structure
|
||||
** is opaque to the database connection. The database connection cannot
|
||||
** see the internals of this structure and only deals with pointers to
|
||||
** this structure.
|
||||
**
|
||||
** For some database files, the same underlying database cache might be
|
||||
** shared between multiple connections. In that case, each contection
|
||||
** has it own pointer to this object. But each instance of this object
|
||||
** points to the same BtShared object. The database cache and the
|
||||
** schema associated with the database file are all contained within
|
||||
** the BtShared object.
|
||||
**
|
||||
** All fields in this structure are accessed under sqlite3.mutex.
|
||||
** The pBt pointer itself may not be changed while there exists cursors
|
||||
** in the referenced BtShared that point back to this Btree since those
|
||||
** cursors have to do go through this Btree to find their BtShared and
|
||||
** they often do so without holding sqlite3.mutex.
|
||||
*/
|
||||
struct Btree {
|
||||
sqlite3 *pSqlite;
|
||||
BtShared *pBt;
|
||||
sqlite3 *db; /* The database connection holding this btree */
|
||||
BtShared *pBt; /* Sharable content of this btree */
|
||||
u8 inTrans; /* TRANS_NONE, TRANS_READ or TRANS_WRITE */
|
||||
u8 sharable; /* True if we can share pBt with another db */
|
||||
u8 locked; /* True if db currently has pBt locked */
|
||||
int wantToLock; /* Number of nested calls to sqlite3BtreeEnter() */
|
||||
Btree *pNext; /* List of other sharable Btrees from the same db */
|
||||
Btree *pPrev; /* Back pointer of the same list */
|
||||
};
|
||||
|
||||
/*
|
||||
|
@ -312,47 +337,59 @@ struct Btree {
|
|||
**
|
||||
** If the shared-data extension is enabled, there may be multiple users
|
||||
** of the Btree structure. At most one of these may open a write transaction,
|
||||
** but any number may have active read transactions. Variable Btree.pDb
|
||||
** points to the handle that owns any current write-transaction.
|
||||
** but any number may have active read transactions.
|
||||
*/
|
||||
#define TRANS_NONE 0
|
||||
#define TRANS_READ 1
|
||||
#define TRANS_WRITE 2
|
||||
|
||||
/*
|
||||
** Everything we need to know about an open database
|
||||
** An instance of this object represents a single database file.
|
||||
**
|
||||
** A single database file can be in use as the same time by two
|
||||
** or more database connections. When two or more connections are
|
||||
** sharing the same database file, each connection has it own
|
||||
** private Btree object for the file and each of those Btrees points
|
||||
** to this one BtShared object. BtShared.nRef is the number of
|
||||
** connections currently sharing this database file.
|
||||
**
|
||||
** Fields in this structure are accessed under the BtShared.mutex
|
||||
** mutex, except for nRef and pNext which are accessed under the
|
||||
** global SQLITE_MUTEX_STATIC_MASTER mutex. The pPager field
|
||||
** may not be modified once it is initially set as long as nRef>0.
|
||||
** The pSchema field may be set once under BtShared.mutex and
|
||||
** thereafter is unchanged as long as nRef>0.
|
||||
*/
|
||||
struct BtShared {
|
||||
Pager *pPager; /* The page cache */
|
||||
sqlite3 *db; /* Database connection currently using this Btree */
|
||||
BtCursor *pCursor; /* A list of all open cursors */
|
||||
MemPage *pPage1; /* First page of the database */
|
||||
u8 inStmt; /* True if we are in a statement subtransaction */
|
||||
u8 readOnly; /* True if the underlying file is readonly */
|
||||
u8 maxEmbedFrac; /* Maximum payload as % of total page size */
|
||||
u8 minEmbedFrac; /* Minimum payload as % of total page size */
|
||||
u8 minLeafFrac; /* Minimum leaf payload as % of total page size */
|
||||
u8 pageSizeFixed; /* True if the page size can no longer be changed */
|
||||
#ifndef SQLITE_OMIT_AUTOVACUUM
|
||||
u8 autoVacuum; /* True if auto-vacuum is enabled */
|
||||
u8 incrVacuum; /* True if incr-vacuum is enabled */
|
||||
Pgno nTrunc; /* Non-zero if the db will be truncated (incr vacuum) */
|
||||
#endif
|
||||
u16 pageSize; /* Total number of bytes on a page */
|
||||
u16 usableSize; /* Number of usable bytes on each page */
|
||||
int maxLocal; /* Maximum local payload in non-LEAFDATA tables */
|
||||
int minLocal; /* Minimum local payload in non-LEAFDATA tables */
|
||||
int maxLeaf; /* Maximum local payload in a LEAFDATA table */
|
||||
int minLeaf; /* Minimum local payload in a LEAFDATA table */
|
||||
BusyHandler *pBusyHandler; /* Callback for when there is lock contention */
|
||||
u16 maxLocal; /* Maximum local payload in non-LEAFDATA tables */
|
||||
u16 minLocal; /* Minimum local payload in non-LEAFDATA tables */
|
||||
u16 maxLeaf; /* Maximum local payload in a LEAFDATA table */
|
||||
u16 minLeaf; /* Minimum local payload in a LEAFDATA table */
|
||||
u8 inTransaction; /* Transaction state */
|
||||
int nRef; /* Number of references to this structure */
|
||||
int nTransaction; /* Number of open transactions (read + write) */
|
||||
void *pSchema; /* Pointer to space allocated by sqlite3BtreeSchema() */
|
||||
void (*xFreeSchema)(void*); /* Destructor for BtShared.pSchema */
|
||||
sqlite3_mutex *mutex; /* Non-recursive mutex required to access this struct */
|
||||
#ifndef SQLITE_OMIT_SHARED_CACHE
|
||||
int nRef; /* Number of references to this structure */
|
||||
BtShared *pNext; /* Next on a list of sharable BtShared structs */
|
||||
BtLock *pLock; /* List of locks held on this shared-btree struct */
|
||||
BtShared *pNext; /* Next in ThreadData.pBtree linked list */
|
||||
Btree *pExclusive; /* Btree with an EXCLUSIVE lock on the whole db */
|
||||
#endif
|
||||
u8 *pTmpSpace; /* BtShared.pageSize bytes of space for tmp use */
|
||||
};
|
||||
|
||||
/*
|
||||
|
@ -373,20 +410,40 @@ struct CellInfo {
|
|||
};
|
||||
|
||||
/*
|
||||
** A cursor is a pointer to a particular entry in the BTree.
|
||||
** Maximum depth of an SQLite B-Tree structure. Any B-Tree deeper than
|
||||
** this will be declared corrupt. This value is calculated based on a
|
||||
** maximum database size of 2^31 pages a minimum fanout of 2 for a
|
||||
** root-node and 3 for all other internal nodes.
|
||||
**
|
||||
** If a tree that appears to be taller than this is encountered, it is
|
||||
** assumed that the database is corrupt.
|
||||
*/
|
||||
#define BTCURSOR_MAX_DEPTH 20
|
||||
|
||||
/*
|
||||
** A cursor is a pointer to a particular entry within a particular
|
||||
** b-tree within a database file.
|
||||
**
|
||||
** The entry is identified by its MemPage and the index in
|
||||
** MemPage.aCell[] of the entry.
|
||||
**
|
||||
** When a single database file can shared by two more database connections,
|
||||
** but cursors cannot be shared. Each cursor is associated with a
|
||||
** particular database connection identified BtCursor.pBtree.db.
|
||||
**
|
||||
** Fields in this structure are accessed under the BtShared.mutex
|
||||
** found at self->pBt->mutex.
|
||||
*/
|
||||
struct BtCursor {
|
||||
Btree *pBtree; /* The Btree to which this cursor belongs */
|
||||
BtShared *pBt; /* The BtShared this cursor points to */
|
||||
BtCursor *pNext, *pPrev; /* Forms a linked list of all cursors */
|
||||
int (*xCompare)(void*,int,const void*,int,const void*); /* Key comp func */
|
||||
void *pArg; /* First arg to xCompare() */
|
||||
struct KeyInfo *pKeyInfo; /* Argument passed to comparison function */
|
||||
Pgno pgnoRoot; /* The root page of this tree */
|
||||
MemPage *pPage; /* Page that contains the entry */
|
||||
int idx; /* Index of the entry in pPage->aCell[] */
|
||||
CellInfo info; /* A parse of the cell we are pointing at */
|
||||
u8 wrFlag; /* True if writable */
|
||||
u8 atLast; /* Cursor pointing to the last entry */
|
||||
u8 validNKey; /* True if info.nKey is valid */
|
||||
u8 eState; /* One of the CURSOR_XXX constants (see below) */
|
||||
void *pKey; /* Saved key that was cursor's last known position */
|
||||
i64 nKey; /* Size of pKey, or last integer key */
|
||||
|
@ -395,6 +452,12 @@ struct BtCursor {
|
|||
u8 isIncrblobHandle; /* True if this cursor is an incr. io handle */
|
||||
Pgno *aOverflow; /* Cache of overflow page locations */
|
||||
#endif
|
||||
#ifndef NDEBUG
|
||||
u8 pagesShuffled; /* True if Btree pages are rearranged by balance()*/
|
||||
#endif
|
||||
i16 iPage; /* Index of current page in apPage */
|
||||
MemPage *apPage[BTCURSOR_MAX_DEPTH]; /* Pages from root to current page */
|
||||
u16 aiIdx[BTCURSOR_MAX_DEPTH]; /* Current index in apPage[i] */
|
||||
};
|
||||
|
||||
/*
|
||||
|
@ -412,32 +475,20 @@ struct BtCursor {
|
|||
** The table that this cursor was opened on still exists, but has been
|
||||
** modified since the cursor was last used. The cursor position is saved
|
||||
** in variables BtCursor.pKey and BtCursor.nKey. When a cursor is in
|
||||
** this state, restoreOrClearCursorPosition() can be called to attempt to
|
||||
** this state, restoreCursorPosition() can be called to attempt to
|
||||
** seek the cursor to the saved position.
|
||||
**
|
||||
** CURSOR_FAULT:
|
||||
** A unrecoverable error (an I/O error or a malloc failure) has occurred
|
||||
** on a different connection that shares the BtShared cache with this
|
||||
** cursor. The error has left the cache in an inconsistent state.
|
||||
** Do nothing else with this cursor. Any attempt to use the cursor
|
||||
** should return the error code stored in BtCursor.skip
|
||||
*/
|
||||
#define CURSOR_INVALID 0
|
||||
#define CURSOR_VALID 1
|
||||
#define CURSOR_REQUIRESEEK 2
|
||||
|
||||
/*
|
||||
** The TRACE macro will print high-level status information about the
|
||||
** btree operation when the global variable sqlite3_btree_trace is
|
||||
** enabled.
|
||||
*/
|
||||
#if SQLITE_TEST
|
||||
# define TRACE(X) if( sqlite3_btree_trace ){ printf X; fflush(stdout); }
|
||||
#else
|
||||
# define TRACE(X)
|
||||
#endif
|
||||
|
||||
/*
|
||||
** Routines to read and write variable-length integers. These used to
|
||||
** be defined locally, but now we use the varint routines in the util.c
|
||||
** file.
|
||||
*/
|
||||
#define getVarint sqlite3GetVarint
|
||||
#define getVarint32(A,B) ((*B=*(A))<=0x7f?1:sqlite3GetVarint32(A,B))
|
||||
#define putVarint sqlite3PutVarint
|
||||
#define CURSOR_FAULT 3
|
||||
|
||||
/* The database page the PENDING_BYTE occupies. This page is never used.
|
||||
** TODO: This macro is very similary to PAGER_MJ_PGNO() in pager.c. They
|
||||
|
@ -449,7 +500,7 @@ struct BtCursor {
|
|||
#ifdef SQLITE_OMIT_DISKIO
|
||||
# define PENDING_BYTE_PAGE(pBt) 0x7fffffff
|
||||
#else
|
||||
# define PENDING_BYTE_PAGE(pBt) ((PENDING_BYTE/(pBt)->pageSize)+1)
|
||||
# define PENDING_BYTE_PAGE(pBt) ((Pgno)((PENDING_BYTE/(pBt)->pageSize)+1))
|
||||
#endif
|
||||
|
||||
/*
|
||||
|
@ -486,7 +537,7 @@ struct BtLock {
|
|||
** this test.
|
||||
*/
|
||||
#define PTRMAP_PAGENO(pBt, pgno) ptrmapPageno(pBt, pgno)
|
||||
#define PTRMAP_PTROFFSET(pBt, pgno) (5*(pgno-ptrmapPageno(pBt, pgno)-1))
|
||||
#define PTRMAP_PTROFFSET(pgptrmap, pgno) (5*(pgno-pgptrmap-1))
|
||||
#define PTRMAP_ISPAGE(pBt, pgno) (PTRMAP_PAGENO((pBt),(pgno))==(pgno))
|
||||
|
||||
/*
|
||||
|
@ -530,8 +581,6 @@ struct BtLock {
|
|||
** of handle p (type Btree*) are internally consistent.
|
||||
*/
|
||||
#define btreeIntegrity(p) \
|
||||
assert( p->inTrans!=TRANS_NONE || p->pBt->nTransaction<p->pBt->nRef ); \
|
||||
assert( p->pBt->nTransaction<=p->pBt->nRef ); \
|
||||
assert( p->pBt->inTransaction!=TRANS_NONE || p->pBt->nTransaction==0 ); \
|
||||
assert( p->pBt->inTransaction>=p->inTrans );
|
||||
|
||||
|
@ -558,18 +607,19 @@ typedef struct IntegrityCk IntegrityCk;
|
|||
struct IntegrityCk {
|
||||
BtShared *pBt; /* The tree being checked out */
|
||||
Pager *pPager; /* The associated pager. Also accessible by pBt->pPager */
|
||||
int nPage; /* Number of pages in the database */
|
||||
Pgno nPage; /* Number of pages in the database */
|
||||
int *anRef; /* Number of times each page is referenced */
|
||||
int mxErr; /* Stop accumulating errors when this reaches zero */
|
||||
char *zErrMsg; /* An error message. NULL if no errors seen. */
|
||||
int nErr; /* Number of messages written to zErrMsg so far */
|
||||
int mallocFailed; /* A memory allocation error has occurred */
|
||||
StrAccum errMsg; /* Accumulate the error message text here */
|
||||
};
|
||||
|
||||
/*
|
||||
** Read or write a two- and four-byte big-endian integer values.
|
||||
*/
|
||||
#define get2byte(x) ((x)[0]<<8 | (x)[1])
|
||||
#define put2byte(p,v) ((p)[0] = (v)>>8, (p)[1] = (v))
|
||||
#define put2byte(p,v) ((p)[0] = (u8)((v)>>8), (p)[1] = (u8)(v))
|
||||
#define get4byte sqlite3Get4byte
|
||||
#define put4byte sqlite3Put4byte
|
||||
|
||||
|
@ -577,12 +627,10 @@ struct IntegrityCk {
|
|||
** Internal routines that should be accessed by the btree layer only.
|
||||
*/
|
||||
int sqlite3BtreeGetPage(BtShared*, Pgno, MemPage**, int);
|
||||
int sqlite3BtreeInitPage(MemPage *pPage, MemPage *pParent);
|
||||
int sqlite3BtreeInitPage(MemPage *pPage);
|
||||
void sqlite3BtreeParseCellPtr(MemPage*, u8*, CellInfo*);
|
||||
void sqlite3BtreeParseCell(MemPage*, int, CellInfo*);
|
||||
u8 *sqlite3BtreeFindCell(MemPage *pPage, int iCell);
|
||||
int sqlite3BtreeRestoreOrClearCursorPosition(BtCursor *pCur);
|
||||
int sqlite3BtreeRestoreCursorPosition(BtCursor *pCur);
|
||||
void sqlite3BtreeGetTempCursor(BtCursor *pCur, BtCursor *pTempCur);
|
||||
void sqlite3BtreeReleaseTempCursor(BtCursor *pCur);
|
||||
int sqlite3BtreeIsRootPage(MemPage *pPage);
|
||||
void sqlite3BtreeMoveToParent(BtCursor *pCur);
|
||||
|
|
213
callback.c
213
callback.c
|
@ -13,7 +13,7 @@
|
|||
** This file contains functions used to access the internal hash tables
|
||||
** of user defined functions and collation sequences.
|
||||
**
|
||||
** $Id: callback.c,v 1.18 2007/05/07 09:32:45 danielk1977 Exp $
|
||||
** $Id: callback.c,v 1.34 2008/12/10 21:19:57 drh Exp $
|
||||
*/
|
||||
|
||||
#include "sqliteInt.h"
|
||||
|
@ -25,17 +25,17 @@
|
|||
*/
|
||||
static void callCollNeeded(sqlite3 *db, const char *zName, int nName){
|
||||
assert( !db->xCollNeeded || !db->xCollNeeded16 );
|
||||
if( nName<0 ) nName = strlen(zName);
|
||||
if( nName<0 ) nName = sqlite3Strlen(db, zName);
|
||||
if( db->xCollNeeded ){
|
||||
char *zExternal = sqliteStrNDup(zName, nName);
|
||||
char *zExternal = sqlite3DbStrNDup(db, zName, nName);
|
||||
if( !zExternal ) return;
|
||||
db->xCollNeeded(db->pCollNeededArg, db, (int)ENC(db), zExternal);
|
||||
sqliteFree(zExternal);
|
||||
sqlite3DbFree(db, zExternal);
|
||||
}
|
||||
#ifndef SQLITE_OMIT_UTF16
|
||||
if( db->xCollNeeded16 ){
|
||||
char const *zExternal;
|
||||
sqlite3_value *pTmp = sqlite3ValueNew();
|
||||
sqlite3_value *pTmp = sqlite3ValueNew(db);
|
||||
sqlite3ValueSetStr(pTmp, nName, zName, SQLITE_UTF8, SQLITE_STATIC);
|
||||
zExternal = sqlite3ValueText(pTmp, SQLITE_UTF16NATIVE);
|
||||
if( zExternal ){
|
||||
|
@ -56,7 +56,7 @@ static void callCollNeeded(sqlite3 *db, const char *zName, int nName){
|
|||
static int synthCollSeq(sqlite3 *db, CollSeq *pColl){
|
||||
CollSeq *pColl2;
|
||||
char *z = pColl->zName;
|
||||
int n = strlen(z);
|
||||
int n = sqlite3Strlen30(z);
|
||||
int i;
|
||||
static const u8 aEnc[] = { SQLITE_UTF16BE, SQLITE_UTF16LE, SQLITE_UTF8 };
|
||||
for(i=0; i<3; i++){
|
||||
|
@ -158,11 +158,11 @@ static CollSeq *findCollSeqEntry(
|
|||
int create
|
||||
){
|
||||
CollSeq *pColl;
|
||||
if( nName<0 ) nName = strlen(zName);
|
||||
if( nName<0 ) nName = sqlite3Strlen(db, zName);
|
||||
pColl = sqlite3HashFind(&db->aCollSeq, zName, nName);
|
||||
|
||||
if( 0==pColl && create ){
|
||||
pColl = sqliteMalloc( 3*sizeof(*pColl) + nName + 1 );
|
||||
pColl = sqlite3DbMallocZero(db, 3*sizeof(*pColl) + nName + 1 );
|
||||
if( pColl ){
|
||||
CollSeq *pDel = 0;
|
||||
pColl[0].zName = (char*)&pColl[3];
|
||||
|
@ -179,9 +179,10 @@ static CollSeq *findCollSeqEntry(
|
|||
** return the pColl pointer to be deleted (because it wasn't added
|
||||
** to the hash table).
|
||||
*/
|
||||
assert( !pDel || (sqlite3MallocFailed() && pDel==pColl) );
|
||||
if( pDel ){
|
||||
sqliteFree(pDel);
|
||||
assert( pDel==0 || pDel==pColl );
|
||||
if( pDel!=0 ){
|
||||
db->mallocFailed = 1;
|
||||
sqlite3DbFree(db, pDel);
|
||||
pColl = 0;
|
||||
}
|
||||
}
|
||||
|
@ -221,6 +222,87 @@ CollSeq *sqlite3FindCollSeq(
|
|||
return pColl;
|
||||
}
|
||||
|
||||
/* During the search for the best function definition, this procedure
|
||||
** is called to test how well the function passed as the first argument
|
||||
** matches the request for a function with nArg arguments in a system
|
||||
** that uses encoding enc. The value returned indicates how well the
|
||||
** request is matched. A higher value indicates a better match.
|
||||
**
|
||||
** The returned value is always between 1 and 6, as follows:
|
||||
**
|
||||
** 1: A variable arguments function that prefers UTF-8 when a UTF-16
|
||||
** encoding is requested, or vice versa.
|
||||
** 2: A variable arguments function that uses UTF-16BE when UTF-16LE is
|
||||
** requested, or vice versa.
|
||||
** 3: A variable arguments function using the same text encoding.
|
||||
** 4: A function with the exact number of arguments requested that
|
||||
** prefers UTF-8 when a UTF-16 encoding is requested, or vice versa.
|
||||
** 5: A function with the exact number of arguments requested that
|
||||
** prefers UTF-16LE when UTF-16BE is requested, or vice versa.
|
||||
** 6: An exact match.
|
||||
**
|
||||
*/
|
||||
static int matchQuality(FuncDef *p, int nArg, u8 enc){
|
||||
int match = 0;
|
||||
if( p->nArg==-1 || p->nArg==nArg || nArg==-1 ){
|
||||
match = 1;
|
||||
if( p->nArg==nArg || nArg==-1 ){
|
||||
match = 4;
|
||||
}
|
||||
if( enc==p->iPrefEnc ){
|
||||
match += 2;
|
||||
}
|
||||
else if( (enc==SQLITE_UTF16LE && p->iPrefEnc==SQLITE_UTF16BE) ||
|
||||
(enc==SQLITE_UTF16BE && p->iPrefEnc==SQLITE_UTF16LE) ){
|
||||
match += 1;
|
||||
}
|
||||
}
|
||||
return match;
|
||||
}
|
||||
|
||||
/*
|
||||
** Search a FuncDefHash for a function with the given name. Return
|
||||
** a pointer to the matching FuncDef if found, or 0 if there is no match.
|
||||
*/
|
||||
static FuncDef *functionSearch(
|
||||
FuncDefHash *pHash, /* Hash table to search */
|
||||
int h, /* Hash of the name */
|
||||
const char *zFunc, /* Name of function */
|
||||
int nFunc /* Number of bytes in zFunc */
|
||||
){
|
||||
FuncDef *p;
|
||||
for(p=pHash->a[h]; p; p=p->pHash){
|
||||
if( sqlite3StrNICmp(p->zName, zFunc, nFunc)==0 && p->zName[nFunc]==0 ){
|
||||
return p;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
** Insert a new FuncDef into a FuncDefHash hash table.
|
||||
*/
|
||||
void sqlite3FuncDefInsert(
|
||||
FuncDefHash *pHash, /* The hash table into which to insert */
|
||||
FuncDef *pDef /* The function definition to insert */
|
||||
){
|
||||
FuncDef *pOther;
|
||||
int nName = sqlite3Strlen30(pDef->zName);
|
||||
u8 c1 = (u8)pDef->zName[0];
|
||||
int h = (sqlite3UpperToLower[c1] + nName) % ArraySize(pHash->a);
|
||||
pOther = functionSearch(pHash, h, pDef->zName, nName);
|
||||
if( pOther ){
|
||||
pDef->pNext = pOther->pNext;
|
||||
pOther->pNext = pDef;
|
||||
}else{
|
||||
pDef->pNext = 0;
|
||||
pDef->pHash = pHash->a[h];
|
||||
pHash->a[h] = pDef;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*
|
||||
** Locate a user function given a name, a number of arguments and a flag
|
||||
** indicating whether the function prefers UTF-16 over UTF-8. Return a
|
||||
|
@ -250,69 +332,60 @@ FuncDef *sqlite3FindFunction(
|
|||
int createFlag /* Create new entry if true and does not otherwise exist */
|
||||
){
|
||||
FuncDef *p; /* Iterator variable */
|
||||
FuncDef *pFirst; /* First function with this name */
|
||||
FuncDef *pBest = 0; /* Best match found so far */
|
||||
int bestmatch = 0;
|
||||
int bestScore = 0; /* Score of best match */
|
||||
int h; /* Hash value */
|
||||
|
||||
|
||||
assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
|
||||
if( nArg<-1 ) nArg = -1;
|
||||
h = (sqlite3UpperToLower[(u8)zName[0]] + nName) % ArraySize(db->aFunc.a);
|
||||
|
||||
pFirst = (FuncDef*)sqlite3HashFind(&db->aFunc, zName, nName);
|
||||
for(p=pFirst; p; p=p->pNext){
|
||||
/* During the search for the best function definition, bestmatch is set
|
||||
** as follows to indicate the quality of the match with the definition
|
||||
** pointed to by pBest:
|
||||
**
|
||||
** 0: pBest is NULL. No match has been found.
|
||||
** 1: A variable arguments function that prefers UTF-8 when a UTF-16
|
||||
** encoding is requested, or vice versa.
|
||||
** 2: A variable arguments function that uses UTF-16BE when UTF-16LE is
|
||||
** requested, or vice versa.
|
||||
** 3: A variable arguments function using the same text encoding.
|
||||
** 4: A function with the exact number of arguments requested that
|
||||
** prefers UTF-8 when a UTF-16 encoding is requested, or vice versa.
|
||||
** 5: A function with the exact number of arguments requested that
|
||||
** prefers UTF-16LE when UTF-16BE is requested, or vice versa.
|
||||
** 6: An exact match.
|
||||
**
|
||||
** A larger value of 'matchqual' indicates a more desirable match.
|
||||
/* First search for a match amongst the application-defined functions.
|
||||
*/
|
||||
if( p->nArg==-1 || p->nArg==nArg || nArg==-1 ){
|
||||
int match = 1; /* Quality of this match */
|
||||
if( p->nArg==nArg || nArg==-1 ){
|
||||
match = 4;
|
||||
}
|
||||
if( enc==p->iPrefEnc ){
|
||||
match += 2;
|
||||
}
|
||||
else if( (enc==SQLITE_UTF16LE && p->iPrefEnc==SQLITE_UTF16BE) ||
|
||||
(enc==SQLITE_UTF16BE && p->iPrefEnc==SQLITE_UTF16LE) ){
|
||||
match += 1;
|
||||
}
|
||||
|
||||
if( match>bestmatch ){
|
||||
p = functionSearch(&db->aFunc, h, zName, nName);
|
||||
while( p ){
|
||||
int score = matchQuality(p, nArg, enc);
|
||||
if( score>bestScore ){
|
||||
pBest = p;
|
||||
bestmatch = match;
|
||||
bestScore = score;
|
||||
}
|
||||
p = p->pNext;
|
||||
}
|
||||
|
||||
/* If no match is found, search the built-in functions.
|
||||
**
|
||||
** Except, if createFlag is true, that means that we are trying to
|
||||
** install a new function. Whatever FuncDef structure is returned will
|
||||
** have fields overwritten with new information appropriate for the
|
||||
** new function. But the FuncDefs for built-in functions are read-only.
|
||||
** So we must not search for built-ins when creating a new function.
|
||||
*/
|
||||
if( !createFlag && !pBest ){
|
||||
FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions);
|
||||
p = functionSearch(pHash, h, zName, nName);
|
||||
while( p ){
|
||||
int score = matchQuality(p, nArg, enc);
|
||||
if( score>bestScore ){
|
||||
pBest = p;
|
||||
bestScore = score;
|
||||
}
|
||||
p = p->pNext;
|
||||
}
|
||||
}
|
||||
|
||||
/* If the createFlag parameter is true, and the seach did not reveal an
|
||||
/* If the createFlag parameter is true and the search did not reveal an
|
||||
** exact match for the name, number of arguments and encoding, then add a
|
||||
** new entry to the hash table and return it.
|
||||
*/
|
||||
if( createFlag && bestmatch<6 &&
|
||||
(pBest = sqliteMalloc(sizeof(*pBest)+nName))!=0 ){
|
||||
pBest->nArg = nArg;
|
||||
pBest->pNext = pFirst;
|
||||
if( createFlag && (bestScore<6 || pBest->nArg!=nArg) &&
|
||||
(pBest = sqlite3DbMallocZero(db, sizeof(*pBest)+nName+1))!=0 ){
|
||||
pBest->zName = (char *)&pBest[1];
|
||||
pBest->nArg = (u16)nArg;
|
||||
pBest->iPrefEnc = enc;
|
||||
memcpy(pBest->zName, zName, nName);
|
||||
pBest->zName[nName] = 0;
|
||||
if( pBest==sqlite3HashInsert(&db->aFunc,pBest->zName,nName,(void*)pBest) ){
|
||||
sqliteFree(pBest);
|
||||
return 0;
|
||||
}
|
||||
sqlite3FuncDefInsert(&db->aFunc, pBest);
|
||||
}
|
||||
|
||||
if( pBest && (pBest->xStep || pBest->xFunc || createFlag) ){
|
||||
|
@ -323,9 +396,11 @@ FuncDef *sqlite3FindFunction(
|
|||
|
||||
/*
|
||||
** Free all resources held by the schema structure. The void* argument points
|
||||
** at a Schema struct. This function does not call sqliteFree() on the
|
||||
** at a Schema struct. This function does not call sqlite3DbFree(db, ) on the
|
||||
** pointer itself, it just cleans up subsiduary resources (i.e. the contents
|
||||
** of the schema hash tables).
|
||||
**
|
||||
** The Schema.cache_size variable is not cleared.
|
||||
*/
|
||||
void sqlite3SchemaFree(void *p){
|
||||
Hash temp1;
|
||||
|
@ -335,14 +410,14 @@ void sqlite3SchemaFree(void *p){
|
|||
|
||||
temp1 = pSchema->tblHash;
|
||||
temp2 = pSchema->trigHash;
|
||||
sqlite3HashInit(&pSchema->trigHash, SQLITE_HASH_STRING, 0);
|
||||
sqlite3HashInit(&pSchema->trigHash, 0);
|
||||
sqlite3HashClear(&pSchema->aFKey);
|
||||
sqlite3HashClear(&pSchema->idxHash);
|
||||
for(pElem=sqliteHashFirst(&temp2); pElem; pElem=sqliteHashNext(pElem)){
|
||||
sqlite3DeleteTrigger((Trigger*)sqliteHashData(pElem));
|
||||
sqlite3DeleteTrigger(0, (Trigger*)sqliteHashData(pElem));
|
||||
}
|
||||
sqlite3HashClear(&temp2);
|
||||
sqlite3HashInit(&pSchema->tblHash, SQLITE_HASH_STRING, 0);
|
||||
sqlite3HashInit(&pSchema->tblHash, 0);
|
||||
for(pElem=sqliteHashFirst(&temp1); pElem; pElem=sqliteHashNext(pElem)){
|
||||
Table *pTab = sqliteHashData(pElem);
|
||||
sqlite3DeleteTable(pTab);
|
||||
|
@ -356,18 +431,20 @@ void sqlite3SchemaFree(void *p){
|
|||
** Find and return the schema associated with a BTree. Create
|
||||
** a new one if necessary.
|
||||
*/
|
||||
Schema *sqlite3SchemaGet(Btree *pBt){
|
||||
Schema *sqlite3SchemaGet(sqlite3 *db, Btree *pBt){
|
||||
Schema * p;
|
||||
if( pBt ){
|
||||
p = (Schema *)sqlite3BtreeSchema(pBt,sizeof(Schema),sqlite3SchemaFree);
|
||||
p = (Schema *)sqlite3BtreeSchema(pBt, sizeof(Schema), sqlite3SchemaFree);
|
||||
}else{
|
||||
p = (Schema *)sqliteMalloc(sizeof(Schema));
|
||||
p = (Schema *)sqlite3MallocZero(sizeof(Schema));
|
||||
}
|
||||
if( p && 0==p->file_format ){
|
||||
sqlite3HashInit(&p->tblHash, SQLITE_HASH_STRING, 0);
|
||||
sqlite3HashInit(&p->idxHash, SQLITE_HASH_STRING, 0);
|
||||
sqlite3HashInit(&p->trigHash, SQLITE_HASH_STRING, 0);
|
||||
sqlite3HashInit(&p->aFKey, SQLITE_HASH_STRING, 1);
|
||||
if( !p ){
|
||||
db->mallocFailed = 1;
|
||||
}else if ( 0==p->file_format ){
|
||||
sqlite3HashInit(&p->tblHash, 0);
|
||||
sqlite3HashInit(&p->idxHash, 0);
|
||||
sqlite3HashInit(&p->trigHash, 0);
|
||||
sqlite3HashInit(&p->aFKey, 1);
|
||||
p->enc = SQLITE_UTF8;
|
||||
}
|
||||
return p;
|
||||
|
|
24
complete.c
24
complete.c
|
@ -16,7 +16,7 @@
|
|||
** separating it out, the code will be automatically omitted from
|
||||
** static links that do not use it.
|
||||
**
|
||||
** $Id: complete.c,v 1.3 2006/01/18 15:25:17 danielk1977 Exp $
|
||||
** $Id: complete.c,v 1.7 2008/06/13 18:24:27 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
#ifndef SQLITE_OMIT_COMPLETE
|
||||
|
@ -24,8 +24,16 @@
|
|||
/*
|
||||
** This is defined in tokenize.c. We just have to import the definition.
|
||||
*/
|
||||
extern const char sqlite3IsIdChar[];
|
||||
#define IdChar(C) (((c=C)&0x80)!=0 || (c>0x1f && sqlite3IsIdChar[c-0x20]))
|
||||
#ifndef SQLITE_AMALGAMATION
|
||||
#ifdef SQLITE_ASCII
|
||||
extern const char sqlite3IsAsciiIdChar[];
|
||||
#define IdChar(C) (((c=C)&0x80)!=0 || (c>0x1f && sqlite3IsAsciiIdChar[c-0x20]))
|
||||
#endif
|
||||
#ifdef SQLITE_EBCDIC
|
||||
extern const char sqlite3IsEbcdicIdChar[];
|
||||
#define IdChar(C) (((c=C)>=0x42 && sqlite3IsEbcdicIdChar[c-0x40]))
|
||||
#endif
|
||||
#endif /* SQLITE_AMALGAMATION */
|
||||
|
||||
|
||||
/*
|
||||
|
@ -248,13 +256,19 @@ int sqlite3_complete(const char *zSql){
|
|||
int sqlite3_complete16(const void *zSql){
|
||||
sqlite3_value *pVal;
|
||||
char const *zSql8;
|
||||
int rc = 0;
|
||||
int rc = SQLITE_NOMEM;
|
||||
|
||||
pVal = sqlite3ValueNew();
|
||||
#ifndef SQLITE_OMIT_AUTOINIT
|
||||
rc = sqlite3_initialize();
|
||||
if( rc ) return rc;
|
||||
#endif
|
||||
pVal = sqlite3ValueNew(0);
|
||||
sqlite3ValueSetStr(pVal, -1, zSql, SQLITE_UTF16NATIVE, SQLITE_STATIC);
|
||||
zSql8 = sqlite3ValueText(pVal, SQLITE_UTF8);
|
||||
if( zSql8 ){
|
||||
rc = sqlite3_complete(zSql8);
|
||||
}else{
|
||||
rc = SQLITE_NOMEM;
|
||||
}
|
||||
sqlite3ValueFree(pVal);
|
||||
return sqlite3ApiExit(0, rc);
|
||||
|
|
394
date.c
394
date.c
|
@ -16,7 +16,7 @@
|
|||
** sqlite3RegisterDateTimeFunctions() found at the bottom of the file.
|
||||
** All other code has file scope.
|
||||
**
|
||||
** $Id: date.c,v 1.66 2007/05/08 21:56:00 drh Exp $
|
||||
** $Id: date.c,v 1.99 2008/12/20 13:18:50 drh Exp $
|
||||
**
|
||||
** SQLite processes all times and dates as Julian Day numbers. The
|
||||
** dates and times are stored as the number of days since noon
|
||||
|
@ -46,7 +46,6 @@
|
|||
** Richmond, Virginia (USA)
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
#include "os.h"
|
||||
#include <ctype.h>
|
||||
#include <stdlib.h>
|
||||
#include <assert.h>
|
||||
|
@ -54,20 +53,37 @@
|
|||
|
||||
#ifndef SQLITE_OMIT_DATETIME_FUNCS
|
||||
|
||||
/*
|
||||
** On recent Windows platforms, the localtime_s() function is available
|
||||
** as part of the "Secure CRT". It is essentially equivalent to
|
||||
** localtime_r() available under most POSIX platforms, except that the
|
||||
** order of the parameters is reversed.
|
||||
**
|
||||
** See http://msdn.microsoft.com/en-us/library/a442x3ye(VS.80).aspx.
|
||||
**
|
||||
** If the user has not indicated to use localtime_r() or localtime_s()
|
||||
** already, check for an MSVC build environment that provides
|
||||
** localtime_s().
|
||||
*/
|
||||
#if !defined(HAVE_LOCALTIME_R) && !defined(HAVE_LOCALTIME_S) && \
|
||||
defined(_MSC_VER) && defined(_CRT_INSECURE_DEPRECATE)
|
||||
#define HAVE_LOCALTIME_S 1
|
||||
#endif
|
||||
|
||||
/*
|
||||
** A structure for holding a single date and time.
|
||||
*/
|
||||
typedef struct DateTime DateTime;
|
||||
struct DateTime {
|
||||
double rJD; /* The julian day number */
|
||||
sqlite3_int64 iJD; /* The julian day number times 86400000 */
|
||||
int Y, M, D; /* Year, month, and day */
|
||||
int h, m; /* Hour and minutes */
|
||||
int tz; /* Timezone offset in minutes */
|
||||
double s; /* Seconds */
|
||||
char validYMD; /* True if Y,M,D are valid */
|
||||
char validHMS; /* True if h,m,s are valid */
|
||||
char validJD; /* True if rJD is valid */
|
||||
char validTZ; /* True if tz is valid */
|
||||
char validYMD; /* True (1) if Y,M,D are valid */
|
||||
char validHMS; /* True (1) if h,m,s are valid */
|
||||
char validJD; /* True (1) if iJD is valid */
|
||||
char validTZ; /* True (1) if tz is valid */
|
||||
};
|
||||
|
||||
|
||||
|
@ -132,23 +148,32 @@ end_getDigits:
|
|||
**
|
||||
** (+/-)HH:MM
|
||||
**
|
||||
** Or the "zulu" notation:
|
||||
**
|
||||
** Z
|
||||
**
|
||||
** If the parse is successful, write the number of minutes
|
||||
** of change in *pnMin and return 0. If a parser error occurs,
|
||||
** return 0.
|
||||
** of change in p->tz and return 0. If a parser error occurs,
|
||||
** return non-zero.
|
||||
**
|
||||
** A missing specifier is not considered an error.
|
||||
*/
|
||||
static int parseTimezone(const char *zDate, DateTime *p){
|
||||
int sgn = 0;
|
||||
int nHr, nMn;
|
||||
int c;
|
||||
while( isspace(*(u8*)zDate) ){ zDate++; }
|
||||
p->tz = 0;
|
||||
if( *zDate=='-' ){
|
||||
c = *zDate;
|
||||
if( c=='-' ){
|
||||
sgn = -1;
|
||||
}else if( *zDate=='+' ){
|
||||
}else if( c=='+' ){
|
||||
sgn = +1;
|
||||
}else if( c=='Z' || c=='z' ){
|
||||
zDate++;
|
||||
goto zulu_time;
|
||||
}else{
|
||||
return *zDate!=0;
|
||||
return c!=0;
|
||||
}
|
||||
zDate++;
|
||||
if( getDigits(zDate, 2, 0, 14, ':', &nHr, 2, 0, 59, 0, &nMn)!=2 ){
|
||||
|
@ -156,6 +181,7 @@ static int parseTimezone(const char *zDate, DateTime *p){
|
|||
}
|
||||
zDate += 5;
|
||||
p->tz = sgn*(nMn + nHr*60);
|
||||
zulu_time:
|
||||
while( isspace(*(u8*)zDate) ){ zDate++; }
|
||||
return *zDate!=0;
|
||||
}
|
||||
|
@ -199,7 +225,7 @@ static int parseHhMmSs(const char *zDate, DateTime *p){
|
|||
p->m = m;
|
||||
p->s = s + ms;
|
||||
if( parseTimezone(zDate, p) ) return 1;
|
||||
p->validTZ = p->tz!=0;
|
||||
p->validTZ = (p->tz!=0)?1:0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@ -228,14 +254,14 @@ static void computeJD(DateTime *p){
|
|||
}
|
||||
A = Y/100;
|
||||
B = 2 - A + (A/4);
|
||||
X1 = 365.25*(Y+4716);
|
||||
X2 = 30.6001*(M+1);
|
||||
p->rJD = X1 + X2 + D + B - 1524.5;
|
||||
X1 = 36525*(Y+4716)/100;
|
||||
X2 = 306001*(M+1)/10000;
|
||||
p->iJD = (sqlite3_int64)((X1 + X2 + D + B - 1524.5 ) * 86400000);
|
||||
p->validJD = 1;
|
||||
if( p->validHMS ){
|
||||
p->rJD += (p->h*3600.0 + p->m*60.0 + p->s)/86400.0;
|
||||
p->iJD += p->h*3600000 + p->m*60000 + (sqlite3_int64)(p->s*1000);
|
||||
if( p->validTZ ){
|
||||
p->rJD -= p->tz*60/86400.0;
|
||||
p->iJD -= p->tz*60000;
|
||||
p->validYMD = 0;
|
||||
p->validHMS = 0;
|
||||
p->validTZ = 0;
|
||||
|
@ -287,6 +313,17 @@ static int parseYyyyMmDd(const char *zDate, DateTime *p){
|
|||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
** Set the time to the current time reported by the VFS
|
||||
*/
|
||||
static void setDateTimeToCurrent(sqlite3_context *context, DateTime *p){
|
||||
double r;
|
||||
sqlite3 *db = sqlite3_context_db_handle(context);
|
||||
sqlite3OsCurrentTime(db->pVfs, &r);
|
||||
p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5);
|
||||
p->validJD = 1;
|
||||
}
|
||||
|
||||
/*
|
||||
** Attempt to parse the given string into a Julian Day Number. Return
|
||||
** the number of errors.
|
||||
|
@ -303,20 +340,22 @@ static int parseYyyyMmDd(const char *zDate, DateTime *p){
|
|||
** as there is a time string. The time string can be omitted as long
|
||||
** as there is a year and date.
|
||||
*/
|
||||
static int parseDateOrTime(const char *zDate, DateTime *p){
|
||||
memset(p, 0, sizeof(*p));
|
||||
static int parseDateOrTime(
|
||||
sqlite3_context *context,
|
||||
const char *zDate,
|
||||
DateTime *p
|
||||
){
|
||||
if( parseYyyyMmDd(zDate,p)==0 ){
|
||||
return 0;
|
||||
}else if( parseHhMmSs(zDate, p)==0 ){
|
||||
return 0;
|
||||
}else if( sqlite3StrICmp(zDate,"now")==0){
|
||||
double r;
|
||||
sqlite3OsCurrentTime(&r);
|
||||
p->rJD = r;
|
||||
p->validJD = 1;
|
||||
setDateTimeToCurrent(context, p);
|
||||
return 0;
|
||||
}else if( sqlite3IsNumber(zDate, 0, SQLITE_UTF8) ){
|
||||
getValue(zDate, &p->rJD);
|
||||
double r;
|
||||
getValue(zDate, &r);
|
||||
p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5);
|
||||
p->validJD = 1;
|
||||
return 0;
|
||||
}
|
||||
|
@ -334,14 +373,14 @@ static void computeYMD(DateTime *p){
|
|||
p->M = 1;
|
||||
p->D = 1;
|
||||
}else{
|
||||
Z = p->rJD + 0.5;
|
||||
A = (Z - 1867216.25)/36524.25;
|
||||
Z = (int)((p->iJD + 43200000)/86400000);
|
||||
A = (int)((Z - 1867216.25)/36524.25);
|
||||
A = Z + 1 + A - (A/4);
|
||||
B = A + 1524;
|
||||
C = (B - 122.1)/365.25;
|
||||
D = 365.25*C;
|
||||
E = (B-D)/30.6001;
|
||||
X1 = 30.6001*E;
|
||||
C = (int)((B - 122.1)/365.25);
|
||||
D = (36525*C)/100;
|
||||
E = (int)((B-D)/30.6001);
|
||||
X1 = (int)(30.6001*E);
|
||||
p->D = B - D - X1;
|
||||
p->M = E<14 ? E-1 : E-13;
|
||||
p->Y = p->M>2 ? C - 4716 : C - 4715;
|
||||
|
@ -353,13 +392,12 @@ static void computeYMD(DateTime *p){
|
|||
** Compute the Hour, Minute, and Seconds from the julian day number.
|
||||
*/
|
||||
static void computeHMS(DateTime *p){
|
||||
int Z, s;
|
||||
int s;
|
||||
if( p->validHMS ) return;
|
||||
computeJD(p);
|
||||
Z = p->rJD + 0.5;
|
||||
s = (p->rJD + 0.5 - Z)*86400000.0 + 0.5;
|
||||
p->s = 0.001*s;
|
||||
s = p->s;
|
||||
s = (int)((p->iJD + 43200000) % 86400000);
|
||||
p->s = s/1000.0;
|
||||
s = (int)p->s;
|
||||
p->s -= s;
|
||||
p->h = s/3600;
|
||||
s -= p->h*3600;
|
||||
|
@ -385,11 +423,13 @@ static void clearYMD_HMS_TZ(DateTime *p){
|
|||
p->validTZ = 0;
|
||||
}
|
||||
|
||||
#ifndef SQLITE_OMIT_LOCALTIME
|
||||
/*
|
||||
** Compute the difference (in days) between localtime and UTC (a.k.a. GMT)
|
||||
** Compute the difference (in milliseconds)
|
||||
** between localtime and UTC (a.k.a. GMT)
|
||||
** for the time value p where p is in UTC.
|
||||
*/
|
||||
static double localtimeOffset(DateTime *p){
|
||||
static sqlite3_int64 localtimeOffset(DateTime *p){
|
||||
DateTime x, y;
|
||||
time_t t;
|
||||
x = *p;
|
||||
|
@ -402,13 +442,13 @@ static double localtimeOffset(DateTime *p){
|
|||
x.m = 0;
|
||||
x.s = 0.0;
|
||||
} else {
|
||||
int s = x.s + 0.5;
|
||||
int s = (int)(x.s + 0.5);
|
||||
x.s = s;
|
||||
}
|
||||
x.tz = 0;
|
||||
x.validJD = 0;
|
||||
computeJD(&x);
|
||||
t = (x.rJD-2440587.5)*86400.0 + 0.5;
|
||||
t = x.iJD/1000 - 21086676*(i64)10000;
|
||||
#ifdef HAVE_LOCALTIME_R
|
||||
{
|
||||
struct tm sLocal;
|
||||
|
@ -420,10 +460,21 @@ static double localtimeOffset(DateTime *p){
|
|||
y.m = sLocal.tm_min;
|
||||
y.s = sLocal.tm_sec;
|
||||
}
|
||||
#elif defined(HAVE_LOCALTIME_S)
|
||||
{
|
||||
struct tm sLocal;
|
||||
localtime_s(&sLocal, &t);
|
||||
y.Y = sLocal.tm_year + 1900;
|
||||
y.M = sLocal.tm_mon + 1;
|
||||
y.D = sLocal.tm_mday;
|
||||
y.h = sLocal.tm_hour;
|
||||
y.m = sLocal.tm_min;
|
||||
y.s = sLocal.tm_sec;
|
||||
}
|
||||
#else
|
||||
{
|
||||
struct tm *pTm;
|
||||
sqlite3OsEnterMutex();
|
||||
sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
|
||||
pTm = localtime(&t);
|
||||
y.Y = pTm->tm_year + 1900;
|
||||
y.M = pTm->tm_mon + 1;
|
||||
|
@ -431,7 +482,7 @@ static double localtimeOffset(DateTime *p){
|
|||
y.h = pTm->tm_hour;
|
||||
y.m = pTm->tm_min;
|
||||
y.s = pTm->tm_sec;
|
||||
sqlite3OsLeaveMutex();
|
||||
sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
|
||||
}
|
||||
#endif
|
||||
y.validYMD = 1;
|
||||
|
@ -439,8 +490,9 @@ static double localtimeOffset(DateTime *p){
|
|||
y.validJD = 0;
|
||||
y.validTZ = 0;
|
||||
computeJD(&y);
|
||||
return y.rJD - x.rJD;
|
||||
return y.iJD - x.iJD;
|
||||
}
|
||||
#endif /* SQLITE_OMIT_LOCALTIME */
|
||||
|
||||
/*
|
||||
** Process a modifier to a date-time stamp. The modifiers are
|
||||
|
@ -469,11 +521,12 @@ static int parseModifier(const char *zMod, DateTime *p){
|
|||
double r;
|
||||
char *z, zBuf[30];
|
||||
z = zBuf;
|
||||
for(n=0; n<sizeof(zBuf)-1 && zMod[n]; n++){
|
||||
z[n] = tolower(zMod[n]);
|
||||
for(n=0; n<ArraySize(zBuf)-1 && zMod[n]; n++){
|
||||
z[n] = (char)sqlite3UpperToLower[(u8)zMod[n]];
|
||||
}
|
||||
z[n] = 0;
|
||||
switch( z[0] ){
|
||||
#ifndef SQLITE_OMIT_LOCALTIME
|
||||
case 'l': {
|
||||
/* localtime
|
||||
**
|
||||
|
@ -482,32 +535,36 @@ static int parseModifier(const char *zMod, DateTime *p){
|
|||
*/
|
||||
if( strcmp(z, "localtime")==0 ){
|
||||
computeJD(p);
|
||||
p->rJD += localtimeOffset(p);
|
||||
p->iJD += localtimeOffset(p);
|
||||
clearYMD_HMS_TZ(p);
|
||||
rc = 0;
|
||||
}
|
||||
break;
|
||||
}
|
||||
#endif
|
||||
case 'u': {
|
||||
/*
|
||||
** unixepoch
|
||||
**
|
||||
** Treat the current value of p->rJD as the number of
|
||||
** Treat the current value of p->iJD as the number of
|
||||
** seconds since 1970. Convert to a real julian day number.
|
||||
*/
|
||||
if( strcmp(z, "unixepoch")==0 && p->validJD ){
|
||||
p->rJD = p->rJD/86400.0 + 2440587.5;
|
||||
p->iJD = p->iJD/86400 + 21086676*(i64)10000000;
|
||||
clearYMD_HMS_TZ(p);
|
||||
rc = 0;
|
||||
}else if( strcmp(z, "utc")==0 ){
|
||||
double c1;
|
||||
computeJD(p);
|
||||
c1 = localtimeOffset(p);
|
||||
p->rJD -= c1;
|
||||
clearYMD_HMS_TZ(p);
|
||||
p->rJD += c1 - localtimeOffset(p);
|
||||
rc = 0;
|
||||
}
|
||||
#ifndef SQLITE_OMIT_LOCALTIME
|
||||
else if( strcmp(z, "utc")==0 ){
|
||||
sqlite3_int64 c1;
|
||||
computeJD(p);
|
||||
c1 = localtimeOffset(p);
|
||||
p->iJD -= c1;
|
||||
clearYMD_HMS_TZ(p);
|
||||
p->iJD += c1 - localtimeOffset(p);
|
||||
rc = 0;
|
||||
}
|
||||
#endif
|
||||
break;
|
||||
}
|
||||
case 'w': {
|
||||
|
@ -519,16 +576,15 @@ static int parseModifier(const char *zMod, DateTime *p){
|
|||
** date is already on the appropriate weekday, this is a no-op.
|
||||
*/
|
||||
if( strncmp(z, "weekday ", 8)==0 && getValue(&z[8],&r)>0
|
||||
&& (n=r)==r && n>=0 && r<7 ){
|
||||
int Z;
|
||||
&& (n=(int)r)==r && n>=0 && r<7 ){
|
||||
sqlite3_int64 Z;
|
||||
computeYMD_HMS(p);
|
||||
p->validTZ = 0;
|
||||
p->validJD = 0;
|
||||
computeJD(p);
|
||||
Z = p->rJD + 1.5;
|
||||
Z %= 7;
|
||||
Z = ((p->iJD + 129600000)/86400000) % 7;
|
||||
if( Z>n ) Z -= 7;
|
||||
p->rJD += n - Z;
|
||||
p->iJD += (n - Z)*86400000;
|
||||
clearYMD_HMS_TZ(p);
|
||||
rc = 0;
|
||||
}
|
||||
|
@ -584,52 +640,52 @@ static int parseModifier(const char *zMod, DateTime *p){
|
|||
*/
|
||||
const char *z2 = z;
|
||||
DateTime tx;
|
||||
int day;
|
||||
sqlite3_int64 day;
|
||||
if( !isdigit(*(u8*)z2) ) z2++;
|
||||
memset(&tx, 0, sizeof(tx));
|
||||
if( parseHhMmSs(z2, &tx) ) break;
|
||||
computeJD(&tx);
|
||||
tx.rJD -= 0.5;
|
||||
day = (int)tx.rJD;
|
||||
tx.rJD -= day;
|
||||
if( z[0]=='-' ) tx.rJD = -tx.rJD;
|
||||
tx.iJD -= 43200000;
|
||||
day = tx.iJD/86400000;
|
||||
tx.iJD -= day*86400000;
|
||||
if( z[0]=='-' ) tx.iJD = -tx.iJD;
|
||||
computeJD(p);
|
||||
clearYMD_HMS_TZ(p);
|
||||
p->rJD += tx.rJD;
|
||||
p->iJD += tx.iJD;
|
||||
rc = 0;
|
||||
break;
|
||||
}
|
||||
z += n;
|
||||
while( isspace(*(u8*)z) ) z++;
|
||||
n = strlen(z);
|
||||
n = sqlite3Strlen30(z);
|
||||
if( n>10 || n<3 ) break;
|
||||
if( z[n-1]=='s' ){ z[n-1] = 0; n--; }
|
||||
computeJD(p);
|
||||
rc = 0;
|
||||
if( n==3 && strcmp(z,"day")==0 ){
|
||||
p->rJD += r;
|
||||
p->iJD += (sqlite3_int64)(r*86400000.0 + 0.5);
|
||||
}else if( n==4 && strcmp(z,"hour")==0 ){
|
||||
p->rJD += r/24.0;
|
||||
p->iJD += (sqlite3_int64)(r*(86400000.0/24.0) + 0.5);
|
||||
}else if( n==6 && strcmp(z,"minute")==0 ){
|
||||
p->rJD += r/(24.0*60.0);
|
||||
p->iJD += (sqlite3_int64)(r*(86400000.0/(24.0*60.0)) + 0.5);
|
||||
}else if( n==6 && strcmp(z,"second")==0 ){
|
||||
p->rJD += r/(24.0*60.0*60.0);
|
||||
p->iJD += (sqlite3_int64)(r*(86400000.0/(24.0*60.0*60.0)) + 0.5);
|
||||
}else if( n==5 && strcmp(z,"month")==0 ){
|
||||
int x, y;
|
||||
computeYMD_HMS(p);
|
||||
p->M += r;
|
||||
p->M += (int)r;
|
||||
x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12;
|
||||
p->Y += x;
|
||||
p->M -= x*12;
|
||||
p->validJD = 0;
|
||||
computeJD(p);
|
||||
y = r;
|
||||
y = (int)r;
|
||||
if( y!=r ){
|
||||
p->rJD += (r - y)*30.0;
|
||||
p->iJD += (sqlite3_int64)((r - y)*30.0*86400000.0 + 0.5);
|
||||
}
|
||||
}else if( n==4 && strcmp(z,"year")==0 ){
|
||||
computeYMD_HMS(p);
|
||||
p->Y += r;
|
||||
p->Y += (int)r;
|
||||
p->validJD = 0;
|
||||
computeJD(p);
|
||||
}else{
|
||||
|
@ -650,14 +706,32 @@ static int parseModifier(const char *zMod, DateTime *p){
|
|||
** argv[1] and following are modifiers. Parse them all and write
|
||||
** the resulting time into the DateTime structure p. Return 0
|
||||
** on success and 1 if there are any errors.
|
||||
**
|
||||
** If there are zero parameters (if even argv[0] is undefined)
|
||||
** then assume a default value of "now" for argv[0].
|
||||
*/
|
||||
static int isDate(int argc, sqlite3_value **argv, DateTime *p){
|
||||
static int isDate(
|
||||
sqlite3_context *context,
|
||||
int argc,
|
||||
sqlite3_value **argv,
|
||||
DateTime *p
|
||||
){
|
||||
int i;
|
||||
const unsigned char *z;
|
||||
if( argc==0 ) return 1;
|
||||
if( (z = sqlite3_value_text(argv[0]))==0 || parseDateOrTime((char*)z, p) ){
|
||||
int eType;
|
||||
memset(p, 0, sizeof(*p));
|
||||
if( argc==0 ){
|
||||
setDateTimeToCurrent(context, p);
|
||||
}else if( (eType = sqlite3_value_type(argv[0]))==SQLITE_FLOAT
|
||||
|| eType==SQLITE_INTEGER ){
|
||||
p->iJD = (sqlite3_int64)(sqlite3_value_double(argv[0])*86400000.0 + 0.5);
|
||||
p->validJD = 1;
|
||||
}else{
|
||||
z = sqlite3_value_text(argv[0]);
|
||||
if( !z || parseDateOrTime(context, (char*)z, p) ){
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
for(i=1; i<argc; i++){
|
||||
if( (z = sqlite3_value_text(argv[i]))==0 || parseModifier((char*)z, p) ){
|
||||
return 1;
|
||||
|
@ -683,9 +757,9 @@ static void juliandayFunc(
|
|||
sqlite3_value **argv
|
||||
){
|
||||
DateTime x;
|
||||
if( isDate(argc, argv, &x)==0 ){
|
||||
if( isDate(context, argc, argv, &x)==0 ){
|
||||
computeJD(&x);
|
||||
sqlite3_result_double(context, x.rJD);
|
||||
sqlite3_result_double(context, x.iJD/86400000.0);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -700,7 +774,7 @@ static void datetimeFunc(
|
|||
sqlite3_value **argv
|
||||
){
|
||||
DateTime x;
|
||||
if( isDate(argc, argv, &x)==0 ){
|
||||
if( isDate(context, argc, argv, &x)==0 ){
|
||||
char zBuf[100];
|
||||
computeYMD_HMS(&x);
|
||||
sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d %02d:%02d:%02d",
|
||||
|
@ -720,7 +794,7 @@ static void timeFunc(
|
|||
sqlite3_value **argv
|
||||
){
|
||||
DateTime x;
|
||||
if( isDate(argc, argv, &x)==0 ){
|
||||
if( isDate(context, argc, argv, &x)==0 ){
|
||||
char zBuf[100];
|
||||
computeHMS(&x);
|
||||
sqlite3_snprintf(sizeof(zBuf), zBuf, "%02d:%02d:%02d", x.h, x.m, (int)x.s);
|
||||
|
@ -739,7 +813,7 @@ static void dateFunc(
|
|||
sqlite3_value **argv
|
||||
){
|
||||
DateTime x;
|
||||
if( isDate(argc, argv, &x)==0 ){
|
||||
if( isDate(context, argc, argv, &x)==0 ){
|
||||
char zBuf[100];
|
||||
computeYMD(&x);
|
||||
sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D);
|
||||
|
@ -773,11 +847,13 @@ static void strftimeFunc(
|
|||
){
|
||||
DateTime x;
|
||||
u64 n;
|
||||
int i, j;
|
||||
size_t i,j;
|
||||
char *z;
|
||||
sqlite3 *db;
|
||||
const char *zFmt = (const char*)sqlite3_value_text(argv[0]);
|
||||
char zBuf[100];
|
||||
if( zFmt==0 || isDate(argc-1, argv+1, &x) ) return;
|
||||
if( zFmt==0 || isDate(context, argc-1, argv+1, &x) ) return;
|
||||
db = sqlite3_context_db_handle(context);
|
||||
for(i=0, n=1; zFmt[i]; i++, n++){
|
||||
if( zFmt[i]=='%' ){
|
||||
switch( zFmt[i+1] ){
|
||||
|
@ -813,12 +889,15 @@ static void strftimeFunc(
|
|||
}
|
||||
if( n<sizeof(zBuf) ){
|
||||
z = zBuf;
|
||||
}else if( n>SQLITE_MAX_LENGTH ){
|
||||
}else if( n>(u64)db->aLimit[SQLITE_LIMIT_LENGTH] ){
|
||||
sqlite3_result_error_toobig(context);
|
||||
return;
|
||||
}else{
|
||||
z = sqliteMalloc( n );
|
||||
if( z==0 ) return;
|
||||
z = sqlite3DbMallocRaw(db, (int)n);
|
||||
if( z==0 ){
|
||||
sqlite3_result_error_nomem(context);
|
||||
return;
|
||||
}
|
||||
}
|
||||
computeJD(&x);
|
||||
computeYMD_HMS(&x);
|
||||
|
@ -833,7 +912,7 @@ static void strftimeFunc(
|
|||
double s = x.s;
|
||||
if( s>59.999 ) s = 59.999;
|
||||
sqlite3_snprintf(7, &z[j],"%06.3f", s);
|
||||
j += strlen(&z[j]);
|
||||
j += sqlite3Strlen30(&z[j]);
|
||||
break;
|
||||
}
|
||||
case 'H': sqlite3_snprintf(3, &z[j],"%02d",x.h); j+=2; break;
|
||||
|
@ -845,10 +924,10 @@ static void strftimeFunc(
|
|||
y.M = 1;
|
||||
y.D = 1;
|
||||
computeJD(&y);
|
||||
nDay = x.rJD - y.rJD + 0.5;
|
||||
nDay = (int)((x.iJD-y.iJD+43200000)/86400000);
|
||||
if( zFmt[i]=='W' ){
|
||||
int wd; /* 0=Monday, 1=Tuesday, ... 6=Sunday */
|
||||
wd = ((int)(x.rJD+0.5)) % 7;
|
||||
wd = (int)(((x.iJD+43200000)/86400000)%7);
|
||||
sqlite3_snprintf(3, &z[j],"%02d",(nDay+7-wd)/7);
|
||||
j += 2;
|
||||
}else{
|
||||
|
@ -858,30 +937,34 @@ static void strftimeFunc(
|
|||
break;
|
||||
}
|
||||
case 'J': {
|
||||
sqlite3_snprintf(20, &z[j],"%.16g",x.rJD);
|
||||
j+=strlen(&z[j]);
|
||||
sqlite3_snprintf(20, &z[j],"%.16g",x.iJD/86400000.0);
|
||||
j+=sqlite3Strlen30(&z[j]);
|
||||
break;
|
||||
}
|
||||
case 'm': sqlite3_snprintf(3, &z[j],"%02d",x.M); j+=2; break;
|
||||
case 'M': sqlite3_snprintf(3, &z[j],"%02d",x.m); j+=2; break;
|
||||
case 's': {
|
||||
sqlite3_snprintf(30,&z[j],"%d",
|
||||
(int)((x.rJD-2440587.5)*86400.0 + 0.5));
|
||||
j += strlen(&z[j]);
|
||||
(int)(x.iJD/1000.0 - 210866760000.0));
|
||||
j += sqlite3Strlen30(&z[j]);
|
||||
break;
|
||||
}
|
||||
case 'S': sqlite3_snprintf(3,&z[j],"%02d",(int)x.s); j+=2; break;
|
||||
case 'w': z[j++] = (((int)(x.rJD+1.5)) % 7) + '0'; break;
|
||||
case 'Y': sqlite3_snprintf(5,&z[j],"%04d",x.Y); j+=strlen(&z[j]);break;
|
||||
case '%': z[j++] = '%'; break;
|
||||
case 'w': {
|
||||
z[j++] = (char)(((x.iJD+129600000)/86400000) % 7) + '0';
|
||||
break;
|
||||
}
|
||||
case 'Y': {
|
||||
sqlite3_snprintf(5,&z[j],"%04d",x.Y); j+=sqlite3Strlen30(&z[j]);
|
||||
break;
|
||||
}
|
||||
default: z[j++] = '%'; break;
|
||||
}
|
||||
}
|
||||
}
|
||||
z[j] = 0;
|
||||
sqlite3_result_text(context, z, -1, SQLITE_TRANSIENT);
|
||||
if( z!=zBuf ){
|
||||
sqliteFree(z);
|
||||
}
|
||||
sqlite3_result_text(context, z, -1,
|
||||
z==zBuf ? SQLITE_TRANSIENT : SQLITE_DYNAMIC);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -891,15 +974,11 @@ static void strftimeFunc(
|
|||
*/
|
||||
static void ctimeFunc(
|
||||
sqlite3_context *context,
|
||||
int argc,
|
||||
sqlite3_value **argv
|
||||
int NotUsed,
|
||||
sqlite3_value **NotUsed2
|
||||
){
|
||||
sqlite3_value *pVal = sqlite3ValueNew();
|
||||
if( pVal ){
|
||||
sqlite3ValueSetStr(pVal, -1, "now", SQLITE_UTF8, SQLITE_STATIC);
|
||||
timeFunc(context, 1, &pVal);
|
||||
sqlite3ValueFree(pVal);
|
||||
}
|
||||
UNUSED_PARAMETER2(NotUsed, NotUsed2);
|
||||
timeFunc(context, 0, 0);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -909,15 +988,11 @@ static void ctimeFunc(
|
|||
*/
|
||||
static void cdateFunc(
|
||||
sqlite3_context *context,
|
||||
int argc,
|
||||
sqlite3_value **argv
|
||||
int NotUsed,
|
||||
sqlite3_value **NotUsed2
|
||||
){
|
||||
sqlite3_value *pVal = sqlite3ValueNew();
|
||||
if( pVal ){
|
||||
sqlite3ValueSetStr(pVal, -1, "now", SQLITE_UTF8, SQLITE_STATIC);
|
||||
dateFunc(context, 1, &pVal);
|
||||
sqlite3ValueFree(pVal);
|
||||
}
|
||||
UNUSED_PARAMETER2(NotUsed, NotUsed2);
|
||||
dateFunc(context, 0, 0);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -927,15 +1002,11 @@ static void cdateFunc(
|
|||
*/
|
||||
static void ctimestampFunc(
|
||||
sqlite3_context *context,
|
||||
int argc,
|
||||
sqlite3_value **argv
|
||||
int NotUsed,
|
||||
sqlite3_value **NotUsed2
|
||||
){
|
||||
sqlite3_value *pVal = sqlite3ValueNew();
|
||||
if( pVal ){
|
||||
sqlite3ValueSetStr(pVal, -1, "now", SQLITE_UTF8, SQLITE_STATIC);
|
||||
datetimeFunc(context, 1, &pVal);
|
||||
sqlite3ValueFree(pVal);
|
||||
}
|
||||
UNUSED_PARAMETER2(NotUsed, NotUsed2);
|
||||
datetimeFunc(context, 0, 0);
|
||||
}
|
||||
#endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */
|
||||
|
||||
|
@ -958,18 +1029,13 @@ static void currentTimeFunc(
|
|||
){
|
||||
time_t t;
|
||||
char *zFormat = (char *)sqlite3_user_data(context);
|
||||
sqlite3 *db;
|
||||
double rT;
|
||||
char zBuf[20];
|
||||
|
||||
time(&t);
|
||||
#ifdef SQLITE_TEST
|
||||
{
|
||||
extern int sqlite3_current_time; /* See os_XXX.c */
|
||||
if( sqlite3_current_time ){
|
||||
t = sqlite3_current_time;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
db = sqlite3_context_db_handle(context);
|
||||
sqlite3OsCurrentTime(db->pVfs, &rT);
|
||||
t = 86400.0*(rT - 2440587.5) + 0.5;
|
||||
#ifdef HAVE_GMTIME_R
|
||||
{
|
||||
struct tm sNow;
|
||||
|
@ -979,10 +1045,10 @@ static void currentTimeFunc(
|
|||
#else
|
||||
{
|
||||
struct tm *pTm;
|
||||
sqlite3OsEnterMutex();
|
||||
sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
|
||||
pTm = gmtime(&t);
|
||||
strftime(zBuf, 20, zFormat, pTm);
|
||||
sqlite3OsLeaveMutex();
|
||||
sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
|
||||
}
|
||||
#endif
|
||||
|
||||
|
@ -995,42 +1061,28 @@ static void currentTimeFunc(
|
|||
** functions. This should be the only routine in this file with
|
||||
** external linkage.
|
||||
*/
|
||||
void sqlite3RegisterDateTimeFunctions(sqlite3 *db){
|
||||
void sqlite3RegisterDateTimeFunctions(void){
|
||||
static SQLITE_WSD FuncDef aDateTimeFuncs[] = {
|
||||
#ifndef SQLITE_OMIT_DATETIME_FUNCS
|
||||
static const struct {
|
||||
char *zName;
|
||||
int nArg;
|
||||
void (*xFunc)(sqlite3_context*,int,sqlite3_value**);
|
||||
} aFuncs[] = {
|
||||
{ "julianday", -1, juliandayFunc },
|
||||
{ "date", -1, dateFunc },
|
||||
{ "time", -1, timeFunc },
|
||||
{ "datetime", -1, datetimeFunc },
|
||||
{ "strftime", -1, strftimeFunc },
|
||||
{ "current_time", 0, ctimeFunc },
|
||||
{ "current_timestamp", 0, ctimestampFunc },
|
||||
{ "current_date", 0, cdateFunc },
|
||||
};
|
||||
int i;
|
||||
|
||||
for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
|
||||
sqlite3CreateFunc(db, aFuncs[i].zName, aFuncs[i].nArg,
|
||||
SQLITE_UTF8, 0, aFuncs[i].xFunc, 0, 0);
|
||||
}
|
||||
FUNCTION(julianday, -1, 0, 0, juliandayFunc ),
|
||||
FUNCTION(date, -1, 0, 0, dateFunc ),
|
||||
FUNCTION(time, -1, 0, 0, timeFunc ),
|
||||
FUNCTION(datetime, -1, 0, 0, datetimeFunc ),
|
||||
FUNCTION(strftime, -1, 0, 0, strftimeFunc ),
|
||||
FUNCTION(current_time, 0, 0, 0, ctimeFunc ),
|
||||
FUNCTION(current_timestamp, 0, 0, 0, ctimestampFunc),
|
||||
FUNCTION(current_date, 0, 0, 0, cdateFunc ),
|
||||
#else
|
||||
static const struct {
|
||||
char *zName;
|
||||
char *zFormat;
|
||||
} aFuncs[] = {
|
||||
{ "current_time", "%H:%M:%S" },
|
||||
{ "current_date", "%Y-%m-%d" },
|
||||
{ "current_timestamp", "%Y-%m-%d %H:%M:%S" }
|
||||
STR_FUNCTION(current_time, 0, "%H:%M:%S", 0, currentTimeFunc),
|
||||
STR_FUNCTION(current_timestamp, 0, "%Y-%m-%d", 0, currentTimeFunc),
|
||||
STR_FUNCTION(current_date, 0, "%Y-%m-%d %H:%M:%S", 0, currentTimeFunc),
|
||||
#endif
|
||||
};
|
||||
int i;
|
||||
FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions);
|
||||
FuncDef *aFunc = (FuncDef*)&GLOBAL(FuncDef, aDateTimeFuncs);
|
||||
|
||||
for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
|
||||
sqlite3CreateFunc(db, aFuncs[i].zName, 0, SQLITE_UTF8,
|
||||
aFuncs[i].zFormat, currentTimeFunc, 0, 0);
|
||||
for(i=0; i<ArraySize(aDateTimeFuncs); i++){
|
||||
sqlite3FuncDefInsert(pHash, &aFunc[i]);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
|
441
delete.c
441
delete.c
|
@ -12,7 +12,7 @@
|
|||
** This file contains C code routines that are called by the parser
|
||||
** in order to generate code for DELETE FROM statements.
|
||||
**
|
||||
** $Id: delete.c,v 1.129 2007/04/16 15:06:25 danielk1977 Exp $
|
||||
** $Id: delete.c,v 1.191 2008/12/23 23:56:22 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
|
@ -22,16 +22,17 @@
|
|||
** are found, return a pointer to the last table.
|
||||
*/
|
||||
Table *sqlite3SrcListLookup(Parse *pParse, SrcList *pSrc){
|
||||
Table *pTab = 0;
|
||||
int i;
|
||||
struct SrcList_item *pItem;
|
||||
for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){
|
||||
pTab = sqlite3LocateTable(pParse, pItem->zName, pItem->zDatabase);
|
||||
struct SrcList_item *pItem = pSrc->a;
|
||||
Table *pTab;
|
||||
assert( pItem && pSrc->nSrc==1 );
|
||||
pTab = sqlite3LocateTable(pParse, 0, pItem->zName, pItem->zDatabase);
|
||||
sqlite3DeleteTable(pItem->pTab);
|
||||
pItem->pTab = pTab;
|
||||
if( pTab ){
|
||||
pTab->nRef++;
|
||||
}
|
||||
if( sqlite3IndexedByLookup(pParse, pItem) ){
|
||||
pTab = 0;
|
||||
}
|
||||
return pTab;
|
||||
}
|
||||
|
@ -42,7 +43,8 @@ Table *sqlite3SrcListLookup(Parse *pParse, SrcList *pSrc){
|
|||
** writable return 0;
|
||||
*/
|
||||
int sqlite3IsReadOnly(Parse *pParse, Table *pTab, int viewOk){
|
||||
if( (pTab->readOnly && (pParse->db->flags & SQLITE_WriteSchema)==0
|
||||
if( ((pTab->tabFlags & TF_Readonly)!=0
|
||||
&& (pParse->db->flags & SQLITE_WriteSchema)==0
|
||||
&& pParse->nested==0)
|
||||
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
||||
|| (pTab->pMod && pTab->pMod->pModule->xUpdate==0)
|
||||
|
@ -74,14 +76,138 @@ void sqlite3OpenTable(
|
|||
if( IsVirtual(pTab) ) return;
|
||||
v = sqlite3GetVdbe(p);
|
||||
assert( opcode==OP_OpenWrite || opcode==OP_OpenRead );
|
||||
sqlite3TableLock(p, iDb, pTab->tnum, (opcode==OP_OpenWrite), pTab->zName);
|
||||
sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
|
||||
VdbeComment((v, "# %s", pTab->zName));
|
||||
sqlite3VdbeAddOp(v, opcode, iCur, pTab->tnum);
|
||||
sqlite3VdbeAddOp(v, OP_SetNumColumns, iCur, pTab->nCol);
|
||||
sqlite3TableLock(p, iDb, pTab->tnum, (opcode==OP_OpenWrite)?1:0, pTab->zName);
|
||||
sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pTab->nCol);
|
||||
sqlite3VdbeAddOp3(v, opcode, iCur, pTab->tnum, iDb);
|
||||
VdbeComment((v, "%s", pTab->zName));
|
||||
}
|
||||
|
||||
|
||||
#if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
|
||||
/*
|
||||
** Evaluate a view and store its result in an ephemeral table. The
|
||||
** pWhere argument is an optional WHERE clause that restricts the
|
||||
** set of rows in the view that are to be added to the ephemeral table.
|
||||
*/
|
||||
void sqlite3MaterializeView(
|
||||
Parse *pParse, /* Parsing context */
|
||||
Table *pView, /* View definition */
|
||||
Expr *pWhere, /* Optional WHERE clause to be added */
|
||||
int iCur /* Cursor number for ephemerial table */
|
||||
){
|
||||
SelectDest dest;
|
||||
Select *pDup;
|
||||
sqlite3 *db = pParse->db;
|
||||
|
||||
pDup = sqlite3SelectDup(db, pView->pSelect);
|
||||
if( pWhere ){
|
||||
SrcList *pFrom;
|
||||
Token viewName;
|
||||
|
||||
pWhere = sqlite3ExprDup(db, pWhere);
|
||||
viewName.z = (u8*)pView->zName;
|
||||
viewName.n = (unsigned int)sqlite3Strlen30((const char*)viewName.z);
|
||||
pFrom = sqlite3SrcListAppendFromTerm(pParse, 0, 0, 0, &viewName, pDup, 0,0);
|
||||
pDup = sqlite3SelectNew(pParse, 0, pFrom, pWhere, 0, 0, 0, 0, 0, 0);
|
||||
}
|
||||
sqlite3SelectDestInit(&dest, SRT_EphemTab, iCur);
|
||||
sqlite3Select(pParse, pDup, &dest);
|
||||
sqlite3SelectDelete(db, pDup);
|
||||
}
|
||||
#endif /* !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) */
|
||||
|
||||
#if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY)
|
||||
/*
|
||||
** Generate an expression tree to implement the WHERE, ORDER BY,
|
||||
** and LIMIT/OFFSET portion of DELETE and UPDATE statements.
|
||||
**
|
||||
** DELETE FROM table_wxyz WHERE a<5 ORDER BY a LIMIT 1;
|
||||
** \__________________________/
|
||||
** pLimitWhere (pInClause)
|
||||
*/
|
||||
Expr *sqlite3LimitWhere(
|
||||
Parse *pParse, /* The parser context */
|
||||
SrcList *pSrc, /* the FROM clause -- which tables to scan */
|
||||
Expr *pWhere, /* The WHERE clause. May be null */
|
||||
ExprList *pOrderBy, /* The ORDER BY clause. May be null */
|
||||
Expr *pLimit, /* The LIMIT clause. May be null */
|
||||
Expr *pOffset, /* The OFFSET clause. May be null */
|
||||
char *zStmtType /* Either DELETE or UPDATE. For error messages. */
|
||||
){
|
||||
Expr *pWhereRowid = NULL; /* WHERE rowid .. */
|
||||
Expr *pInClause = NULL; /* WHERE rowid IN ( select ) */
|
||||
Expr *pSelectRowid = NULL; /* SELECT rowid ... */
|
||||
ExprList *pEList = NULL; /* Expression list contaning only pSelectRowid */
|
||||
SrcList *pSelectSrc = NULL; /* SELECT rowid FROM x ... (dup of pSrc) */
|
||||
Select *pSelect = NULL; /* Complete SELECT tree */
|
||||
|
||||
/* Check that there isn't an ORDER BY without a LIMIT clause.
|
||||
*/
|
||||
if( pOrderBy && (pLimit == 0) ) {
|
||||
sqlite3ErrorMsg(pParse, "ORDER BY without LIMIT on %s", zStmtType);
|
||||
pParse->parseError = 1;
|
||||
goto limit_where_cleanup_2;
|
||||
}
|
||||
|
||||
/* We only need to generate a select expression if there
|
||||
** is a limit/offset term to enforce.
|
||||
*/
|
||||
if( pLimit == 0 ) {
|
||||
/* if pLimit is null, pOffset will always be null as well. */
|
||||
assert( pOffset == 0 );
|
||||
return pWhere;
|
||||
}
|
||||
|
||||
/* Generate a select expression tree to enforce the limit/offset
|
||||
** term for the DELETE or UPDATE statement. For example:
|
||||
** DELETE FROM table_a WHERE col1=1 ORDER BY col2 LIMIT 1 OFFSET 1
|
||||
** becomes:
|
||||
** DELETE FROM table_a WHERE rowid IN (
|
||||
** SELECT rowid FROM table_a WHERE col1=1 ORDER BY col2 LIMIT 1 OFFSET 1
|
||||
** );
|
||||
*/
|
||||
|
||||
pSelectRowid = sqlite3Expr(pParse->db, TK_ROW, 0, 0, 0);
|
||||
if( pSelectRowid == 0 ) goto limit_where_cleanup_2;
|
||||
pEList = sqlite3ExprListAppend(pParse, 0, pSelectRowid, 0);
|
||||
if( pEList == 0 ) goto limit_where_cleanup_2;
|
||||
|
||||
/* duplicate the FROM clause as it is needed by both the DELETE/UPDATE tree
|
||||
** and the SELECT subtree. */
|
||||
pSelectSrc = sqlite3SrcListDup(pParse->db, pSrc);
|
||||
if( pSelectSrc == 0 ) {
|
||||
sqlite3ExprListDelete(pParse->db, pEList);
|
||||
goto limit_where_cleanup_2;
|
||||
}
|
||||
|
||||
/* generate the SELECT expression tree. */
|
||||
pSelect = sqlite3SelectNew(pParse,pEList,pSelectSrc,pWhere,0,0,pOrderBy,0,pLimit,pOffset);
|
||||
if( pSelect == 0 ) return 0;
|
||||
|
||||
/* now generate the new WHERE rowid IN clause for the DELETE/UDPATE */
|
||||
pWhereRowid = sqlite3Expr(pParse->db, TK_ROW, 0, 0, 0);
|
||||
if( pWhereRowid == 0 ) goto limit_where_cleanup_1;
|
||||
pInClause = sqlite3PExpr(pParse, TK_IN, pWhereRowid, 0, 0);
|
||||
if( pInClause == 0 ) goto limit_where_cleanup_1;
|
||||
|
||||
pInClause->pSelect = pSelect;
|
||||
sqlite3ExprSetHeight(pParse, pInClause);
|
||||
return pInClause;
|
||||
|
||||
/* something went wrong. clean up anything allocated. */
|
||||
limit_where_cleanup_1:
|
||||
sqlite3SelectDelete(pParse->db, pSelect);
|
||||
return 0;
|
||||
|
||||
limit_where_cleanup_2:
|
||||
sqlite3ExprDelete(pParse->db, pWhere);
|
||||
sqlite3ExprListDelete(pParse->db, pOrderBy);
|
||||
sqlite3ExprDelete(pParse->db, pLimit);
|
||||
sqlite3ExprDelete(pParse->db, pOffset);
|
||||
return 0;
|
||||
}
|
||||
#endif /* defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) */
|
||||
|
||||
/*
|
||||
** Generate code for a DELETE FROM statement.
|
||||
**
|
||||
|
@ -107,18 +233,24 @@ void sqlite3DeleteFrom(
|
|||
int oldIdx = -1; /* Cursor for the OLD table of AFTER triggers */
|
||||
NameContext sNC; /* Name context to resolve expressions in */
|
||||
int iDb; /* Database number */
|
||||
int memCnt = 0; /* Memory cell used for change counting */
|
||||
int memCnt = -1; /* Memory cell used for change counting */
|
||||
int rcauth; /* Value returned by authorization callback */
|
||||
|
||||
#ifndef SQLITE_OMIT_TRIGGER
|
||||
int isView; /* True if attempting to delete from a view */
|
||||
int triggers_exist = 0; /* True if any triggers exist */
|
||||
#endif
|
||||
int iBeginAfterTrigger = 0; /* Address of after trigger program */
|
||||
int iEndAfterTrigger = 0; /* Exit of after trigger program */
|
||||
int iBeginBeforeTrigger = 0; /* Address of before trigger program */
|
||||
int iEndBeforeTrigger = 0; /* Exit of before trigger program */
|
||||
u32 old_col_mask = 0; /* Mask of OLD.* columns in use */
|
||||
|
||||
sContext.pParse = 0;
|
||||
if( pParse->nErr || sqlite3MallocFailed() ){
|
||||
db = pParse->db;
|
||||
if( pParse->nErr || db->mallocFailed ){
|
||||
goto delete_from_cleanup;
|
||||
}
|
||||
db = pParse->db;
|
||||
assert( pTabList->nSrc==1 );
|
||||
|
||||
/* Locate the table which we want to delete. This table has to be
|
||||
|
@ -133,7 +265,7 @@ void sqlite3DeleteFrom(
|
|||
** deleted from is a view
|
||||
*/
|
||||
#ifndef SQLITE_OMIT_TRIGGER
|
||||
triggers_exist = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0);
|
||||
triggers_exist = sqlite3TriggersExist(pTab, TK_DELETE, 0);
|
||||
isView = pTab->pSelect!=0;
|
||||
#else
|
||||
# define triggers_exist 0
|
||||
|
@ -150,9 +282,12 @@ void sqlite3DeleteFrom(
|
|||
iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
|
||||
assert( iDb<db->nDb );
|
||||
zDb = db->aDb[iDb].zName;
|
||||
if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
|
||||
rcauth = sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb);
|
||||
assert( rcauth==SQLITE_OK || rcauth==SQLITE_DENY || rcauth==SQLITE_IGNORE );
|
||||
if( rcauth==SQLITE_DENY ){
|
||||
goto delete_from_cleanup;
|
||||
}
|
||||
assert(!isView || triggers_exist);
|
||||
|
||||
/* If pTab is really a view, make sure it has been initialized.
|
||||
*/
|
||||
|
@ -166,15 +301,12 @@ void sqlite3DeleteFrom(
|
|||
oldIdx = pParse->nTab++;
|
||||
}
|
||||
|
||||
/* Resolve the column names in the WHERE clause.
|
||||
/* Assign cursor number to the table and all its indices.
|
||||
*/
|
||||
assert( pTabList->nSrc==1 );
|
||||
iCur = pTabList->a[0].iCursor = pParse->nTab++;
|
||||
memset(&sNC, 0, sizeof(sNC));
|
||||
sNC.pParse = pParse;
|
||||
sNC.pSrcList = pTabList;
|
||||
if( sqlite3ExprResolveNames(&sNC, pWhere) ){
|
||||
goto delete_from_cleanup;
|
||||
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
||||
pParse->nTab++;
|
||||
}
|
||||
|
||||
/* Start the view context
|
||||
|
@ -192,79 +324,90 @@ void sqlite3DeleteFrom(
|
|||
if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
|
||||
sqlite3BeginWriteOperation(pParse, triggers_exist, iDb);
|
||||
|
||||
if( triggers_exist ){
|
||||
int orconf = ((pParse->trigStack)?pParse->trigStack->orconf:OE_Default);
|
||||
int iGoto = sqlite3VdbeAddOp0(v, OP_Goto);
|
||||
addr = sqlite3VdbeMakeLabel(v);
|
||||
|
||||
iBeginBeforeTrigger = sqlite3VdbeCurrentAddr(v);
|
||||
(void)sqlite3CodeRowTrigger(pParse, TK_DELETE, 0, TRIGGER_BEFORE, pTab,
|
||||
-1, oldIdx, orconf, addr, &old_col_mask, 0);
|
||||
iEndBeforeTrigger = sqlite3VdbeAddOp0(v, OP_Goto);
|
||||
|
||||
iBeginAfterTrigger = sqlite3VdbeCurrentAddr(v);
|
||||
(void)sqlite3CodeRowTrigger(pParse, TK_DELETE, 0, TRIGGER_AFTER, pTab, -1,
|
||||
oldIdx, orconf, addr, &old_col_mask, 0);
|
||||
iEndAfterTrigger = sqlite3VdbeAddOp0(v, OP_Goto);
|
||||
|
||||
sqlite3VdbeJumpHere(v, iGoto);
|
||||
}
|
||||
|
||||
/* If we are trying to delete from a view, realize that view into
|
||||
** a ephemeral table.
|
||||
*/
|
||||
#if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
|
||||
if( isView ){
|
||||
Select *pView = sqlite3SelectDup(pTab->pSelect);
|
||||
sqlite3Select(pParse, pView, SRT_EphemTab, iCur, 0, 0, 0, 0);
|
||||
sqlite3SelectDelete(pView);
|
||||
sqlite3MaterializeView(pParse, pTab, pWhere, iCur);
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Resolve the column names in the WHERE clause.
|
||||
*/
|
||||
memset(&sNC, 0, sizeof(sNC));
|
||||
sNC.pParse = pParse;
|
||||
sNC.pSrcList = pTabList;
|
||||
if( sqlite3ResolveExprNames(&sNC, pWhere) ){
|
||||
goto delete_from_cleanup;
|
||||
}
|
||||
|
||||
/* Initialize the counter of the number of rows deleted, if
|
||||
** we are counting rows.
|
||||
*/
|
||||
if( db->flags & SQLITE_CountRows ){
|
||||
memCnt = pParse->nMem++;
|
||||
sqlite3VdbeAddOp(v, OP_MemInt, 0, memCnt);
|
||||
memCnt = ++pParse->nMem;
|
||||
sqlite3VdbeAddOp2(v, OP_Integer, 0, memCnt);
|
||||
}
|
||||
|
||||
#ifndef SQLITE_OMIT_TRUNCATE_OPTIMIZATION
|
||||
/* Special case: A DELETE without a WHERE clause deletes everything.
|
||||
** It is easier just to erase the whole table. Note, however, that
|
||||
** this means that the row change count will be incorrect.
|
||||
*/
|
||||
if( pWhere==0 && !triggers_exist && !IsVirtual(pTab) ){
|
||||
if( db->flags & SQLITE_CountRows ){
|
||||
/* If counting rows deleted, just count the total number of
|
||||
** entries in the table. */
|
||||
int endOfLoop = sqlite3VdbeMakeLabel(v);
|
||||
int addr2;
|
||||
if( !isView ){
|
||||
sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead);
|
||||
}
|
||||
sqlite3VdbeAddOp(v, OP_Rewind, iCur, sqlite3VdbeCurrentAddr(v)+2);
|
||||
addr2 = sqlite3VdbeAddOp(v, OP_MemIncr, 1, memCnt);
|
||||
sqlite3VdbeAddOp(v, OP_Next, iCur, addr2);
|
||||
sqlite3VdbeResolveLabel(v, endOfLoop);
|
||||
sqlite3VdbeAddOp(v, OP_Close, iCur, 0);
|
||||
}
|
||||
if( !isView ){
|
||||
sqlite3VdbeAddOp(v, OP_Clear, pTab->tnum, iDb);
|
||||
if( rcauth==SQLITE_OK && pWhere==0 && !triggers_exist && !IsVirtual(pTab) ){
|
||||
assert( !isView );
|
||||
sqlite3VdbeAddOp3(v, OP_Clear, pTab->tnum, iDb, memCnt);
|
||||
if( !pParse->nested ){
|
||||
sqlite3VdbeChangeP3(v, -1, pTab->zName, P3_STATIC);
|
||||
sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_STATIC);
|
||||
}
|
||||
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
||||
assert( pIdx->pSchema==pTab->pSchema );
|
||||
sqlite3VdbeAddOp(v, OP_Clear, pIdx->tnum, iDb);
|
||||
}
|
||||
}
|
||||
sqlite3VdbeAddOp2(v, OP_Clear, pIdx->tnum, iDb);
|
||||
}
|
||||
}else
|
||||
#endif /* SQLITE_OMIT_TRUNCATE_OPTIMIZATION */
|
||||
/* The usual case: There is a WHERE clause so we have to scan through
|
||||
** the table and pick which records to delete.
|
||||
*/
|
||||
else{
|
||||
/* Begin the database scan
|
||||
{
|
||||
int iRowid = ++pParse->nMem; /* Used for storing rowid values. */
|
||||
int iRowSet = ++pParse->nMem; /* Register for rowset of rows to delete */
|
||||
|
||||
/* Collect rowids of every row to be deleted.
|
||||
*/
|
||||
pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0);
|
||||
sqlite3VdbeAddOp2(v, OP_Null, 0, iRowSet);
|
||||
pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0,
|
||||
WHERE_FILL_ROWSET, iRowSet);
|
||||
if( pWInfo==0 ) goto delete_from_cleanup;
|
||||
|
||||
/* Remember the rowid of every item to be deleted.
|
||||
*/
|
||||
sqlite3VdbeAddOp(v, IsVirtual(pTab) ? OP_VRowid : OP_Rowid, iCur, 0);
|
||||
sqlite3VdbeAddOp(v, OP_FifoWrite, 0, 0);
|
||||
if( db->flags & SQLITE_CountRows ){
|
||||
sqlite3VdbeAddOp(v, OP_MemIncr, 1, memCnt);
|
||||
sqlite3VdbeAddOp2(v, OP_AddImm, memCnt, 1);
|
||||
}
|
||||
|
||||
/* End the database scan loop.
|
||||
*/
|
||||
sqlite3WhereEnd(pWInfo);
|
||||
|
||||
/* Open the pseudo-table used to store OLD if there are triggers.
|
||||
*/
|
||||
if( triggers_exist ){
|
||||
sqlite3VdbeAddOp(v, OP_OpenPseudo, oldIdx, 0);
|
||||
sqlite3VdbeAddOp(v, OP_SetNumColumns, oldIdx, pTab->nCol);
|
||||
sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pTab->nCol);
|
||||
sqlite3VdbeAddOp1(v, OP_OpenPseudo, oldIdx);
|
||||
}
|
||||
|
||||
/* Delete every item whose key was written to the list during the
|
||||
|
@ -273,52 +416,53 @@ void sqlite3DeleteFrom(
|
|||
*/
|
||||
end = sqlite3VdbeMakeLabel(v);
|
||||
|
||||
/* This is the beginning of the delete loop when there are
|
||||
** row triggers.
|
||||
*/
|
||||
if( triggers_exist ){
|
||||
addr = sqlite3VdbeAddOp(v, OP_FifoRead, 0, end);
|
||||
if( !isView ){
|
||||
sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
|
||||
sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead);
|
||||
}
|
||||
sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0);
|
||||
sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0);
|
||||
sqlite3VdbeAddOp(v, OP_RowData, iCur, 0);
|
||||
sqlite3VdbeAddOp(v, OP_Insert, oldIdx, 0);
|
||||
if( !isView ){
|
||||
sqlite3VdbeAddOp(v, OP_Close, iCur, 0);
|
||||
}
|
||||
|
||||
(void)sqlite3CodeRowTrigger(pParse, TK_DELETE, 0, TRIGGER_BEFORE, pTab,
|
||||
-1, oldIdx, (pParse->trigStack)?pParse->trigStack->orconf:OE_Default,
|
||||
addr);
|
||||
}
|
||||
|
||||
if( !isView ){
|
||||
/* Open cursors for the table we are deleting from and all its
|
||||
** indices. If there are row triggers, this happens inside the
|
||||
** OP_FifoRead loop because the cursor have to all be closed
|
||||
** before the trigger fires. If there are no row triggers, the
|
||||
** cursors are opened only once on the outside the loop.
|
||||
/* Open cursors for the table we are deleting from and
|
||||
** all its indices.
|
||||
*/
|
||||
sqlite3OpenTableAndIndices(pParse, pTab, iCur, OP_OpenWrite);
|
||||
|
||||
/* This is the beginning of the delete loop when there are no
|
||||
** row triggers */
|
||||
if( !triggers_exist ){
|
||||
addr = sqlite3VdbeAddOp(v, OP_FifoRead, 0, end);
|
||||
}
|
||||
|
||||
/* This is the beginning of the delete loop. If a trigger encounters
|
||||
** an IGNORE constraint, it jumps back to here.
|
||||
*/
|
||||
if( triggers_exist ){
|
||||
sqlite3VdbeResolveLabel(v, addr);
|
||||
}
|
||||
addr = sqlite3VdbeAddOp3(v, OP_RowSetRead, iRowSet, end, iRowid);
|
||||
|
||||
if( triggers_exist ){
|
||||
int iData = ++pParse->nMem; /* For storing row data of OLD table */
|
||||
|
||||
/* If the record is no longer present in the table, jump to the
|
||||
** next iteration of the loop through the contents of the fifo.
|
||||
*/
|
||||
sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addr, iRowid);
|
||||
|
||||
/* Populate the OLD.* pseudo-table */
|
||||
if( old_col_mask ){
|
||||
sqlite3VdbeAddOp2(v, OP_RowData, iCur, iData);
|
||||
}else{
|
||||
sqlite3VdbeAddOp2(v, OP_Null, 0, iData);
|
||||
}
|
||||
sqlite3VdbeAddOp3(v, OP_Insert, oldIdx, iData, iRowid);
|
||||
|
||||
/* Jump back and run the BEFORE triggers */
|
||||
sqlite3VdbeAddOp2(v, OP_Goto, 0, iBeginBeforeTrigger);
|
||||
sqlite3VdbeJumpHere(v, iEndBeforeTrigger);
|
||||
}
|
||||
|
||||
if( !isView ){
|
||||
/* Delete the row */
|
||||
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
||||
if( IsVirtual(pTab) ){
|
||||
pParse->pVirtualLock = pTab;
|
||||
sqlite3VdbeOp3(v, OP_VUpdate, 0, 1, (const char*)pTab->pVtab, P3_VTAB);
|
||||
const char *pVtab = (const char *)pTab->pVtab;
|
||||
sqlite3VtabMakeWritable(pParse, pTab);
|
||||
sqlite3VdbeAddOp4(v, OP_VUpdate, 0, 1, iRowid, pVtab, P4_VTAB);
|
||||
}else
|
||||
#endif
|
||||
{
|
||||
sqlite3GenerateRowDelete(db, v, pTab, iCur, pParse->nested==0);
|
||||
sqlite3GenerateRowDelete(pParse, pTab, iCur, iRowid, pParse->nested==0);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -326,27 +470,21 @@ void sqlite3DeleteFrom(
|
|||
** the AFTER triggers
|
||||
*/
|
||||
if( triggers_exist ){
|
||||
if( !isView ){
|
||||
for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){
|
||||
sqlite3VdbeAddOp(v, OP_Close, iCur + i, pIdx->tnum);
|
||||
}
|
||||
sqlite3VdbeAddOp(v, OP_Close, iCur, 0);
|
||||
}
|
||||
(void)sqlite3CodeRowTrigger(pParse, TK_DELETE, 0, TRIGGER_AFTER, pTab, -1,
|
||||
oldIdx, (pParse->trigStack)?pParse->trigStack->orconf:OE_Default,
|
||||
addr);
|
||||
/* Jump back and run the AFTER triggers */
|
||||
sqlite3VdbeAddOp2(v, OP_Goto, 0, iBeginAfterTrigger);
|
||||
sqlite3VdbeJumpHere(v, iEndAfterTrigger);
|
||||
}
|
||||
|
||||
/* End of the delete loop */
|
||||
sqlite3VdbeAddOp(v, OP_Goto, 0, addr);
|
||||
sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
|
||||
sqlite3VdbeResolveLabel(v, end);
|
||||
|
||||
/* Close the cursors after the loop if there are no row triggers */
|
||||
if( !triggers_exist && !IsVirtual(pTab) ){
|
||||
if( !isView && !IsVirtual(pTab) ){
|
||||
for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){
|
||||
sqlite3VdbeAddOp(v, OP_Close, iCur + i, pIdx->tnum);
|
||||
sqlite3VdbeAddOp2(v, OP_Close, iCur + i, pIdx->tnum);
|
||||
}
|
||||
sqlite3VdbeAddOp(v, OP_Close, iCur, 0);
|
||||
sqlite3VdbeAddOp1(v, OP_Close, iCur);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -356,16 +494,15 @@ void sqlite3DeleteFrom(
|
|||
** invoke the callback function.
|
||||
*/
|
||||
if( db->flags & SQLITE_CountRows && pParse->nested==0 && !pParse->trigStack ){
|
||||
sqlite3VdbeAddOp(v, OP_MemLoad, memCnt, 0);
|
||||
sqlite3VdbeAddOp(v, OP_Callback, 1, 0);
|
||||
sqlite3VdbeAddOp2(v, OP_ResultRow, memCnt, 1);
|
||||
sqlite3VdbeSetNumCols(v, 1);
|
||||
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows deleted", P3_STATIC);
|
||||
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows deleted", SQLITE_STATIC);
|
||||
}
|
||||
|
||||
delete_from_cleanup:
|
||||
sqlite3AuthContextPop(&sContext);
|
||||
sqlite3SrcListDelete(pTabList);
|
||||
sqlite3ExprDelete(pWhere);
|
||||
sqlite3SrcListDelete(db, pTabList);
|
||||
sqlite3ExprDelete(db, pWhere);
|
||||
return;
|
||||
}
|
||||
|
||||
|
@ -382,26 +519,29 @@ delete_from_cleanup:
|
|||
** 2. Read/write cursors for all indices of pTab must be open as
|
||||
** cursor number base+i for the i-th index.
|
||||
**
|
||||
** 3. The record number of the row to be deleted must be on the top
|
||||
** of the stack.
|
||||
** 3. The record number of the row to be deleted must be stored in
|
||||
** memory cell iRowid.
|
||||
**
|
||||
** This routine pops the top of the stack to remove the record number
|
||||
** and then generates code to remove both the table record and all index
|
||||
** entries that point to that record.
|
||||
*/
|
||||
void sqlite3GenerateRowDelete(
|
||||
sqlite3 *db, /* The database containing the index */
|
||||
Vdbe *v, /* Generate code into this VDBE */
|
||||
Parse *pParse, /* Parsing context */
|
||||
Table *pTab, /* Table containing the row to be deleted */
|
||||
int iCur, /* Cursor number for the table */
|
||||
int iRowid, /* Memory cell that contains the rowid to delete */
|
||||
int count /* Increment the row change counter */
|
||||
){
|
||||
int addr;
|
||||
addr = sqlite3VdbeAddOp(v, OP_NotExists, iCur, 0);
|
||||
sqlite3GenerateRowIndexDelete(v, pTab, iCur, 0);
|
||||
sqlite3VdbeAddOp(v, OP_Delete, iCur, (count?OPFLAG_NCHANGE:0));
|
||||
Vdbe *v;
|
||||
|
||||
v = pParse->pVdbe;
|
||||
addr = sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, iRowid);
|
||||
sqlite3GenerateRowIndexDelete(pParse, pTab, iCur, 0);
|
||||
sqlite3VdbeAddOp2(v, OP_Delete, iCur, (count?OPFLAG_NCHANGE:0));
|
||||
if( count ){
|
||||
sqlite3VdbeChangeP3(v, -1, pTab->zName, P3_STATIC);
|
||||
sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_STATIC);
|
||||
}
|
||||
sqlite3VdbeJumpHere(v, addr);
|
||||
}
|
||||
|
@ -423,45 +563,68 @@ void sqlite3GenerateRowDelete(
|
|||
** deleted.
|
||||
*/
|
||||
void sqlite3GenerateRowIndexDelete(
|
||||
Vdbe *v, /* Generate code into this VDBE */
|
||||
Parse *pParse, /* Parsing and code generating context */
|
||||
Table *pTab, /* Table containing the row to be deleted */
|
||||
int iCur, /* Cursor number for the table */
|
||||
char *aIdxUsed /* Only delete if aIdxUsed!=0 && aIdxUsed[i]!=0 */
|
||||
int *aRegIdx /* Only delete if aRegIdx!=0 && aRegIdx[i]>0 */
|
||||
){
|
||||
int i;
|
||||
Index *pIdx;
|
||||
int r1;
|
||||
|
||||
for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){
|
||||
if( aIdxUsed!=0 && aIdxUsed[i-1]==0 ) continue;
|
||||
sqlite3GenerateIndexKey(v, pIdx, iCur);
|
||||
sqlite3VdbeAddOp(v, OP_IdxDelete, iCur+i, 0);
|
||||
if( aRegIdx!=0 && aRegIdx[i-1]==0 ) continue;
|
||||
r1 = sqlite3GenerateIndexKey(pParse, pIdx, iCur, 0, 0);
|
||||
sqlite3VdbeAddOp3(pParse->pVdbe, OP_IdxDelete, iCur+i, r1,pIdx->nColumn+1);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Generate code that will assemble an index key and put it on the top
|
||||
** of the tack. The key with be for index pIdx which is an index on pTab.
|
||||
** Generate code that will assemble an index key and put it in register
|
||||
** regOut. The key with be for index pIdx which is an index on pTab.
|
||||
** iCur is the index of a cursor open on the pTab table and pointing to
|
||||
** the entry that needs indexing.
|
||||
**
|
||||
** Return a register number which is the first in a block of
|
||||
** registers that holds the elements of the index key. The
|
||||
** block of registers has already been deallocated by the time
|
||||
** this routine returns.
|
||||
*/
|
||||
void sqlite3GenerateIndexKey(
|
||||
Vdbe *v, /* Generate code into this VDBE */
|
||||
int sqlite3GenerateIndexKey(
|
||||
Parse *pParse, /* Parsing context */
|
||||
Index *pIdx, /* The index for which to generate a key */
|
||||
int iCur /* Cursor number for the pIdx->pTable table */
|
||||
int iCur, /* Cursor number for the pIdx->pTable table */
|
||||
int regOut, /* Write the new index key to this register */
|
||||
int doMakeRec /* Run the OP_MakeRecord instruction if true */
|
||||
){
|
||||
Vdbe *v = pParse->pVdbe;
|
||||
int j;
|
||||
Table *pTab = pIdx->pTable;
|
||||
int regBase;
|
||||
int nCol;
|
||||
|
||||
sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0);
|
||||
for(j=0; j<pIdx->nColumn; j++){
|
||||
nCol = pIdx->nColumn;
|
||||
regBase = sqlite3GetTempRange(pParse, nCol+1);
|
||||
sqlite3VdbeAddOp2(v, OP_Rowid, iCur, regBase+nCol);
|
||||
for(j=0; j<nCol; j++){
|
||||
int idx = pIdx->aiColumn[j];
|
||||
if( idx==pTab->iPKey ){
|
||||
sqlite3VdbeAddOp(v, OP_Dup, j, 0);
|
||||
sqlite3VdbeAddOp2(v, OP_SCopy, regBase+nCol, regBase+j);
|
||||
}else{
|
||||
sqlite3VdbeAddOp(v, OP_Column, iCur, idx);
|
||||
sqlite3VdbeAddOp3(v, OP_Column, iCur, idx, regBase+j);
|
||||
sqlite3ColumnDefault(v, pTab, idx);
|
||||
}
|
||||
}
|
||||
sqlite3VdbeAddOp(v, OP_MakeIdxRec, pIdx->nColumn, 0);
|
||||
if( doMakeRec ){
|
||||
sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol+1, regOut);
|
||||
sqlite3IndexAffinityStr(v, pIdx);
|
||||
sqlite3ExprCacheAffinityChange(pParse, regBase, nCol+1);
|
||||
}
|
||||
sqlite3ReleaseTempRange(pParse, regBase, nCol+1);
|
||||
return regBase;
|
||||
}
|
||||
|
||||
/* Make sure "isView" gets undefined in case this file becomes part of
|
||||
** the amalgamation - so that subsequent files do not see isView as a
|
||||
** macro. */
|
||||
#undef isView
|
||||
|
|
91
fault.c
Normal file
91
fault.c
Normal file
|
@ -0,0 +1,91 @@
|
|||
/*
|
||||
** 2008 Jan 22
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
**
|
||||
** $Id: fault.c,v 1.11 2008/09/02 00:52:52 drh Exp $
|
||||
*/
|
||||
|
||||
/*
|
||||
** This file contains code to support the concept of "benign"
|
||||
** malloc failures (when the xMalloc() or xRealloc() method of the
|
||||
** sqlite3_mem_methods structure fails to allocate a block of memory
|
||||
** and returns 0).
|
||||
**
|
||||
** Most malloc failures are non-benign. After they occur, SQLite
|
||||
** abandons the current operation and returns an error code (usually
|
||||
** SQLITE_NOMEM) to the user. However, sometimes a fault is not necessarily
|
||||
** fatal. For example, if a malloc fails while resizing a hash table, this
|
||||
** is completely recoverable simply by not carrying out the resize. The
|
||||
** hash table will continue to function normally. So a malloc failure
|
||||
** during a hash table resize is a benign fault.
|
||||
*/
|
||||
|
||||
#include "sqliteInt.h"
|
||||
|
||||
#ifndef SQLITE_OMIT_BUILTIN_TEST
|
||||
|
||||
/*
|
||||
** Global variables.
|
||||
*/
|
||||
typedef struct BenignMallocHooks BenignMallocHooks;
|
||||
static SQLITE_WSD struct BenignMallocHooks {
|
||||
void (*xBenignBegin)(void);
|
||||
void (*xBenignEnd)(void);
|
||||
} sqlite3Hooks = { 0, 0 };
|
||||
|
||||
/* The "wsdHooks" macro will resolve to the appropriate BenignMallocHooks
|
||||
** structure. If writable static data is unsupported on the target,
|
||||
** we have to locate the state vector at run-time. In the more common
|
||||
** case where writable static data is supported, wsdHooks can refer directly
|
||||
** to the "sqlite3Hooks" state vector declared above.
|
||||
*/
|
||||
#ifdef SQLITE_OMIT_WSD
|
||||
# define wsdHooksInit \
|
||||
BenignMallocHooks *x = &GLOBAL(BenignMallocHooks,sqlite3Hooks)
|
||||
# define wsdHooks x[0]
|
||||
#else
|
||||
# define wsdHooksInit
|
||||
# define wsdHooks sqlite3Hooks
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
** Register hooks to call when sqlite3BeginBenignMalloc() and
|
||||
** sqlite3EndBenignMalloc() are called, respectively.
|
||||
*/
|
||||
void sqlite3BenignMallocHooks(
|
||||
void (*xBenignBegin)(void),
|
||||
void (*xBenignEnd)(void)
|
||||
){
|
||||
wsdHooksInit;
|
||||
wsdHooks.xBenignBegin = xBenignBegin;
|
||||
wsdHooks.xBenignEnd = xBenignEnd;
|
||||
}
|
||||
|
||||
/*
|
||||
** This (sqlite3EndBenignMalloc()) is called by SQLite code to indicate that
|
||||
** subsequent malloc failures are benign. A call to sqlite3EndBenignMalloc()
|
||||
** indicates that subsequent malloc failures are non-benign.
|
||||
*/
|
||||
void sqlite3BeginBenignMalloc(void){
|
||||
wsdHooksInit;
|
||||
if( wsdHooks.xBenignBegin ){
|
||||
wsdHooks.xBenignBegin();
|
||||
}
|
||||
}
|
||||
void sqlite3EndBenignMalloc(void){
|
||||
wsdHooksInit;
|
||||
if( wsdHooks.xBenignEnd ){
|
||||
wsdHooks.xBenignEnd();
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* #ifndef SQLITE_OMIT_BUILTIN_TEST */
|
2502
fts2.c → fts3.c
2502
fts2.c → fts3.c
File diff suppressed because it is too large
Load diff
|
@ -11,7 +11,7 @@
|
|||
******************************************************************************
|
||||
**
|
||||
** This header file is used by programs that want to link against the
|
||||
** FTS2 library. All it does is declare the sqlite3Fts2Init() interface.
|
||||
** FTS3 library. All it does is declare the sqlite3Fts3Init() interface.
|
||||
*/
|
||||
#include "sqlite3.h"
|
||||
|
||||
|
@ -19,7 +19,7 @@
|
|||
extern "C" {
|
||||
#endif /* __cplusplus */
|
||||
|
||||
int sqlite3Fts2Init(sqlite3 *db);
|
||||
int sqlite3Fts3Init(sqlite3 *db);
|
||||
|
||||
#ifdef __cplusplus
|
||||
} /* extern "C" */
|
890
fts3_expr.c
Normal file
890
fts3_expr.c
Normal file
|
@ -0,0 +1,890 @@
|
|||
/*
|
||||
** 2008 Nov 28
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
******************************************************************************
|
||||
**
|
||||
** This module contains code that implements a parser for fts3 query strings
|
||||
** (the right-hand argument to the MATCH operator). Because the supported
|
||||
** syntax is relatively simple, the whole tokenizer/parser system is
|
||||
** hand-coded. The public interface to this module is declared in source
|
||||
** code file "fts3_expr.h".
|
||||
*/
|
||||
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
|
||||
|
||||
/*
|
||||
** By default, this module parses the legacy syntax that has been
|
||||
** traditionally used by fts3. Or, if SQLITE_ENABLE_FTS3_PARENTHESIS
|
||||
** is defined, then it uses the new syntax. The differences between
|
||||
** the new and the old syntaxes are:
|
||||
**
|
||||
** a) The new syntax supports parenthesis. The old does not.
|
||||
**
|
||||
** b) The new syntax supports the AND and NOT operators. The old does not.
|
||||
**
|
||||
** c) The old syntax supports the "-" token qualifier. This is not
|
||||
** supported by the new syntax (it is replaced by the NOT operator).
|
||||
**
|
||||
** d) When using the old syntax, the OR operator has a greater precedence
|
||||
** than an implicit AND. When using the new, both implicity and explicit
|
||||
** AND operators have a higher precedence than OR.
|
||||
**
|
||||
** If compiled with SQLITE_TEST defined, then this module exports the
|
||||
** symbol "int sqlite3_fts3_enable_parentheses". Setting this variable
|
||||
** to zero causes the module to use the old syntax. If it is set to
|
||||
** non-zero the new syntax is activated. This is so both syntaxes can
|
||||
** be tested using a single build of testfixture.
|
||||
*/
|
||||
#ifdef SQLITE_TEST
|
||||
int sqlite3_fts3_enable_parentheses = 0;
|
||||
#else
|
||||
# ifdef SQLITE_ENABLE_FTS3_PARENTHESIS
|
||||
# define sqlite3_fts3_enable_parentheses 1
|
||||
# else
|
||||
# define sqlite3_fts3_enable_parentheses 0
|
||||
# endif
|
||||
#endif
|
||||
|
||||
/*
|
||||
** Default span for NEAR operators.
|
||||
*/
|
||||
#define SQLITE_FTS3_DEFAULT_NEAR_PARAM 10
|
||||
|
||||
#include "fts3_expr.h"
|
||||
#include "sqlite3.h"
|
||||
#include <ctype.h>
|
||||
#include <string.h>
|
||||
#include <assert.h>
|
||||
|
||||
typedef struct ParseContext ParseContext;
|
||||
struct ParseContext {
|
||||
sqlite3_tokenizer *pTokenizer; /* Tokenizer module */
|
||||
const char **azCol; /* Array of column names for fts3 table */
|
||||
int nCol; /* Number of entries in azCol[] */
|
||||
int iDefaultCol; /* Default column to query */
|
||||
sqlite3_context *pCtx; /* Write error message here */
|
||||
int nNest; /* Number of nested brackets */
|
||||
};
|
||||
|
||||
/*
|
||||
** This function is equivalent to the standard isspace() function.
|
||||
**
|
||||
** The standard isspace() can be awkward to use safely, because although it
|
||||
** is defined to accept an argument of type int, its behaviour when passed
|
||||
** an integer that falls outside of the range of the unsigned char type
|
||||
** is undefined (and sometimes, "undefined" means segfault). This wrapper
|
||||
** is defined to accept an argument of type char, and always returns 0 for
|
||||
** any values that fall outside of the range of the unsigned char type (i.e.
|
||||
** negative values).
|
||||
*/
|
||||
static int fts3isspace(char c){
|
||||
return (c&0x80)==0 ? isspace(c) : 0;
|
||||
}
|
||||
|
||||
/*
|
||||
** Extract the next token from buffer z (length n) using the tokenizer
|
||||
** and other information (column names etc.) in pParse. Create an Fts3Expr
|
||||
** structure of type FTSQUERY_PHRASE containing a phrase consisting of this
|
||||
** single token and set *ppExpr to point to it. If the end of the buffer is
|
||||
** reached before a token is found, set *ppExpr to zero. It is the
|
||||
** responsibility of the caller to eventually deallocate the allocated
|
||||
** Fts3Expr structure (if any) by passing it to sqlite3_free().
|
||||
**
|
||||
** Return SQLITE_OK if successful, or SQLITE_NOMEM if a memory allocation
|
||||
** fails.
|
||||
*/
|
||||
static int getNextToken(
|
||||
ParseContext *pParse, /* fts3 query parse context */
|
||||
int iCol, /* Value for Fts3Phrase.iColumn */
|
||||
const char *z, int n, /* Input string */
|
||||
Fts3Expr **ppExpr, /* OUT: expression */
|
||||
int *pnConsumed /* OUT: Number of bytes consumed */
|
||||
){
|
||||
sqlite3_tokenizer *pTokenizer = pParse->pTokenizer;
|
||||
sqlite3_tokenizer_module const *pModule = pTokenizer->pModule;
|
||||
int rc;
|
||||
sqlite3_tokenizer_cursor *pCursor;
|
||||
Fts3Expr *pRet = 0;
|
||||
int nConsumed = 0;
|
||||
|
||||
rc = pModule->xOpen(pTokenizer, z, n, &pCursor);
|
||||
if( rc==SQLITE_OK ){
|
||||
const char *zToken;
|
||||
int nToken, iStart, iEnd, iPosition;
|
||||
int nByte; /* total space to allocate */
|
||||
|
||||
pCursor->pTokenizer = pTokenizer;
|
||||
rc = pModule->xNext(pCursor, &zToken, &nToken, &iStart, &iEnd, &iPosition);
|
||||
|
||||
if( rc==SQLITE_OK ){
|
||||
nByte = sizeof(Fts3Expr) + sizeof(Fts3Phrase) + nToken;
|
||||
pRet = (Fts3Expr *)sqlite3_malloc(nByte);
|
||||
if( !pRet ){
|
||||
rc = SQLITE_NOMEM;
|
||||
}else{
|
||||
memset(pRet, 0, nByte);
|
||||
pRet->eType = FTSQUERY_PHRASE;
|
||||
pRet->pPhrase = (Fts3Phrase *)&pRet[1];
|
||||
pRet->pPhrase->nToken = 1;
|
||||
pRet->pPhrase->iColumn = iCol;
|
||||
pRet->pPhrase->aToken[0].n = nToken;
|
||||
pRet->pPhrase->aToken[0].z = (char *)&pRet->pPhrase[1];
|
||||
memcpy(pRet->pPhrase->aToken[0].z, zToken, nToken);
|
||||
|
||||
if( iEnd<n && z[iEnd]=='*' ){
|
||||
pRet->pPhrase->aToken[0].isPrefix = 1;
|
||||
iEnd++;
|
||||
}
|
||||
if( !sqlite3_fts3_enable_parentheses && iStart>0 && z[iStart-1]=='-' ){
|
||||
pRet->pPhrase->isNot = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
nConsumed = iEnd;
|
||||
|
||||
pModule->xClose(pCursor);
|
||||
}
|
||||
|
||||
*pnConsumed = nConsumed;
|
||||
*ppExpr = pRet;
|
||||
return rc;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** Enlarge a memory allocation. If an out-of-memory allocation occurs,
|
||||
** then free the old allocation.
|
||||
*/
|
||||
void *fts3ReallocOrFree(void *pOrig, int nNew){
|
||||
void *pRet = sqlite3_realloc(pOrig, nNew);
|
||||
if( !pRet ){
|
||||
sqlite3_free(pOrig);
|
||||
}
|
||||
return pRet;
|
||||
}
|
||||
|
||||
/*
|
||||
** Buffer zInput, length nInput, contains the contents of a quoted string
|
||||
** that appeared as part of an fts3 query expression. Neither quote character
|
||||
** is included in the buffer. This function attempts to tokenize the entire
|
||||
** input buffer and create an Fts3Expr structure of type FTSQUERY_PHRASE
|
||||
** containing the results.
|
||||
**
|
||||
** If successful, SQLITE_OK is returned and *ppExpr set to point at the
|
||||
** allocated Fts3Expr structure. Otherwise, either SQLITE_NOMEM (out of memory
|
||||
** error) or SQLITE_ERROR (tokenization error) is returned and *ppExpr set
|
||||
** to 0.
|
||||
*/
|
||||
static int getNextString(
|
||||
ParseContext *pParse, /* fts3 query parse context */
|
||||
const char *zInput, int nInput, /* Input string */
|
||||
Fts3Expr **ppExpr /* OUT: expression */
|
||||
){
|
||||
sqlite3_tokenizer *pTokenizer = pParse->pTokenizer;
|
||||
sqlite3_tokenizer_module const *pModule = pTokenizer->pModule;
|
||||
int rc;
|
||||
Fts3Expr *p = 0;
|
||||
sqlite3_tokenizer_cursor *pCursor = 0;
|
||||
char *zTemp = 0;
|
||||
int nTemp = 0;
|
||||
|
||||
rc = pModule->xOpen(pTokenizer, zInput, nInput, &pCursor);
|
||||
if( rc==SQLITE_OK ){
|
||||
int ii;
|
||||
pCursor->pTokenizer = pTokenizer;
|
||||
for(ii=0; rc==SQLITE_OK; ii++){
|
||||
const char *zToken;
|
||||
int nToken, iBegin, iEnd, iPos;
|
||||
rc = pModule->xNext(pCursor, &zToken, &nToken, &iBegin, &iEnd, &iPos);
|
||||
if( rc==SQLITE_OK ){
|
||||
int nByte = sizeof(Fts3Expr) + sizeof(Fts3Phrase);
|
||||
p = fts3ReallocOrFree(p, nByte+ii*sizeof(struct PhraseToken));
|
||||
zTemp = fts3ReallocOrFree(zTemp, nTemp + nToken);
|
||||
if( !p || !zTemp ){
|
||||
goto no_mem;
|
||||
}
|
||||
if( ii==0 ){
|
||||
memset(p, 0, nByte);
|
||||
p->pPhrase = (Fts3Phrase *)&p[1];
|
||||
p->eType = FTSQUERY_PHRASE;
|
||||
p->pPhrase->iColumn = pParse->iDefaultCol;
|
||||
}
|
||||
p->pPhrase = (Fts3Phrase *)&p[1];
|
||||
p->pPhrase->nToken = ii+1;
|
||||
p->pPhrase->aToken[ii].n = nToken;
|
||||
memcpy(&zTemp[nTemp], zToken, nToken);
|
||||
nTemp += nToken;
|
||||
if( iEnd<nInput && zInput[iEnd]=='*' ){
|
||||
p->pPhrase->aToken[ii].isPrefix = 1;
|
||||
}else{
|
||||
p->pPhrase->aToken[ii].isPrefix = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pModule->xClose(pCursor);
|
||||
pCursor = 0;
|
||||
}
|
||||
|
||||
if( rc==SQLITE_DONE ){
|
||||
int jj;
|
||||
char *zNew;
|
||||
int nNew = 0;
|
||||
int nByte = sizeof(Fts3Expr) + sizeof(Fts3Phrase);
|
||||
nByte += (p->pPhrase->nToken-1) * sizeof(struct PhraseToken);
|
||||
p = fts3ReallocOrFree(p, nByte + nTemp);
|
||||
if( !p ){
|
||||
goto no_mem;
|
||||
}
|
||||
p->pPhrase = (Fts3Phrase *)&p[1];
|
||||
zNew = &(((char *)p)[nByte]);
|
||||
memcpy(zNew, zTemp, nTemp);
|
||||
for(jj=0; jj<p->pPhrase->nToken; jj++){
|
||||
p->pPhrase->aToken[jj].z = &zNew[nNew];
|
||||
nNew += p->pPhrase->aToken[jj].n;
|
||||
}
|
||||
sqlite3_free(zTemp);
|
||||
rc = SQLITE_OK;
|
||||
}
|
||||
|
||||
*ppExpr = p;
|
||||
return rc;
|
||||
no_mem:
|
||||
|
||||
if( pCursor ){
|
||||
pModule->xClose(pCursor);
|
||||
}
|
||||
sqlite3_free(zTemp);
|
||||
sqlite3_free(p);
|
||||
*ppExpr = 0;
|
||||
return SQLITE_NOMEM;
|
||||
}
|
||||
|
||||
/*
|
||||
** Function getNextNode(), which is called by fts3ExprParse(), may itself
|
||||
** call fts3ExprParse(). So this forward declaration is required.
|
||||
*/
|
||||
static int fts3ExprParse(ParseContext *, const char *, int, Fts3Expr **, int *);
|
||||
|
||||
/*
|
||||
** The output variable *ppExpr is populated with an allocated Fts3Expr
|
||||
** structure, or set to 0 if the end of the input buffer is reached.
|
||||
**
|
||||
** Returns an SQLite error code. SQLITE_OK if everything works, SQLITE_NOMEM
|
||||
** if a malloc failure occurs, or SQLITE_ERROR if a parse error is encountered.
|
||||
** If SQLITE_ERROR is returned, pContext is populated with an error message.
|
||||
*/
|
||||
static int getNextNode(
|
||||
ParseContext *pParse, /* fts3 query parse context */
|
||||
const char *z, int n, /* Input string */
|
||||
Fts3Expr **ppExpr, /* OUT: expression */
|
||||
int *pnConsumed /* OUT: Number of bytes consumed */
|
||||
){
|
||||
static const struct Fts3Keyword {
|
||||
char z[4]; /* Keyword text */
|
||||
unsigned char n; /* Length of the keyword */
|
||||
unsigned char parenOnly; /* Only valid in paren mode */
|
||||
unsigned char eType; /* Keyword code */
|
||||
} aKeyword[] = {
|
||||
{ "OR" , 2, 0, FTSQUERY_OR },
|
||||
{ "AND", 3, 1, FTSQUERY_AND },
|
||||
{ "NOT", 3, 1, FTSQUERY_NOT },
|
||||
{ "NEAR", 4, 0, FTSQUERY_NEAR }
|
||||
};
|
||||
int ii;
|
||||
int iCol;
|
||||
int iColLen;
|
||||
int rc;
|
||||
Fts3Expr *pRet = 0;
|
||||
|
||||
const char *zInput = z;
|
||||
int nInput = n;
|
||||
|
||||
/* Skip over any whitespace before checking for a keyword, an open or
|
||||
** close bracket, or a quoted string.
|
||||
*/
|
||||
while( nInput>0 && fts3isspace(*zInput) ){
|
||||
nInput--;
|
||||
zInput++;
|
||||
}
|
||||
if( nInput==0 ){
|
||||
return SQLITE_DONE;
|
||||
}
|
||||
|
||||
/* See if we are dealing with a keyword. */
|
||||
for(ii=0; ii<(int)(sizeof(aKeyword)/sizeof(struct Fts3Keyword)); ii++){
|
||||
const struct Fts3Keyword *pKey = &aKeyword[ii];
|
||||
|
||||
if( (pKey->parenOnly & ~sqlite3_fts3_enable_parentheses)!=0 ){
|
||||
continue;
|
||||
}
|
||||
|
||||
if( nInput>=pKey->n && 0==memcmp(zInput, pKey->z, pKey->n) ){
|
||||
int nNear = SQLITE_FTS3_DEFAULT_NEAR_PARAM;
|
||||
int nKey = pKey->n;
|
||||
char cNext;
|
||||
|
||||
/* If this is a "NEAR" keyword, check for an explicit nearness. */
|
||||
if( pKey->eType==FTSQUERY_NEAR ){
|
||||
assert( nKey==4 );
|
||||
if( zInput[4]=='/' && zInput[5]>='0' && zInput[5]<='9' ){
|
||||
nNear = 0;
|
||||
for(nKey=5; zInput[nKey]>='0' && zInput[nKey]<='9'; nKey++){
|
||||
nNear = nNear * 10 + (zInput[nKey] - '0');
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* At this point this is probably a keyword. But for that to be true,
|
||||
** the next byte must contain either whitespace, an open or close
|
||||
** parenthesis, a quote character, or EOF.
|
||||
*/
|
||||
cNext = zInput[nKey];
|
||||
if( fts3isspace(cNext)
|
||||
|| cNext=='"' || cNext=='(' || cNext==')' || cNext==0
|
||||
){
|
||||
pRet = (Fts3Expr *)sqlite3_malloc(sizeof(Fts3Expr));
|
||||
memset(pRet, 0, sizeof(Fts3Expr));
|
||||
pRet->eType = pKey->eType;
|
||||
pRet->nNear = nNear;
|
||||
*ppExpr = pRet;
|
||||
*pnConsumed = (zInput - z) + nKey;
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/* Turns out that wasn't a keyword after all. This happens if the
|
||||
** user has supplied a token such as "ORacle". Continue.
|
||||
*/
|
||||
}
|
||||
}
|
||||
|
||||
/* Check for an open bracket. */
|
||||
if( sqlite3_fts3_enable_parentheses ){
|
||||
if( *zInput=='(' ){
|
||||
int nConsumed;
|
||||
int rc;
|
||||
pParse->nNest++;
|
||||
rc = fts3ExprParse(pParse, &zInput[1], nInput-1, ppExpr, &nConsumed);
|
||||
if( rc==SQLITE_OK && !*ppExpr ){
|
||||
rc = SQLITE_DONE;
|
||||
}
|
||||
*pnConsumed = (zInput - z) + 1 + nConsumed;
|
||||
return rc;
|
||||
}
|
||||
|
||||
/* Check for a close bracket. */
|
||||
if( *zInput==')' ){
|
||||
pParse->nNest--;
|
||||
*pnConsumed = (zInput - z) + 1;
|
||||
return SQLITE_DONE;
|
||||
}
|
||||
}
|
||||
|
||||
/* See if we are dealing with a quoted phrase. If this is the case, then
|
||||
** search for the closing quote and pass the whole string to getNextString()
|
||||
** for processing. This is easy to do, as fts3 has no syntax for escaping
|
||||
** a quote character embedded in a string.
|
||||
*/
|
||||
if( *zInput=='"' ){
|
||||
for(ii=1; ii<nInput && zInput[ii]!='"'; ii++);
|
||||
*pnConsumed = (zInput - z) + ii + 1;
|
||||
if( ii==nInput ){
|
||||
return SQLITE_ERROR;
|
||||
}
|
||||
return getNextString(pParse, &zInput[1], ii-1, ppExpr);
|
||||
}
|
||||
|
||||
|
||||
/* If control flows to this point, this must be a regular token, or
|
||||
** the end of the input. Read a regular token using the sqlite3_tokenizer
|
||||
** interface. Before doing so, figure out if there is an explicit
|
||||
** column specifier for the token.
|
||||
**
|
||||
** TODO: Strangely, it is not possible to associate a column specifier
|
||||
** with a quoted phrase, only with a single token. Not sure if this was
|
||||
** an implementation artifact or an intentional decision when fts3 was
|
||||
** first implemented. Whichever it was, this module duplicates the
|
||||
** limitation.
|
||||
*/
|
||||
iCol = pParse->iDefaultCol;
|
||||
iColLen = 0;
|
||||
for(ii=0; ii<pParse->nCol; ii++){
|
||||
const char *zStr = pParse->azCol[ii];
|
||||
int nStr = strlen(zStr);
|
||||
if( nInput>nStr && zInput[nStr]==':' && memcmp(zStr, zInput, nStr)==0 ){
|
||||
iCol = ii;
|
||||
iColLen = ((zInput - z) + nStr + 1);
|
||||
break;
|
||||
}
|
||||
}
|
||||
rc = getNextToken(pParse, iCol, &z[iColLen], n-iColLen, ppExpr, pnConsumed);
|
||||
*pnConsumed += iColLen;
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** The argument is an Fts3Expr structure for a binary operator (any type
|
||||
** except an FTSQUERY_PHRASE). Return an integer value representing the
|
||||
** precedence of the operator. Lower values have a higher precedence (i.e.
|
||||
** group more tightly). For example, in the C language, the == operator
|
||||
** groups more tightly than ||, and would therefore have a higher precedence.
|
||||
**
|
||||
** When using the new fts3 query syntax (when SQLITE_ENABLE_FTS3_PARENTHESIS
|
||||
** is defined), the order of the operators in precedence from highest to
|
||||
** lowest is:
|
||||
**
|
||||
** NEAR
|
||||
** NOT
|
||||
** AND (including implicit ANDs)
|
||||
** OR
|
||||
**
|
||||
** Note that when using the old query syntax, the OR operator has a higher
|
||||
** precedence than the AND operator.
|
||||
*/
|
||||
static int opPrecedence(Fts3Expr *p){
|
||||
assert( p->eType!=FTSQUERY_PHRASE );
|
||||
if( sqlite3_fts3_enable_parentheses ){
|
||||
return p->eType;
|
||||
}else if( p->eType==FTSQUERY_NEAR ){
|
||||
return 1;
|
||||
}else if( p->eType==FTSQUERY_OR ){
|
||||
return 2;
|
||||
}
|
||||
assert( p->eType==FTSQUERY_AND );
|
||||
return 3;
|
||||
}
|
||||
|
||||
/*
|
||||
** Argument ppHead contains a pointer to the current head of a query
|
||||
** expression tree being parsed. pPrev is the expression node most recently
|
||||
** inserted into the tree. This function adds pNew, which is always a binary
|
||||
** operator node, into the expression tree based on the relative precedence
|
||||
** of pNew and the existing nodes of the tree. This may result in the head
|
||||
** of the tree changing, in which case *ppHead is set to the new root node.
|
||||
*/
|
||||
static void insertBinaryOperator(
|
||||
Fts3Expr **ppHead, /* Pointer to the root node of a tree */
|
||||
Fts3Expr *pPrev, /* Node most recently inserted into the tree */
|
||||
Fts3Expr *pNew /* New binary node to insert into expression tree */
|
||||
){
|
||||
Fts3Expr *pSplit = pPrev;
|
||||
while( pSplit->pParent && opPrecedence(pSplit->pParent)<=opPrecedence(pNew) ){
|
||||
pSplit = pSplit->pParent;
|
||||
}
|
||||
|
||||
if( pSplit->pParent ){
|
||||
assert( pSplit->pParent->pRight==pSplit );
|
||||
pSplit->pParent->pRight = pNew;
|
||||
pNew->pParent = pSplit->pParent;
|
||||
}else{
|
||||
*ppHead = pNew;
|
||||
}
|
||||
pNew->pLeft = pSplit;
|
||||
pSplit->pParent = pNew;
|
||||
}
|
||||
|
||||
/*
|
||||
** Parse the fts3 query expression found in buffer z, length n. This function
|
||||
** returns either when the end of the buffer is reached or an unmatched
|
||||
** closing bracket - ')' - is encountered.
|
||||
**
|
||||
** If successful, SQLITE_OK is returned, *ppExpr is set to point to the
|
||||
** parsed form of the expression and *pnConsumed is set to the number of
|
||||
** bytes read from buffer z. Otherwise, *ppExpr is set to 0 and SQLITE_NOMEM
|
||||
** (out of memory error) or SQLITE_ERROR (parse error) is returned.
|
||||
*/
|
||||
static int fts3ExprParse(
|
||||
ParseContext *pParse, /* fts3 query parse context */
|
||||
const char *z, int n, /* Text of MATCH query */
|
||||
Fts3Expr **ppExpr, /* OUT: Parsed query structure */
|
||||
int *pnConsumed /* OUT: Number of bytes consumed */
|
||||
){
|
||||
Fts3Expr *pRet = 0;
|
||||
Fts3Expr *pPrev = 0;
|
||||
Fts3Expr *pNotBranch = 0; /* Only used in legacy parse mode */
|
||||
int nIn = n;
|
||||
const char *zIn = z;
|
||||
int rc = SQLITE_OK;
|
||||
int isRequirePhrase = 1;
|
||||
|
||||
while( rc==SQLITE_OK ){
|
||||
Fts3Expr *p = 0;
|
||||
int nByte = 0;
|
||||
rc = getNextNode(pParse, zIn, nIn, &p, &nByte);
|
||||
if( rc==SQLITE_OK ){
|
||||
int isPhrase;
|
||||
|
||||
if( !sqlite3_fts3_enable_parentheses
|
||||
&& p->eType==FTSQUERY_PHRASE && p->pPhrase->isNot
|
||||
){
|
||||
/* Create an implicit NOT operator. */
|
||||
Fts3Expr *pNot = sqlite3_malloc(sizeof(Fts3Expr));
|
||||
if( !pNot ){
|
||||
sqlite3Fts3ExprFree(p);
|
||||
rc = SQLITE_NOMEM;
|
||||
goto exprparse_out;
|
||||
}
|
||||
memset(pNot, 0, sizeof(Fts3Expr));
|
||||
pNot->eType = FTSQUERY_NOT;
|
||||
pNot->pRight = p;
|
||||
if( pNotBranch ){
|
||||
pNotBranch->pLeft = p;
|
||||
pNot->pRight = pNotBranch;
|
||||
}
|
||||
pNotBranch = pNot;
|
||||
}else{
|
||||
int eType = p->eType;
|
||||
assert( eType!=FTSQUERY_PHRASE || !p->pPhrase->isNot );
|
||||
isPhrase = (eType==FTSQUERY_PHRASE || p->pLeft);
|
||||
|
||||
/* The isRequirePhrase variable is set to true if a phrase or
|
||||
** an expression contained in parenthesis is required. If a
|
||||
** binary operator (AND, OR, NOT or NEAR) is encounted when
|
||||
** isRequirePhrase is set, this is a syntax error.
|
||||
*/
|
||||
if( !isPhrase && isRequirePhrase ){
|
||||
sqlite3Fts3ExprFree(p);
|
||||
rc = SQLITE_ERROR;
|
||||
goto exprparse_out;
|
||||
}
|
||||
|
||||
if( isPhrase && !isRequirePhrase ){
|
||||
/* Insert an implicit AND operator. */
|
||||
Fts3Expr *pAnd;
|
||||
assert( pRet && pPrev );
|
||||
pAnd = sqlite3_malloc(sizeof(Fts3Expr));
|
||||
if( !pAnd ){
|
||||
sqlite3Fts3ExprFree(p);
|
||||
rc = SQLITE_NOMEM;
|
||||
goto exprparse_out;
|
||||
}
|
||||
memset(pAnd, 0, sizeof(Fts3Expr));
|
||||
pAnd->eType = FTSQUERY_AND;
|
||||
insertBinaryOperator(&pRet, pPrev, pAnd);
|
||||
pPrev = pAnd;
|
||||
}
|
||||
|
||||
/* This test catches attempts to make either operand of a NEAR
|
||||
** operator something other than a phrase. For example, either of
|
||||
** the following:
|
||||
**
|
||||
** (bracketed expression) NEAR phrase
|
||||
** phrase NEAR (bracketed expression)
|
||||
**
|
||||
** Return an error in either case.
|
||||
*/
|
||||
if( pPrev && (
|
||||
(eType==FTSQUERY_NEAR && !isPhrase && pPrev->eType!=FTSQUERY_PHRASE)
|
||||
|| (eType!=FTSQUERY_PHRASE && isPhrase && pPrev->eType==FTSQUERY_NEAR)
|
||||
)){
|
||||
sqlite3Fts3ExprFree(p);
|
||||
rc = SQLITE_ERROR;
|
||||
goto exprparse_out;
|
||||
}
|
||||
|
||||
if( isPhrase ){
|
||||
if( pRet ){
|
||||
assert( pPrev && pPrev->pLeft && pPrev->pRight==0 );
|
||||
pPrev->pRight = p;
|
||||
p->pParent = pPrev;
|
||||
}else{
|
||||
pRet = p;
|
||||
}
|
||||
}else{
|
||||
insertBinaryOperator(&pRet, pPrev, p);
|
||||
}
|
||||
isRequirePhrase = !isPhrase;
|
||||
}
|
||||
assert( nByte>0 );
|
||||
}
|
||||
assert( rc!=SQLITE_OK || (nByte>0 && nByte<=nIn) );
|
||||
nIn -= nByte;
|
||||
zIn += nByte;
|
||||
pPrev = p;
|
||||
}
|
||||
|
||||
if( rc==SQLITE_DONE && pRet && isRequirePhrase ){
|
||||
rc = SQLITE_ERROR;
|
||||
}
|
||||
|
||||
if( rc==SQLITE_DONE ){
|
||||
rc = SQLITE_OK;
|
||||
if( !sqlite3_fts3_enable_parentheses && pNotBranch ){
|
||||
if( !pRet ){
|
||||
rc = SQLITE_ERROR;
|
||||
}else{
|
||||
pNotBranch->pLeft = pRet;
|
||||
pRet = pNotBranch;
|
||||
}
|
||||
}
|
||||
}
|
||||
*pnConsumed = n - nIn;
|
||||
|
||||
exprparse_out:
|
||||
if( rc!=SQLITE_OK ){
|
||||
sqlite3Fts3ExprFree(pRet);
|
||||
sqlite3Fts3ExprFree(pNotBranch);
|
||||
pRet = 0;
|
||||
}
|
||||
*ppExpr = pRet;
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** Parameters z and n contain a pointer to and length of a buffer containing
|
||||
** an fts3 query expression, respectively. This function attempts to parse the
|
||||
** query expression and create a tree of Fts3Expr structures representing the
|
||||
** parsed expression. If successful, *ppExpr is set to point to the head
|
||||
** of the parsed expression tree and SQLITE_OK is returned. If an error
|
||||
** occurs, either SQLITE_NOMEM (out-of-memory error) or SQLITE_ERROR (parse
|
||||
** error) is returned and *ppExpr is set to 0.
|
||||
**
|
||||
** If parameter n is a negative number, then z is assumed to point to a
|
||||
** nul-terminated string and the length is determined using strlen().
|
||||
**
|
||||
** The first parameter, pTokenizer, is passed the fts3 tokenizer module to
|
||||
** use to normalize query tokens while parsing the expression. The azCol[]
|
||||
** array, which is assumed to contain nCol entries, should contain the names
|
||||
** of each column in the target fts3 table, in order from left to right.
|
||||
** Column names must be nul-terminated strings.
|
||||
**
|
||||
** The iDefaultCol parameter should be passed the index of the table column
|
||||
** that appears on the left-hand-side of the MATCH operator (the default
|
||||
** column to match against for tokens for which a column name is not explicitly
|
||||
** specified as part of the query string), or -1 if tokens may by default
|
||||
** match any table column.
|
||||
*/
|
||||
int sqlite3Fts3ExprParse(
|
||||
sqlite3_tokenizer *pTokenizer, /* Tokenizer module */
|
||||
char **azCol, /* Array of column names for fts3 table */
|
||||
int nCol, /* Number of entries in azCol[] */
|
||||
int iDefaultCol, /* Default column to query */
|
||||
const char *z, int n, /* Text of MATCH query */
|
||||
Fts3Expr **ppExpr /* OUT: Parsed query structure */
|
||||
){
|
||||
int nParsed;
|
||||
int rc;
|
||||
ParseContext sParse;
|
||||
sParse.pTokenizer = pTokenizer;
|
||||
sParse.azCol = (const char **)azCol;
|
||||
sParse.nCol = nCol;
|
||||
sParse.iDefaultCol = iDefaultCol;
|
||||
sParse.nNest = 0;
|
||||
if( z==0 ){
|
||||
*ppExpr = 0;
|
||||
return SQLITE_OK;
|
||||
}
|
||||
if( n<0 ){
|
||||
n = strlen(z);
|
||||
}
|
||||
rc = fts3ExprParse(&sParse, z, n, ppExpr, &nParsed);
|
||||
|
||||
/* Check for mismatched parenthesis */
|
||||
if( rc==SQLITE_OK && sParse.nNest ){
|
||||
rc = SQLITE_ERROR;
|
||||
sqlite3Fts3ExprFree(*ppExpr);
|
||||
*ppExpr = 0;
|
||||
}
|
||||
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** Free a parsed fts3 query expression allocated by sqlite3Fts3ExprParse().
|
||||
*/
|
||||
void sqlite3Fts3ExprFree(Fts3Expr *p){
|
||||
if( p ){
|
||||
sqlite3Fts3ExprFree(p->pLeft);
|
||||
sqlite3Fts3ExprFree(p->pRight);
|
||||
sqlite3_free(p);
|
||||
}
|
||||
}
|
||||
|
||||
/****************************************************************************
|
||||
*****************************************************************************
|
||||
** Everything after this point is just test code.
|
||||
*/
|
||||
|
||||
#ifdef SQLITE_TEST
|
||||
|
||||
#include <stdio.h>
|
||||
|
||||
/*
|
||||
** Function to query the hash-table of tokenizers (see README.tokenizers).
|
||||
*/
|
||||
static int queryTestTokenizer(
|
||||
sqlite3 *db,
|
||||
const char *zName,
|
||||
const sqlite3_tokenizer_module **pp
|
||||
){
|
||||
int rc;
|
||||
sqlite3_stmt *pStmt;
|
||||
const char zSql[] = "SELECT fts3_tokenizer(?)";
|
||||
|
||||
*pp = 0;
|
||||
rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
|
||||
if( rc!=SQLITE_OK ){
|
||||
return rc;
|
||||
}
|
||||
|
||||
sqlite3_bind_text(pStmt, 1, zName, -1, SQLITE_STATIC);
|
||||
if( SQLITE_ROW==sqlite3_step(pStmt) ){
|
||||
if( sqlite3_column_type(pStmt, 0)==SQLITE_BLOB ){
|
||||
memcpy(pp, sqlite3_column_blob(pStmt, 0), sizeof(*pp));
|
||||
}
|
||||
}
|
||||
|
||||
return sqlite3_finalize(pStmt);
|
||||
}
|
||||
|
||||
/*
|
||||
** This function is part of the test interface for the query parser. It
|
||||
** writes a text representation of the query expression pExpr into the
|
||||
** buffer pointed to by argument zBuf. It is assumed that zBuf is large
|
||||
** enough to store the required text representation.
|
||||
*/
|
||||
static void exprToString(Fts3Expr *pExpr, char *zBuf){
|
||||
switch( pExpr->eType ){
|
||||
case FTSQUERY_PHRASE: {
|
||||
Fts3Phrase *pPhrase = pExpr->pPhrase;
|
||||
int i;
|
||||
zBuf += sprintf(zBuf, "PHRASE %d %d", pPhrase->iColumn, pPhrase->isNot);
|
||||
for(i=0; i<pPhrase->nToken; i++){
|
||||
zBuf += sprintf(zBuf," %.*s",pPhrase->aToken[i].n,pPhrase->aToken[i].z);
|
||||
zBuf += sprintf(zBuf,"%s", (pPhrase->aToken[i].isPrefix?"+":""));
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
case FTSQUERY_NEAR:
|
||||
zBuf += sprintf(zBuf, "NEAR/%d ", pExpr->nNear);
|
||||
break;
|
||||
case FTSQUERY_NOT:
|
||||
zBuf += sprintf(zBuf, "NOT ");
|
||||
break;
|
||||
case FTSQUERY_AND:
|
||||
zBuf += sprintf(zBuf, "AND ");
|
||||
break;
|
||||
case FTSQUERY_OR:
|
||||
zBuf += sprintf(zBuf, "OR ");
|
||||
break;
|
||||
}
|
||||
|
||||
zBuf += sprintf(zBuf, "{");
|
||||
exprToString(pExpr->pLeft, zBuf);
|
||||
zBuf += strlen(zBuf);
|
||||
zBuf += sprintf(zBuf, "} ");
|
||||
|
||||
zBuf += sprintf(zBuf, "{");
|
||||
exprToString(pExpr->pRight, zBuf);
|
||||
zBuf += strlen(zBuf);
|
||||
zBuf += sprintf(zBuf, "}");
|
||||
}
|
||||
|
||||
/*
|
||||
** This is the implementation of a scalar SQL function used to test the
|
||||
** expression parser. It should be called as follows:
|
||||
**
|
||||
** fts3_exprtest(<tokenizer>, <expr>, <column 1>, ...);
|
||||
**
|
||||
** The first argument, <tokenizer>, is the name of the fts3 tokenizer used
|
||||
** to parse the query expression (see README.tokenizers). The second argument
|
||||
** is the query expression to parse. Each subsequent argument is the name
|
||||
** of a column of the fts3 table that the query expression may refer to.
|
||||
** For example:
|
||||
**
|
||||
** SELECT fts3_exprtest('simple', 'Bill col2:Bloggs', 'col1', 'col2');
|
||||
*/
|
||||
static void fts3ExprTest(
|
||||
sqlite3_context *context,
|
||||
int argc,
|
||||
sqlite3_value **argv
|
||||
){
|
||||
sqlite3_tokenizer_module const *pModule = 0;
|
||||
sqlite3_tokenizer *pTokenizer = 0;
|
||||
int rc;
|
||||
char **azCol = 0;
|
||||
const char *zExpr;
|
||||
int nExpr;
|
||||
int nCol;
|
||||
int ii;
|
||||
Fts3Expr *pExpr;
|
||||
sqlite3 *db = sqlite3_context_db_handle(context);
|
||||
|
||||
if( argc<3 ){
|
||||
sqlite3_result_error(context,
|
||||
"Usage: fts3_exprtest(tokenizer, expr, col1, ...", -1
|
||||
);
|
||||
return;
|
||||
}
|
||||
|
||||
rc = queryTestTokenizer(db,
|
||||
(const char *)sqlite3_value_text(argv[0]), &pModule);
|
||||
if( rc==SQLITE_NOMEM ){
|
||||
sqlite3_result_error_nomem(context);
|
||||
goto exprtest_out;
|
||||
}else if( !pModule ){
|
||||
sqlite3_result_error(context, "No such tokenizer module", -1);
|
||||
goto exprtest_out;
|
||||
}
|
||||
|
||||
rc = pModule->xCreate(0, 0, &pTokenizer);
|
||||
assert( rc==SQLITE_NOMEM || rc==SQLITE_OK );
|
||||
if( rc==SQLITE_NOMEM ){
|
||||
sqlite3_result_error_nomem(context);
|
||||
goto exprtest_out;
|
||||
}
|
||||
pTokenizer->pModule = pModule;
|
||||
|
||||
zExpr = (const char *)sqlite3_value_text(argv[1]);
|
||||
nExpr = sqlite3_value_bytes(argv[1]);
|
||||
nCol = argc-2;
|
||||
azCol = (char **)sqlite3_malloc(nCol*sizeof(char *));
|
||||
if( !azCol ){
|
||||
sqlite3_result_error_nomem(context);
|
||||
goto exprtest_out;
|
||||
}
|
||||
for(ii=0; ii<nCol; ii++){
|
||||
azCol[ii] = (char *)sqlite3_value_text(argv[ii+2]);
|
||||
}
|
||||
|
||||
rc = sqlite3Fts3ExprParse(
|
||||
pTokenizer, azCol, nCol, nCol, zExpr, nExpr, &pExpr
|
||||
);
|
||||
if( rc==SQLITE_NOMEM ){
|
||||
sqlite3_result_error_nomem(context);
|
||||
goto exprtest_out;
|
||||
}else if( rc==SQLITE_OK ){
|
||||
char zBuf[4096];
|
||||
exprToString(pExpr, zBuf);
|
||||
sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
|
||||
sqlite3Fts3ExprFree(pExpr);
|
||||
}else{
|
||||
sqlite3_result_error(context, "Error parsing expression", -1);
|
||||
}
|
||||
|
||||
exprtest_out:
|
||||
if( pModule && pTokenizer ){
|
||||
rc = pModule->xDestroy(pTokenizer);
|
||||
}
|
||||
sqlite3_free(azCol);
|
||||
}
|
||||
|
||||
/*
|
||||
** Register the query expression parser test function fts3_exprtest()
|
||||
** with database connection db.
|
||||
*/
|
||||
void sqlite3Fts3ExprInitTestInterface(sqlite3* db){
|
||||
sqlite3_create_function(
|
||||
db, "fts3_exprtest", -1, SQLITE_UTF8, 0, fts3ExprTest, 0, 0
|
||||
);
|
||||
}
|
||||
|
||||
#endif
|
||||
#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
|
96
fts3_expr.h
Normal file
96
fts3_expr.h
Normal file
|
@ -0,0 +1,96 @@
|
|||
/*
|
||||
** 2008 Nov 28
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
******************************************************************************
|
||||
**
|
||||
*/
|
||||
|
||||
#include "fts3_tokenizer.h"
|
||||
#include "sqlite3.h"
|
||||
|
||||
/*
|
||||
** The following describes the syntax supported by the fts3 MATCH
|
||||
** operator in a similar format to that used by the lemon parser
|
||||
** generator. This module does not use actually lemon, it uses a
|
||||
** custom parser.
|
||||
**
|
||||
** query ::= andexpr (OR andexpr)*.
|
||||
**
|
||||
** andexpr ::= notexpr (AND? notexpr)*.
|
||||
**
|
||||
** notexpr ::= nearexpr (NOT nearexpr|-TOKEN)*.
|
||||
** notexpr ::= LP query RP.
|
||||
**
|
||||
** nearexpr ::= phrase (NEAR distance_opt nearexpr)*.
|
||||
**
|
||||
** distance_opt ::= .
|
||||
** distance_opt ::= / INTEGER.
|
||||
**
|
||||
** phrase ::= TOKEN.
|
||||
** phrase ::= COLUMN:TOKEN.
|
||||
** phrase ::= "TOKEN TOKEN TOKEN...".
|
||||
*/
|
||||
|
||||
typedef struct Fts3Expr Fts3Expr;
|
||||
typedef struct Fts3Phrase Fts3Phrase;
|
||||
|
||||
/*
|
||||
** A "phrase" is a sequence of one or more tokens that must match in
|
||||
** sequence. A single token is the base case and the most common case.
|
||||
** For a sequence of tokens contained in "...", nToken will be the number
|
||||
** of tokens in the string.
|
||||
*/
|
||||
struct Fts3Phrase {
|
||||
int nToken; /* Number of tokens in the phrase */
|
||||
int iColumn; /* Index of column this phrase must match */
|
||||
int isNot; /* Phrase prefixed by unary not (-) operator */
|
||||
struct PhraseToken {
|
||||
char *z; /* Text of the token */
|
||||
int n; /* Number of bytes in buffer pointed to by z */
|
||||
int isPrefix; /* True if token ends in with a "*" character */
|
||||
} aToken[1]; /* One entry for each token in the phrase */
|
||||
};
|
||||
|
||||
/*
|
||||
** A tree of these objects forms the RHS of a MATCH operator.
|
||||
*/
|
||||
struct Fts3Expr {
|
||||
int eType; /* One of the FTSQUERY_XXX values defined below */
|
||||
int nNear; /* Valid if eType==FTSQUERY_NEAR */
|
||||
Fts3Expr *pParent; /* pParent->pLeft==this or pParent->pRight==this */
|
||||
Fts3Expr *pLeft; /* Left operand */
|
||||
Fts3Expr *pRight; /* Right operand */
|
||||
Fts3Phrase *pPhrase; /* Valid if eType==FTSQUERY_PHRASE */
|
||||
};
|
||||
|
||||
int sqlite3Fts3ExprParse(sqlite3_tokenizer *, char **, int, int,
|
||||
const char *, int, Fts3Expr **);
|
||||
void sqlite3Fts3ExprFree(Fts3Expr *);
|
||||
|
||||
/*
|
||||
** Candidate values for Fts3Query.eType. Note that the order of the first
|
||||
** four values is in order of precedence when parsing expressions. For
|
||||
** example, the following:
|
||||
**
|
||||
** "a OR b AND c NOT d NEAR e"
|
||||
**
|
||||
** is equivalent to:
|
||||
**
|
||||
** "a OR (b AND (c NOT (d NEAR e)))"
|
||||
*/
|
||||
#define FTSQUERY_NEAR 1
|
||||
#define FTSQUERY_NOT 2
|
||||
#define FTSQUERY_AND 3
|
||||
#define FTSQUERY_OR 4
|
||||
#define FTSQUERY_PHRASE 5
|
||||
|
||||
#ifdef SQLITE_TEST
|
||||
void sqlite3Fts3ExprInitTestInterface(sqlite3 *db);
|
||||
#endif
|
|
@ -17,79 +17,84 @@
|
|||
/*
|
||||
** The code in this file is only compiled if:
|
||||
**
|
||||
** * The FTS2 module is being built as an extension
|
||||
** * The FTS3 module is being built as an extension
|
||||
** (in which case SQLITE_CORE is not defined), or
|
||||
**
|
||||
** * The FTS2 module is being built into the core of
|
||||
** SQLite (in which case SQLITE_ENABLE_FTS2 is defined).
|
||||
** * The FTS3 module is being built into the core of
|
||||
** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
|
||||
*/
|
||||
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2)
|
||||
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
|
||||
|
||||
#include <assert.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "fts2_hash.h"
|
||||
#include "sqlite3.h"
|
||||
#include "fts3_hash.h"
|
||||
|
||||
static void *malloc_and_zero(int n){
|
||||
void *p = malloc(n);
|
||||
/*
|
||||
** Malloc and Free functions
|
||||
*/
|
||||
static void *fts3HashMalloc(int n){
|
||||
void *p = sqlite3_malloc(n);
|
||||
if( p ){
|
||||
memset(p, 0, n);
|
||||
}
|
||||
return p;
|
||||
}
|
||||
static void fts3HashFree(void *p){
|
||||
sqlite3_free(p);
|
||||
}
|
||||
|
||||
/* Turn bulk memory into a hash table object by initializing the
|
||||
** fields of the Hash structure.
|
||||
**
|
||||
** "pNew" is a pointer to the hash table that is to be initialized.
|
||||
** keyClass is one of the constants
|
||||
** FTS2_HASH_BINARY or FTS2_HASH_STRING. The value of keyClass
|
||||
** FTS3_HASH_BINARY or FTS3_HASH_STRING. The value of keyClass
|
||||
** determines what kind of key the hash table will use. "copyKey" is
|
||||
** true if the hash table should make its own private copy of keys and
|
||||
** false if it should just use the supplied pointer.
|
||||
*/
|
||||
void sqlite3Fts2HashInit(fts2Hash *pNew, int keyClass, int copyKey){
|
||||
void sqlite3Fts3HashInit(fts3Hash *pNew, int keyClass, int copyKey){
|
||||
assert( pNew!=0 );
|
||||
assert( keyClass>=FTS2_HASH_STRING && keyClass<=FTS2_HASH_BINARY );
|
||||
assert( keyClass>=FTS3_HASH_STRING && keyClass<=FTS3_HASH_BINARY );
|
||||
pNew->keyClass = keyClass;
|
||||
pNew->copyKey = copyKey;
|
||||
pNew->first = 0;
|
||||
pNew->count = 0;
|
||||
pNew->htsize = 0;
|
||||
pNew->ht = 0;
|
||||
pNew->xMalloc = malloc_and_zero;
|
||||
pNew->xFree = free;
|
||||
}
|
||||
|
||||
/* Remove all entries from a hash table. Reclaim all memory.
|
||||
** Call this routine to delete a hash table or to reset a hash table
|
||||
** to the empty state.
|
||||
*/
|
||||
void sqlite3Fts2HashClear(fts2Hash *pH){
|
||||
fts2HashElem *elem; /* For looping over all elements of the table */
|
||||
void sqlite3Fts3HashClear(fts3Hash *pH){
|
||||
fts3HashElem *elem; /* For looping over all elements of the table */
|
||||
|
||||
assert( pH!=0 );
|
||||
elem = pH->first;
|
||||
pH->first = 0;
|
||||
if( pH->ht ) pH->xFree(pH->ht);
|
||||
fts3HashFree(pH->ht);
|
||||
pH->ht = 0;
|
||||
pH->htsize = 0;
|
||||
while( elem ){
|
||||
fts2HashElem *next_elem = elem->next;
|
||||
fts3HashElem *next_elem = elem->next;
|
||||
if( pH->copyKey && elem->pKey ){
|
||||
pH->xFree(elem->pKey);
|
||||
fts3HashFree(elem->pKey);
|
||||
}
|
||||
pH->xFree(elem);
|
||||
fts3HashFree(elem);
|
||||
elem = next_elem;
|
||||
}
|
||||
pH->count = 0;
|
||||
}
|
||||
|
||||
/*
|
||||
** Hash and comparison functions when the mode is FTS2_HASH_STRING
|
||||
** Hash and comparison functions when the mode is FTS3_HASH_STRING
|
||||
*/
|
||||
static int strHash(const void *pKey, int nKey){
|
||||
static int fts3StrHash(const void *pKey, int nKey){
|
||||
const char *z = (const char *)pKey;
|
||||
int h = 0;
|
||||
if( nKey<=0 ) nKey = (int) strlen(z);
|
||||
|
@ -99,15 +104,15 @@ static int strHash(const void *pKey, int nKey){
|
|||
}
|
||||
return h & 0x7fffffff;
|
||||
}
|
||||
static int strCompare(const void *pKey1, int n1, const void *pKey2, int n2){
|
||||
static int fts3StrCompare(const void *pKey1, int n1, const void *pKey2, int n2){
|
||||
if( n1!=n2 ) return 1;
|
||||
return strncmp((const char*)pKey1,(const char*)pKey2,n1);
|
||||
}
|
||||
|
||||
/*
|
||||
** Hash and comparison functions when the mode is FTS2_HASH_BINARY
|
||||
** Hash and comparison functions when the mode is FTS3_HASH_BINARY
|
||||
*/
|
||||
static int binHash(const void *pKey, int nKey){
|
||||
static int fts3BinHash(const void *pKey, int nKey){
|
||||
int h = 0;
|
||||
const char *z = (const char *)pKey;
|
||||
while( nKey-- > 0 ){
|
||||
|
@ -115,7 +120,7 @@ static int binHash(const void *pKey, int nKey){
|
|||
}
|
||||
return h & 0x7fffffff;
|
||||
}
|
||||
static int binCompare(const void *pKey1, int n1, const void *pKey2, int n2){
|
||||
static int fts3BinCompare(const void *pKey1, int n1, const void *pKey2, int n2){
|
||||
if( n1!=n2 ) return 1;
|
||||
return memcmp(pKey1,pKey2,n1);
|
||||
}
|
||||
|
@ -126,18 +131,18 @@ static int binCompare(const void *pKey1, int n1, const void *pKey2, int n2){
|
|||
** The C syntax in this function definition may be unfamilar to some
|
||||
** programmers, so we provide the following additional explanation:
|
||||
**
|
||||
** The name of the function is "hashFunction". The function takes a
|
||||
** single parameter "keyClass". The return value of hashFunction()
|
||||
** The name of the function is "ftsHashFunction". The function takes a
|
||||
** single parameter "keyClass". The return value of ftsHashFunction()
|
||||
** is a pointer to another function. Specifically, the return value
|
||||
** of hashFunction() is a pointer to a function that takes two parameters
|
||||
** of ftsHashFunction() is a pointer to a function that takes two parameters
|
||||
** with types "const void*" and "int" and returns an "int".
|
||||
*/
|
||||
static int (*hashFunction(int keyClass))(const void*,int){
|
||||
if( keyClass==FTS2_HASH_STRING ){
|
||||
return &strHash;
|
||||
static int (*ftsHashFunction(int keyClass))(const void*,int){
|
||||
if( keyClass==FTS3_HASH_STRING ){
|
||||
return &fts3StrHash;
|
||||
}else{
|
||||
assert( keyClass==FTS2_HASH_BINARY );
|
||||
return &binHash;
|
||||
assert( keyClass==FTS3_HASH_BINARY );
|
||||
return &fts3BinHash;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -147,23 +152,23 @@ static int (*hashFunction(int keyClass))(const void*,int){
|
|||
** For help in interpreted the obscure C code in the function definition,
|
||||
** see the header comment on the previous function.
|
||||
*/
|
||||
static int (*compareFunction(int keyClass))(const void*,int,const void*,int){
|
||||
if( keyClass==FTS2_HASH_STRING ){
|
||||
return &strCompare;
|
||||
static int (*ftsCompareFunction(int keyClass))(const void*,int,const void*,int){
|
||||
if( keyClass==FTS3_HASH_STRING ){
|
||||
return &fts3StrCompare;
|
||||
}else{
|
||||
assert( keyClass==FTS2_HASH_BINARY );
|
||||
return &binCompare;
|
||||
assert( keyClass==FTS3_HASH_BINARY );
|
||||
return &fts3BinCompare;
|
||||
}
|
||||
}
|
||||
|
||||
/* Link an element into the hash table
|
||||
*/
|
||||
static void insertElement(
|
||||
fts2Hash *pH, /* The complete hash table */
|
||||
struct _fts2ht *pEntry, /* The entry into which pNew is inserted */
|
||||
fts2HashElem *pNew /* The element to be inserted */
|
||||
static void fts3HashInsertElement(
|
||||
fts3Hash *pH, /* The complete hash table */
|
||||
struct _fts3ht *pEntry, /* The entry into which pNew is inserted */
|
||||
fts3HashElem *pNew /* The element to be inserted */
|
||||
){
|
||||
fts2HashElem *pHead; /* First element already in pEntry */
|
||||
fts3HashElem *pHead; /* First element already in pEntry */
|
||||
pHead = pEntry->chain;
|
||||
if( pHead ){
|
||||
pNew->next = pHead;
|
||||
|
@ -186,22 +191,22 @@ static void insertElement(
|
|||
** "new_size" must be a power of 2. The hash table might fail
|
||||
** to resize if sqliteMalloc() fails.
|
||||
*/
|
||||
static void rehash(fts2Hash *pH, int new_size){
|
||||
struct _fts2ht *new_ht; /* The new hash table */
|
||||
fts2HashElem *elem, *next_elem; /* For looping over existing elements */
|
||||
static void fts3Rehash(fts3Hash *pH, int new_size){
|
||||
struct _fts3ht *new_ht; /* The new hash table */
|
||||
fts3HashElem *elem, *next_elem; /* For looping over existing elements */
|
||||
int (*xHash)(const void*,int); /* The hash function */
|
||||
|
||||
assert( (new_size & (new_size-1))==0 );
|
||||
new_ht = (struct _fts2ht *)pH->xMalloc( new_size*sizeof(struct _fts2ht) );
|
||||
new_ht = (struct _fts3ht *)fts3HashMalloc( new_size*sizeof(struct _fts3ht) );
|
||||
if( new_ht==0 ) return;
|
||||
if( pH->ht ) pH->xFree(pH->ht);
|
||||
fts3HashFree(pH->ht);
|
||||
pH->ht = new_ht;
|
||||
pH->htsize = new_size;
|
||||
xHash = hashFunction(pH->keyClass);
|
||||
xHash = ftsHashFunction(pH->keyClass);
|
||||
for(elem=pH->first, pH->first=0; elem; elem = next_elem){
|
||||
int h = (*xHash)(elem->pKey, elem->nKey) & (new_size-1);
|
||||
next_elem = elem->next;
|
||||
insertElement(pH, &new_ht[h], elem);
|
||||
fts3HashInsertElement(pH, &new_ht[h], elem);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -209,21 +214,21 @@ static void rehash(fts2Hash *pH, int new_size){
|
|||
** hash table that matches the given key. The hash for this key has
|
||||
** already been computed and is passed as the 4th parameter.
|
||||
*/
|
||||
static fts2HashElem *findElementGivenHash(
|
||||
const fts2Hash *pH, /* The pH to be searched */
|
||||
static fts3HashElem *fts3FindElementByHash(
|
||||
const fts3Hash *pH, /* The pH to be searched */
|
||||
const void *pKey, /* The key we are searching for */
|
||||
int nKey,
|
||||
int h /* The hash for this key. */
|
||||
){
|
||||
fts2HashElem *elem; /* Used to loop thru the element list */
|
||||
fts3HashElem *elem; /* Used to loop thru the element list */
|
||||
int count; /* Number of elements left to test */
|
||||
int (*xCompare)(const void*,int,const void*,int); /* comparison function */
|
||||
|
||||
if( pH->ht ){
|
||||
struct _fts2ht *pEntry = &pH->ht[h];
|
||||
struct _fts3ht *pEntry = &pH->ht[h];
|
||||
elem = pEntry->chain;
|
||||
count = pEntry->count;
|
||||
xCompare = compareFunction(pH->keyClass);
|
||||
xCompare = ftsCompareFunction(pH->keyClass);
|
||||
while( count-- && elem ){
|
||||
if( (*xCompare)(elem->pKey,elem->nKey,pKey,nKey)==0 ){
|
||||
return elem;
|
||||
|
@ -237,12 +242,12 @@ static fts2HashElem *findElementGivenHash(
|
|||
/* Remove a single entry from the hash table given a pointer to that
|
||||
** element and a hash on the element's key.
|
||||
*/
|
||||
static void removeElementGivenHash(
|
||||
fts2Hash *pH, /* The pH containing "elem" */
|
||||
fts2HashElem* elem, /* The element to be removed from the pH */
|
||||
static void fts3RemoveElementByHash(
|
||||
fts3Hash *pH, /* The pH containing "elem" */
|
||||
fts3HashElem* elem, /* The element to be removed from the pH */
|
||||
int h /* Hash value for the element */
|
||||
){
|
||||
struct _fts2ht *pEntry;
|
||||
struct _fts3ht *pEntry;
|
||||
if( elem->prev ){
|
||||
elem->prev->next = elem->next;
|
||||
}else{
|
||||
|
@ -260,14 +265,14 @@ static void removeElementGivenHash(
|
|||
pEntry->chain = 0;
|
||||
}
|
||||
if( pH->copyKey && elem->pKey ){
|
||||
pH->xFree(elem->pKey);
|
||||
fts3HashFree(elem->pKey);
|
||||
}
|
||||
pH->xFree( elem );
|
||||
fts3HashFree( elem );
|
||||
pH->count--;
|
||||
if( pH->count<=0 ){
|
||||
assert( pH->first==0 );
|
||||
assert( pH->count==0 );
|
||||
fts2HashClear(pH);
|
||||
fts3HashClear(pH);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -275,17 +280,17 @@ static void removeElementGivenHash(
|
|||
** that matches pKey,nKey. Return the data for this element if it is
|
||||
** found, or NULL if there is no match.
|
||||
*/
|
||||
void *sqlite3Fts2HashFind(const fts2Hash *pH, const void *pKey, int nKey){
|
||||
void *sqlite3Fts3HashFind(const fts3Hash *pH, const void *pKey, int nKey){
|
||||
int h; /* A hash on key */
|
||||
fts2HashElem *elem; /* The element that matches key */
|
||||
fts3HashElem *elem; /* The element that matches key */
|
||||
int (*xHash)(const void*,int); /* The hash function */
|
||||
|
||||
if( pH==0 || pH->ht==0 ) return 0;
|
||||
xHash = hashFunction(pH->keyClass);
|
||||
xHash = ftsHashFunction(pH->keyClass);
|
||||
assert( xHash!=0 );
|
||||
h = (*xHash)(pKey,nKey);
|
||||
assert( (pH->htsize & (pH->htsize-1))==0 );
|
||||
elem = findElementGivenHash(pH,pKey,nKey, h & (pH->htsize-1));
|
||||
elem = fts3FindElementByHash(pH,pKey,nKey, h & (pH->htsize-1));
|
||||
return elem ? elem->data : 0;
|
||||
}
|
||||
|
||||
|
@ -304,41 +309,48 @@ void *sqlite3Fts2HashFind(const fts2Hash *pH, const void *pKey, int nKey){
|
|||
** If the "data" parameter to this function is NULL, then the
|
||||
** element corresponding to "key" is removed from the hash table.
|
||||
*/
|
||||
void *sqlite3Fts2HashInsert(
|
||||
fts2Hash *pH, /* The hash table to insert into */
|
||||
void *sqlite3Fts3HashInsert(
|
||||
fts3Hash *pH, /* The hash table to insert into */
|
||||
const void *pKey, /* The key */
|
||||
int nKey, /* Number of bytes in the key */
|
||||
void *data /* The data */
|
||||
){
|
||||
int hraw; /* Raw hash value of the key */
|
||||
int h; /* the hash of the key modulo hash table size */
|
||||
fts2HashElem *elem; /* Used to loop thru the element list */
|
||||
fts2HashElem *new_elem; /* New element added to the pH */
|
||||
fts3HashElem *elem; /* Used to loop thru the element list */
|
||||
fts3HashElem *new_elem; /* New element added to the pH */
|
||||
int (*xHash)(const void*,int); /* The hash function */
|
||||
|
||||
assert( pH!=0 );
|
||||
xHash = hashFunction(pH->keyClass);
|
||||
xHash = ftsHashFunction(pH->keyClass);
|
||||
assert( xHash!=0 );
|
||||
hraw = (*xHash)(pKey, nKey);
|
||||
assert( (pH->htsize & (pH->htsize-1))==0 );
|
||||
h = hraw & (pH->htsize-1);
|
||||
elem = findElementGivenHash(pH,pKey,nKey,h);
|
||||
elem = fts3FindElementByHash(pH,pKey,nKey,h);
|
||||
if( elem ){
|
||||
void *old_data = elem->data;
|
||||
if( data==0 ){
|
||||
removeElementGivenHash(pH,elem,h);
|
||||
fts3RemoveElementByHash(pH,elem,h);
|
||||
}else{
|
||||
elem->data = data;
|
||||
}
|
||||
return old_data;
|
||||
}
|
||||
if( data==0 ) return 0;
|
||||
new_elem = (fts2HashElem*)pH->xMalloc( sizeof(fts2HashElem) );
|
||||
if( pH->htsize==0 ){
|
||||
fts3Rehash(pH,8);
|
||||
if( pH->htsize==0 ){
|
||||
pH->count = 0;
|
||||
return data;
|
||||
}
|
||||
}
|
||||
new_elem = (fts3HashElem*)fts3HashMalloc( sizeof(fts3HashElem) );
|
||||
if( new_elem==0 ) return data;
|
||||
if( pH->copyKey && pKey!=0 ){
|
||||
new_elem->pKey = pH->xMalloc( nKey );
|
||||
new_elem->pKey = fts3HashMalloc( nKey );
|
||||
if( new_elem->pKey==0 ){
|
||||
pH->xFree(new_elem);
|
||||
fts3HashFree(new_elem);
|
||||
return data;
|
||||
}
|
||||
memcpy((void*)new_elem->pKey, pKey, nKey);
|
||||
|
@ -347,23 +359,15 @@ void *sqlite3Fts2HashInsert(
|
|||
}
|
||||
new_elem->nKey = nKey;
|
||||
pH->count++;
|
||||
if( pH->htsize==0 ){
|
||||
rehash(pH,8);
|
||||
if( pH->htsize==0 ){
|
||||
pH->count = 0;
|
||||
pH->xFree(new_elem);
|
||||
return data;
|
||||
}
|
||||
}
|
||||
if( pH->count > pH->htsize ){
|
||||
rehash(pH,pH->htsize*2);
|
||||
fts3Rehash(pH,pH->htsize*2);
|
||||
}
|
||||
assert( pH->htsize>0 );
|
||||
assert( (pH->htsize & (pH->htsize-1))==0 );
|
||||
h = hraw & (pH->htsize-1);
|
||||
insertElement(pH, &pH->ht[h], new_elem);
|
||||
fts3HashInsertElement(pH, &pH->ht[h], new_elem);
|
||||
new_elem->data = data;
|
||||
return 0;
|
||||
}
|
||||
|
||||
#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2) */
|
||||
#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
|
|
@ -14,12 +14,12 @@
|
|||
** hash table implementation for the full-text indexing module.
|
||||
**
|
||||
*/
|
||||
#ifndef _FTS2_HASH_H_
|
||||
#define _FTS2_HASH_H_
|
||||
#ifndef _FTS3_HASH_H_
|
||||
#define _FTS3_HASH_H_
|
||||
|
||||
/* Forward declarations of structures. */
|
||||
typedef struct fts2Hash fts2Hash;
|
||||
typedef struct fts2HashElem fts2HashElem;
|
||||
typedef struct fts3Hash fts3Hash;
|
||||
typedef struct fts3HashElem fts3HashElem;
|
||||
|
||||
/* A complete hash table is an instance of the following structure.
|
||||
** The internals of this structure are intended to be opaque -- client
|
||||
|
@ -29,17 +29,15 @@ typedef struct fts2HashElem fts2HashElem;
|
|||
** accessing this structure are really macros, so we can't really make
|
||||
** this structure opaque.
|
||||
*/
|
||||
struct fts2Hash {
|
||||
struct fts3Hash {
|
||||
char keyClass; /* HASH_INT, _POINTER, _STRING, _BINARY */
|
||||
char copyKey; /* True if copy of key made on insert */
|
||||
int count; /* Number of entries in this table */
|
||||
fts2HashElem *first; /* The first element of the array */
|
||||
void *(*xMalloc)(int); /* malloc() function to use */
|
||||
void (*xFree)(void *); /* free() function to use */
|
||||
fts3HashElem *first; /* The first element of the array */
|
||||
int htsize; /* Number of buckets in the hash table */
|
||||
struct _fts2ht { /* the hash table */
|
||||
struct _fts3ht { /* the hash table */
|
||||
int count; /* Number of entries with this hash */
|
||||
fts2HashElem *chain; /* Pointer to first entry with this hash */
|
||||
fts3HashElem *chain; /* Pointer to first entry with this hash */
|
||||
} *ht;
|
||||
};
|
||||
|
||||
|
@ -49,8 +47,8 @@ struct fts2Hash {
|
|||
** Again, this structure is intended to be opaque, but it can't really
|
||||
** be opaque because it is used by macros.
|
||||
*/
|
||||
struct fts2HashElem {
|
||||
fts2HashElem *next, *prev; /* Next and previous elements in the table */
|
||||
struct fts3HashElem {
|
||||
fts3HashElem *next, *prev; /* Next and previous elements in the table */
|
||||
void *data; /* Data associated with this element */
|
||||
void *pKey; int nKey; /* Key associated with this element */
|
||||
};
|
||||
|
@ -58,55 +56,55 @@ struct fts2HashElem {
|
|||
/*
|
||||
** There are 2 different modes of operation for a hash table:
|
||||
**
|
||||
** FTS2_HASH_STRING pKey points to a string that is nKey bytes long
|
||||
** FTS3_HASH_STRING pKey points to a string that is nKey bytes long
|
||||
** (including the null-terminator, if any). Case
|
||||
** is respected in comparisons.
|
||||
**
|
||||
** FTS2_HASH_BINARY pKey points to binary data nKey bytes long.
|
||||
** FTS3_HASH_BINARY pKey points to binary data nKey bytes long.
|
||||
** memcmp() is used to compare keys.
|
||||
**
|
||||
** A copy of the key is made if the copyKey parameter to fts2HashInit is 1.
|
||||
** A copy of the key is made if the copyKey parameter to fts3HashInit is 1.
|
||||
*/
|
||||
#define FTS2_HASH_STRING 1
|
||||
#define FTS2_HASH_BINARY 2
|
||||
#define FTS3_HASH_STRING 1
|
||||
#define FTS3_HASH_BINARY 2
|
||||
|
||||
/*
|
||||
** Access routines. To delete, insert a NULL pointer.
|
||||
*/
|
||||
void sqlite3Fts2HashInit(fts2Hash*, int keytype, int copyKey);
|
||||
void *sqlite3Fts2HashInsert(fts2Hash*, const void *pKey, int nKey, void *pData);
|
||||
void *sqlite3Fts2HashFind(const fts2Hash*, const void *pKey, int nKey);
|
||||
void sqlite3Fts2HashClear(fts2Hash*);
|
||||
void sqlite3Fts3HashInit(fts3Hash*, int keytype, int copyKey);
|
||||
void *sqlite3Fts3HashInsert(fts3Hash*, const void *pKey, int nKey, void *pData);
|
||||
void *sqlite3Fts3HashFind(const fts3Hash*, const void *pKey, int nKey);
|
||||
void sqlite3Fts3HashClear(fts3Hash*);
|
||||
|
||||
/*
|
||||
** Shorthand for the functions above
|
||||
*/
|
||||
#define fts2HashInit sqlite3Fts2HashInit
|
||||
#define fts2HashInsert sqlite3Fts2HashInsert
|
||||
#define fts2HashFind sqlite3Fts2HashFind
|
||||
#define fts2HashClear sqlite3Fts2HashClear
|
||||
#define fts3HashInit sqlite3Fts3HashInit
|
||||
#define fts3HashInsert sqlite3Fts3HashInsert
|
||||
#define fts3HashFind sqlite3Fts3HashFind
|
||||
#define fts3HashClear sqlite3Fts3HashClear
|
||||
|
||||
/*
|
||||
** Macros for looping over all elements of a hash table. The idiom is
|
||||
** like this:
|
||||
**
|
||||
** fts2Hash h;
|
||||
** fts2HashElem *p;
|
||||
** fts3Hash h;
|
||||
** fts3HashElem *p;
|
||||
** ...
|
||||
** for(p=fts2HashFirst(&h); p; p=fts2HashNext(p)){
|
||||
** SomeStructure *pData = fts2HashData(p);
|
||||
** for(p=fts3HashFirst(&h); p; p=fts3HashNext(p)){
|
||||
** SomeStructure *pData = fts3HashData(p);
|
||||
** // do something with pData
|
||||
** }
|
||||
*/
|
||||
#define fts2HashFirst(H) ((H)->first)
|
||||
#define fts2HashNext(E) ((E)->next)
|
||||
#define fts2HashData(E) ((E)->data)
|
||||
#define fts2HashKey(E) ((E)->pKey)
|
||||
#define fts2HashKeysize(E) ((E)->nKey)
|
||||
#define fts3HashFirst(H) ((H)->first)
|
||||
#define fts3HashNext(E) ((E)->next)
|
||||
#define fts3HashData(E) ((E)->data)
|
||||
#define fts3HashKey(E) ((E)->pKey)
|
||||
#define fts3HashKeysize(E) ((E)->nKey)
|
||||
|
||||
/*
|
||||
** Number of entries in a hash table
|
||||
*/
|
||||
#define fts2HashCount(H) ((H)->count)
|
||||
#define fts3HashCount(H) ((H)->count)
|
||||
|
||||
#endif /* _FTS2_HASH_H_ */
|
||||
#endif /* _FTS3_HASH_H_ */
|
|
@ -9,17 +9,17 @@
|
|||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This file implements a tokenizer for fts2 based on the ICU library.
|
||||
** This file implements a tokenizer for fts3 based on the ICU library.
|
||||
**
|
||||
** $Id: fts2_icu.c,v 1.1 2007/06/22 15:21:16 danielk1977 Exp $
|
||||
** $Id: fts3_icu.c,v 1.3 2008/09/01 18:34:20 danielk1977 Exp $
|
||||
*/
|
||||
|
||||
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2)
|
||||
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
|
||||
#ifdef SQLITE_ENABLE_ICU
|
||||
|
||||
#include <assert.h>
|
||||
#include <string.h>
|
||||
#include "fts2_tokenizer.h"
|
||||
#include "fts3_tokenizer.h"
|
||||
|
||||
#include <unicode/ubrk.h>
|
||||
#include <unicode/ucol.h>
|
||||
|
@ -112,6 +112,9 @@ static int icuOpen(
|
|||
|
||||
*ppCursor = 0;
|
||||
|
||||
if( nInput<0 ){
|
||||
nInput = strlen(zInput);
|
||||
}
|
||||
nChar = nInput+1;
|
||||
pCsr = (IcuCursor *)sqlite3_malloc(
|
||||
sizeof(IcuCursor) + /* IcuCursor */
|
||||
|
@ -247,11 +250,11 @@ static const sqlite3_tokenizer_module icuTokenizerModule = {
|
|||
/*
|
||||
** Set *ppModule to point at the implementation of the ICU tokenizer.
|
||||
*/
|
||||
void sqlite3Fts2IcuTokenizerModule(
|
||||
void sqlite3Fts3IcuTokenizerModule(
|
||||
sqlite3_tokenizer_module const**ppModule
|
||||
){
|
||||
*ppModule = &icuTokenizerModule;
|
||||
}
|
||||
|
||||
#endif /* defined(SQLITE_ENABLE_ICU) */
|
||||
#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2) */
|
||||
#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
|
|
@ -16,13 +16,13 @@
|
|||
/*
|
||||
** The code in this file is only compiled if:
|
||||
**
|
||||
** * The FTS2 module is being built as an extension
|
||||
** * The FTS3 module is being built as an extension
|
||||
** (in which case SQLITE_CORE is not defined), or
|
||||
**
|
||||
** * The FTS2 module is being built into the core of
|
||||
** SQLite (in which case SQLITE_ENABLE_FTS2 is defined).
|
||||
** * The FTS3 module is being built into the core of
|
||||
** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
|
||||
*/
|
||||
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2)
|
||||
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
|
||||
|
||||
|
||||
#include <assert.h>
|
||||
|
@ -31,7 +31,7 @@
|
|||
#include <string.h>
|
||||
#include <ctype.h>
|
||||
|
||||
#include "fts2_tokenizer.h"
|
||||
#include "fts3_tokenizer.h"
|
||||
|
||||
/*
|
||||
** Class derived from sqlite3_tokenizer
|
||||
|
@ -66,9 +66,9 @@ static int porterCreate(
|
|||
sqlite3_tokenizer **ppTokenizer
|
||||
){
|
||||
porter_tokenizer *t;
|
||||
t = (porter_tokenizer *) calloc(sizeof(*t), 1);
|
||||
t = (porter_tokenizer *) sqlite3_malloc(sizeof(*t));
|
||||
if( t==NULL ) return SQLITE_NOMEM;
|
||||
|
||||
memset(t, 0, sizeof(*t));
|
||||
*ppTokenizer = &t->base;
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
@ -77,7 +77,7 @@ static int porterCreate(
|
|||
** Destroy a tokenizer
|
||||
*/
|
||||
static int porterDestroy(sqlite3_tokenizer *pTokenizer){
|
||||
free(pTokenizer);
|
||||
sqlite3_free(pTokenizer);
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
|
@ -94,7 +94,7 @@ static int porterOpen(
|
|||
){
|
||||
porter_tokenizer_cursor *c;
|
||||
|
||||
c = (porter_tokenizer_cursor *) malloc(sizeof(*c));
|
||||
c = (porter_tokenizer_cursor *) sqlite3_malloc(sizeof(*c));
|
||||
if( c==NULL ) return SQLITE_NOMEM;
|
||||
|
||||
c->zInput = zInput;
|
||||
|
@ -120,8 +120,8 @@ static int porterOpen(
|
|||
*/
|
||||
static int porterClose(sqlite3_tokenizer_cursor *pCursor){
|
||||
porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor;
|
||||
free(c->zToken);
|
||||
free(c);
|
||||
sqlite3_free(c->zToken);
|
||||
sqlite3_free(c);
|
||||
return SQLITE_OK;
|
||||
}
|
||||
/*
|
||||
|
@ -603,7 +603,7 @@ static int porterNext(
|
|||
int n = c->iOffset-iStartOffset;
|
||||
if( n>c->nAllocated ){
|
||||
c->nAllocated = n+20;
|
||||
c->zToken = realloc(c->zToken, c->nAllocated);
|
||||
c->zToken = sqlite3_realloc(c->zToken, c->nAllocated);
|
||||
if( c->zToken==NULL ) return SQLITE_NOMEM;
|
||||
}
|
||||
porter_stemmer(&z[iStartOffset], n, c->zToken, pnBytes);
|
||||
|
@ -633,10 +633,10 @@ static const sqlite3_tokenizer_module porterTokenizerModule = {
|
|||
** Allocate a new porter tokenizer. Return a pointer to the new
|
||||
** tokenizer in *ppModule
|
||||
*/
|
||||
void sqlite3Fts2PorterTokenizerModule(
|
||||
void sqlite3Fts3PorterTokenizerModule(
|
||||
sqlite3_tokenizer_module const**ppModule
|
||||
){
|
||||
*ppModule = &porterTokenizerModule;
|
||||
}
|
||||
|
||||
#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2) */
|
||||
#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
|
|
@ -17,20 +17,21 @@
|
|||
/*
|
||||
** The code in this file is only compiled if:
|
||||
**
|
||||
** * The FTS2 module is being built as an extension
|
||||
** * The FTS3 module is being built as an extension
|
||||
** (in which case SQLITE_CORE is not defined), or
|
||||
**
|
||||
** * The FTS2 module is being built into the core of
|
||||
** SQLite (in which case SQLITE_ENABLE_FTS2 is defined).
|
||||
** * The FTS3 module is being built into the core of
|
||||
** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
|
||||
*/
|
||||
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2)
|
||||
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
|
||||
|
||||
|
||||
#include "sqlite3.h"
|
||||
#include "sqlite3ext.h"
|
||||
#ifndef SQLITE_CORE
|
||||
SQLITE_EXTENSION_INIT1
|
||||
#endif
|
||||
|
||||
#include "fts2_hash.h"
|
||||
#include "fts2_tokenizer.h"
|
||||
#include "fts3_hash.h"
|
||||
#include "fts3_tokenizer.h"
|
||||
#include <assert.h>
|
||||
|
||||
/*
|
||||
|
@ -41,7 +42,7 @@
|
|||
** SELECT <function-name>(<key-name>, <pointer>);
|
||||
**
|
||||
** where <function-name> is the name passed as the second argument
|
||||
** to the sqlite3Fts2InitHashTable() function (e.g. 'fts2_tokenizer').
|
||||
** to the sqlite3Fts3InitHashTable() function (e.g. 'fts3_tokenizer').
|
||||
**
|
||||
** If the <pointer> argument is specified, it must be a blob value
|
||||
** containing a pointer to be stored as the hash data corresponding
|
||||
|
@ -58,14 +59,14 @@ static void scalarFunc(
|
|||
int argc,
|
||||
sqlite3_value **argv
|
||||
){
|
||||
fts2Hash *pHash;
|
||||
fts3Hash *pHash;
|
||||
void *pPtr = 0;
|
||||
const unsigned char *zName;
|
||||
int nName;
|
||||
|
||||
assert( argc==1 || argc==2 );
|
||||
|
||||
pHash = (fts2Hash *)sqlite3_user_data(context);
|
||||
pHash = (fts3Hash *)sqlite3_user_data(context);
|
||||
|
||||
zName = sqlite3_value_text(argv[0]);
|
||||
nName = sqlite3_value_bytes(argv[0])+1;
|
||||
|
@ -78,13 +79,13 @@ static void scalarFunc(
|
|||
return;
|
||||
}
|
||||
pPtr = *(void **)sqlite3_value_blob(argv[1]);
|
||||
pOld = sqlite3Fts2HashInsert(pHash, (void *)zName, nName, pPtr);
|
||||
pOld = sqlite3Fts3HashInsert(pHash, (void *)zName, nName, pPtr);
|
||||
if( pOld==pPtr ){
|
||||
sqlite3_result_error(context, "out of memory", -1);
|
||||
return;
|
||||
}
|
||||
}else{
|
||||
pPtr = sqlite3Fts2HashFind(pHash, zName, nName);
|
||||
pPtr = sqlite3Fts3HashFind(pHash, zName, nName);
|
||||
if( !pPtr ){
|
||||
char *zErr = sqlite3_mprintf("unknown tokenizer: %s", zName);
|
||||
sqlite3_result_error(context, zErr, -1);
|
||||
|
@ -110,8 +111,8 @@ static void scalarFunc(
|
|||
** SELECT <function-name>(<key-name>, <pointer>);
|
||||
**
|
||||
** where <function-name> is the name passed as the second argument
|
||||
** to the sqlite3Fts2InitHashTable() function (e.g. 'fts2_tokenizer')
|
||||
** concatenated with the string '_test' (e.g. 'fts2_tokenizer_test').
|
||||
** to the sqlite3Fts3InitHashTable() function (e.g. 'fts3_tokenizer')
|
||||
** concatenated with the string '_test' (e.g. 'fts3_tokenizer_test').
|
||||
**
|
||||
** The return value is a string that may be interpreted as a Tcl
|
||||
** list. For each token in the <input-string>, three elements are
|
||||
|
@ -132,7 +133,7 @@ static void testFunc(
|
|||
int argc,
|
||||
sqlite3_value **argv
|
||||
){
|
||||
fts2Hash *pHash;
|
||||
fts3Hash *pHash;
|
||||
sqlite3_tokenizer_module *p;
|
||||
sqlite3_tokenizer *pTokenizer = 0;
|
||||
sqlite3_tokenizer_cursor *pCsr = 0;
|
||||
|
@ -165,8 +166,8 @@ static void testFunc(
|
|||
zArg = (const char *)sqlite3_value_text(argv[1]);
|
||||
}
|
||||
|
||||
pHash = (fts2Hash *)sqlite3_user_data(context);
|
||||
p = (sqlite3_tokenizer_module *)sqlite3Fts2HashFind(pHash, zName, nName+1);
|
||||
pHash = (fts3Hash *)sqlite3_user_data(context);
|
||||
p = (sqlite3_tokenizer_module *)sqlite3Fts3HashFind(pHash, zName, nName+1);
|
||||
|
||||
if( !p ){
|
||||
char *zErr = sqlite3_mprintf("unknown tokenizer: %s", zName);
|
||||
|
@ -223,7 +224,7 @@ int registerTokenizer(
|
|||
){
|
||||
int rc;
|
||||
sqlite3_stmt *pStmt;
|
||||
const char zSql[] = "SELECT fts2_tokenizer(?, ?)";
|
||||
const char zSql[] = "SELECT fts3_tokenizer(?, ?)";
|
||||
|
||||
rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
|
||||
if( rc!=SQLITE_OK ){
|
||||
|
@ -245,7 +246,7 @@ int queryTokenizer(
|
|||
){
|
||||
int rc;
|
||||
sqlite3_stmt *pStmt;
|
||||
const char zSql[] = "SELECT fts2_tokenizer(?)";
|
||||
const char zSql[] = "SELECT fts3_tokenizer(?)";
|
||||
|
||||
*pp = 0;
|
||||
rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
|
||||
|
@ -263,24 +264,24 @@ int queryTokenizer(
|
|||
return sqlite3_finalize(pStmt);
|
||||
}
|
||||
|
||||
void sqlite3Fts2SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule);
|
||||
void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule);
|
||||
|
||||
/*
|
||||
** Implementation of the scalar function fts2_tokenizer_internal_test().
|
||||
** Implementation of the scalar function fts3_tokenizer_internal_test().
|
||||
** This function is used for testing only, it is not included in the
|
||||
** build unless SQLITE_TEST is defined.
|
||||
**
|
||||
** The purpose of this is to test that the fts2_tokenizer() function
|
||||
** The purpose of this is to test that the fts3_tokenizer() function
|
||||
** can be used as designed by the C-code in the queryTokenizer and
|
||||
** registerTokenizer() functions above. These two functions are repeated
|
||||
** in the README.tokenizer file as an example, so it is important to
|
||||
** test them.
|
||||
**
|
||||
** To run the tests, evaluate the fts2_tokenizer_internal_test() scalar
|
||||
** To run the tests, evaluate the fts3_tokenizer_internal_test() scalar
|
||||
** function with no arguments. An assert() will fail if a problem is
|
||||
** detected. i.e.:
|
||||
**
|
||||
** SELECT fts2_tokenizer_internal_test();
|
||||
** SELECT fts3_tokenizer_internal_test();
|
||||
**
|
||||
*/
|
||||
static void intTestFunc(
|
||||
|
@ -294,7 +295,7 @@ static void intTestFunc(
|
|||
sqlite3 *db = (sqlite3 *)sqlite3_user_data(context);
|
||||
|
||||
/* Test the query function */
|
||||
sqlite3Fts2SimpleTokenizerModule(&p1);
|
||||
sqlite3Fts3SimpleTokenizerModule(&p1);
|
||||
rc = queryTokenizer(db, "simple", &p2);
|
||||
assert( rc==SQLITE_OK );
|
||||
assert( p1==p2 );
|
||||
|
@ -321,7 +322,7 @@ static void intTestFunc(
|
|||
** been initialised to use string keys, and to take a private copy
|
||||
** of the key when a value is inserted. i.e. by a call similar to:
|
||||
**
|
||||
** sqlite3Fts2HashInit(pHash, FTS2_HASH_STRING, 1);
|
||||
** sqlite3Fts3HashInit(pHash, FTS3_HASH_STRING, 1);
|
||||
**
|
||||
** This function adds a scalar function (see header comment above
|
||||
** scalarFunc() in this file for details) and, if ENABLE_TABLE is
|
||||
|
@ -332,9 +333,9 @@ static void intTestFunc(
|
|||
** The third argument to this function, zName, is used as the name
|
||||
** of both the scalar and, if created, the virtual table.
|
||||
*/
|
||||
int sqlite3Fts2InitHashTable(
|
||||
int sqlite3Fts3InitHashTable(
|
||||
sqlite3 *db,
|
||||
fts2Hash *pHash,
|
||||
fts3Hash *pHash,
|
||||
const char *zName
|
||||
){
|
||||
int rc = SQLITE_OK;
|
||||
|
@ -367,4 +368,4 @@ int sqlite3Fts2InitHashTable(
|
|||
return rc;
|
||||
}
|
||||
|
||||
#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2) */
|
||||
#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
|
|
@ -17,8 +17,8 @@
|
|||
** sqlite3_tokenizer_cursor is generated by a tokenizer to generate
|
||||
** tokens from a particular input.
|
||||
*/
|
||||
#ifndef _FTS2_TOKENIZER_H_
|
||||
#define _FTS2_TOKENIZER_H_
|
||||
#ifndef _FTS3_TOKENIZER_H_
|
||||
#define _FTS3_TOKENIZER_H_
|
||||
|
||||
/* TODO(shess) Only used for SQLITE_OK and SQLITE_DONE at this time.
|
||||
** If tokenizers are to be allowed to call sqlite3_*() functions, then
|
||||
|
@ -32,12 +32,12 @@
|
|||
** an sqlite3_tokenizer_module containing pointers to the callback
|
||||
** functions that make up an implementation.
|
||||
**
|
||||
** When an fts2 table is created, it passes any arguments passed to
|
||||
** When an fts3 table is created, it passes any arguments passed to
|
||||
** the tokenizer clause of the CREATE VIRTUAL TABLE statement to the
|
||||
** sqlite3_tokenizer_module.xCreate() function of the requested tokenizer
|
||||
** implementation. The xCreate() function in turn returns an
|
||||
** sqlite3_tokenizer structure representing the specific tokenizer to
|
||||
** be used for the fts2 table (customized by the tokenizer clause arguments).
|
||||
** be used for the fts3 table (customized by the tokenizer clause arguments).
|
||||
**
|
||||
** To tokenize an input buffer, the sqlite3_tokenizer_module.xOpen()
|
||||
** method is called. It returns an sqlite3_tokenizer_cursor object
|
||||
|
@ -59,10 +59,10 @@ struct sqlite3_tokenizer_module {
|
|||
/*
|
||||
** Create a new tokenizer. The values in the argv[] array are the
|
||||
** arguments passed to the "tokenizer" clause of the CREATE VIRTUAL
|
||||
** TABLE statement that created the fts2 table. For example, if
|
||||
** TABLE statement that created the fts3 table. For example, if
|
||||
** the following SQL is executed:
|
||||
**
|
||||
** CREATE .. USING fts2( ... , tokenizer <tokenizer-name> arg1 arg2)
|
||||
** CREATE .. USING fts3( ... , tokenizer <tokenizer-name> arg1 arg2)
|
||||
**
|
||||
** then argc is set to 2, and the argv[] array contains pointers
|
||||
** to the strings "arg1" and "arg2".
|
||||
|
@ -80,7 +80,7 @@ struct sqlite3_tokenizer_module {
|
|||
);
|
||||
|
||||
/*
|
||||
** Destroy an existing tokenizer. The fts2 module calls this method
|
||||
** Destroy an existing tokenizer. The fts3 module calls this method
|
||||
** exactly once for each successful call to xCreate().
|
||||
*/
|
||||
int (*xDestroy)(sqlite3_tokenizer *pTokenizer);
|
||||
|
@ -97,7 +97,7 @@ struct sqlite3_tokenizer_module {
|
|||
);
|
||||
|
||||
/*
|
||||
** Destroy an existing tokenizer cursor. The fts2 module calls this
|
||||
** Destroy an existing tokenizer cursor. The fts3 module calls this
|
||||
** method exactly once for each successful call to xOpen().
|
||||
*/
|
||||
int (*xClose)(sqlite3_tokenizer_cursor *pCursor);
|
||||
|
@ -142,4 +142,4 @@ struct sqlite3_tokenizer_cursor {
|
|||
/* Tokenizer implementations will typically add additional fields */
|
||||
};
|
||||
|
||||
#endif /* _FTS2_TOKENIZER_H_ */
|
||||
#endif /* _FTS3_TOKENIZER_H_ */
|
|
@ -16,13 +16,13 @@
|
|||
/*
|
||||
** The code in this file is only compiled if:
|
||||
**
|
||||
** * The FTS2 module is being built as an extension
|
||||
** * The FTS3 module is being built as an extension
|
||||
** (in which case SQLITE_CORE is not defined), or
|
||||
**
|
||||
** * The FTS2 module is being built into the core of
|
||||
** SQLite (in which case SQLITE_ENABLE_FTS2 is defined).
|
||||
** * The FTS3 module is being built into the core of
|
||||
** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
|
||||
*/
|
||||
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2)
|
||||
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
|
||||
|
||||
|
||||
#include <assert.h>
|
||||
|
@ -31,7 +31,7 @@
|
|||
#include <string.h>
|
||||
#include <ctype.h>
|
||||
|
||||
#include "fts2_tokenizer.h"
|
||||
#include "fts3_tokenizer.h"
|
||||
|
||||
typedef struct simple_tokenizer {
|
||||
sqlite3_tokenizer base;
|
||||
|
@ -65,8 +65,9 @@ static int simpleCreate(
|
|||
){
|
||||
simple_tokenizer *t;
|
||||
|
||||
t = (simple_tokenizer *) calloc(sizeof(*t), 1);
|
||||
t = (simple_tokenizer *) sqlite3_malloc(sizeof(*t));
|
||||
if( t==NULL ) return SQLITE_NOMEM;
|
||||
memset(t, 0, sizeof(*t));
|
||||
|
||||
/* TODO(shess) Delimiters need to remain the same from run to run,
|
||||
** else we need to reindex. One solution would be a meta-table to
|
||||
|
@ -79,7 +80,7 @@ static int simpleCreate(
|
|||
unsigned char ch = argv[1][i];
|
||||
/* We explicitly don't support UTF-8 delimiters for now. */
|
||||
if( ch>=0x80 ){
|
||||
free(t);
|
||||
sqlite3_free(t);
|
||||
return SQLITE_ERROR;
|
||||
}
|
||||
t->delim[ch] = 1;
|
||||
|
@ -100,7 +101,7 @@ static int simpleCreate(
|
|||
** Destroy a tokenizer
|
||||
*/
|
||||
static int simpleDestroy(sqlite3_tokenizer *pTokenizer){
|
||||
free(pTokenizer);
|
||||
sqlite3_free(pTokenizer);
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
|
@ -117,7 +118,7 @@ static int simpleOpen(
|
|||
){
|
||||
simple_tokenizer_cursor *c;
|
||||
|
||||
c = (simple_tokenizer_cursor *) malloc(sizeof(*c));
|
||||
c = (simple_tokenizer_cursor *) sqlite3_malloc(sizeof(*c));
|
||||
if( c==NULL ) return SQLITE_NOMEM;
|
||||
|
||||
c->pInput = pInput;
|
||||
|
@ -143,8 +144,8 @@ static int simpleOpen(
|
|||
*/
|
||||
static int simpleClose(sqlite3_tokenizer_cursor *pCursor){
|
||||
simple_tokenizer_cursor *c = (simple_tokenizer_cursor *) pCursor;
|
||||
free(c->pToken);
|
||||
free(c);
|
||||
sqlite3_free(c->pToken);
|
||||
sqlite3_free(c);
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
|
@ -182,7 +183,7 @@ static int simpleNext(
|
|||
int i, n = c->iOffset-iStartOffset;
|
||||
if( n>c->nTokenAllocated ){
|
||||
c->nTokenAllocated = n+20;
|
||||
c->pToken = realloc(c->pToken, c->nTokenAllocated);
|
||||
c->pToken = sqlite3_realloc(c->pToken, c->nTokenAllocated);
|
||||
if( c->pToken==NULL ) return SQLITE_NOMEM;
|
||||
}
|
||||
for(i=0; i<n; i++){
|
||||
|
@ -220,10 +221,10 @@ static const sqlite3_tokenizer_module simpleTokenizerModule = {
|
|||
** Allocate a new simple tokenizer. Return a pointer to the new
|
||||
** tokenizer in *ppModule
|
||||
*/
|
||||
void sqlite3Fts2SimpleTokenizerModule(
|
||||
void sqlite3Fts3SimpleTokenizerModule(
|
||||
sqlite3_tokenizer_module const**ppModule
|
||||
){
|
||||
*ppModule = &simpleTokenizerModule;
|
||||
}
|
||||
|
||||
#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2) */
|
||||
#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
|
629
func.c
629
func.c
|
@ -16,16 +16,13 @@
|
|||
** sqliteRegisterBuildinFunctions() found at the bottom of the file.
|
||||
** All other code has file scope.
|
||||
**
|
||||
** $Id: func.c,v 1.163 2007/07/26 06:50:06 danielk1977 Exp $
|
||||
** $Id: func.c,v 1.209 2008/12/10 23:04:13 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
#include <ctype.h>
|
||||
/* #include <math.h> */
|
||||
#include <stdlib.h>
|
||||
#include <assert.h>
|
||||
#include "vdbeInt.h"
|
||||
#include "os.h"
|
||||
|
||||
|
||||
/*
|
||||
** Return the collating function associated with a function.
|
||||
|
@ -68,10 +65,11 @@ static void minmaxFunc(
|
|||
*/
|
||||
static void typeofFunc(
|
||||
sqlite3_context *context,
|
||||
int argc,
|
||||
int NotUsed,
|
||||
sqlite3_value **argv
|
||||
){
|
||||
const char *z = 0;
|
||||
UNUSED_PARAMETER(NotUsed);
|
||||
switch( sqlite3_value_type(argv[0]) ){
|
||||
case SQLITE_NULL: z = "null"; break;
|
||||
case SQLITE_INTEGER: z = "integer"; break;
|
||||
|
@ -94,6 +92,7 @@ static void lengthFunc(
|
|||
int len;
|
||||
|
||||
assert( argc==1 );
|
||||
UNUSED_PARAMETER(argc);
|
||||
switch( sqlite3_value_type(argv[0]) ){
|
||||
case SQLITE_BLOB:
|
||||
case SQLITE_INTEGER:
|
||||
|
@ -124,6 +123,7 @@ static void lengthFunc(
|
|||
*/
|
||||
static void absFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
|
||||
assert( argc==1 );
|
||||
UNUSED_PARAMETER(argc);
|
||||
switch( sqlite3_value_type(argv[0]) ){
|
||||
case SQLITE_INTEGER: {
|
||||
i64 iVal = sqlite3_value_int64(argv[0]);
|
||||
|
@ -171,7 +171,7 @@ static void substrFunc(
|
|||
int p0type;
|
||||
i64 p1, p2;
|
||||
|
||||
assert( argc==3 );
|
||||
assert( argc==3 || argc==2 );
|
||||
p0type = sqlite3_value_type(argv[0]);
|
||||
if( p0type==SQLITE_BLOB ){
|
||||
len = sqlite3_value_bytes(argv[0]);
|
||||
|
@ -187,7 +187,11 @@ static void substrFunc(
|
|||
}
|
||||
}
|
||||
p1 = sqlite3_value_int(argv[1]);
|
||||
if( argc==3 ){
|
||||
p2 = sqlite3_value_int(argv[2]);
|
||||
}else{
|
||||
p2 = sqlite3_context_db_handle(context)->aLimit[SQLITE_LIMIT_LENGTH];
|
||||
}
|
||||
if( p1<0 ){
|
||||
p1 += len;
|
||||
if( p1<0 ){
|
||||
|
@ -208,10 +212,10 @@ static void substrFunc(
|
|||
for(z2=z; *z2 && p2; p2--){
|
||||
SQLITE_SKIP_UTF8(z2);
|
||||
}
|
||||
sqlite3_result_text(context, (char*)z, z2-z, SQLITE_TRANSIENT);
|
||||
sqlite3_result_text(context, (char*)z, (int)(z2-z), SQLITE_TRANSIENT);
|
||||
}else{
|
||||
if( p2<0 ) p2 = 0;
|
||||
sqlite3_result_blob(context, (char*)&z[p1], p2, SQLITE_TRANSIENT);
|
||||
sqlite3_result_blob(context, (char*)&z[p1], (int)p2, SQLITE_TRANSIENT);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -236,6 +240,25 @@ static void roundFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|||
sqlite3_result_double(context, r);
|
||||
}
|
||||
|
||||
/*
|
||||
** Allocate nByte bytes of space using sqlite3_malloc(). If the
|
||||
** allocation fails, call sqlite3_result_error_nomem() to notify
|
||||
** the database handle that malloc() has failed.
|
||||
*/
|
||||
static void *contextMalloc(sqlite3_context *context, i64 nByte){
|
||||
char *z;
|
||||
if( nByte>sqlite3_context_db_handle(context)->aLimit[SQLITE_LIMIT_LENGTH] ){
|
||||
sqlite3_result_error_toobig(context);
|
||||
z = 0;
|
||||
}else{
|
||||
z = sqlite3Malloc((int)nByte);
|
||||
if( !z && nByte>0 ){
|
||||
sqlite3_result_error_nomem(context);
|
||||
}
|
||||
}
|
||||
return z;
|
||||
}
|
||||
|
||||
/*
|
||||
** Implementation of the upper() and lower() SQL functions.
|
||||
*/
|
||||
|
@ -249,11 +272,11 @@ static void upperFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|||
/* Verify that the call to _bytes() does not invalidate the _text() pointer */
|
||||
assert( z2==(char*)sqlite3_value_text(argv[0]) );
|
||||
if( z2 ){
|
||||
z1 = sqlite3_malloc(n+1);
|
||||
z1 = contextMalloc(context, ((i64)n)+1);
|
||||
if( z1 ){
|
||||
memcpy(z1, z2, n+1);
|
||||
for(i=0; z1[i]; i++){
|
||||
z1[i] = toupper(z1[i]);
|
||||
z1[i] = (char)toupper(z1[i]);
|
||||
}
|
||||
sqlite3_result_text(context, z1, -1, sqlite3_free);
|
||||
}
|
||||
|
@ -269,11 +292,11 @@ static void lowerFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|||
/* Verify that the call to _bytes() does not invalidate the _text() pointer */
|
||||
assert( z2==(char*)sqlite3_value_text(argv[0]) );
|
||||
if( z2 ){
|
||||
z1 = sqlite3_malloc(n+1);
|
||||
z1 = contextMalloc(context, ((i64)n)+1);
|
||||
if( z1 ){
|
||||
memcpy(z1, z2, n+1);
|
||||
for(i=0; z1[i]; i++){
|
||||
z1[i] = tolower(z1[i]);
|
||||
z1[i] = (char)tolower(z1[i]);
|
||||
}
|
||||
sqlite3_result_text(context, z1, -1, sqlite3_free);
|
||||
}
|
||||
|
@ -304,11 +327,12 @@ static void ifnullFunc(
|
|||
*/
|
||||
static void randomFunc(
|
||||
sqlite3_context *context,
|
||||
int argc,
|
||||
sqlite3_value **argv
|
||||
int NotUsed,
|
||||
sqlite3_value **NotUsed2
|
||||
){
|
||||
sqlite_int64 r;
|
||||
sqlite3Randomness(sizeof(r), &r);
|
||||
UNUSED_PARAMETER2(NotUsed, NotUsed2);
|
||||
sqlite3_randomness(sizeof(r), &r);
|
||||
if( (r<<1)==0 ) r = 0; /* Prevent 0x8000.... as the result so that we */
|
||||
/* can always do abs() of the result */
|
||||
sqlite3_result_int64(context, r);
|
||||
|
@ -326,18 +350,15 @@ static void randomBlob(
|
|||
int n;
|
||||
unsigned char *p;
|
||||
assert( argc==1 );
|
||||
UNUSED_PARAMETER(argc);
|
||||
n = sqlite3_value_int(argv[0]);
|
||||
if( n<1 ){
|
||||
n = 1;
|
||||
}
|
||||
if( n>SQLITE_MAX_LENGTH ){
|
||||
sqlite3_result_error_toobig(context);
|
||||
return;
|
||||
}
|
||||
p = sqliteMalloc(n);
|
||||
p = contextMalloc(context, n);
|
||||
if( p ){
|
||||
sqlite3Randomness(n, p);
|
||||
sqlite3_result_blob(context, (char*)p, n, sqlite3FreeX);
|
||||
sqlite3_randomness(n, p);
|
||||
sqlite3_result_blob(context, (char*)p, n, sqlite3_free);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -347,10 +368,11 @@ static void randomBlob(
|
|||
*/
|
||||
static void last_insert_rowid(
|
||||
sqlite3_context *context,
|
||||
int arg,
|
||||
sqlite3_value **argv
|
||||
int NotUsed,
|
||||
sqlite3_value **NotUsed2
|
||||
){
|
||||
sqlite3 *db = sqlite3_user_data(context);
|
||||
sqlite3 *db = sqlite3_context_db_handle(context);
|
||||
UNUSED_PARAMETER2(NotUsed, NotUsed2);
|
||||
sqlite3_result_int64(context, sqlite3_last_insert_rowid(db));
|
||||
}
|
||||
|
||||
|
@ -360,10 +382,11 @@ static void last_insert_rowid(
|
|||
*/
|
||||
static void changes(
|
||||
sqlite3_context *context,
|
||||
int arg,
|
||||
sqlite3_value **argv
|
||||
int NotUsed,
|
||||
sqlite3_value **NotUsed2
|
||||
){
|
||||
sqlite3 *db = sqlite3_user_data(context);
|
||||
sqlite3 *db = sqlite3_context_db_handle(context);
|
||||
UNUSED_PARAMETER2(NotUsed, NotUsed2);
|
||||
sqlite3_result_int(context, sqlite3_changes(db));
|
||||
}
|
||||
|
||||
|
@ -373,10 +396,11 @@ static void changes(
|
|||
*/
|
||||
static void total_changes(
|
||||
sqlite3_context *context,
|
||||
int arg,
|
||||
sqlite3_value **argv
|
||||
int NotUsed,
|
||||
sqlite3_value **NotUsed2
|
||||
){
|
||||
sqlite3 *db = sqlite3_user_data(context);
|
||||
sqlite3 *db = sqlite3_context_db_handle(context);
|
||||
UNUSED_PARAMETER2(NotUsed, NotUsed2);
|
||||
sqlite3_result_int(context, sqlite3_total_changes(db));
|
||||
}
|
||||
|
||||
|
@ -390,6 +414,19 @@ struct compareInfo {
|
|||
u8 noCase;
|
||||
};
|
||||
|
||||
/*
|
||||
** For LIKE and GLOB matching on EBCDIC machines, assume that every
|
||||
** character is exactly one byte in size. Also, all characters are
|
||||
** able to participate in upper-case-to-lower-case mappings in EBCDIC
|
||||
** whereas only characters less than 0x80 do in ASCII.
|
||||
*/
|
||||
#if defined(SQLITE_EBCDIC)
|
||||
# define sqlite3Utf8Read(A,B,C) (*(A++))
|
||||
# define GlogUpperToLower(A) A = sqlite3UpperToLower[A]
|
||||
#else
|
||||
# define GlogUpperToLower(A) if( A<0x80 ){ A = sqlite3UpperToLower[A]; }
|
||||
#endif
|
||||
|
||||
static const struct compareInfo globInfo = { '*', '?', '[', 0 };
|
||||
/* The correct SQL-92 behavior is for the LIKE operator to ignore
|
||||
** case. Thus 'a' LIKE 'A' would be true. */
|
||||
|
@ -466,11 +503,11 @@ static int patternCompare(
|
|||
}
|
||||
while( (c2 = sqlite3Utf8Read(zString,0,&zString))!=0 ){
|
||||
if( noCase ){
|
||||
c2 = c2<0x80 ? sqlite3UpperToLower[c2] : c2;
|
||||
c = c<0x80 ? sqlite3UpperToLower[c] : c;
|
||||
GlogUpperToLower(c2);
|
||||
GlogUpperToLower(c);
|
||||
while( c2 != 0 && c2 != c ){
|
||||
c2 = sqlite3Utf8Read(zString, 0, &zString);
|
||||
if( c2<0x80 ) c2 = sqlite3UpperToLower[c2];
|
||||
GlogUpperToLower(c2);
|
||||
}
|
||||
}else{
|
||||
while( c2 != 0 && c2 != c ){
|
||||
|
@ -522,8 +559,8 @@ static int patternCompare(
|
|||
}else{
|
||||
c2 = sqlite3Utf8Read(zString, 0, &zString);
|
||||
if( noCase ){
|
||||
c = c<0x80 ? sqlite3UpperToLower[c] : c;
|
||||
c2 = c2<0x80 ? sqlite3UpperToLower[c2] : c2;
|
||||
GlogUpperToLower(c);
|
||||
GlogUpperToLower(c2);
|
||||
}
|
||||
if( c!=c2 ){
|
||||
return 0;
|
||||
|
@ -563,6 +600,7 @@ static void likeFunc(
|
|||
){
|
||||
const unsigned char *zA, *zB;
|
||||
int escape = 0;
|
||||
sqlite3 *db = sqlite3_context_db_handle(context);
|
||||
|
||||
zB = sqlite3_value_text(argv[0]);
|
||||
zA = sqlite3_value_text(argv[1]);
|
||||
|
@ -570,7 +608,8 @@ static void likeFunc(
|
|||
/* Limit the length of the LIKE or GLOB pattern to avoid problems
|
||||
** of deep recursion and N*N behavior in patternCompare().
|
||||
*/
|
||||
if( sqlite3_value_bytes(argv[0])>SQLITE_MAX_LIKE_PATTERN_LENGTH ){
|
||||
if( sqlite3_value_bytes(argv[0]) >
|
||||
db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] ){
|
||||
sqlite3_result_error(context, "LIKE or GLOB pattern too complex", -1);
|
||||
return;
|
||||
}
|
||||
|
@ -606,10 +645,11 @@ static void likeFunc(
|
|||
*/
|
||||
static void nullifFunc(
|
||||
sqlite3_context *context,
|
||||
int argc,
|
||||
int NotUsed,
|
||||
sqlite3_value **argv
|
||||
){
|
||||
CollSeq *pColl = sqlite3GetFuncCollSeq(context);
|
||||
UNUSED_PARAMETER(NotUsed);
|
||||
if( sqlite3MemCompare(argv[0], argv[1], pColl)!=0 ){
|
||||
sqlite3_result_value(context, argv[0]);
|
||||
}
|
||||
|
@ -621,9 +661,10 @@ static void nullifFunc(
|
|||
*/
|
||||
static void versionFunc(
|
||||
sqlite3_context *context,
|
||||
int argc,
|
||||
sqlite3_value **argv
|
||||
int NotUsed,
|
||||
sqlite3_value **NotUsed2
|
||||
){
|
||||
UNUSED_PARAMETER2(NotUsed, NotUsed2);
|
||||
sqlite3_result_text(context, sqlite3_version, -1, SQLITE_STATIC);
|
||||
}
|
||||
|
||||
|
@ -662,15 +703,8 @@ static void quoteFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|||
char const *zBlob = sqlite3_value_blob(argv[0]);
|
||||
int nBlob = sqlite3_value_bytes(argv[0]);
|
||||
assert( zBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */
|
||||
|
||||
if( 2*nBlob+4>SQLITE_MAX_LENGTH ){
|
||||
sqlite3_result_error_toobig(context);
|
||||
return;
|
||||
}
|
||||
zText = (char *)sqliteMalloc((2*nBlob)+4);
|
||||
if( !zText ){
|
||||
sqlite3_result_error(context, "out of memory", -1);
|
||||
}else{
|
||||
zText = (char *)contextMalloc(context, (2*(i64)nBlob)+4);
|
||||
if( zText ){
|
||||
int i;
|
||||
for(i=0; i<nBlob; i++){
|
||||
zText[(i*2)+2] = hexdigits[(zBlob[i]>>4)&0x0F];
|
||||
|
@ -681,7 +715,7 @@ static void quoteFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|||
zText[0] = 'X';
|
||||
zText[1] = '\'';
|
||||
sqlite3_result_text(context, zText, -1, SQLITE_TRANSIENT);
|
||||
sqliteFree(zText);
|
||||
sqlite3_free(zText);
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
@ -693,12 +727,8 @@ static void quoteFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|||
|
||||
if( zArg==0 ) return;
|
||||
for(i=0, n=0; zArg[i]; i++){ if( zArg[i]=='\'' ) n++; }
|
||||
if( i+n+3>SQLITE_MAX_LENGTH ){
|
||||
sqlite3_result_error_toobig(context);
|
||||
return;
|
||||
}
|
||||
z = sqliteMalloc( i+n+3 );
|
||||
if( z==0 ) return;
|
||||
z = contextMalloc(context, ((i64)i)+((i64)n)+3);
|
||||
if( z ){
|
||||
z[0] = '\'';
|
||||
for(i=0, j=1; zArg[i]; i++){
|
||||
z[j++] = zArg[i];
|
||||
|
@ -708,8 +738,8 @@ static void quoteFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|||
}
|
||||
z[j++] = '\'';
|
||||
z[j] = 0;
|
||||
sqlite3_result_text(context, z, j, SQLITE_TRANSIENT);
|
||||
sqliteFree(z);
|
||||
sqlite3_result_text(context, z, j, sqlite3_free);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -727,15 +757,12 @@ static void hexFunc(
|
|||
const unsigned char *pBlob;
|
||||
char *zHex, *z;
|
||||
assert( argc==1 );
|
||||
UNUSED_PARAMETER(argc);
|
||||
pBlob = sqlite3_value_blob(argv[0]);
|
||||
n = sqlite3_value_bytes(argv[0]);
|
||||
if( n*2+1>SQLITE_MAX_LENGTH ){
|
||||
sqlite3_result_error_toobig(context);
|
||||
return;
|
||||
}
|
||||
assert( pBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */
|
||||
z = zHex = sqlite3_malloc(n*2 + 1);
|
||||
if( zHex==0 ) return;
|
||||
z = zHex = contextMalloc(context, ((i64)n)*2 + 1);
|
||||
if( zHex ){
|
||||
for(i=0; i<n; i++, pBlob++){
|
||||
unsigned char c = *pBlob;
|
||||
*(z++) = hexdigits[(c>>4)&0xf];
|
||||
|
@ -743,6 +770,7 @@ static void hexFunc(
|
|||
}
|
||||
*z = 0;
|
||||
sqlite3_result_text(context, zHex, n*2, sqlite3_free);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -755,11 +783,12 @@ static void zeroblobFunc(
|
|||
){
|
||||
i64 n;
|
||||
assert( argc==1 );
|
||||
UNUSED_PARAMETER(argc);
|
||||
n = sqlite3_value_int64(argv[0]);
|
||||
if( n>SQLITE_MAX_LENGTH ){
|
||||
sqlite3_result_error_toobig(context);
|
||||
}else{
|
||||
sqlite3_result_zeroblob(context, n);
|
||||
sqlite3_result_zeroblob(context, (int)n);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -786,6 +815,7 @@ static void replaceFunc(
|
|||
int i, j; /* Loop counters */
|
||||
|
||||
assert( argc==3 );
|
||||
UNUSED_PARAMETER(argc);
|
||||
zStr = sqlite3_value_text(argv[0]);
|
||||
if( zStr==0 ) return;
|
||||
nStr = sqlite3_value_bytes(argv[0]);
|
||||
|
@ -800,7 +830,7 @@ static void replaceFunc(
|
|||
assert( zRep==sqlite3_value_text(argv[2]) );
|
||||
nOut = nStr + 1;
|
||||
assert( nOut<SQLITE_MAX_LENGTH );
|
||||
zOut = sqlite3_malloc((int)nOut);
|
||||
zOut = contextMalloc(context, (i64)nOut);
|
||||
if( zOut==0 ){
|
||||
return;
|
||||
}
|
||||
|
@ -809,14 +839,19 @@ static void replaceFunc(
|
|||
if( zStr[i]!=zPattern[0] || memcmp(&zStr[i], zPattern, nPattern) ){
|
||||
zOut[j++] = zStr[i];
|
||||
}else{
|
||||
u8 *zOld;
|
||||
sqlite3 *db = sqlite3_context_db_handle(context);
|
||||
nOut += nRep - nPattern;
|
||||
if( nOut>=SQLITE_MAX_LENGTH ){
|
||||
if( nOut>=db->aLimit[SQLITE_LIMIT_LENGTH] ){
|
||||
sqlite3_result_error_toobig(context);
|
||||
sqlite3_free(zOut);
|
||||
sqlite3DbFree(db, zOut);
|
||||
return;
|
||||
}
|
||||
zOld = zOut;
|
||||
zOut = sqlite3_realloc(zOut, (int)nOut);
|
||||
if( zOut==0 ){
|
||||
sqlite3_result_error_nomem(context);
|
||||
sqlite3DbFree(db, zOld);
|
||||
return;
|
||||
}
|
||||
memcpy(&zOut[j], zRep, nRep);
|
||||
|
@ -846,8 +881,8 @@ static void trimFunc(
|
|||
int nIn; /* Number of bytes in input */
|
||||
int flags; /* 1: trimleft 2: trimright 3: trim */
|
||||
int i; /* Loop counter */
|
||||
unsigned char *aLen; /* Length of each character in zCharSet */
|
||||
const unsigned char **azChar; /* Individual characters in zCharSet */
|
||||
unsigned char *aLen = 0; /* Length of each character in zCharSet */
|
||||
unsigned char **azChar = 0; /* Individual characters in zCharSet */
|
||||
int nChar; /* Number of characters in zCharSet */
|
||||
|
||||
if( sqlite3_value_type(argv[0])==SQLITE_NULL ){
|
||||
|
@ -859,10 +894,10 @@ static void trimFunc(
|
|||
assert( zIn==sqlite3_value_text(argv[0]) );
|
||||
if( argc==1 ){
|
||||
static const unsigned char lenOne[] = { 1 };
|
||||
static const unsigned char *azOne[] = { (u8*)" " };
|
||||
static unsigned char * const azOne[] = { (u8*)" " };
|
||||
nChar = 1;
|
||||
aLen = (u8*)lenOne;
|
||||
azChar = azOne;
|
||||
azChar = (unsigned char **)azOne;
|
||||
zCharSet = 0;
|
||||
}else if( (zCharSet = sqlite3_value_text(argv[1]))==0 ){
|
||||
return;
|
||||
|
@ -872,23 +907,23 @@ static void trimFunc(
|
|||
SQLITE_SKIP_UTF8(z);
|
||||
}
|
||||
if( nChar>0 ){
|
||||
azChar = sqlite3_malloc( nChar*(sizeof(char*)+1) );
|
||||
azChar = contextMalloc(context, ((i64)nChar)*(sizeof(char*)+1));
|
||||
if( azChar==0 ){
|
||||
return;
|
||||
}
|
||||
aLen = (unsigned char*)&azChar[nChar];
|
||||
for(z=zCharSet, nChar=0; *z; nChar++){
|
||||
azChar[nChar] = z;
|
||||
azChar[nChar] = (unsigned char *)z;
|
||||
SQLITE_SKIP_UTF8(z);
|
||||
aLen[nChar] = z - azChar[nChar];
|
||||
aLen[nChar] = (u8)(z - azChar[nChar]);
|
||||
}
|
||||
}
|
||||
}
|
||||
if( nChar>0 ){
|
||||
flags = (int)sqlite3_user_data(context);
|
||||
flags = SQLITE_PTR_TO_INT(sqlite3_user_data(context));
|
||||
if( flags & 1 ){
|
||||
while( nIn>0 ){
|
||||
int len;
|
||||
int len = 0;
|
||||
for(i=0; i<nChar; i++){
|
||||
len = aLen[i];
|
||||
if( memcmp(zIn, azChar[i], len)==0 ) break;
|
||||
|
@ -900,7 +935,7 @@ static void trimFunc(
|
|||
}
|
||||
if( flags & 2 ){
|
||||
while( nIn>0 ){
|
||||
int len;
|
||||
int len = 0;
|
||||
for(i=0; i<nChar; i++){
|
||||
len = aLen[i];
|
||||
if( len<=nIn && memcmp(&zIn[nIn-len],azChar[i],len)==0 ) break;
|
||||
|
@ -916,6 +951,7 @@ static void trimFunc(
|
|||
sqlite3_result_text(context, (char*)zIn, nIn, SQLITE_TRANSIENT);
|
||||
}
|
||||
|
||||
|
||||
#ifdef SQLITE_SOUNDEX
|
||||
/*
|
||||
** Compute the soundex encoding of a word.
|
||||
|
@ -974,7 +1010,7 @@ static void soundexFunc(
|
|||
static void loadExt(sqlite3_context *context, int argc, sqlite3_value **argv){
|
||||
const char *zFile = (const char *)sqlite3_value_text(argv[0]);
|
||||
const char *zProc;
|
||||
sqlite3 *db = sqlite3_user_data(context);
|
||||
sqlite3 *db = sqlite3_context_db_handle(context);
|
||||
char *zErrMsg = 0;
|
||||
|
||||
if( argc==2 ){
|
||||
|
@ -989,164 +1025,6 @@ static void loadExt(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|||
}
|
||||
#endif
|
||||
|
||||
#ifdef SQLITE_TEST
|
||||
/*
|
||||
** This function generates a string of random characters. Used for
|
||||
** generating test data.
|
||||
*/
|
||||
static void randStr(sqlite3_context *context, int argc, sqlite3_value **argv){
|
||||
static const unsigned char zSrc[] =
|
||||
"abcdefghijklmnopqrstuvwxyz"
|
||||
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
|
||||
"0123456789"
|
||||
".-!,:*^+=_|?/<> ";
|
||||
int iMin, iMax, n, r, i;
|
||||
unsigned char zBuf[1000];
|
||||
if( argc>=1 ){
|
||||
iMin = sqlite3_value_int(argv[0]);
|
||||
if( iMin<0 ) iMin = 0;
|
||||
if( iMin>=sizeof(zBuf) ) iMin = sizeof(zBuf)-1;
|
||||
}else{
|
||||
iMin = 1;
|
||||
}
|
||||
if( argc>=2 ){
|
||||
iMax = sqlite3_value_int(argv[1]);
|
||||
if( iMax<iMin ) iMax = iMin;
|
||||
if( iMax>=sizeof(zBuf) ) iMax = sizeof(zBuf)-1;
|
||||
}else{
|
||||
iMax = 50;
|
||||
}
|
||||
n = iMin;
|
||||
if( iMax>iMin ){
|
||||
sqlite3Randomness(sizeof(r), &r);
|
||||
r &= 0x7fffffff;
|
||||
n += r%(iMax + 1 - iMin);
|
||||
}
|
||||
assert( n<sizeof(zBuf) );
|
||||
sqlite3Randomness(n, zBuf);
|
||||
for(i=0; i<n; i++){
|
||||
zBuf[i] = zSrc[zBuf[i]%(sizeof(zSrc)-1)];
|
||||
}
|
||||
zBuf[n] = 0;
|
||||
sqlite3_result_text(context, (char*)zBuf, n, SQLITE_TRANSIENT);
|
||||
}
|
||||
#endif /* SQLITE_TEST */
|
||||
|
||||
#ifdef SQLITE_TEST
|
||||
/*
|
||||
** The following two SQL functions are used to test returning a text
|
||||
** result with a destructor. Function 'test_destructor' takes one argument
|
||||
** and returns the same argument interpreted as TEXT. A destructor is
|
||||
** passed with the sqlite3_result_text() call.
|
||||
**
|
||||
** SQL function 'test_destructor_count' returns the number of outstanding
|
||||
** allocations made by 'test_destructor';
|
||||
**
|
||||
** WARNING: Not threadsafe.
|
||||
*/
|
||||
static int test_destructor_count_var = 0;
|
||||
static void destructor(void *p){
|
||||
char *zVal = (char *)p;
|
||||
assert(zVal);
|
||||
zVal--;
|
||||
sqliteFree(zVal);
|
||||
test_destructor_count_var--;
|
||||
}
|
||||
static void test_destructor(
|
||||
sqlite3_context *pCtx,
|
||||
int nArg,
|
||||
sqlite3_value **argv
|
||||
){
|
||||
char *zVal;
|
||||
int len;
|
||||
sqlite3 *db = sqlite3_user_data(pCtx);
|
||||
|
||||
test_destructor_count_var++;
|
||||
assert( nArg==1 );
|
||||
if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
|
||||
len = sqlite3ValueBytes(argv[0], ENC(db));
|
||||
zVal = sqliteMalloc(len+3);
|
||||
zVal[len] = 0;
|
||||
zVal[len-1] = 0;
|
||||
assert( zVal );
|
||||
zVal++;
|
||||
memcpy(zVal, sqlite3ValueText(argv[0], ENC(db)), len);
|
||||
if( ENC(db)==SQLITE_UTF8 ){
|
||||
sqlite3_result_text(pCtx, zVal, -1, destructor);
|
||||
#ifndef SQLITE_OMIT_UTF16
|
||||
}else if( ENC(db)==SQLITE_UTF16LE ){
|
||||
sqlite3_result_text16le(pCtx, zVal, -1, destructor);
|
||||
}else{
|
||||
sqlite3_result_text16be(pCtx, zVal, -1, destructor);
|
||||
#endif /* SQLITE_OMIT_UTF16 */
|
||||
}
|
||||
}
|
||||
static void test_destructor_count(
|
||||
sqlite3_context *pCtx,
|
||||
int nArg,
|
||||
sqlite3_value **argv
|
||||
){
|
||||
sqlite3_result_int(pCtx, test_destructor_count_var);
|
||||
}
|
||||
#endif /* SQLITE_TEST */
|
||||
|
||||
#ifdef SQLITE_TEST
|
||||
/*
|
||||
** Routines for testing the sqlite3_get_auxdata() and sqlite3_set_auxdata()
|
||||
** interface.
|
||||
**
|
||||
** The test_auxdata() SQL function attempts to register each of its arguments
|
||||
** as auxiliary data. If there are no prior registrations of aux data for
|
||||
** that argument (meaning the argument is not a constant or this is its first
|
||||
** call) then the result for that argument is 0. If there is a prior
|
||||
** registration, the result for that argument is 1. The overall result
|
||||
** is the individual argument results separated by spaces.
|
||||
*/
|
||||
static void free_test_auxdata(void *p) {sqliteFree(p);}
|
||||
static void test_auxdata(
|
||||
sqlite3_context *pCtx,
|
||||
int nArg,
|
||||
sqlite3_value **argv
|
||||
){
|
||||
int i;
|
||||
char *zRet = sqliteMalloc(nArg*2);
|
||||
if( !zRet ) return;
|
||||
for(i=0; i<nArg; i++){
|
||||
char const *z = (char*)sqlite3_value_text(argv[i]);
|
||||
if( z ){
|
||||
char *zAux = sqlite3_get_auxdata(pCtx, i);
|
||||
if( zAux ){
|
||||
zRet[i*2] = '1';
|
||||
if( strcmp(zAux, z) ){
|
||||
free_test_auxdata((void *)zRet);
|
||||
sqlite3_result_error(pCtx, "Auxilary data corruption", -1);
|
||||
return;
|
||||
}
|
||||
}else{
|
||||
zRet[i*2] = '0';
|
||||
zAux = sqliteStrDup(z);
|
||||
sqlite3_set_auxdata(pCtx, i, zAux, free_test_auxdata);
|
||||
}
|
||||
zRet[i*2+1] = ' ';
|
||||
}
|
||||
}
|
||||
sqlite3_result_text(pCtx, zRet, 2*nArg-1, free_test_auxdata);
|
||||
}
|
||||
#endif /* SQLITE_TEST */
|
||||
|
||||
#ifdef SQLITE_TEST
|
||||
/*
|
||||
** A function to test error reporting from user functions. This function
|
||||
** returns a copy of it's first argument as an error.
|
||||
*/
|
||||
static void test_error(
|
||||
sqlite3_context *pCtx,
|
||||
int nArg,
|
||||
sqlite3_value **argv
|
||||
){
|
||||
sqlite3_result_error(pCtx, (char*)sqlite3_value_text(argv[0]), 0);
|
||||
}
|
||||
#endif /* SQLITE_TEST */
|
||||
|
||||
/*
|
||||
** An instance of the following structure holds the context of a
|
||||
|
@ -1175,6 +1053,7 @@ static void sumStep(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|||
SumCtx *p;
|
||||
int type;
|
||||
assert( argc==1 );
|
||||
UNUSED_PARAMETER(argc);
|
||||
p = sqlite3_aggregate_context(context, sizeof(*p));
|
||||
type = sqlite3_value_numeric_type(argv[0]);
|
||||
if( p && type!=SQLITE_NULL ){
|
||||
|
@ -1184,10 +1063,10 @@ static void sumStep(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|||
p->rSum += v;
|
||||
if( (p->approx|p->overflow)==0 ){
|
||||
i64 iNewSum = p->iSum + v;
|
||||
int s1 = p->iSum >> (sizeof(i64)*8-1);
|
||||
int s2 = v >> (sizeof(i64)*8-1);
|
||||
int s3 = iNewSum >> (sizeof(i64)*8-1);
|
||||
p->overflow = (s1&s2&~s3) | (~s1&~s2&s3);
|
||||
int s1 = (int)(p->iSum >> (sizeof(i64)*8-1));
|
||||
int s2 = (int)(v >> (sizeof(i64)*8-1));
|
||||
int s3 = (int)(iNewSum >> (sizeof(i64)*8-1));
|
||||
p->overflow = ((s1&s2&~s3) | (~s1&~s2&s3))?1:0;
|
||||
p->iSum = iNewSum;
|
||||
}
|
||||
}else{
|
||||
|
@ -1250,9 +1129,14 @@ static void countFinalize(sqlite3_context *context){
|
|||
/*
|
||||
** Routines to implement min() and max() aggregate functions.
|
||||
*/
|
||||
static void minmaxStep(sqlite3_context *context, int argc, sqlite3_value **argv){
|
||||
static void minmaxStep(
|
||||
sqlite3_context *context,
|
||||
int NotUsed,
|
||||
sqlite3_value **argv
|
||||
){
|
||||
Mem *pArg = (Mem *)argv[0];
|
||||
Mem *pBest;
|
||||
UNUSED_PARAMETER(NotUsed);
|
||||
|
||||
if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
|
||||
pBest = (Mem *)sqlite3_aggregate_context(context, sizeof(*pBest));
|
||||
|
@ -1290,6 +1174,58 @@ static void minMaxFinalize(sqlite3_context *context){
|
|||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** group_concat(EXPR, ?SEPARATOR?)
|
||||
*/
|
||||
static void groupConcatStep(
|
||||
sqlite3_context *context,
|
||||
int argc,
|
||||
sqlite3_value **argv
|
||||
){
|
||||
const char *zVal;
|
||||
StrAccum *pAccum;
|
||||
const char *zSep;
|
||||
int nVal, nSep, i;
|
||||
if( argc==0 || sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
|
||||
pAccum = (StrAccum*)sqlite3_aggregate_context(context, sizeof(*pAccum));
|
||||
|
||||
if( pAccum ){
|
||||
sqlite3 *db = sqlite3_context_db_handle(context);
|
||||
pAccum->useMalloc = 1;
|
||||
pAccum->mxAlloc = db->aLimit[SQLITE_LIMIT_LENGTH];
|
||||
if( pAccum->nChar ){
|
||||
if( argc>1 ){
|
||||
zSep = (char*)sqlite3_value_text(argv[argc-1]);
|
||||
nSep = sqlite3_value_bytes(argv[argc-1]);
|
||||
}else{
|
||||
zSep = ",";
|
||||
nSep = 1;
|
||||
}
|
||||
sqlite3StrAccumAppend(pAccum, zSep, nSep);
|
||||
}
|
||||
i = 0;
|
||||
do{
|
||||
zVal = (char*)sqlite3_value_text(argv[i]);
|
||||
nVal = sqlite3_value_bytes(argv[i]);
|
||||
sqlite3StrAccumAppend(pAccum, zVal, nVal);
|
||||
i++;
|
||||
}while( i<argc-1 );
|
||||
}
|
||||
}
|
||||
static void groupConcatFinalize(sqlite3_context *context){
|
||||
StrAccum *pAccum;
|
||||
pAccum = sqlite3_aggregate_context(context, 0);
|
||||
if( pAccum ){
|
||||
if( pAccum->tooBig ){
|
||||
sqlite3_result_error_toobig(context);
|
||||
}else if( pAccum->mallocFailed ){
|
||||
sqlite3_result_error_nomem(context);
|
||||
}else{
|
||||
sqlite3_result_text(context, sqlite3StrAccumFinish(pAccum), -1,
|
||||
sqlite3_free);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** This function registered all of the above C functions as SQL
|
||||
|
@ -1297,140 +1233,28 @@ static void minMaxFinalize(sqlite3_context *context){
|
|||
** external linkage.
|
||||
*/
|
||||
void sqlite3RegisterBuiltinFunctions(sqlite3 *db){
|
||||
static const struct {
|
||||
char *zName;
|
||||
signed char nArg;
|
||||
u8 argType; /* ff: db 1: 0, 2: 1, 3: 2,... N: N-1. */
|
||||
u8 eTextRep; /* 1: UTF-16. 0: UTF-8 */
|
||||
u8 needCollSeq;
|
||||
void (*xFunc)(sqlite3_context*,int,sqlite3_value **);
|
||||
} aFuncs[] = {
|
||||
{ "min", -1, 0, SQLITE_UTF8, 1, minmaxFunc },
|
||||
{ "min", 0, 0, SQLITE_UTF8, 1, 0 },
|
||||
{ "max", -1, 1, SQLITE_UTF8, 1, minmaxFunc },
|
||||
{ "max", 0, 1, SQLITE_UTF8, 1, 0 },
|
||||
{ "typeof", 1, 0, SQLITE_UTF8, 0, typeofFunc },
|
||||
{ "length", 1, 0, SQLITE_UTF8, 0, lengthFunc },
|
||||
{ "substr", 3, 0, SQLITE_UTF8, 0, substrFunc },
|
||||
{ "abs", 1, 0, SQLITE_UTF8, 0, absFunc },
|
||||
{ "round", 1, 0, SQLITE_UTF8, 0, roundFunc },
|
||||
{ "round", 2, 0, SQLITE_UTF8, 0, roundFunc },
|
||||
{ "upper", 1, 0, SQLITE_UTF8, 0, upperFunc },
|
||||
{ "lower", 1, 0, SQLITE_UTF8, 0, lowerFunc },
|
||||
{ "coalesce", -1, 0, SQLITE_UTF8, 0, ifnullFunc },
|
||||
{ "coalesce", 0, 0, SQLITE_UTF8, 0, 0 },
|
||||
{ "coalesce", 1, 0, SQLITE_UTF8, 0, 0 },
|
||||
{ "hex", 1, 0, SQLITE_UTF8, 0, hexFunc },
|
||||
{ "ifnull", 2, 0, SQLITE_UTF8, 1, ifnullFunc },
|
||||
{ "random", -1, 0, SQLITE_UTF8, 0, randomFunc },
|
||||
{ "randomblob", 1, 0, SQLITE_UTF8, 0, randomBlob },
|
||||
{ "nullif", 2, 0, SQLITE_UTF8, 1, nullifFunc },
|
||||
{ "sqlite_version", 0, 0, SQLITE_UTF8, 0, versionFunc},
|
||||
{ "quote", 1, 0, SQLITE_UTF8, 0, quoteFunc },
|
||||
{ "last_insert_rowid", 0, 0xff, SQLITE_UTF8, 0, last_insert_rowid },
|
||||
{ "changes", 0, 0xff, SQLITE_UTF8, 0, changes },
|
||||
{ "total_changes", 0, 0xff, SQLITE_UTF8, 0, total_changes },
|
||||
{ "replace", 3, 0, SQLITE_UTF8, 0, replaceFunc },
|
||||
{ "ltrim", 1, 1, SQLITE_UTF8, 0, trimFunc },
|
||||
{ "ltrim", 2, 1, SQLITE_UTF8, 0, trimFunc },
|
||||
{ "rtrim", 1, 2, SQLITE_UTF8, 0, trimFunc },
|
||||
{ "rtrim", 2, 2, SQLITE_UTF8, 0, trimFunc },
|
||||
{ "trim", 1, 3, SQLITE_UTF8, 0, trimFunc },
|
||||
{ "trim", 2, 3, SQLITE_UTF8, 0, trimFunc },
|
||||
{ "zeroblob", 1, 0, SQLITE_UTF8, 0, zeroblobFunc },
|
||||
#ifdef SQLITE_SOUNDEX
|
||||
{ "soundex", 1, 0, SQLITE_UTF8, 0, soundexFunc},
|
||||
#endif
|
||||
#ifndef SQLITE_OMIT_LOAD_EXTENSION
|
||||
{ "load_extension", 1, 0xff, SQLITE_UTF8, 0, loadExt },
|
||||
{ "load_extension", 2, 0xff, SQLITE_UTF8, 0, loadExt },
|
||||
#endif
|
||||
#ifdef SQLITE_TEST
|
||||
{ "randstr", 2, 0, SQLITE_UTF8, 0, randStr },
|
||||
{ "test_destructor", 1, 0xff, SQLITE_UTF8, 0, test_destructor},
|
||||
{ "test_destructor_count", 0, 0, SQLITE_UTF8, 0, test_destructor_count},
|
||||
{ "test_auxdata", -1, 0, SQLITE_UTF8, 0, test_auxdata},
|
||||
{ "test_error", 1, 0, SQLITE_UTF8, 0, test_error},
|
||||
#endif
|
||||
};
|
||||
static const struct {
|
||||
char *zName;
|
||||
signed char nArg;
|
||||
u8 argType;
|
||||
u8 needCollSeq;
|
||||
void (*xStep)(sqlite3_context*,int,sqlite3_value**);
|
||||
void (*xFinalize)(sqlite3_context*);
|
||||
} aAggs[] = {
|
||||
{ "min", 1, 0, 1, minmaxStep, minMaxFinalize },
|
||||
{ "max", 1, 1, 1, minmaxStep, minMaxFinalize },
|
||||
{ "sum", 1, 0, 0, sumStep, sumFinalize },
|
||||
{ "total", 1, 0, 0, sumStep, totalFinalize },
|
||||
{ "avg", 1, 0, 0, sumStep, avgFinalize },
|
||||
{ "count", 0, 0, 0, countStep, countFinalize },
|
||||
{ "count", 1, 0, 0, countStep, countFinalize },
|
||||
};
|
||||
int i;
|
||||
|
||||
for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
|
||||
void *pArg;
|
||||
u8 argType = aFuncs[i].argType;
|
||||
if( argType==0xff ){
|
||||
pArg = db;
|
||||
}else{
|
||||
pArg = (void*)(int)argType;
|
||||
}
|
||||
sqlite3CreateFunc(db, aFuncs[i].zName, aFuncs[i].nArg,
|
||||
aFuncs[i].eTextRep, pArg, aFuncs[i].xFunc, 0, 0);
|
||||
if( aFuncs[i].needCollSeq ){
|
||||
FuncDef *pFunc = sqlite3FindFunction(db, aFuncs[i].zName,
|
||||
strlen(aFuncs[i].zName), aFuncs[i].nArg, aFuncs[i].eTextRep, 0);
|
||||
if( pFunc && aFuncs[i].needCollSeq ){
|
||||
pFunc->needCollSeq = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
#ifndef SQLITE_OMIT_ALTERTABLE
|
||||
sqlite3AlterFunctions(db);
|
||||
#endif
|
||||
#ifndef SQLITE_OMIT_PARSER
|
||||
sqlite3AttachFunctions(db);
|
||||
#endif
|
||||
for(i=0; i<sizeof(aAggs)/sizeof(aAggs[0]); i++){
|
||||
void *pArg = (void*)(int)aAggs[i].argType;
|
||||
sqlite3CreateFunc(db, aAggs[i].zName, aAggs[i].nArg, SQLITE_UTF8,
|
||||
pArg, 0, aAggs[i].xStep, aAggs[i].xFinalize);
|
||||
if( aAggs[i].needCollSeq ){
|
||||
FuncDef *pFunc = sqlite3FindFunction( db, aAggs[i].zName,
|
||||
strlen(aAggs[i].zName), aAggs[i].nArg, SQLITE_UTF8, 0);
|
||||
if( pFunc && aAggs[i].needCollSeq ){
|
||||
pFunc->needCollSeq = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
sqlite3RegisterDateTimeFunctions(db);
|
||||
if( !sqlite3MallocFailed() ){
|
||||
if( !db->mallocFailed ){
|
||||
int rc = sqlite3_overload_function(db, "MATCH", 2);
|
||||
assert( rc==SQLITE_NOMEM || rc==SQLITE_OK );
|
||||
if( rc==SQLITE_NOMEM ){
|
||||
sqlite3FailedMalloc();
|
||||
db->mallocFailed = 1;
|
||||
}
|
||||
}
|
||||
#ifdef SQLITE_SSE
|
||||
(void)sqlite3SseFunctions(db);
|
||||
#endif
|
||||
#ifdef SQLITE_CASE_SENSITIVE_LIKE
|
||||
sqlite3RegisterLikeFunctions(db, 1);
|
||||
#else
|
||||
sqlite3RegisterLikeFunctions(db, 0);
|
||||
#endif
|
||||
}
|
||||
|
||||
/*
|
||||
** Set the LIKEOPT flag on the 2-argument function with the given name.
|
||||
*/
|
||||
static void setLikeOptFlag(sqlite3 *db, const char *zName, int flagVal){
|
||||
static void setLikeOptFlag(sqlite3 *db, const char *zName, u8 flagVal){
|
||||
FuncDef *pDef;
|
||||
pDef = sqlite3FindFunction(db, zName, strlen(zName), 2, SQLITE_UTF8, 0);
|
||||
pDef = sqlite3FindFunction(db, zName, sqlite3Strlen30(zName),
|
||||
2, SQLITE_UTF8, 0);
|
||||
if( pDef ){
|
||||
pDef->flags = flagVal;
|
||||
}
|
||||
|
@ -1489,3 +1313,90 @@ int sqlite3IsLikeFunction(sqlite3 *db, Expr *pExpr, int *pIsNocase, char *aWc){
|
|||
*pIsNocase = (pDef->flags & SQLITE_FUNC_CASE)==0;
|
||||
return 1;
|
||||
}
|
||||
|
||||
/*
|
||||
** All all of the FuncDef structures in the aBuiltinFunc[] array above
|
||||
** to the global function hash table. This occurs at start-time (as
|
||||
** a consequence of calling sqlite3_initialize()).
|
||||
**
|
||||
** After this routine runs
|
||||
*/
|
||||
void sqlite3RegisterGlobalFunctions(void){
|
||||
/*
|
||||
** The following array holds FuncDef structures for all of the functions
|
||||
** defined in this file.
|
||||
**
|
||||
** The array cannot be constant since changes are made to the
|
||||
** FuncDef.pHash elements at start-time. The elements of this array
|
||||
** are read-only after initialization is complete.
|
||||
*/
|
||||
static SQLITE_WSD FuncDef aBuiltinFunc[] = {
|
||||
FUNCTION(ltrim, 1, 1, 0, trimFunc ),
|
||||
FUNCTION(ltrim, 2, 1, 0, trimFunc ),
|
||||
FUNCTION(rtrim, 1, 2, 0, trimFunc ),
|
||||
FUNCTION(rtrim, 2, 2, 0, trimFunc ),
|
||||
FUNCTION(trim, 1, 3, 0, trimFunc ),
|
||||
FUNCTION(trim, 2, 3, 0, trimFunc ),
|
||||
FUNCTION(min, -1, 0, 1, minmaxFunc ),
|
||||
FUNCTION(min, 0, 0, 1, 0 ),
|
||||
AGGREGATE(min, 1, 0, 1, minmaxStep, minMaxFinalize ),
|
||||
FUNCTION(max, -1, 1, 1, minmaxFunc ),
|
||||
FUNCTION(max, 0, 1, 1, 0 ),
|
||||
AGGREGATE(max, 1, 1, 1, minmaxStep, minMaxFinalize ),
|
||||
FUNCTION(typeof, 1, 0, 0, typeofFunc ),
|
||||
FUNCTION(length, 1, 0, 0, lengthFunc ),
|
||||
FUNCTION(substr, 2, 0, 0, substrFunc ),
|
||||
FUNCTION(substr, 3, 0, 0, substrFunc ),
|
||||
FUNCTION(abs, 1, 0, 0, absFunc ),
|
||||
FUNCTION(round, 1, 0, 0, roundFunc ),
|
||||
FUNCTION(round, 2, 0, 0, roundFunc ),
|
||||
FUNCTION(upper, 1, 0, 0, upperFunc ),
|
||||
FUNCTION(lower, 1, 0, 0, lowerFunc ),
|
||||
FUNCTION(coalesce, 1, 0, 0, 0 ),
|
||||
FUNCTION(coalesce, -1, 0, 0, ifnullFunc ),
|
||||
FUNCTION(coalesce, 0, 0, 0, 0 ),
|
||||
FUNCTION(hex, 1, 0, 0, hexFunc ),
|
||||
FUNCTION(ifnull, 2, 0, 1, ifnullFunc ),
|
||||
FUNCTION(random, -1, 0, 0, randomFunc ),
|
||||
FUNCTION(randomblob, 1, 0, 0, randomBlob ),
|
||||
FUNCTION(nullif, 2, 0, 1, nullifFunc ),
|
||||
FUNCTION(sqlite_version, 0, 0, 0, versionFunc ),
|
||||
FUNCTION(quote, 1, 0, 0, quoteFunc ),
|
||||
FUNCTION(last_insert_rowid, 0, 0, 0, last_insert_rowid),
|
||||
FUNCTION(changes, 0, 0, 0, changes ),
|
||||
FUNCTION(total_changes, 0, 0, 0, total_changes ),
|
||||
FUNCTION(replace, 3, 0, 0, replaceFunc ),
|
||||
FUNCTION(zeroblob, 1, 0, 0, zeroblobFunc ),
|
||||
#ifdef SQLITE_SOUNDEX
|
||||
FUNCTION(soundex, 1, 0, 0, soundexFunc ),
|
||||
#endif
|
||||
#ifndef SQLITE_OMIT_LOAD_EXTENSION
|
||||
FUNCTION(load_extension, 1, 0, 0, loadExt ),
|
||||
FUNCTION(load_extension, 2, 0, 0, loadExt ),
|
||||
#endif
|
||||
AGGREGATE(sum, 1, 0, 0, sumStep, sumFinalize ),
|
||||
AGGREGATE(total, 1, 0, 0, sumStep, totalFinalize ),
|
||||
AGGREGATE(avg, 1, 0, 0, sumStep, avgFinalize ),
|
||||
AGGREGATE(count, 0, 0, 0, countStep, countFinalize ),
|
||||
AGGREGATE(count, 1, 0, 0, countStep, countFinalize ),
|
||||
AGGREGATE(group_concat, -1, 0, 0, groupConcatStep, groupConcatFinalize),
|
||||
|
||||
LIKEFUNC(glob, 2, &globInfo, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
|
||||
#ifdef SQLITE_CASE_SENSITIVE_LIKE
|
||||
LIKEFUNC(like, 2, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
|
||||
LIKEFUNC(like, 3, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
|
||||
#else
|
||||
LIKEFUNC(like, 2, &likeInfoNorm, SQLITE_FUNC_LIKE),
|
||||
LIKEFUNC(like, 3, &likeInfoNorm, SQLITE_FUNC_LIKE),
|
||||
#endif
|
||||
};
|
||||
|
||||
int i;
|
||||
FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions);
|
||||
FuncDef *aFunc = (FuncDef*)&GLOBAL(FuncDef, aBuiltinFunc);
|
||||
|
||||
for(i=0; i<ArraySize(aBuiltinFunc); i++){
|
||||
sqlite3FuncDefInsert(pHash, &aFunc[i]);
|
||||
}
|
||||
sqlite3RegisterDateTimeFunctions();
|
||||
}
|
||||
|
|
104
global.c
Normal file
104
global.c
Normal file
|
@ -0,0 +1,104 @@
|
|||
/*
|
||||
** 2008 June 13
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
**
|
||||
** This file contains definitions of global variables and contants.
|
||||
**
|
||||
** $Id: global.c,v 1.9 2008/12/08 18:19:18 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
|
||||
/* An array to map all upper-case characters into their corresponding
|
||||
** lower-case character.
|
||||
**
|
||||
** SQLite only considers US-ASCII (or EBCDIC) characters. We do not
|
||||
** handle case conversions for the UTF character set since the tables
|
||||
** involved are nearly as big or bigger than SQLite itself.
|
||||
*/
|
||||
const unsigned char sqlite3UpperToLower[] = {
|
||||
#ifdef SQLITE_ASCII
|
||||
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
|
||||
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
|
||||
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
|
||||
54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 97, 98, 99,100,101,102,103,
|
||||
104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,
|
||||
122, 91, 92, 93, 94, 95, 96, 97, 98, 99,100,101,102,103,104,105,106,107,
|
||||
108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,
|
||||
126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,
|
||||
144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,
|
||||
162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,
|
||||
180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,
|
||||
198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,
|
||||
216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,
|
||||
234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,
|
||||
252,253,254,255
|
||||
#endif
|
||||
#ifdef SQLITE_EBCDIC
|
||||
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, /* 0x */
|
||||
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, /* 1x */
|
||||
32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, /* 2x */
|
||||
48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, /* 3x */
|
||||
64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, /* 4x */
|
||||
80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, /* 5x */
|
||||
96, 97, 66, 67, 68, 69, 70, 71, 72, 73,106,107,108,109,110,111, /* 6x */
|
||||
112, 81, 82, 83, 84, 85, 86, 87, 88, 89,122,123,124,125,126,127, /* 7x */
|
||||
128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, /* 8x */
|
||||
144,145,146,147,148,149,150,151,152,153,154,155,156,157,156,159, /* 9x */
|
||||
160,161,162,163,164,165,166,167,168,169,170,171,140,141,142,175, /* Ax */
|
||||
176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191, /* Bx */
|
||||
192,129,130,131,132,133,134,135,136,137,202,203,204,205,206,207, /* Cx */
|
||||
208,145,146,147,148,149,150,151,152,153,218,219,220,221,222,223, /* Dx */
|
||||
224,225,162,163,164,165,166,167,168,169,232,203,204,205,206,207, /* Ex */
|
||||
239,240,241,242,243,244,245,246,247,248,249,219,220,221,222,255, /* Fx */
|
||||
#endif
|
||||
};
|
||||
|
||||
/*
|
||||
** The following singleton contains the global configuration for
|
||||
** the SQLite library.
|
||||
*/
|
||||
SQLITE_WSD struct Sqlite3Config sqlite3Config = {
|
||||
SQLITE_DEFAULT_MEMSTATUS, /* bMemstat */
|
||||
1, /* bCoreMutex */
|
||||
SQLITE_THREADSAFE==1, /* bFullMutex */
|
||||
0x7ffffffe, /* mxStrlen */
|
||||
100, /* szLookaside */
|
||||
500, /* nLookaside */
|
||||
{0,0,0,0,0,0,0,0}, /* m */
|
||||
{0,0,0,0,0,0,0,0,0}, /* mutex */
|
||||
{0,0,0,0,0,0,0,0,0,0,0}, /* pcache */
|
||||
(void*)0, /* pHeap */
|
||||
0, /* nHeap */
|
||||
0, 0, /* mnHeap, mxHeap */
|
||||
(void*)0, /* pScratch */
|
||||
0, /* szScratch */
|
||||
0, /* nScratch */
|
||||
(void*)0, /* pPage */
|
||||
0, /* szPage */
|
||||
0, /* nPage */
|
||||
0, /* mxParserStack */
|
||||
0, /* sharedCacheEnabled */
|
||||
/* All the rest need to always be zero */
|
||||
0, /* isInit */
|
||||
0, /* inProgress */
|
||||
0, /* isMallocInit */
|
||||
0, /* pInitMutex */
|
||||
0, /* nRefInitMutex */
|
||||
};
|
||||
|
||||
|
||||
/*
|
||||
** Hash table for global functions - functions common to all
|
||||
** database connections. After initialization, this table is
|
||||
** read-only.
|
||||
*/
|
||||
SQLITE_WSD FuncDefHash sqlite3GlobalFunctions;
|
220
hash.c
220
hash.c
|
@ -12,7 +12,7 @@
|
|||
** This is the implementation of generic hash-tables
|
||||
** used in SQLite.
|
||||
**
|
||||
** $Id: hash.c,v 1.19 2007/03/31 03:59:24 drh Exp $
|
||||
** $Id: hash.c,v 1.33 2009/01/09 01:12:28 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
#include <assert.h>
|
||||
|
@ -21,28 +21,16 @@
|
|||
** fields of the Hash structure.
|
||||
**
|
||||
** "pNew" is a pointer to the hash table that is to be initialized.
|
||||
** keyClass is one of the constants SQLITE_HASH_INT, SQLITE_HASH_POINTER,
|
||||
** SQLITE_HASH_BINARY, or SQLITE_HASH_STRING. The value of keyClass
|
||||
** determines what kind of key the hash table will use. "copyKey" is
|
||||
** true if the hash table should make its own private copy of keys and
|
||||
** false if it should just use the supplied pointer. CopyKey only makes
|
||||
** sense for SQLITE_HASH_STRING and SQLITE_HASH_BINARY and is ignored
|
||||
** for other key classes.
|
||||
** "copyKey" is true if the hash table should make its own private
|
||||
** copy of keys and false if it should just use the supplied pointer.
|
||||
*/
|
||||
void sqlite3HashInit(Hash *pNew, int keyClass, int copyKey){
|
||||
void sqlite3HashInit(Hash *pNew, int copyKey){
|
||||
assert( pNew!=0 );
|
||||
assert( keyClass>=SQLITE_HASH_STRING && keyClass<=SQLITE_HASH_BINARY );
|
||||
pNew->keyClass = keyClass;
|
||||
#if 0
|
||||
if( keyClass==SQLITE_HASH_POINTER || keyClass==SQLITE_HASH_INT ) copyKey = 0;
|
||||
#endif
|
||||
pNew->copyKey = copyKey;
|
||||
pNew->copyKey = copyKey!=0;
|
||||
pNew->first = 0;
|
||||
pNew->count = 0;
|
||||
pNew->htsize = 0;
|
||||
pNew->ht = 0;
|
||||
pNew->xMalloc = sqlite3MallocX;
|
||||
pNew->xFree = sqlite3FreeX;
|
||||
}
|
||||
|
||||
/* Remove all entries from a hash table. Reclaim all memory.
|
||||
|
@ -55,54 +43,27 @@ void sqlite3HashClear(Hash *pH){
|
|||
assert( pH!=0 );
|
||||
elem = pH->first;
|
||||
pH->first = 0;
|
||||
if( pH->ht ) pH->xFree(pH->ht);
|
||||
sqlite3_free(pH->ht);
|
||||
pH->ht = 0;
|
||||
pH->htsize = 0;
|
||||
while( elem ){
|
||||
HashElem *next_elem = elem->next;
|
||||
if( pH->copyKey && elem->pKey ){
|
||||
pH->xFree(elem->pKey);
|
||||
if( pH->copyKey ){
|
||||
sqlite3_free(elem->pKey);
|
||||
}
|
||||
pH->xFree(elem);
|
||||
sqlite3_free(elem);
|
||||
elem = next_elem;
|
||||
}
|
||||
pH->count = 0;
|
||||
}
|
||||
|
||||
#if 0 /* NOT USED */
|
||||
/*
|
||||
** Hash and comparison functions when the mode is SQLITE_HASH_INT
|
||||
*/
|
||||
static int intHash(const void *pKey, int nKey){
|
||||
return nKey ^ (nKey<<8) ^ (nKey>>8);
|
||||
}
|
||||
static int intCompare(const void *pKey1, int n1, const void *pKey2, int n2){
|
||||
return n2 - n1;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if 0 /* NOT USED */
|
||||
/*
|
||||
** Hash and comparison functions when the mode is SQLITE_HASH_POINTER
|
||||
*/
|
||||
static int ptrHash(const void *pKey, int nKey){
|
||||
uptr x = Addr(pKey);
|
||||
return x ^ (x<<8) ^ (x>>8);
|
||||
}
|
||||
static int ptrCompare(const void *pKey1, int n1, const void *pKey2, int n2){
|
||||
if( pKey1==pKey2 ) return 0;
|
||||
if( pKey1<pKey2 ) return -1;
|
||||
return 1;
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
** Hash and comparison functions when the mode is SQLITE_HASH_STRING
|
||||
*/
|
||||
static int strHash(const void *pKey, int nKey){
|
||||
const char *z = (const char *)pKey;
|
||||
int h = 0;
|
||||
if( nKey<=0 ) nKey = strlen(z);
|
||||
if( nKey<=0 ) nKey = sqlite3Strlen30(z);
|
||||
while( nKey > 0 ){
|
||||
h = (h<<3) ^ h ^ sqlite3UpperToLower[(unsigned char)*z++];
|
||||
nKey--;
|
||||
|
@ -114,79 +75,6 @@ static int strCompare(const void *pKey1, int n1, const void *pKey2, int n2){
|
|||
return sqlite3StrNICmp((const char*)pKey1,(const char*)pKey2,n1);
|
||||
}
|
||||
|
||||
/*
|
||||
** Hash and comparison functions when the mode is SQLITE_HASH_BINARY
|
||||
*/
|
||||
static int binHash(const void *pKey, int nKey){
|
||||
int h = 0;
|
||||
const char *z = (const char *)pKey;
|
||||
while( nKey-- > 0 ){
|
||||
h = (h<<3) ^ h ^ *(z++);
|
||||
}
|
||||
return h & 0x7fffffff;
|
||||
}
|
||||
static int binCompare(const void *pKey1, int n1, const void *pKey2, int n2){
|
||||
if( n1!=n2 ) return 1;
|
||||
return memcmp(pKey1,pKey2,n1);
|
||||
}
|
||||
|
||||
/*
|
||||
** Return a pointer to the appropriate hash function given the key class.
|
||||
**
|
||||
** The C syntax in this function definition may be unfamilar to some
|
||||
** programmers, so we provide the following additional explanation:
|
||||
**
|
||||
** The name of the function is "hashFunction". The function takes a
|
||||
** single parameter "keyClass". The return value of hashFunction()
|
||||
** is a pointer to another function. Specifically, the return value
|
||||
** of hashFunction() is a pointer to a function that takes two parameters
|
||||
** with types "const void*" and "int" and returns an "int".
|
||||
*/
|
||||
static int (*hashFunction(int keyClass))(const void*,int){
|
||||
#if 0 /* HASH_INT and HASH_POINTER are never used */
|
||||
switch( keyClass ){
|
||||
case SQLITE_HASH_INT: return &intHash;
|
||||
case SQLITE_HASH_POINTER: return &ptrHash;
|
||||
case SQLITE_HASH_STRING: return &strHash;
|
||||
case SQLITE_HASH_BINARY: return &binHash;;
|
||||
default: break;
|
||||
}
|
||||
return 0;
|
||||
#else
|
||||
if( keyClass==SQLITE_HASH_STRING ){
|
||||
return &strHash;
|
||||
}else{
|
||||
assert( keyClass==SQLITE_HASH_BINARY );
|
||||
return &binHash;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
/*
|
||||
** Return a pointer to the appropriate hash function given the key class.
|
||||
**
|
||||
** For help in interpreted the obscure C code in the function definition,
|
||||
** see the header comment on the previous function.
|
||||
*/
|
||||
static int (*compareFunction(int keyClass))(const void*,int,const void*,int){
|
||||
#if 0 /* HASH_INT and HASH_POINTER are never used */
|
||||
switch( keyClass ){
|
||||
case SQLITE_HASH_INT: return &intCompare;
|
||||
case SQLITE_HASH_POINTER: return &ptrCompare;
|
||||
case SQLITE_HASH_STRING: return &strCompare;
|
||||
case SQLITE_HASH_BINARY: return &binCompare;
|
||||
default: break;
|
||||
}
|
||||
return 0;
|
||||
#else
|
||||
if( keyClass==SQLITE_HASH_STRING ){
|
||||
return &strCompare;
|
||||
}else{
|
||||
assert( keyClass==SQLITE_HASH_BINARY );
|
||||
return &binCompare;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
/* Link an element into the hash table
|
||||
*/
|
||||
|
@ -216,22 +104,34 @@ static void insertElement(
|
|||
|
||||
/* Resize the hash table so that it cantains "new_size" buckets.
|
||||
** "new_size" must be a power of 2. The hash table might fail
|
||||
** to resize if sqliteMalloc() fails.
|
||||
** to resize if sqlite3_malloc() fails.
|
||||
*/
|
||||
static void rehash(Hash *pH, int new_size){
|
||||
struct _ht *new_ht; /* The new hash table */
|
||||
HashElem *elem, *next_elem; /* For looping over existing elements */
|
||||
int (*xHash)(const void*,int); /* The hash function */
|
||||
|
||||
assert( (new_size & (new_size-1))==0 );
|
||||
new_ht = (struct _ht *)pH->xMalloc( new_size*sizeof(struct _ht) );
|
||||
#ifdef SQLITE_MALLOC_SOFT_LIMIT
|
||||
if( new_size*sizeof(struct _ht)>SQLITE_MALLOC_SOFT_LIMIT ){
|
||||
new_size = SQLITE_MALLOC_SOFT_LIMIT/sizeof(struct _ht);
|
||||
}
|
||||
if( new_size==pH->htsize ) return;
|
||||
#endif
|
||||
|
||||
/* There is a call to sqlite3_malloc() inside rehash(). If there is
|
||||
** already an allocation at pH->ht, then if this malloc() fails it
|
||||
** is benign (since failing to resize a hash table is a performance
|
||||
** hit only, not a fatal error).
|
||||
*/
|
||||
if( pH->htsize>0 ) sqlite3BeginBenignMalloc();
|
||||
new_ht = (struct _ht *)sqlite3MallocZero( new_size*sizeof(struct _ht) );
|
||||
if( pH->htsize>0 ) sqlite3EndBenignMalloc();
|
||||
|
||||
if( new_ht==0 ) return;
|
||||
if( pH->ht ) pH->xFree(pH->ht);
|
||||
sqlite3_free(pH->ht);
|
||||
pH->ht = new_ht;
|
||||
pH->htsize = new_size;
|
||||
xHash = hashFunction(pH->keyClass);
|
||||
for(elem=pH->first, pH->first=0; elem; elem = next_elem){
|
||||
int h = (*xHash)(elem->pKey, elem->nKey) & (new_size-1);
|
||||
int h = strHash(elem->pKey, elem->nKey) & (new_size-1);
|
||||
next_elem = elem->next;
|
||||
insertElement(pH, &new_ht[h], elem);
|
||||
}
|
||||
|
@ -249,15 +149,13 @@ static HashElem *findElementGivenHash(
|
|||
){
|
||||
HashElem *elem; /* Used to loop thru the element list */
|
||||
int count; /* Number of elements left to test */
|
||||
int (*xCompare)(const void*,int,const void*,int); /* comparison function */
|
||||
|
||||
if( pH->ht ){
|
||||
struct _ht *pEntry = &pH->ht[h];
|
||||
elem = pEntry->chain;
|
||||
count = pEntry->count;
|
||||
xCompare = compareFunction(pH->keyClass);
|
||||
while( count-- && elem ){
|
||||
if( (*xCompare)(elem->pKey,elem->nKey,pKey,nKey)==0 ){
|
||||
if( strCompare(elem->pKey,elem->nKey,pKey,nKey)==0 ){
|
||||
return elem;
|
||||
}
|
||||
elem = elem->next;
|
||||
|
@ -292,9 +190,9 @@ static void removeElementGivenHash(
|
|||
pEntry->chain = 0;
|
||||
}
|
||||
if( pH->copyKey ){
|
||||
pH->xFree(elem->pKey);
|
||||
sqlite3_free(elem->pKey);
|
||||
}
|
||||
pH->xFree( elem );
|
||||
sqlite3_free( elem );
|
||||
pH->count--;
|
||||
if( pH->count<=0 ){
|
||||
assert( pH->first==0 );
|
||||
|
@ -303,21 +201,28 @@ static void removeElementGivenHash(
|
|||
}
|
||||
}
|
||||
|
||||
/* Attempt to locate an element of the hash table pH with a key
|
||||
** that matches pKey,nKey. Return a pointer to the corresponding
|
||||
** HashElem structure for this element if it is found, or NULL
|
||||
** otherwise.
|
||||
*/
|
||||
HashElem *sqlite3HashFindElem(const Hash *pH, const void *pKey, int nKey){
|
||||
int h; /* A hash on key */
|
||||
HashElem *elem; /* The element that matches key */
|
||||
|
||||
if( pH==0 || pH->ht==0 ) return 0;
|
||||
h = strHash(pKey,nKey);
|
||||
elem = findElementGivenHash(pH,pKey,nKey, h % pH->htsize);
|
||||
return elem;
|
||||
}
|
||||
|
||||
/* Attempt to locate an element of the hash table pH with a key
|
||||
** that matches pKey,nKey. Return the data for this element if it is
|
||||
** found, or NULL if there is no match.
|
||||
*/
|
||||
void *sqlite3HashFind(const Hash *pH, const void *pKey, int nKey){
|
||||
int h; /* A hash on key */
|
||||
HashElem *elem; /* The element that matches key */
|
||||
int (*xHash)(const void*,int); /* The hash function */
|
||||
|
||||
if( pH==0 || pH->ht==0 ) return 0;
|
||||
xHash = hashFunction(pH->keyClass);
|
||||
assert( xHash!=0 );
|
||||
h = (*xHash)(pKey,nKey);
|
||||
assert( (pH->htsize & (pH->htsize-1))==0 );
|
||||
elem = findElementGivenHash(pH,pKey,nKey, h & (pH->htsize-1));
|
||||
elem = sqlite3HashFindElem(pH, pKey, nKey);
|
||||
return elem ? elem->data : 0;
|
||||
}
|
||||
|
||||
|
@ -341,14 +246,11 @@ void *sqlite3HashInsert(Hash *pH, const void *pKey, int nKey, void *data){
|
|||
int h; /* the hash of the key modulo hash table size */
|
||||
HashElem *elem; /* Used to loop thru the element list */
|
||||
HashElem *new_elem; /* New element added to the pH */
|
||||
int (*xHash)(const void*,int); /* The hash function */
|
||||
|
||||
assert( pH!=0 );
|
||||
xHash = hashFunction(pH->keyClass);
|
||||
assert( xHash!=0 );
|
||||
hraw = (*xHash)(pKey, nKey);
|
||||
assert( (pH->htsize & (pH->htsize-1))==0 );
|
||||
h = hraw & (pH->htsize-1);
|
||||
hraw = strHash(pKey, nKey);
|
||||
if( pH->htsize ){
|
||||
h = hraw % pH->htsize;
|
||||
elem = findElementGivenHash(pH,pKey,nKey,h);
|
||||
if( elem ){
|
||||
void *old_data = elem->data;
|
||||
|
@ -356,16 +258,21 @@ void *sqlite3HashInsert(Hash *pH, const void *pKey, int nKey, void *data){
|
|||
removeElementGivenHash(pH,elem,h);
|
||||
}else{
|
||||
elem->data = data;
|
||||
if( !pH->copyKey ){
|
||||
elem->pKey = (void *)pKey;
|
||||
}
|
||||
assert(nKey==elem->nKey);
|
||||
}
|
||||
return old_data;
|
||||
}
|
||||
}
|
||||
if( data==0 ) return 0;
|
||||
new_elem = (HashElem*)pH->xMalloc( sizeof(HashElem) );
|
||||
new_elem = (HashElem*)sqlite3Malloc( sizeof(HashElem) );
|
||||
if( new_elem==0 ) return data;
|
||||
if( pH->copyKey && pKey!=0 ){
|
||||
new_elem->pKey = pH->xMalloc( nKey );
|
||||
new_elem->pKey = sqlite3Malloc( nKey );
|
||||
if( new_elem->pKey==0 ){
|
||||
pH->xFree(new_elem);
|
||||
sqlite3_free(new_elem);
|
||||
return data;
|
||||
}
|
||||
memcpy((void*)new_elem->pKey, pKey, nKey);
|
||||
|
@ -375,13 +282,13 @@ void *sqlite3HashInsert(Hash *pH, const void *pKey, int nKey, void *data){
|
|||
new_elem->nKey = nKey;
|
||||
pH->count++;
|
||||
if( pH->htsize==0 ){
|
||||
rehash(pH,8);
|
||||
rehash(pH, 128/sizeof(pH->ht[0]));
|
||||
if( pH->htsize==0 ){
|
||||
pH->count = 0;
|
||||
if( pH->copyKey ){
|
||||
pH->xFree(new_elem->pKey);
|
||||
sqlite3_free(new_elem->pKey);
|
||||
}
|
||||
pH->xFree(new_elem);
|
||||
sqlite3_free(new_elem);
|
||||
return data;
|
||||
}
|
||||
}
|
||||
|
@ -389,8 +296,7 @@ void *sqlite3HashInsert(Hash *pH, const void *pKey, int nKey, void *data){
|
|||
rehash(pH,pH->htsize*2);
|
||||
}
|
||||
assert( pH->htsize>0 );
|
||||
assert( (pH->htsize & (pH->htsize-1))==0 );
|
||||
h = hraw & (pH->htsize-1);
|
||||
h = hraw % pH->htsize;
|
||||
insertElement(pH, &pH->ht[h], new_elem);
|
||||
new_elem->data = data;
|
||||
return 0;
|
||||
|
|
36
hash.h
36
hash.h
|
@ -12,7 +12,7 @@
|
|||
** This is the header file for the generic hash-table implemenation
|
||||
** used in SQLite.
|
||||
**
|
||||
** $Id: hash.h,v 1.9 2006/02/14 10:48:39 danielk1977 Exp $
|
||||
** $Id: hash.h,v 1.12 2008/10/10 17:41:29 drh Exp $
|
||||
*/
|
||||
#ifndef _SQLITE_HASH_H_
|
||||
#define _SQLITE_HASH_H_
|
||||
|
@ -30,13 +30,10 @@ typedef struct HashElem HashElem;
|
|||
** this structure opaque.
|
||||
*/
|
||||
struct Hash {
|
||||
char keyClass; /* SQLITE_HASH_INT, _POINTER, _STRING, _BINARY */
|
||||
char copyKey; /* True if copy of key made on insert */
|
||||
int count; /* Number of entries in this table */
|
||||
unsigned int copyKey: 1; /* True if copy of key made on insert */
|
||||
unsigned int htsize : 31; /* Number of buckets in the hash table */
|
||||
unsigned int count; /* Number of entries in this table */
|
||||
HashElem *first; /* The first element of the array */
|
||||
void *(*xMalloc)(int); /* malloc() function to use */
|
||||
void (*xFree)(void *); /* free() function to use */
|
||||
int htsize; /* Number of buckets in the hash table */
|
||||
struct _ht { /* the hash table */
|
||||
int count; /* Number of entries with this hash */
|
||||
HashElem *chain; /* Pointer to first entry with this hash */
|
||||
|
@ -55,34 +52,13 @@ struct HashElem {
|
|||
void *pKey; int nKey; /* Key associated with this element */
|
||||
};
|
||||
|
||||
/*
|
||||
** There are 4 different modes of operation for a hash table:
|
||||
**
|
||||
** SQLITE_HASH_INT nKey is used as the key and pKey is ignored.
|
||||
**
|
||||
** SQLITE_HASH_POINTER pKey is used as the key and nKey is ignored.
|
||||
**
|
||||
** SQLITE_HASH_STRING pKey points to a string that is nKey bytes long
|
||||
** (including the null-terminator, if any). Case
|
||||
** is ignored in comparisons.
|
||||
**
|
||||
** SQLITE_HASH_BINARY pKey points to binary data nKey bytes long.
|
||||
** memcmp() is used to compare keys.
|
||||
**
|
||||
** A copy of the key is made for SQLITE_HASH_STRING and SQLITE_HASH_BINARY
|
||||
** if the copyKey parameter to HashInit is 1.
|
||||
*/
|
||||
/* #define SQLITE_HASH_INT 1 // NOT USED */
|
||||
/* #define SQLITE_HASH_POINTER 2 // NOT USED */
|
||||
#define SQLITE_HASH_STRING 3
|
||||
#define SQLITE_HASH_BINARY 4
|
||||
|
||||
/*
|
||||
** Access routines. To delete, insert a NULL pointer.
|
||||
*/
|
||||
void sqlite3HashInit(Hash*, int keytype, int copyKey);
|
||||
void sqlite3HashInit(Hash*, int copyKey);
|
||||
void *sqlite3HashInsert(Hash*, const void *pKey, int nKey, void *pData);
|
||||
void *sqlite3HashFind(const Hash*, const void *pKey, int nKey);
|
||||
HashElem *sqlite3HashFindElem(const Hash*, const void *pKey, int nKey);
|
||||
void sqlite3HashClear(Hash*);
|
||||
|
||||
/*
|
||||
|
|
87
hwtime.h
Normal file
87
hwtime.h
Normal file
|
@ -0,0 +1,87 @@
|
|||
/*
|
||||
** 2008 May 27
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
******************************************************************************
|
||||
**
|
||||
** This file contains inline asm code for retrieving "high-performance"
|
||||
** counters for x86 class CPUs.
|
||||
**
|
||||
** $Id: hwtime.h,v 1.3 2008/08/01 14:33:15 shane Exp $
|
||||
*/
|
||||
#ifndef _HWTIME_H_
|
||||
#define _HWTIME_H_
|
||||
|
||||
/*
|
||||
** The following routine only works on pentium-class (or newer) processors.
|
||||
** It uses the RDTSC opcode to read the cycle count value out of the
|
||||
** processor and returns that value. This can be used for high-res
|
||||
** profiling.
|
||||
*/
|
||||
#if (defined(__GNUC__) || defined(_MSC_VER)) && \
|
||||
(defined(i386) || defined(__i386__) || defined(_M_IX86))
|
||||
|
||||
#if defined(__GNUC__)
|
||||
|
||||
__inline__ sqlite_uint64 sqlite3Hwtime(void){
|
||||
unsigned int lo, hi;
|
||||
__asm__ __volatile__ ("rdtsc" : "=a" (lo), "=d" (hi));
|
||||
return (sqlite_uint64)hi << 32 | lo;
|
||||
}
|
||||
|
||||
#elif defined(_MSC_VER)
|
||||
|
||||
__declspec(naked) __inline sqlite_uint64 __cdecl sqlite3Hwtime(void){
|
||||
__asm {
|
||||
rdtsc
|
||||
ret ; return value at EDX:EAX
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#elif (defined(__GNUC__) && defined(__x86_64__))
|
||||
|
||||
__inline__ sqlite_uint64 sqlite3Hwtime(void){
|
||||
unsigned long val;
|
||||
__asm__ __volatile__ ("rdtsc" : "=A" (val));
|
||||
return val;
|
||||
}
|
||||
|
||||
#elif (defined(__GNUC__) && defined(__ppc__))
|
||||
|
||||
__inline__ sqlite_uint64 sqlite3Hwtime(void){
|
||||
unsigned long long retval;
|
||||
unsigned long junk;
|
||||
__asm__ __volatile__ ("\n\
|
||||
1: mftbu %1\n\
|
||||
mftb %L0\n\
|
||||
mftbu %0\n\
|
||||
cmpw %0,%1\n\
|
||||
bne 1b"
|
||||
: "=r" (retval), "=r" (junk));
|
||||
return retval;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
#error Need implementation of sqlite3Hwtime() for your platform.
|
||||
|
||||
/*
|
||||
** To compile without implementing sqlite3Hwtime() for your platform,
|
||||
** you can remove the above #error and use the following
|
||||
** stub function. You will lose timing support for many
|
||||
** of the debugging and testing utilities, but it should at
|
||||
** least compile and run.
|
||||
*/
|
||||
sqlite_uint64 sqlite3Hwtime(void){ return ((sqlite_uint64)0); }
|
||||
|
||||
#endif
|
||||
|
||||
#endif /* !defined(_HWTIME_H_) */
|
239
journal.c
Normal file
239
journal.c
Normal file
|
@ -0,0 +1,239 @@
|
|||
/*
|
||||
** 2007 August 22
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
**
|
||||
** @(#) $Id: journal.c,v 1.8 2008/05/01 18:01:47 drh Exp $
|
||||
*/
|
||||
|
||||
#ifdef SQLITE_ENABLE_ATOMIC_WRITE
|
||||
|
||||
/*
|
||||
** This file implements a special kind of sqlite3_file object used
|
||||
** by SQLite to create journal files if the atomic-write optimization
|
||||
** is enabled.
|
||||
**
|
||||
** The distinctive characteristic of this sqlite3_file is that the
|
||||
** actual on disk file is created lazily. When the file is created,
|
||||
** the caller specifies a buffer size for an in-memory buffer to
|
||||
** be used to service read() and write() requests. The actual file
|
||||
** on disk is not created or populated until either:
|
||||
**
|
||||
** 1) The in-memory representation grows too large for the allocated
|
||||
** buffer, or
|
||||
** 2) The xSync() method is called.
|
||||
*/
|
||||
|
||||
#include "sqliteInt.h"
|
||||
|
||||
|
||||
/*
|
||||
** A JournalFile object is a subclass of sqlite3_file used by
|
||||
** as an open file handle for journal files.
|
||||
*/
|
||||
struct JournalFile {
|
||||
sqlite3_io_methods *pMethod; /* I/O methods on journal files */
|
||||
int nBuf; /* Size of zBuf[] in bytes */
|
||||
char *zBuf; /* Space to buffer journal writes */
|
||||
int iSize; /* Amount of zBuf[] currently used */
|
||||
int flags; /* xOpen flags */
|
||||
sqlite3_vfs *pVfs; /* The "real" underlying VFS */
|
||||
sqlite3_file *pReal; /* The "real" underlying file descriptor */
|
||||
const char *zJournal; /* Name of the journal file */
|
||||
};
|
||||
typedef struct JournalFile JournalFile;
|
||||
|
||||
/*
|
||||
** If it does not already exists, create and populate the on-disk file
|
||||
** for JournalFile p.
|
||||
*/
|
||||
static int createFile(JournalFile *p){
|
||||
int rc = SQLITE_OK;
|
||||
if( !p->pReal ){
|
||||
sqlite3_file *pReal = (sqlite3_file *)&p[1];
|
||||
rc = sqlite3OsOpen(p->pVfs, p->zJournal, pReal, p->flags, 0);
|
||||
if( rc==SQLITE_OK ){
|
||||
p->pReal = pReal;
|
||||
if( p->iSize>0 ){
|
||||
assert(p->iSize<=p->nBuf);
|
||||
rc = sqlite3OsWrite(p->pReal, p->zBuf, p->iSize, 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** Close the file.
|
||||
*/
|
||||
static int jrnlClose(sqlite3_file *pJfd){
|
||||
JournalFile *p = (JournalFile *)pJfd;
|
||||
if( p->pReal ){
|
||||
sqlite3OsClose(p->pReal);
|
||||
}
|
||||
sqlite3_free(p->zBuf);
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Read data from the file.
|
||||
*/
|
||||
static int jrnlRead(
|
||||
sqlite3_file *pJfd, /* The journal file from which to read */
|
||||
void *zBuf, /* Put the results here */
|
||||
int iAmt, /* Number of bytes to read */
|
||||
sqlite_int64 iOfst /* Begin reading at this offset */
|
||||
){
|
||||
int rc = SQLITE_OK;
|
||||
JournalFile *p = (JournalFile *)pJfd;
|
||||
if( p->pReal ){
|
||||
rc = sqlite3OsRead(p->pReal, zBuf, iAmt, iOfst);
|
||||
}else{
|
||||
assert( iAmt+iOfst<=p->iSize );
|
||||
memcpy(zBuf, &p->zBuf[iOfst], iAmt);
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** Write data to the file.
|
||||
*/
|
||||
static int jrnlWrite(
|
||||
sqlite3_file *pJfd, /* The journal file into which to write */
|
||||
const void *zBuf, /* Take data to be written from here */
|
||||
int iAmt, /* Number of bytes to write */
|
||||
sqlite_int64 iOfst /* Begin writing at this offset into the file */
|
||||
){
|
||||
int rc = SQLITE_OK;
|
||||
JournalFile *p = (JournalFile *)pJfd;
|
||||
if( !p->pReal && (iOfst+iAmt)>p->nBuf ){
|
||||
rc = createFile(p);
|
||||
}
|
||||
if( rc==SQLITE_OK ){
|
||||
if( p->pReal ){
|
||||
rc = sqlite3OsWrite(p->pReal, zBuf, iAmt, iOfst);
|
||||
}else{
|
||||
memcpy(&p->zBuf[iOfst], zBuf, iAmt);
|
||||
if( p->iSize<(iOfst+iAmt) ){
|
||||
p->iSize = (iOfst+iAmt);
|
||||
}
|
||||
}
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** Truncate the file.
|
||||
*/
|
||||
static int jrnlTruncate(sqlite3_file *pJfd, sqlite_int64 size){
|
||||
int rc = SQLITE_OK;
|
||||
JournalFile *p = (JournalFile *)pJfd;
|
||||
if( p->pReal ){
|
||||
rc = sqlite3OsTruncate(p->pReal, size);
|
||||
}else if( size<p->iSize ){
|
||||
p->iSize = size;
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** Sync the file.
|
||||
*/
|
||||
static int jrnlSync(sqlite3_file *pJfd, int flags){
|
||||
int rc;
|
||||
JournalFile *p = (JournalFile *)pJfd;
|
||||
if( p->pReal ){
|
||||
rc = sqlite3OsSync(p->pReal, flags);
|
||||
}else{
|
||||
rc = SQLITE_OK;
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** Query the size of the file in bytes.
|
||||
*/
|
||||
static int jrnlFileSize(sqlite3_file *pJfd, sqlite_int64 *pSize){
|
||||
int rc = SQLITE_OK;
|
||||
JournalFile *p = (JournalFile *)pJfd;
|
||||
if( p->pReal ){
|
||||
rc = sqlite3OsFileSize(p->pReal, pSize);
|
||||
}else{
|
||||
*pSize = (sqlite_int64) p->iSize;
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** Table of methods for JournalFile sqlite3_file object.
|
||||
*/
|
||||
static struct sqlite3_io_methods JournalFileMethods = {
|
||||
1, /* iVersion */
|
||||
jrnlClose, /* xClose */
|
||||
jrnlRead, /* xRead */
|
||||
jrnlWrite, /* xWrite */
|
||||
jrnlTruncate, /* xTruncate */
|
||||
jrnlSync, /* xSync */
|
||||
jrnlFileSize, /* xFileSize */
|
||||
0, /* xLock */
|
||||
0, /* xUnlock */
|
||||
0, /* xCheckReservedLock */
|
||||
0, /* xFileControl */
|
||||
0, /* xSectorSize */
|
||||
0 /* xDeviceCharacteristics */
|
||||
};
|
||||
|
||||
/*
|
||||
** Open a journal file.
|
||||
*/
|
||||
int sqlite3JournalOpen(
|
||||
sqlite3_vfs *pVfs, /* The VFS to use for actual file I/O */
|
||||
const char *zName, /* Name of the journal file */
|
||||
sqlite3_file *pJfd, /* Preallocated, blank file handle */
|
||||
int flags, /* Opening flags */
|
||||
int nBuf /* Bytes buffered before opening the file */
|
||||
){
|
||||
JournalFile *p = (JournalFile *)pJfd;
|
||||
memset(p, 0, sqlite3JournalSize(pVfs));
|
||||
if( nBuf>0 ){
|
||||
p->zBuf = sqlite3MallocZero(nBuf);
|
||||
if( !p->zBuf ){
|
||||
return SQLITE_NOMEM;
|
||||
}
|
||||
}else{
|
||||
return sqlite3OsOpen(pVfs, zName, pJfd, flags, 0);
|
||||
}
|
||||
p->pMethod = &JournalFileMethods;
|
||||
p->nBuf = nBuf;
|
||||
p->flags = flags;
|
||||
p->zJournal = zName;
|
||||
p->pVfs = pVfs;
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** If the argument p points to a JournalFile structure, and the underlying
|
||||
** file has not yet been created, create it now.
|
||||
*/
|
||||
int sqlite3JournalCreate(sqlite3_file *p){
|
||||
if( p->pMethods!=&JournalFileMethods ){
|
||||
return SQLITE_OK;
|
||||
}
|
||||
return createFile((JournalFile *)p);
|
||||
}
|
||||
|
||||
/*
|
||||
** Return the number of bytes required to store a JournalFile that uses vfs
|
||||
** pVfs to create the underlying on-disk files.
|
||||
*/
|
||||
int sqlite3JournalSize(sqlite3_vfs *pVfs){
|
||||
return (pVfs->szOsFile+sizeof(JournalFile));
|
||||
}
|
||||
#endif
|
310
keywordhash.h
310
keywordhash.h
|
@ -2,7 +2,7 @@
|
|||
**
|
||||
** The code in this file has been automatically generated by
|
||||
**
|
||||
** $Header: /sqlite/sqlite/tool/mkkeywordhash.c,v 1.31 2007/07/30 18:26:20 rse Exp $
|
||||
** $Header: /sqlite/sqlite/tool/mkkeywordhash.c,v 1.36 2008/12/31 21:52:41 drh Exp $
|
||||
**
|
||||
** The code in this file implements a function that determines whether
|
||||
** or not a given identifier is really an SQL keyword. The same thing
|
||||
|
@ -11,89 +11,124 @@
|
|||
** is substantially reduced. This is important for embedded applications
|
||||
** on platforms with limited memory.
|
||||
*/
|
||||
/* Hash score: 165 */
|
||||
/* Hash score: 171 */
|
||||
static int keywordCode(const char *z, int n){
|
||||
/* zText[] encodes 775 bytes of keywords in 526 bytes */
|
||||
static const char zText[526] =
|
||||
"BEFOREIGNOREGEXPLAINSTEADDESCAPEACHECKEYCONSTRAINTERSECTABLEFT"
|
||||
"HENDATABASELECTRANSACTIONATURALTERAISELSEXCEPTRIGGEREFERENCES"
|
||||
"UNIQUERYATTACHAVINGROUPDATEMPORARYBEGINNEREINDEXCLUSIVEXISTSBETWEEN"
|
||||
"OTNULLIKECASCADEFERRABLECASECOLLATECREATECURRENT_DATEDELETEDETACH"
|
||||
"IMMEDIATEJOINSERTMATCHPLANALYZEPRAGMABORTVALUESVIRTUALIMITWHEN"
|
||||
"WHERENAMEAFTEREPLACEANDEFAULTAUTOINCREMENTCASTCOLUMNCOMMITCONFLICT"
|
||||
"CROSSCURRENT_TIMESTAMPRIMARYDEFERREDISTINCTDROPFAILFROMFULLGLOB"
|
||||
"YIFINTOFFSETISNULLORDERESTRICTOUTERIGHTROLLBACKROWUNIONUSINGVACUUM"
|
||||
"VIEWINITIALLY";
|
||||
/* zText[] encodes 801 bytes of keywords in 541 bytes */
|
||||
/* REINDEXEDESCAPEACHECKEYBEFOREIGNOREGEXPLAINSTEADDATABASELECT */
|
||||
/* ABLEFTHENDEFERRABLELSEXCEPTRANSACTIONATURALTERAISEXCLUSIVE */
|
||||
/* XISTSAVEPOINTERSECTRIGGEREFERENCESCONSTRAINTOFFSETEMPORARY */
|
||||
/* UNIQUERYATTACHAVINGROUPDATEBEGINNERELEASEBETWEENOTNULLIKE */
|
||||
/* CASCADELETECASECOLLATECREATECURRENT_DATEDETACHIMMEDIATEJOIN */
|
||||
/* SERTMATCHPLANALYZEPRAGMABORTVALUESVIRTUALIMITWHENWHERENAME */
|
||||
/* AFTEREPLACEANDEFAULTAUTOINCREMENTCASTCOLUMNCOMMITCONFLICTCROSS */
|
||||
/* CURRENT_TIMESTAMPRIMARYDEFERREDISTINCTDROPFAILFROMFULLGLOBYIF */
|
||||
/* ISNULLORDERESTRICTOUTERIGHTROLLBACKROWUNIONUSINGVACUUMVIEW */
|
||||
/* INITIALLY */
|
||||
static const char zText[540] = {
|
||||
'R','E','I','N','D','E','X','E','D','E','S','C','A','P','E','A','C','H',
|
||||
'E','C','K','E','Y','B','E','F','O','R','E','I','G','N','O','R','E','G',
|
||||
'E','X','P','L','A','I','N','S','T','E','A','D','D','A','T','A','B','A',
|
||||
'S','E','L','E','C','T','A','B','L','E','F','T','H','E','N','D','E','F',
|
||||
'E','R','R','A','B','L','E','L','S','E','X','C','E','P','T','R','A','N',
|
||||
'S','A','C','T','I','O','N','A','T','U','R','A','L','T','E','R','A','I',
|
||||
'S','E','X','C','L','U','S','I','V','E','X','I','S','T','S','A','V','E',
|
||||
'P','O','I','N','T','E','R','S','E','C','T','R','I','G','G','E','R','E',
|
||||
'F','E','R','E','N','C','E','S','C','O','N','S','T','R','A','I','N','T',
|
||||
'O','F','F','S','E','T','E','M','P','O','R','A','R','Y','U','N','I','Q',
|
||||
'U','E','R','Y','A','T','T','A','C','H','A','V','I','N','G','R','O','U',
|
||||
'P','D','A','T','E','B','E','G','I','N','N','E','R','E','L','E','A','S',
|
||||
'E','B','E','T','W','E','E','N','O','T','N','U','L','L','I','K','E','C',
|
||||
'A','S','C','A','D','E','L','E','T','E','C','A','S','E','C','O','L','L',
|
||||
'A','T','E','C','R','E','A','T','E','C','U','R','R','E','N','T','_','D',
|
||||
'A','T','E','D','E','T','A','C','H','I','M','M','E','D','I','A','T','E',
|
||||
'J','O','I','N','S','E','R','T','M','A','T','C','H','P','L','A','N','A',
|
||||
'L','Y','Z','E','P','R','A','G','M','A','B','O','R','T','V','A','L','U',
|
||||
'E','S','V','I','R','T','U','A','L','I','M','I','T','W','H','E','N','W',
|
||||
'H','E','R','E','N','A','M','E','A','F','T','E','R','E','P','L','A','C',
|
||||
'E','A','N','D','E','F','A','U','L','T','A','U','T','O','I','N','C','R',
|
||||
'E','M','E','N','T','C','A','S','T','C','O','L','U','M','N','C','O','M',
|
||||
'M','I','T','C','O','N','F','L','I','C','T','C','R','O','S','S','C','U',
|
||||
'R','R','E','N','T','_','T','I','M','E','S','T','A','M','P','R','I','M',
|
||||
'A','R','Y','D','E','F','E','R','R','E','D','I','S','T','I','N','C','T',
|
||||
'D','R','O','P','F','A','I','L','F','R','O','M','F','U','L','L','G','L',
|
||||
'O','B','Y','I','F','I','S','N','U','L','L','O','R','D','E','R','E','S',
|
||||
'T','R','I','C','T','O','U','T','E','R','I','G','H','T','R','O','L','L',
|
||||
'B','A','C','K','R','O','W','U','N','I','O','N','U','S','I','N','G','V',
|
||||
'A','C','U','U','M','V','I','E','W','I','N','I','T','I','A','L','L','Y',
|
||||
};
|
||||
static const unsigned char aHash[127] = {
|
||||
63, 92, 109, 61, 0, 39, 0, 0, 69, 0, 64, 0, 0,
|
||||
101, 4, 65, 7, 0, 108, 72, 103, 99, 0, 22, 0, 0,
|
||||
113, 0, 111, 106, 0, 18, 80, 0, 1, 0, 0, 56, 57,
|
||||
0, 55, 11, 0, 33, 77, 89, 0, 110, 88, 0, 0, 45,
|
||||
0, 90, 54, 0, 20, 0, 114, 34, 19, 0, 10, 97, 28,
|
||||
83, 0, 0, 116, 93, 47, 115, 41, 12, 44, 0, 78, 0,
|
||||
87, 29, 0, 86, 0, 0, 0, 82, 79, 84, 75, 96, 6,
|
||||
14, 95, 0, 68, 0, 21, 76, 98, 27, 0, 112, 67, 104,
|
||||
49, 40, 71, 0, 0, 81, 100, 0, 107, 0, 15, 0, 0,
|
||||
24, 0, 73, 42, 50, 0, 16, 48, 0, 37,
|
||||
70, 99, 112, 68, 0, 43, 0, 0, 76, 0, 71, 0, 0,
|
||||
41, 12, 72, 15, 0, 111, 79, 49, 106, 0, 19, 0, 0,
|
||||
116, 0, 114, 109, 0, 22, 87, 0, 9, 0, 0, 64, 65,
|
||||
0, 63, 6, 0, 47, 84, 96, 0, 113, 95, 0, 0, 44,
|
||||
0, 97, 24, 0, 17, 0, 117, 48, 23, 0, 5, 104, 25,
|
||||
90, 0, 0, 119, 100, 55, 118, 52, 7, 50, 0, 85, 0,
|
||||
94, 26, 0, 93, 0, 0, 0, 89, 86, 91, 82, 103, 14,
|
||||
38, 102, 0, 75, 0, 18, 83, 105, 31, 0, 115, 74, 107,
|
||||
56, 45, 78, 0, 0, 88, 39, 0, 110, 0, 35, 0, 0,
|
||||
28, 0, 80, 53, 58, 0, 20, 57, 0, 51,
|
||||
};
|
||||
static const unsigned char aNext[116] = {
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0,
|
||||
0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0,
|
||||
17, 0, 0, 0, 36, 38, 0, 0, 25, 0, 0, 31, 0,
|
||||
0, 0, 43, 52, 0, 0, 0, 53, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 51, 0, 0, 0, 0, 26, 0, 8, 46,
|
||||
3, 0, 0, 0, 0, 0, 0, 0, 2, 58, 66, 0, 13,
|
||||
0, 91, 85, 0, 94, 0, 74, 0, 0, 0, 62, 35, 102,
|
||||
0, 0, 105, 23, 30, 60, 70, 0, 0, 59, 0, 0,
|
||||
static const unsigned char aNext[119] = {
|
||||
0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 3, 0, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 32, 21, 0, 0, 0, 42, 2, 46, 0,
|
||||
0, 0, 0, 0, 29, 0, 37, 0, 0, 0, 1, 60, 0,
|
||||
0, 61, 0, 40, 0, 0, 0, 0, 0, 0, 0, 59, 0,
|
||||
0, 0, 0, 30, 54, 16, 33, 11, 0, 0, 0, 0, 0,
|
||||
0, 0, 10, 66, 73, 0, 8, 0, 98, 92, 0, 101, 0,
|
||||
81, 0, 69, 0, 0, 108, 27, 36, 67, 77, 0, 34, 62,
|
||||
0, 0,
|
||||
};
|
||||
static const unsigned char aLen[116] = {
|
||||
6, 3, 7, 6, 6, 7, 7, 3, 4, 6, 4, 5, 3,
|
||||
10, 9, 5, 4, 4, 3, 8, 2, 6, 11, 2, 7, 5,
|
||||
5, 4, 6, 7, 10, 6, 5, 6, 6, 5, 6, 9, 4,
|
||||
2, 5, 5, 7, 5, 9, 6, 7, 7, 3, 4, 4, 7,
|
||||
3, 10, 4, 7, 6, 12, 6, 6, 9, 4, 6, 5, 4,
|
||||
7, 6, 5, 6, 7, 5, 4, 5, 6, 5, 7, 3, 7,
|
||||
13, 2, 2, 4, 6, 6, 8, 5, 17, 12, 7, 8, 8,
|
||||
2, 4, 4, 4, 4, 4, 2, 2, 4, 2, 6, 3, 6,
|
||||
5, 8, 5, 5, 8, 3, 5, 5, 6, 4, 9, 3,
|
||||
static const unsigned char aLen[119] = {
|
||||
7, 5, 7, 4, 6, 4, 5, 3, 6, 3, 7, 6, 6,
|
||||
7, 7, 3, 8, 2, 6, 5, 4, 4, 3, 10, 4, 6,
|
||||
11, 2, 7, 5, 5, 9, 6, 9, 9, 7, 10, 10, 4,
|
||||
6, 2, 3, 4, 9, 2, 6, 5, 6, 6, 5, 6, 5,
|
||||
5, 7, 7, 3, 7, 4, 4, 7, 3, 6, 4, 7, 6,
|
||||
12, 6, 9, 4, 6, 5, 4, 7, 6, 5, 6, 7, 5,
|
||||
4, 5, 6, 5, 7, 3, 7, 13, 2, 2, 4, 6, 6,
|
||||
8, 5, 17, 12, 7, 8, 8, 2, 4, 4, 4, 4, 4,
|
||||
2, 2, 6, 5, 8, 5, 5, 8, 3, 5, 5, 6, 4,
|
||||
9, 3,
|
||||
};
|
||||
static const unsigned short int aOffset[116] = {
|
||||
0, 2, 2, 6, 10, 13, 18, 23, 25, 26, 31, 33, 37,
|
||||
40, 47, 55, 58, 61, 63, 65, 70, 71, 76, 85, 86, 91,
|
||||
95, 99, 102, 107, 113, 123, 126, 131, 136, 141, 144, 148, 148,
|
||||
152, 157, 160, 164, 166, 169, 177, 183, 189, 189, 192, 195, 199,
|
||||
200, 204, 214, 218, 225, 231, 243, 249, 255, 264, 266, 272, 277,
|
||||
279, 286, 291, 296, 302, 308, 313, 317, 320, 326, 330, 337, 339,
|
||||
346, 348, 350, 359, 363, 369, 375, 383, 388, 388, 404, 411, 418,
|
||||
419, 426, 430, 434, 438, 442, 445, 447, 449, 452, 452, 455, 458,
|
||||
464, 468, 476, 480, 485, 493, 496, 501, 506, 512, 516, 521,
|
||||
static const unsigned short int aOffset[119] = {
|
||||
0, 2, 2, 8, 9, 14, 16, 20, 23, 25, 25, 29, 33,
|
||||
36, 41, 46, 48, 53, 54, 59, 62, 65, 67, 69, 78, 81,
|
||||
86, 95, 96, 101, 105, 109, 117, 122, 128, 136, 142, 152, 159,
|
||||
162, 162, 165, 167, 167, 171, 176, 179, 184, 189, 194, 197, 203,
|
||||
206, 210, 217, 223, 223, 226, 229, 233, 234, 238, 244, 248, 255,
|
||||
261, 273, 279, 288, 290, 296, 301, 303, 310, 315, 320, 326, 332,
|
||||
337, 341, 344, 350, 354, 361, 363, 370, 372, 374, 383, 387, 393,
|
||||
399, 407, 412, 412, 428, 435, 442, 443, 450, 454, 458, 462, 466,
|
||||
469, 471, 473, 479, 483, 491, 495, 500, 508, 511, 516, 521, 527,
|
||||
531, 536,
|
||||
};
|
||||
static const unsigned char aCode[116] = {
|
||||
TK_BEFORE, TK_FOR, TK_FOREIGN, TK_IGNORE, TK_LIKE_KW,
|
||||
TK_EXPLAIN, TK_INSTEAD, TK_ADD, TK_DESC, TK_ESCAPE,
|
||||
TK_EACH, TK_CHECK, TK_KEY, TK_CONSTRAINT, TK_INTERSECT,
|
||||
TK_TABLE, TK_JOIN_KW, TK_THEN, TK_END, TK_DATABASE,
|
||||
TK_AS, TK_SELECT, TK_TRANSACTION,TK_ON, TK_JOIN_KW,
|
||||
TK_ALTER, TK_RAISE, TK_ELSE, TK_EXCEPT, TK_TRIGGER,
|
||||
TK_REFERENCES, TK_UNIQUE, TK_QUERY, TK_ATTACH, TK_HAVING,
|
||||
TK_GROUP, TK_UPDATE, TK_TEMP, TK_TEMP, TK_OR,
|
||||
TK_BEGIN, TK_JOIN_KW, TK_REINDEX, TK_INDEX, TK_EXCLUSIVE,
|
||||
TK_EXISTS, TK_BETWEEN, TK_NOTNULL, TK_NOT, TK_NULL,
|
||||
TK_LIKE_KW, TK_CASCADE, TK_ASC, TK_DEFERRABLE, TK_CASE,
|
||||
TK_COLLATE, TK_CREATE, TK_CTIME_KW, TK_DELETE, TK_DETACH,
|
||||
TK_IMMEDIATE, TK_JOIN, TK_INSERT, TK_MATCH, TK_PLAN,
|
||||
TK_ANALYZE, TK_PRAGMA, TK_ABORT, TK_VALUES, TK_VIRTUAL,
|
||||
TK_LIMIT, TK_WHEN, TK_WHERE, TK_RENAME, TK_AFTER,
|
||||
TK_REPLACE, TK_AND, TK_DEFAULT, TK_AUTOINCR, TK_TO,
|
||||
TK_IN, TK_CAST, TK_COLUMNKW, TK_COMMIT, TK_CONFLICT,
|
||||
TK_JOIN_KW, TK_CTIME_KW, TK_CTIME_KW, TK_PRIMARY, TK_DEFERRED,
|
||||
TK_DISTINCT, TK_IS, TK_DROP, TK_FAIL, TK_FROM,
|
||||
TK_JOIN_KW, TK_LIKE_KW, TK_BY, TK_IF, TK_INTO,
|
||||
TK_OF, TK_OFFSET, TK_SET, TK_ISNULL, TK_ORDER,
|
||||
TK_RESTRICT, TK_JOIN_KW, TK_JOIN_KW, TK_ROLLBACK, TK_ROW,
|
||||
TK_UNION, TK_USING, TK_VACUUM, TK_VIEW, TK_INITIALLY,
|
||||
TK_ALL,
|
||||
static const unsigned char aCode[119] = {
|
||||
TK_REINDEX, TK_INDEX, TK_INDEXED, TK_DESC, TK_ESCAPE,
|
||||
TK_EACH, TK_CHECK, TK_KEY, TK_BEFORE, TK_FOR,
|
||||
TK_FOREIGN, TK_IGNORE, TK_LIKE_KW, TK_EXPLAIN, TK_INSTEAD,
|
||||
TK_ADD, TK_DATABASE, TK_AS, TK_SELECT, TK_TABLE,
|
||||
TK_JOIN_KW, TK_THEN, TK_END, TK_DEFERRABLE, TK_ELSE,
|
||||
TK_EXCEPT, TK_TRANSACTION,TK_ON, TK_JOIN_KW, TK_ALTER,
|
||||
TK_RAISE, TK_EXCLUSIVE, TK_EXISTS, TK_SAVEPOINT, TK_INTERSECT,
|
||||
TK_TRIGGER, TK_REFERENCES, TK_CONSTRAINT, TK_INTO, TK_OFFSET,
|
||||
TK_OF, TK_SET, TK_TEMP, TK_TEMP, TK_OR,
|
||||
TK_UNIQUE, TK_QUERY, TK_ATTACH, TK_HAVING, TK_GROUP,
|
||||
TK_UPDATE, TK_BEGIN, TK_JOIN_KW, TK_RELEASE, TK_BETWEEN,
|
||||
TK_NOT, TK_NOTNULL, TK_NULL, TK_LIKE_KW, TK_CASCADE,
|
||||
TK_ASC, TK_DELETE, TK_CASE, TK_COLLATE, TK_CREATE,
|
||||
TK_CTIME_KW, TK_DETACH, TK_IMMEDIATE, TK_JOIN, TK_INSERT,
|
||||
TK_MATCH, TK_PLAN, TK_ANALYZE, TK_PRAGMA, TK_ABORT,
|
||||
TK_VALUES, TK_VIRTUAL, TK_LIMIT, TK_WHEN, TK_WHERE,
|
||||
TK_RENAME, TK_AFTER, TK_REPLACE, TK_AND, TK_DEFAULT,
|
||||
TK_AUTOINCR, TK_TO, TK_IN, TK_CAST, TK_COLUMNKW,
|
||||
TK_COMMIT, TK_CONFLICT, TK_JOIN_KW, TK_CTIME_KW, TK_CTIME_KW,
|
||||
TK_PRIMARY, TK_DEFERRED, TK_DISTINCT, TK_IS, TK_DROP,
|
||||
TK_FAIL, TK_FROM, TK_JOIN_KW, TK_LIKE_KW, TK_BY,
|
||||
TK_IF, TK_ISNULL, TK_ORDER, TK_RESTRICT, TK_JOIN_KW,
|
||||
TK_JOIN_KW, TK_ROLLBACK, TK_ROW, TK_UNION, TK_USING,
|
||||
TK_VACUUM, TK_VIEW, TK_INITIALLY, TK_ALL,
|
||||
};
|
||||
int h, i;
|
||||
if( n<2 ) return TK_ID;
|
||||
|
@ -102,6 +137,125 @@ static int keywordCode(const char *z, int n){
|
|||
n) % 127;
|
||||
for(i=((int)aHash[h])-1; i>=0; i=((int)aNext[i])-1){
|
||||
if( aLen[i]==n && sqlite3StrNICmp(&zText[aOffset[i]],z,n)==0 ){
|
||||
testcase( i==0 ); /* TK_REINDEX */
|
||||
testcase( i==1 ); /* TK_INDEX */
|
||||
testcase( i==2 ); /* TK_INDEXED */
|
||||
testcase( i==3 ); /* TK_DESC */
|
||||
testcase( i==4 ); /* TK_ESCAPE */
|
||||
testcase( i==5 ); /* TK_EACH */
|
||||
testcase( i==6 ); /* TK_CHECK */
|
||||
testcase( i==7 ); /* TK_KEY */
|
||||
testcase( i==8 ); /* TK_BEFORE */
|
||||
testcase( i==9 ); /* TK_FOR */
|
||||
testcase( i==10 ); /* TK_FOREIGN */
|
||||
testcase( i==11 ); /* TK_IGNORE */
|
||||
testcase( i==12 ); /* TK_LIKE_KW */
|
||||
testcase( i==13 ); /* TK_EXPLAIN */
|
||||
testcase( i==14 ); /* TK_INSTEAD */
|
||||
testcase( i==15 ); /* TK_ADD */
|
||||
testcase( i==16 ); /* TK_DATABASE */
|
||||
testcase( i==17 ); /* TK_AS */
|
||||
testcase( i==18 ); /* TK_SELECT */
|
||||
testcase( i==19 ); /* TK_TABLE */
|
||||
testcase( i==20 ); /* TK_JOIN_KW */
|
||||
testcase( i==21 ); /* TK_THEN */
|
||||
testcase( i==22 ); /* TK_END */
|
||||
testcase( i==23 ); /* TK_DEFERRABLE */
|
||||
testcase( i==24 ); /* TK_ELSE */
|
||||
testcase( i==25 ); /* TK_EXCEPT */
|
||||
testcase( i==26 ); /* TK_TRANSACTION */
|
||||
testcase( i==27 ); /* TK_ON */
|
||||
testcase( i==28 ); /* TK_JOIN_KW */
|
||||
testcase( i==29 ); /* TK_ALTER */
|
||||
testcase( i==30 ); /* TK_RAISE */
|
||||
testcase( i==31 ); /* TK_EXCLUSIVE */
|
||||
testcase( i==32 ); /* TK_EXISTS */
|
||||
testcase( i==33 ); /* TK_SAVEPOINT */
|
||||
testcase( i==34 ); /* TK_INTERSECT */
|
||||
testcase( i==35 ); /* TK_TRIGGER */
|
||||
testcase( i==36 ); /* TK_REFERENCES */
|
||||
testcase( i==37 ); /* TK_CONSTRAINT */
|
||||
testcase( i==38 ); /* TK_INTO */
|
||||
testcase( i==39 ); /* TK_OFFSET */
|
||||
testcase( i==40 ); /* TK_OF */
|
||||
testcase( i==41 ); /* TK_SET */
|
||||
testcase( i==42 ); /* TK_TEMP */
|
||||
testcase( i==43 ); /* TK_TEMP */
|
||||
testcase( i==44 ); /* TK_OR */
|
||||
testcase( i==45 ); /* TK_UNIQUE */
|
||||
testcase( i==46 ); /* TK_QUERY */
|
||||
testcase( i==47 ); /* TK_ATTACH */
|
||||
testcase( i==48 ); /* TK_HAVING */
|
||||
testcase( i==49 ); /* TK_GROUP */
|
||||
testcase( i==50 ); /* TK_UPDATE */
|
||||
testcase( i==51 ); /* TK_BEGIN */
|
||||
testcase( i==52 ); /* TK_JOIN_KW */
|
||||
testcase( i==53 ); /* TK_RELEASE */
|
||||
testcase( i==54 ); /* TK_BETWEEN */
|
||||
testcase( i==55 ); /* TK_NOT */
|
||||
testcase( i==56 ); /* TK_NOTNULL */
|
||||
testcase( i==57 ); /* TK_NULL */
|
||||
testcase( i==58 ); /* TK_LIKE_KW */
|
||||
testcase( i==59 ); /* TK_CASCADE */
|
||||
testcase( i==60 ); /* TK_ASC */
|
||||
testcase( i==61 ); /* TK_DELETE */
|
||||
testcase( i==62 ); /* TK_CASE */
|
||||
testcase( i==63 ); /* TK_COLLATE */
|
||||
testcase( i==64 ); /* TK_CREATE */
|
||||
testcase( i==65 ); /* TK_CTIME_KW */
|
||||
testcase( i==66 ); /* TK_DETACH */
|
||||
testcase( i==67 ); /* TK_IMMEDIATE */
|
||||
testcase( i==68 ); /* TK_JOIN */
|
||||
testcase( i==69 ); /* TK_INSERT */
|
||||
testcase( i==70 ); /* TK_MATCH */
|
||||
testcase( i==71 ); /* TK_PLAN */
|
||||
testcase( i==72 ); /* TK_ANALYZE */
|
||||
testcase( i==73 ); /* TK_PRAGMA */
|
||||
testcase( i==74 ); /* TK_ABORT */
|
||||
testcase( i==75 ); /* TK_VALUES */
|
||||
testcase( i==76 ); /* TK_VIRTUAL */
|
||||
testcase( i==77 ); /* TK_LIMIT */
|
||||
testcase( i==78 ); /* TK_WHEN */
|
||||
testcase( i==79 ); /* TK_WHERE */
|
||||
testcase( i==80 ); /* TK_RENAME */
|
||||
testcase( i==81 ); /* TK_AFTER */
|
||||
testcase( i==82 ); /* TK_REPLACE */
|
||||
testcase( i==83 ); /* TK_AND */
|
||||
testcase( i==84 ); /* TK_DEFAULT */
|
||||
testcase( i==85 ); /* TK_AUTOINCR */
|
||||
testcase( i==86 ); /* TK_TO */
|
||||
testcase( i==87 ); /* TK_IN */
|
||||
testcase( i==88 ); /* TK_CAST */
|
||||
testcase( i==89 ); /* TK_COLUMNKW */
|
||||
testcase( i==90 ); /* TK_COMMIT */
|
||||
testcase( i==91 ); /* TK_CONFLICT */
|
||||
testcase( i==92 ); /* TK_JOIN_KW */
|
||||
testcase( i==93 ); /* TK_CTIME_KW */
|
||||
testcase( i==94 ); /* TK_CTIME_KW */
|
||||
testcase( i==95 ); /* TK_PRIMARY */
|
||||
testcase( i==96 ); /* TK_DEFERRED */
|
||||
testcase( i==97 ); /* TK_DISTINCT */
|
||||
testcase( i==98 ); /* TK_IS */
|
||||
testcase( i==99 ); /* TK_DROP */
|
||||
testcase( i==100 ); /* TK_FAIL */
|
||||
testcase( i==101 ); /* TK_FROM */
|
||||
testcase( i==102 ); /* TK_JOIN_KW */
|
||||
testcase( i==103 ); /* TK_LIKE_KW */
|
||||
testcase( i==104 ); /* TK_BY */
|
||||
testcase( i==105 ); /* TK_IF */
|
||||
testcase( i==106 ); /* TK_ISNULL */
|
||||
testcase( i==107 ); /* TK_ORDER */
|
||||
testcase( i==108 ); /* TK_RESTRICT */
|
||||
testcase( i==109 ); /* TK_JOIN_KW */
|
||||
testcase( i==110 ); /* TK_JOIN_KW */
|
||||
testcase( i==111 ); /* TK_ROLLBACK */
|
||||
testcase( i==112 ); /* TK_ROW */
|
||||
testcase( i==113 ); /* TK_UNION */
|
||||
testcase( i==114 ); /* TK_USING */
|
||||
testcase( i==115 ); /* TK_VACUUM */
|
||||
testcase( i==116 ); /* TK_VIEW */
|
||||
testcase( i==117 ); /* TK_INITIALLY */
|
||||
testcase( i==118 ); /* TK_ALL */
|
||||
return aCode[i];
|
||||
}
|
||||
}
|
||||
|
|
40
legacy.c
40
legacy.c
|
@ -14,11 +14,10 @@
|
|||
** other files are for internal use by SQLite and should not be
|
||||
** accessed by users of the library.
|
||||
**
|
||||
** $Id: legacy.c,v 1.18 2007/05/04 13:15:56 drh Exp $
|
||||
** $Id: legacy.c,v 1.30 2008/12/10 19:26:24 drh Exp $
|
||||
*/
|
||||
|
||||
#include "sqliteInt.h"
|
||||
#include "os.h"
|
||||
#include <ctype.h>
|
||||
|
||||
/*
|
||||
|
@ -46,7 +45,10 @@ int sqlite3_exec(
|
|||
int nRetry = 0;
|
||||
int nCallback;
|
||||
|
||||
if( zSql==0 ) return SQLITE_OK;
|
||||
if( zSql==0 ) zSql = "";
|
||||
|
||||
sqlite3_mutex_enter(db->mutex);
|
||||
sqlite3Error(db, SQLITE_OK, 0);
|
||||
while( (rc==SQLITE_OK || (rc==SQLITE_SCHEMA && (++nRetry)<2)) && zSql[0] ){
|
||||
int nCol;
|
||||
char **azVals = 0;
|
||||
|
@ -64,12 +66,7 @@ int sqlite3_exec(
|
|||
}
|
||||
|
||||
nCallback = 0;
|
||||
|
||||
nCol = sqlite3_column_count(pStmt);
|
||||
azCols = sqliteMalloc(2*nCol*sizeof(const char *) + 1);
|
||||
if( azCols==0 ){
|
||||
goto exec_out;
|
||||
}
|
||||
|
||||
while( 1 ){
|
||||
int i;
|
||||
|
@ -79,8 +76,17 @@ int sqlite3_exec(
|
|||
if( xCallback && (SQLITE_ROW==rc ||
|
||||
(SQLITE_DONE==rc && !nCallback && db->flags&SQLITE_NullCallback)) ){
|
||||
if( 0==nCallback ){
|
||||
if( azCols==0 ){
|
||||
azCols = sqlite3DbMallocZero(db, 2*nCol*sizeof(const char*) + 1);
|
||||
if( azCols==0 ){
|
||||
goto exec_out;
|
||||
}
|
||||
}
|
||||
for(i=0; i<nCol; i++){
|
||||
azCols[i] = (char *)sqlite3_column_name(pStmt, i);
|
||||
/* sqlite3VdbeSetColName() installs column names as UTF8
|
||||
** strings so there is no way for sqlite3_column_name() to fail. */
|
||||
assert( azCols[i]!=0 );
|
||||
}
|
||||
nCallback++;
|
||||
}
|
||||
|
@ -88,10 +94,17 @@ int sqlite3_exec(
|
|||
azVals = &azCols[nCol];
|
||||
for(i=0; i<nCol; i++){
|
||||
azVals[i] = (char *)sqlite3_column_text(pStmt, i);
|
||||
if( !azVals[i] && sqlite3_column_type(pStmt, i)!=SQLITE_NULL ){
|
||||
db->mallocFailed = 1;
|
||||
goto exec_out;
|
||||
}
|
||||
}
|
||||
}
|
||||
if( xCallback(pArg, nCol, azVals, azCols) ){
|
||||
rc = SQLITE_ABORT;
|
||||
sqlite3_finalize(pStmt);
|
||||
pStmt = 0;
|
||||
sqlite3Error(db, SQLITE_ABORT, 0);
|
||||
goto exec_out;
|
||||
}
|
||||
}
|
||||
|
@ -108,18 +121,18 @@ int sqlite3_exec(
|
|||
}
|
||||
}
|
||||
|
||||
sqliteFree(azCols);
|
||||
sqlite3DbFree(db, azCols);
|
||||
azCols = 0;
|
||||
}
|
||||
|
||||
exec_out:
|
||||
if( pStmt ) sqlite3_finalize(pStmt);
|
||||
if( azCols ) sqliteFree(azCols);
|
||||
sqlite3DbFree(db, azCols);
|
||||
|
||||
rc = sqlite3ApiExit(0, rc);
|
||||
rc = sqlite3ApiExit(db, rc);
|
||||
if( rc!=SQLITE_OK && rc==sqlite3_errcode(db) && pzErrMsg ){
|
||||
int nErrMsg = 1 + strlen(sqlite3_errmsg(db));
|
||||
*pzErrMsg = sqlite3_malloc(nErrMsg);
|
||||
int nErrMsg = 1 + sqlite3Strlen30(sqlite3_errmsg(db));
|
||||
*pzErrMsg = sqlite3Malloc(nErrMsg);
|
||||
if( *pzErrMsg ){
|
||||
memcpy(*pzErrMsg, sqlite3_errmsg(db), nErrMsg);
|
||||
}
|
||||
|
@ -128,5 +141,6 @@ exec_out:
|
|||
}
|
||||
|
||||
assert( (rc&db->errMask)==rc );
|
||||
sqlite3_mutex_leave(db->mutex);
|
||||
return rc;
|
||||
}
|
||||
|
|
270
loadext.c
270
loadext.c
|
@ -11,16 +11,20 @@
|
|||
*************************************************************************
|
||||
** This file contains code used to dynamically load extensions into
|
||||
** the SQLite library.
|
||||
**
|
||||
** $Id: loadext.c,v 1.57 2008/12/08 18:19:18 drh Exp $
|
||||
*/
|
||||
#ifndef SQLITE_OMIT_LOAD_EXTENSION
|
||||
|
||||
#define SQLITE_CORE 1 /* Disable the API redefinition in sqlite3ext.h */
|
||||
#ifndef SQLITE_CORE
|
||||
#define SQLITE_CORE 1 /* Disable the API redefinition in sqlite3ext.h */
|
||||
#endif
|
||||
#include "sqlite3ext.h"
|
||||
#include "sqliteInt.h"
|
||||
#include "os.h"
|
||||
#include <string.h>
|
||||
#include <ctype.h>
|
||||
|
||||
#ifndef SQLITE_OMIT_LOAD_EXTENSION
|
||||
|
||||
/*
|
||||
** Some API routines are omitted when various features are
|
||||
** excluded from a build of SQLite. Substitute a NULL pointer
|
||||
|
@ -94,6 +98,15 @@
|
|||
# define sqlite3_get_table 0
|
||||
#endif
|
||||
|
||||
#ifdef SQLITE_OMIT_INCRBLOB
|
||||
#define sqlite3_bind_zeroblob 0
|
||||
#define sqlite3_blob_bytes 0
|
||||
#define sqlite3_blob_close 0
|
||||
#define sqlite3_blob_open 0
|
||||
#define sqlite3_blob_read 0
|
||||
#define sqlite3_blob_write 0
|
||||
#endif
|
||||
|
||||
/*
|
||||
** The following structure contains pointers to all SQLite API routines.
|
||||
** A pointer to this structure is passed into extensions when they are
|
||||
|
@ -109,9 +122,13 @@
|
|||
** also check to make sure that the pointer to the function is
|
||||
** not NULL before calling it.
|
||||
*/
|
||||
const sqlite3_api_routines sqlite3_apis = {
|
||||
static const sqlite3_api_routines sqlite3Apis = {
|
||||
sqlite3_aggregate_context,
|
||||
#ifndef SQLITE_OMIT_DEPRECATED
|
||||
sqlite3_aggregate_count,
|
||||
#else
|
||||
0,
|
||||
#endif
|
||||
sqlite3_bind_blob,
|
||||
sqlite3_bind_double,
|
||||
sqlite3_bind_int,
|
||||
|
@ -166,7 +183,11 @@ const sqlite3_api_routines sqlite3_apis = {
|
|||
sqlite3_errmsg,
|
||||
sqlite3_errmsg16,
|
||||
sqlite3_exec,
|
||||
#ifndef SQLITE_OMIT_DEPRECATED
|
||||
sqlite3_expired,
|
||||
#else
|
||||
0,
|
||||
#endif
|
||||
sqlite3_finalize,
|
||||
sqlite3_free,
|
||||
sqlite3_free_table,
|
||||
|
@ -206,10 +227,18 @@ const sqlite3_api_routines sqlite3_apis = {
|
|||
sqlite3_snprintf,
|
||||
sqlite3_step,
|
||||
sqlite3_table_column_metadata,
|
||||
#ifndef SQLITE_OMIT_DEPRECATED
|
||||
sqlite3_thread_cleanup,
|
||||
#else
|
||||
0,
|
||||
#endif
|
||||
sqlite3_total_changes,
|
||||
sqlite3_trace,
|
||||
#ifndef SQLITE_OMIT_DEPRECATED
|
||||
sqlite3_transfer_bindings,
|
||||
#else
|
||||
0,
|
||||
#endif
|
||||
sqlite3_update_hook,
|
||||
sqlite3_user_data,
|
||||
sqlite3_value_blob,
|
||||
|
@ -247,6 +276,60 @@ const sqlite3_api_routines sqlite3_apis = {
|
|||
*/
|
||||
sqlite3_create_module_v2,
|
||||
|
||||
/*
|
||||
** Added for 3.5.0
|
||||
*/
|
||||
sqlite3_bind_zeroblob,
|
||||
sqlite3_blob_bytes,
|
||||
sqlite3_blob_close,
|
||||
sqlite3_blob_open,
|
||||
sqlite3_blob_read,
|
||||
sqlite3_blob_write,
|
||||
sqlite3_create_collation_v2,
|
||||
sqlite3_file_control,
|
||||
sqlite3_memory_highwater,
|
||||
sqlite3_memory_used,
|
||||
#ifdef SQLITE_MUTEX_OMIT
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
#else
|
||||
sqlite3_mutex_alloc,
|
||||
sqlite3_mutex_enter,
|
||||
sqlite3_mutex_free,
|
||||
sqlite3_mutex_leave,
|
||||
sqlite3_mutex_try,
|
||||
#endif
|
||||
sqlite3_open_v2,
|
||||
sqlite3_release_memory,
|
||||
sqlite3_result_error_nomem,
|
||||
sqlite3_result_error_toobig,
|
||||
sqlite3_sleep,
|
||||
sqlite3_soft_heap_limit,
|
||||
sqlite3_vfs_find,
|
||||
sqlite3_vfs_register,
|
||||
sqlite3_vfs_unregister,
|
||||
|
||||
/*
|
||||
** Added for 3.5.8
|
||||
*/
|
||||
sqlite3_threadsafe,
|
||||
sqlite3_result_zeroblob,
|
||||
sqlite3_result_error_code,
|
||||
sqlite3_test_control,
|
||||
sqlite3_randomness,
|
||||
sqlite3_context_db_handle,
|
||||
|
||||
/*
|
||||
** Added for 3.6.0
|
||||
*/
|
||||
sqlite3_extended_result_codes,
|
||||
sqlite3_limit,
|
||||
sqlite3_next_stmt,
|
||||
sqlite3_sql,
|
||||
sqlite3_status,
|
||||
};
|
||||
|
||||
/*
|
||||
|
@ -259,14 +342,15 @@ const sqlite3_api_routines sqlite3_apis = {
|
|||
**
|
||||
** If an error occurs and pzErrMsg is not 0, then fill *pzErrMsg with
|
||||
** error message text. The calling function should free this memory
|
||||
** by calling sqlite3_free().
|
||||
** by calling sqlite3DbFree(db, ).
|
||||
*/
|
||||
int sqlite3_load_extension(
|
||||
static int sqlite3LoadExtension(
|
||||
sqlite3 *db, /* Load the extension into this database connection */
|
||||
const char *zFile, /* Name of the shared library containing extension */
|
||||
const char *zProc, /* Entry point. Use "sqlite3_extension_init" if 0 */
|
||||
char **pzErrMsg /* Put error message here if not 0 */
|
||||
){
|
||||
sqlite3_vfs *pVfs = db->pVfs;
|
||||
void *handle;
|
||||
int (*xInit)(sqlite3*,char**,const sqlite3_api_routines*);
|
||||
char *zErrmsg = 0;
|
||||
|
@ -289,46 +373,66 @@ int sqlite3_load_extension(
|
|||
zProc = "sqlite3_extension_init";
|
||||
}
|
||||
|
||||
handle = sqlite3OsDlopen(zFile);
|
||||
handle = sqlite3OsDlOpen(pVfs, zFile);
|
||||
if( handle==0 ){
|
||||
if( pzErrMsg ){
|
||||
*pzErrMsg = sqlite3_mprintf("unable to open shared library [%s]", zFile);
|
||||
char zErr[256];
|
||||
zErr[sizeof(zErr)-1] = '\0';
|
||||
sqlite3_snprintf(sizeof(zErr)-1, zErr,
|
||||
"unable to open shared library [%s]", zFile);
|
||||
sqlite3OsDlError(pVfs, sizeof(zErr)-1, zErr);
|
||||
*pzErrMsg = sqlite3DbStrDup(0, zErr);
|
||||
}
|
||||
return SQLITE_ERROR;
|
||||
}
|
||||
xInit = (int(*)(sqlite3*,char**,const sqlite3_api_routines*))
|
||||
sqlite3OsDlsym(handle, zProc);
|
||||
sqlite3OsDlSym(pVfs, handle, zProc);
|
||||
if( xInit==0 ){
|
||||
if( pzErrMsg ){
|
||||
*pzErrMsg = sqlite3_mprintf("no entry point [%s] in shared library [%s]",
|
||||
zProc, zFile);
|
||||
char zErr[256];
|
||||
zErr[sizeof(zErr)-1] = '\0';
|
||||
sqlite3_snprintf(sizeof(zErr)-1, zErr,
|
||||
"no entry point [%s] in shared library [%s]", zProc,zFile);
|
||||
sqlite3OsDlError(pVfs, sizeof(zErr)-1, zErr);
|
||||
*pzErrMsg = sqlite3DbStrDup(0, zErr);
|
||||
sqlite3OsDlClose(pVfs, handle);
|
||||
}
|
||||
sqlite3OsDlclose(handle);
|
||||
return SQLITE_ERROR;
|
||||
}else if( xInit(db, &zErrmsg, &sqlite3_apis) ){
|
||||
}else if( xInit(db, &zErrmsg, &sqlite3Apis) ){
|
||||
if( pzErrMsg ){
|
||||
*pzErrMsg = sqlite3_mprintf("error during initialization: %s", zErrmsg);
|
||||
}
|
||||
sqlite3_free(zErrmsg);
|
||||
sqlite3OsDlclose(handle);
|
||||
sqlite3OsDlClose(pVfs, handle);
|
||||
return SQLITE_ERROR;
|
||||
}
|
||||
|
||||
/* Append the new shared library handle to the db->aExtension array. */
|
||||
db->nExtension++;
|
||||
aHandle = sqliteMalloc(sizeof(handle)*db->nExtension);
|
||||
aHandle = sqlite3DbMallocZero(db, sizeof(handle)*(db->nExtension+1));
|
||||
if( aHandle==0 ){
|
||||
return SQLITE_NOMEM;
|
||||
}
|
||||
if( db->nExtension>0 ){
|
||||
memcpy(aHandle, db->aExtension, sizeof(handle)*(db->nExtension-1));
|
||||
memcpy(aHandle, db->aExtension, sizeof(handle)*db->nExtension);
|
||||
}
|
||||
sqliteFree(db->aExtension);
|
||||
sqlite3DbFree(db, db->aExtension);
|
||||
db->aExtension = aHandle;
|
||||
|
||||
db->aExtension[db->nExtension-1] = handle;
|
||||
db->aExtension[db->nExtension++] = handle;
|
||||
return SQLITE_OK;
|
||||
}
|
||||
int sqlite3_load_extension(
|
||||
sqlite3 *db, /* Load the extension into this database connection */
|
||||
const char *zFile, /* Name of the shared library containing extension */
|
||||
const char *zProc, /* Entry point. Use "sqlite3_extension_init" if 0 */
|
||||
char **pzErrMsg /* Put error message here if not 0 */
|
||||
){
|
||||
int rc;
|
||||
sqlite3_mutex_enter(db->mutex);
|
||||
rc = sqlite3LoadExtension(db, zFile, zProc, pzErrMsg);
|
||||
sqlite3_mutex_leave(db->mutex);
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** Call this routine when the database connection is closing in order
|
||||
|
@ -336,10 +440,11 @@ int sqlite3_load_extension(
|
|||
*/
|
||||
void sqlite3CloseExtensions(sqlite3 *db){
|
||||
int i;
|
||||
assert( sqlite3_mutex_held(db->mutex) );
|
||||
for(i=0; i<db->nExtension; i++){
|
||||
sqlite3OsDlclose(db->aExtension[i]);
|
||||
sqlite3OsDlClose(db->pVfs, db->aExtension[i]);
|
||||
}
|
||||
sqliteFree(db->aExtension);
|
||||
sqlite3DbFree(db, db->aExtension);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -347,60 +452,116 @@ void sqlite3CloseExtensions(sqlite3 *db){
|
|||
** default so as not to open security holes in older applications.
|
||||
*/
|
||||
int sqlite3_enable_load_extension(sqlite3 *db, int onoff){
|
||||
sqlite3_mutex_enter(db->mutex);
|
||||
if( onoff ){
|
||||
db->flags |= SQLITE_LoadExtension;
|
||||
}else{
|
||||
db->flags &= ~SQLITE_LoadExtension;
|
||||
}
|
||||
sqlite3_mutex_leave(db->mutex);
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
#endif /* SQLITE_OMIT_LOAD_EXTENSION */
|
||||
|
||||
/*
|
||||
** A list of automatically loaded extensions.
|
||||
**
|
||||
** This list is shared across threads, so be sure to hold the
|
||||
** mutex while accessing or changing it.
|
||||
** The auto-extension code added regardless of whether or not extension
|
||||
** loading is supported. We need a dummy sqlite3Apis pointer for that
|
||||
** code if regular extension loading is not available. This is that
|
||||
** dummy pointer.
|
||||
*/
|
||||
static int nAutoExtension = 0;
|
||||
static void **aAutoExtension = 0;
|
||||
#ifdef SQLITE_OMIT_LOAD_EXTENSION
|
||||
static const sqlite3_api_routines sqlite3Apis = { 0 };
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
** The following object holds the list of automatically loaded
|
||||
** extensions.
|
||||
**
|
||||
** This list is shared across threads. The SQLITE_MUTEX_STATIC_MASTER
|
||||
** mutex must be held while accessing this list.
|
||||
*/
|
||||
typedef struct sqlite3AutoExtList sqlite3AutoExtList;
|
||||
static SQLITE_WSD struct sqlite3AutoExtList {
|
||||
int nExt; /* Number of entries in aExt[] */
|
||||
void (**aExt)(void); /* Pointers to the extension init functions */
|
||||
} sqlite3Autoext = { 0, 0 };
|
||||
|
||||
/* The "wsdAutoext" macro will resolve to the autoextension
|
||||
** state vector. If writable static data is unsupported on the target,
|
||||
** we have to locate the state vector at run-time. In the more common
|
||||
** case where writable static data is supported, wsdStat can refer directly
|
||||
** to the "sqlite3Autoext" state vector declared above.
|
||||
*/
|
||||
#ifdef SQLITE_OMIT_WSD
|
||||
# define wsdAutoextInit \
|
||||
sqlite3AutoExtList *x = &GLOBAL(sqlite3AutoExtList,sqlite3Autoext)
|
||||
# define wsdAutoext x[0]
|
||||
#else
|
||||
# define wsdAutoextInit
|
||||
# define wsdAutoext sqlite3Autoext
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
** Register a statically linked extension that is automatically
|
||||
** loaded by every new database connection.
|
||||
*/
|
||||
int sqlite3_auto_extension(void *xInit){
|
||||
int i;
|
||||
int sqlite3_auto_extension(void (*xInit)(void)){
|
||||
int rc = SQLITE_OK;
|
||||
sqlite3OsEnterMutex();
|
||||
for(i=0; i<nAutoExtension; i++){
|
||||
if( aAutoExtension[i]==xInit ) break;
|
||||
#ifndef SQLITE_OMIT_AUTOINIT
|
||||
rc = sqlite3_initialize();
|
||||
if( rc ){
|
||||
return rc;
|
||||
}else
|
||||
#endif
|
||||
{
|
||||
int i;
|
||||
#if SQLITE_THREADSAFE
|
||||
sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
|
||||
#endif
|
||||
wsdAutoextInit;
|
||||
sqlite3_mutex_enter(mutex);
|
||||
for(i=0; i<wsdAutoext.nExt; i++){
|
||||
if( wsdAutoext.aExt[i]==xInit ) break;
|
||||
}
|
||||
if( i==nAutoExtension ){
|
||||
nAutoExtension++;
|
||||
aAutoExtension = sqlite3Realloc( aAutoExtension,
|
||||
nAutoExtension*sizeof(aAutoExtension[0]) );
|
||||
if( aAutoExtension==0 ){
|
||||
nAutoExtension = 0;
|
||||
if( i==wsdAutoext.nExt ){
|
||||
int nByte = (wsdAutoext.nExt+1)*sizeof(wsdAutoext.aExt[0]);
|
||||
void (**aNew)(void);
|
||||
aNew = sqlite3_realloc(wsdAutoext.aExt, nByte);
|
||||
if( aNew==0 ){
|
||||
rc = SQLITE_NOMEM;
|
||||
}else{
|
||||
aAutoExtension[nAutoExtension-1] = xInit;
|
||||
wsdAutoext.aExt = aNew;
|
||||
wsdAutoext.aExt[wsdAutoext.nExt] = xInit;
|
||||
wsdAutoext.nExt++;
|
||||
}
|
||||
}
|
||||
sqlite3OsLeaveMutex();
|
||||
sqlite3_mutex_leave(mutex);
|
||||
assert( (rc&0xff)==rc );
|
||||
return rc;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Reset the automatic extension loading mechanism.
|
||||
*/
|
||||
void sqlite3_reset_auto_extension(void){
|
||||
sqlite3OsEnterMutex();
|
||||
sqliteFree(aAutoExtension);
|
||||
aAutoExtension = 0;
|
||||
nAutoExtension = 0;
|
||||
sqlite3OsLeaveMutex();
|
||||
#ifndef SQLITE_OMIT_AUTOINIT
|
||||
if( sqlite3_initialize()==SQLITE_OK )
|
||||
#endif
|
||||
{
|
||||
#if SQLITE_THREADSAFE
|
||||
sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
|
||||
#endif
|
||||
wsdAutoextInit;
|
||||
sqlite3_mutex_enter(mutex);
|
||||
sqlite3_free(wsdAutoext.aExt);
|
||||
wsdAutoext.aExt = 0;
|
||||
wsdAutoext.nExt = 0;
|
||||
sqlite3_mutex_leave(mutex);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -412,29 +573,32 @@ int sqlite3AutoLoadExtensions(sqlite3 *db){
|
|||
int rc = SQLITE_OK;
|
||||
int (*xInit)(sqlite3*,char**,const sqlite3_api_routines*);
|
||||
|
||||
if( nAutoExtension==0 ){
|
||||
wsdAutoextInit;
|
||||
if( wsdAutoext.nExt==0 ){
|
||||
/* Common case: early out without every having to acquire a mutex */
|
||||
return SQLITE_OK;
|
||||
}
|
||||
for(i=0; go; i++){
|
||||
char *zErrmsg = 0;
|
||||
sqlite3OsEnterMutex();
|
||||
if( i>=nAutoExtension ){
|
||||
#if SQLITE_THREADSAFE
|
||||
sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
|
||||
#endif
|
||||
sqlite3_mutex_enter(mutex);
|
||||
if( i>=wsdAutoext.nExt ){
|
||||
xInit = 0;
|
||||
go = 0;
|
||||
}else{
|
||||
xInit = (int(*)(sqlite3*,char**,const sqlite3_api_routines*))
|
||||
aAutoExtension[i];
|
||||
wsdAutoext.aExt[i];
|
||||
}
|
||||
sqlite3OsLeaveMutex();
|
||||
if( xInit && xInit(db, &zErrmsg, &sqlite3_apis) ){
|
||||
sqlite3_mutex_leave(mutex);
|
||||
if( xInit && xInit(db, &zErrmsg, &sqlite3Apis) ){
|
||||
sqlite3Error(db, SQLITE_ERROR,
|
||||
"automatic extension loading failed: %s", zErrmsg);
|
||||
go = 0;
|
||||
rc = SQLITE_ERROR;
|
||||
sqlite3_free(zErrmsg);
|
||||
}
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
|
||||
#endif /* SQLITE_OMIT_LOAD_EXTENSION */
|
||||
|
|
61
mem0.c
Normal file
61
mem0.c
Normal file
|
@ -0,0 +1,61 @@
|
|||
/*
|
||||
** 2008 October 28
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
**
|
||||
** This file contains a no-op memory allocation drivers for use when
|
||||
** SQLITE_ZERO_MALLOC is defined. The allocation drivers implemented
|
||||
** here always fail. SQLite will not operate with these drivers. These
|
||||
** are merely placeholders. Real drivers must be substituted using
|
||||
** sqlite3_config() before SQLite will operate.
|
||||
**
|
||||
** $Id: mem0.c,v 1.1 2008/10/28 18:58:20 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
/*
|
||||
** This version of the memory allocator is the default. It is
|
||||
** used when no other memory allocator is specified using compile-time
|
||||
** macros.
|
||||
*/
|
||||
#ifdef SQLITE_ZERO_MALLOC
|
||||
|
||||
/*
|
||||
** No-op versions of all memory allocation routines
|
||||
*/
|
||||
static void *sqlite3MemMalloc(int nByte){ return 0; }
|
||||
static void sqlite3MemFree(void *pPrior){ return; }
|
||||
static void *sqlite3MemRealloc(void *pPrior, int nByte){ return 0; }
|
||||
static int sqlite3MemSize(void *pPrior){ return 0; }
|
||||
static int sqlite3MemRoundup(int n){ return n; }
|
||||
static int sqlite3MemInit(void *NotUsed){ return SQLITE_OK; }
|
||||
static void sqlite3MemShutdown(void *NotUsed){ return; }
|
||||
|
||||
/*
|
||||
** This routine is the only routine in this file with external linkage.
|
||||
**
|
||||
** Populate the low-level memory allocation function pointers in
|
||||
** sqlite3GlobalConfig.m with pointers to the routines in this file.
|
||||
*/
|
||||
void sqlite3MemSetDefault(void){
|
||||
static const sqlite3_mem_methods defaultMethods = {
|
||||
sqlite3MemMalloc,
|
||||
sqlite3MemFree,
|
||||
sqlite3MemRealloc,
|
||||
sqlite3MemSize,
|
||||
sqlite3MemRoundup,
|
||||
sqlite3MemInit,
|
||||
sqlite3MemShutdown,
|
||||
0
|
||||
};
|
||||
sqlite3_config(SQLITE_CONFIG_MALLOC, &defaultMethods);
|
||||
}
|
||||
|
||||
#endif /* SQLITE_ZERO_MALLOC */
|
145
mem1.c
Normal file
145
mem1.c
Normal file
|
@ -0,0 +1,145 @@
|
|||
/*
|
||||
** 2007 August 14
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
**
|
||||
** This file contains low-level memory allocation drivers for when
|
||||
** SQLite will use the standard C-library malloc/realloc/free interface
|
||||
** to obtain the memory it needs.
|
||||
**
|
||||
** This file contains implementations of the low-level memory allocation
|
||||
** routines specified in the sqlite3_mem_methods object.
|
||||
**
|
||||
** $Id: mem1.c,v 1.29 2008/12/10 21:19:57 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
/*
|
||||
** This version of the memory allocator is the default. It is
|
||||
** used when no other memory allocator is specified using compile-time
|
||||
** macros.
|
||||
*/
|
||||
#ifdef SQLITE_SYSTEM_MALLOC
|
||||
|
||||
/*
|
||||
** Like malloc(), but remember the size of the allocation
|
||||
** so that we can find it later using sqlite3MemSize().
|
||||
**
|
||||
** For this low-level routine, we are guaranteed that nByte>0 because
|
||||
** cases of nByte<=0 will be intercepted and dealt with by higher level
|
||||
** routines.
|
||||
*/
|
||||
static void *sqlite3MemMalloc(int nByte){
|
||||
sqlite3_int64 *p;
|
||||
assert( nByte>0 );
|
||||
nByte = (nByte+7)&~7;
|
||||
p = malloc( nByte+8 );
|
||||
if( p ){
|
||||
p[0] = nByte;
|
||||
p++;
|
||||
}
|
||||
return (void *)p;
|
||||
}
|
||||
|
||||
/*
|
||||
** Like free() but works for allocations obtained from sqlite3MemMalloc()
|
||||
** or sqlite3MemRealloc().
|
||||
**
|
||||
** For this low-level routine, we already know that pPrior!=0 since
|
||||
** cases where pPrior==0 will have been intecepted and dealt with
|
||||
** by higher-level routines.
|
||||
*/
|
||||
static void sqlite3MemFree(void *pPrior){
|
||||
sqlite3_int64 *p = (sqlite3_int64*)pPrior;
|
||||
assert( pPrior!=0 );
|
||||
p--;
|
||||
free(p);
|
||||
}
|
||||
|
||||
/*
|
||||
** Like realloc(). Resize an allocation previously obtained from
|
||||
** sqlite3MemMalloc().
|
||||
**
|
||||
** For this low-level interface, we know that pPrior!=0. Cases where
|
||||
** pPrior==0 while have been intercepted by higher-level routine and
|
||||
** redirected to xMalloc. Similarly, we know that nByte>0 becauses
|
||||
** cases where nByte<=0 will have been intercepted by higher-level
|
||||
** routines and redirected to xFree.
|
||||
*/
|
||||
static void *sqlite3MemRealloc(void *pPrior, int nByte){
|
||||
sqlite3_int64 *p = (sqlite3_int64*)pPrior;
|
||||
assert( pPrior!=0 && nByte>0 );
|
||||
nByte = (nByte+7)&~7;
|
||||
p = (sqlite3_int64*)pPrior;
|
||||
p--;
|
||||
p = realloc(p, nByte+8 );
|
||||
if( p ){
|
||||
p[0] = nByte;
|
||||
p++;
|
||||
}
|
||||
return (void*)p;
|
||||
}
|
||||
|
||||
/*
|
||||
** Report the allocated size of a prior return from xMalloc()
|
||||
** or xRealloc().
|
||||
*/
|
||||
static int sqlite3MemSize(void *pPrior){
|
||||
sqlite3_int64 *p;
|
||||
if( pPrior==0 ) return 0;
|
||||
p = (sqlite3_int64*)pPrior;
|
||||
p--;
|
||||
return (int)p[0];
|
||||
}
|
||||
|
||||
/*
|
||||
** Round up a request size to the next valid allocation size.
|
||||
*/
|
||||
static int sqlite3MemRoundup(int n){
|
||||
return (n+7) & ~7;
|
||||
}
|
||||
|
||||
/*
|
||||
** Initialize this module.
|
||||
*/
|
||||
static int sqlite3MemInit(void *NotUsed){
|
||||
UNUSED_PARAMETER(NotUsed);
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Deinitialize this module.
|
||||
*/
|
||||
static void sqlite3MemShutdown(void *NotUsed){
|
||||
UNUSED_PARAMETER(NotUsed);
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
** This routine is the only routine in this file with external linkage.
|
||||
**
|
||||
** Populate the low-level memory allocation function pointers in
|
||||
** sqlite3GlobalConfig.m with pointers to the routines in this file.
|
||||
*/
|
||||
void sqlite3MemSetDefault(void){
|
||||
static const sqlite3_mem_methods defaultMethods = {
|
||||
sqlite3MemMalloc,
|
||||
sqlite3MemFree,
|
||||
sqlite3MemRealloc,
|
||||
sqlite3MemSize,
|
||||
sqlite3MemRoundup,
|
||||
sqlite3MemInit,
|
||||
sqlite3MemShutdown,
|
||||
0
|
||||
};
|
||||
sqlite3_config(SQLITE_CONFIG_MALLOC, &defaultMethods);
|
||||
}
|
||||
|
||||
#endif /* SQLITE_SYSTEM_MALLOC */
|
440
mem2.c
Normal file
440
mem2.c
Normal file
|
@ -0,0 +1,440 @@
|
|||
/*
|
||||
** 2007 August 15
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
**
|
||||
** This file contains low-level memory allocation drivers for when
|
||||
** SQLite will use the standard C-library malloc/realloc/free interface
|
||||
** to obtain the memory it needs while adding lots of additional debugging
|
||||
** information to each allocation in order to help detect and fix memory
|
||||
** leaks and memory usage errors.
|
||||
**
|
||||
** This file contains implementations of the low-level memory allocation
|
||||
** routines specified in the sqlite3_mem_methods object.
|
||||
**
|
||||
** $Id: mem2.c,v 1.42 2008/12/10 19:26:24 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
/*
|
||||
** This version of the memory allocator is used only if the
|
||||
** SQLITE_MEMDEBUG macro is defined
|
||||
*/
|
||||
#ifdef SQLITE_MEMDEBUG
|
||||
|
||||
/*
|
||||
** The backtrace functionality is only available with GLIBC
|
||||
*/
|
||||
#ifdef __GLIBC__
|
||||
extern int backtrace(void**,int);
|
||||
extern void backtrace_symbols_fd(void*const*,int,int);
|
||||
#else
|
||||
# define backtrace(A,B) 1
|
||||
# define backtrace_symbols_fd(A,B,C)
|
||||
#endif
|
||||
#include <stdio.h>
|
||||
|
||||
/*
|
||||
** Each memory allocation looks like this:
|
||||
**
|
||||
** ------------------------------------------------------------------------
|
||||
** | Title | backtrace pointers | MemBlockHdr | allocation | EndGuard |
|
||||
** ------------------------------------------------------------------------
|
||||
**
|
||||
** The application code sees only a pointer to the allocation. We have
|
||||
** to back up from the allocation pointer to find the MemBlockHdr. The
|
||||
** MemBlockHdr tells us the size of the allocation and the number of
|
||||
** backtrace pointers. There is also a guard word at the end of the
|
||||
** MemBlockHdr.
|
||||
*/
|
||||
struct MemBlockHdr {
|
||||
i64 iSize; /* Size of this allocation */
|
||||
struct MemBlockHdr *pNext, *pPrev; /* Linked list of all unfreed memory */
|
||||
char nBacktrace; /* Number of backtraces on this alloc */
|
||||
char nBacktraceSlots; /* Available backtrace slots */
|
||||
short nTitle; /* Bytes of title; includes '\0' */
|
||||
int iForeGuard; /* Guard word for sanity */
|
||||
};
|
||||
|
||||
/*
|
||||
** Guard words
|
||||
*/
|
||||
#define FOREGUARD 0x80F5E153
|
||||
#define REARGUARD 0xE4676B53
|
||||
|
||||
/*
|
||||
** Number of malloc size increments to track.
|
||||
*/
|
||||
#define NCSIZE 1000
|
||||
|
||||
/*
|
||||
** All of the static variables used by this module are collected
|
||||
** into a single structure named "mem". This is to keep the
|
||||
** static variables organized and to reduce namespace pollution
|
||||
** when this module is combined with other in the amalgamation.
|
||||
*/
|
||||
static struct {
|
||||
|
||||
/*
|
||||
** Mutex to control access to the memory allocation subsystem.
|
||||
*/
|
||||
sqlite3_mutex *mutex;
|
||||
|
||||
/*
|
||||
** Head and tail of a linked list of all outstanding allocations
|
||||
*/
|
||||
struct MemBlockHdr *pFirst;
|
||||
struct MemBlockHdr *pLast;
|
||||
|
||||
/*
|
||||
** The number of levels of backtrace to save in new allocations.
|
||||
*/
|
||||
int nBacktrace;
|
||||
void (*xBacktrace)(int, int, void **);
|
||||
|
||||
/*
|
||||
** Title text to insert in front of each block
|
||||
*/
|
||||
int nTitle; /* Bytes of zTitle to save. Includes '\0' and padding */
|
||||
char zTitle[100]; /* The title text */
|
||||
|
||||
/*
|
||||
** sqlite3MallocDisallow() increments the following counter.
|
||||
** sqlite3MallocAllow() decrements it.
|
||||
*/
|
||||
int disallow; /* Do not allow memory allocation */
|
||||
|
||||
/*
|
||||
** Gather statistics on the sizes of memory allocations.
|
||||
** nAlloc[i] is the number of allocation attempts of i*8
|
||||
** bytes. i==NCSIZE is the number of allocation attempts for
|
||||
** sizes more than NCSIZE*8 bytes.
|
||||
*/
|
||||
int nAlloc[NCSIZE]; /* Total number of allocations */
|
||||
int nCurrent[NCSIZE]; /* Current number of allocations */
|
||||
int mxCurrent[NCSIZE]; /* Highwater mark for nCurrent */
|
||||
|
||||
} mem;
|
||||
|
||||
|
||||
/*
|
||||
** Adjust memory usage statistics
|
||||
*/
|
||||
static void adjustStats(int iSize, int increment){
|
||||
int i = ((iSize+7)&~7)/8;
|
||||
if( i>NCSIZE-1 ){
|
||||
i = NCSIZE - 1;
|
||||
}
|
||||
if( increment>0 ){
|
||||
mem.nAlloc[i]++;
|
||||
mem.nCurrent[i]++;
|
||||
if( mem.nCurrent[i]>mem.mxCurrent[i] ){
|
||||
mem.mxCurrent[i] = mem.nCurrent[i];
|
||||
}
|
||||
}else{
|
||||
mem.nCurrent[i]--;
|
||||
assert( mem.nCurrent[i]>=0 );
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Given an allocation, find the MemBlockHdr for that allocation.
|
||||
**
|
||||
** This routine checks the guards at either end of the allocation and
|
||||
** if they are incorrect it asserts.
|
||||
*/
|
||||
static struct MemBlockHdr *sqlite3MemsysGetHeader(void *pAllocation){
|
||||
struct MemBlockHdr *p;
|
||||
int *pInt;
|
||||
u8 *pU8;
|
||||
int nReserve;
|
||||
|
||||
p = (struct MemBlockHdr*)pAllocation;
|
||||
p--;
|
||||
assert( p->iForeGuard==(int)FOREGUARD );
|
||||
nReserve = (p->iSize+7)&~7;
|
||||
pInt = (int*)pAllocation;
|
||||
pU8 = (u8*)pAllocation;
|
||||
assert( pInt[nReserve/sizeof(int)]==(int)REARGUARD );
|
||||
assert( (nReserve-0)<=p->iSize || pU8[nReserve-1]==0x65 );
|
||||
assert( (nReserve-1)<=p->iSize || pU8[nReserve-2]==0x65 );
|
||||
assert( (nReserve-2)<=p->iSize || pU8[nReserve-3]==0x65 );
|
||||
return p;
|
||||
}
|
||||
|
||||
/*
|
||||
** Return the number of bytes currently allocated at address p.
|
||||
*/
|
||||
static int sqlite3MemSize(void *p){
|
||||
struct MemBlockHdr *pHdr;
|
||||
if( !p ){
|
||||
return 0;
|
||||
}
|
||||
pHdr = sqlite3MemsysGetHeader(p);
|
||||
return pHdr->iSize;
|
||||
}
|
||||
|
||||
/*
|
||||
** Initialize the memory allocation subsystem.
|
||||
*/
|
||||
static int sqlite3MemInit(void *NotUsed){
|
||||
UNUSED_PARAMETER(NotUsed);
|
||||
if( !sqlite3GlobalConfig.bMemstat ){
|
||||
/* If memory status is enabled, then the malloc.c wrapper will already
|
||||
** hold the STATIC_MEM mutex when the routines here are invoked. */
|
||||
mem.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
|
||||
}
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Deinitialize the memory allocation subsystem.
|
||||
*/
|
||||
static void sqlite3MemShutdown(void *NotUsed){
|
||||
UNUSED_PARAMETER(NotUsed);
|
||||
mem.mutex = 0;
|
||||
}
|
||||
|
||||
/*
|
||||
** Round up a request size to the next valid allocation size.
|
||||
*/
|
||||
static int sqlite3MemRoundup(int n){
|
||||
return (n+7) & ~7;
|
||||
}
|
||||
|
||||
/*
|
||||
** Allocate nByte bytes of memory.
|
||||
*/
|
||||
static void *sqlite3MemMalloc(int nByte){
|
||||
struct MemBlockHdr *pHdr;
|
||||
void **pBt;
|
||||
char *z;
|
||||
int *pInt;
|
||||
void *p = 0;
|
||||
int totalSize;
|
||||
int nReserve;
|
||||
sqlite3_mutex_enter(mem.mutex);
|
||||
assert( mem.disallow==0 );
|
||||
nReserve = (nByte+7)&~7;
|
||||
totalSize = nReserve + sizeof(*pHdr) + sizeof(int) +
|
||||
mem.nBacktrace*sizeof(void*) + mem.nTitle;
|
||||
p = malloc(totalSize);
|
||||
if( p ){
|
||||
z = p;
|
||||
pBt = (void**)&z[mem.nTitle];
|
||||
pHdr = (struct MemBlockHdr*)&pBt[mem.nBacktrace];
|
||||
pHdr->pNext = 0;
|
||||
pHdr->pPrev = mem.pLast;
|
||||
if( mem.pLast ){
|
||||
mem.pLast->pNext = pHdr;
|
||||
}else{
|
||||
mem.pFirst = pHdr;
|
||||
}
|
||||
mem.pLast = pHdr;
|
||||
pHdr->iForeGuard = FOREGUARD;
|
||||
pHdr->nBacktraceSlots = mem.nBacktrace;
|
||||
pHdr->nTitle = mem.nTitle;
|
||||
if( mem.nBacktrace ){
|
||||
void *aAddr[40];
|
||||
pHdr->nBacktrace = backtrace(aAddr, mem.nBacktrace+1)-1;
|
||||
memcpy(pBt, &aAddr[1], pHdr->nBacktrace*sizeof(void*));
|
||||
if( mem.xBacktrace ){
|
||||
mem.xBacktrace(nByte, pHdr->nBacktrace-1, &aAddr[1]);
|
||||
}
|
||||
}else{
|
||||
pHdr->nBacktrace = 0;
|
||||
}
|
||||
if( mem.nTitle ){
|
||||
memcpy(z, mem.zTitle, mem.nTitle);
|
||||
}
|
||||
pHdr->iSize = nByte;
|
||||
adjustStats(nByte, +1);
|
||||
pInt = (int*)&pHdr[1];
|
||||
pInt[nReserve/sizeof(int)] = REARGUARD;
|
||||
memset(pInt, 0x65, nReserve);
|
||||
p = (void*)pInt;
|
||||
}
|
||||
sqlite3_mutex_leave(mem.mutex);
|
||||
return p;
|
||||
}
|
||||
|
||||
/*
|
||||
** Free memory.
|
||||
*/
|
||||
static void sqlite3MemFree(void *pPrior){
|
||||
struct MemBlockHdr *pHdr;
|
||||
void **pBt;
|
||||
char *z;
|
||||
assert( sqlite3GlobalConfig.bMemstat || mem.mutex!=0 );
|
||||
pHdr = sqlite3MemsysGetHeader(pPrior);
|
||||
pBt = (void**)pHdr;
|
||||
pBt -= pHdr->nBacktraceSlots;
|
||||
sqlite3_mutex_enter(mem.mutex);
|
||||
if( pHdr->pPrev ){
|
||||
assert( pHdr->pPrev->pNext==pHdr );
|
||||
pHdr->pPrev->pNext = pHdr->pNext;
|
||||
}else{
|
||||
assert( mem.pFirst==pHdr );
|
||||
mem.pFirst = pHdr->pNext;
|
||||
}
|
||||
if( pHdr->pNext ){
|
||||
assert( pHdr->pNext->pPrev==pHdr );
|
||||
pHdr->pNext->pPrev = pHdr->pPrev;
|
||||
}else{
|
||||
assert( mem.pLast==pHdr );
|
||||
mem.pLast = pHdr->pPrev;
|
||||
}
|
||||
z = (char*)pBt;
|
||||
z -= pHdr->nTitle;
|
||||
adjustStats(pHdr->iSize, -1);
|
||||
memset(z, 0x2b, sizeof(void*)*pHdr->nBacktraceSlots + sizeof(*pHdr) +
|
||||
pHdr->iSize + sizeof(int) + pHdr->nTitle);
|
||||
free(z);
|
||||
sqlite3_mutex_leave(mem.mutex);
|
||||
}
|
||||
|
||||
/*
|
||||
** Change the size of an existing memory allocation.
|
||||
**
|
||||
** For this debugging implementation, we *always* make a copy of the
|
||||
** allocation into a new place in memory. In this way, if the
|
||||
** higher level code is using pointer to the old allocation, it is
|
||||
** much more likely to break and we are much more liking to find
|
||||
** the error.
|
||||
*/
|
||||
static void *sqlite3MemRealloc(void *pPrior, int nByte){
|
||||
struct MemBlockHdr *pOldHdr;
|
||||
void *pNew;
|
||||
assert( mem.disallow==0 );
|
||||
pOldHdr = sqlite3MemsysGetHeader(pPrior);
|
||||
pNew = sqlite3MemMalloc(nByte);
|
||||
if( pNew ){
|
||||
memcpy(pNew, pPrior, nByte<pOldHdr->iSize ? nByte : pOldHdr->iSize);
|
||||
if( nByte>pOldHdr->iSize ){
|
||||
memset(&((char*)pNew)[pOldHdr->iSize], 0x2b, nByte - pOldHdr->iSize);
|
||||
}
|
||||
sqlite3MemFree(pPrior);
|
||||
}
|
||||
return pNew;
|
||||
}
|
||||
|
||||
/*
|
||||
** Populate the low-level memory allocation function pointers in
|
||||
** sqlite3GlobalConfig.m with pointers to the routines in this file.
|
||||
*/
|
||||
void sqlite3MemSetDefault(void){
|
||||
static const sqlite3_mem_methods defaultMethods = {
|
||||
sqlite3MemMalloc,
|
||||
sqlite3MemFree,
|
||||
sqlite3MemRealloc,
|
||||
sqlite3MemSize,
|
||||
sqlite3MemRoundup,
|
||||
sqlite3MemInit,
|
||||
sqlite3MemShutdown,
|
||||
0
|
||||
};
|
||||
sqlite3_config(SQLITE_CONFIG_MALLOC, &defaultMethods);
|
||||
}
|
||||
|
||||
/*
|
||||
** Set the number of backtrace levels kept for each allocation.
|
||||
** A value of zero turns off backtracing. The number is always rounded
|
||||
** up to a multiple of 2.
|
||||
*/
|
||||
void sqlite3MemdebugBacktrace(int depth){
|
||||
if( depth<0 ){ depth = 0; }
|
||||
if( depth>20 ){ depth = 20; }
|
||||
depth = (depth+1)&0xfe;
|
||||
mem.nBacktrace = depth;
|
||||
}
|
||||
|
||||
void sqlite3MemdebugBacktraceCallback(void (*xBacktrace)(int, int, void **)){
|
||||
mem.xBacktrace = xBacktrace;
|
||||
}
|
||||
|
||||
/*
|
||||
** Set the title string for subsequent allocations.
|
||||
*/
|
||||
void sqlite3MemdebugSettitle(const char *zTitle){
|
||||
unsigned int n = sqlite3Strlen30(zTitle) + 1;
|
||||
sqlite3_mutex_enter(mem.mutex);
|
||||
if( n>=sizeof(mem.zTitle) ) n = sizeof(mem.zTitle)-1;
|
||||
memcpy(mem.zTitle, zTitle, n);
|
||||
mem.zTitle[n] = 0;
|
||||
mem.nTitle = (n+7)&~7;
|
||||
sqlite3_mutex_leave(mem.mutex);
|
||||
}
|
||||
|
||||
void sqlite3MemdebugSync(){
|
||||
struct MemBlockHdr *pHdr;
|
||||
for(pHdr=mem.pFirst; pHdr; pHdr=pHdr->pNext){
|
||||
void **pBt = (void**)pHdr;
|
||||
pBt -= pHdr->nBacktraceSlots;
|
||||
mem.xBacktrace(pHdr->iSize, pHdr->nBacktrace-1, &pBt[1]);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Open the file indicated and write a log of all unfreed memory
|
||||
** allocations into that log.
|
||||
*/
|
||||
void sqlite3MemdebugDump(const char *zFilename){
|
||||
FILE *out;
|
||||
struct MemBlockHdr *pHdr;
|
||||
void **pBt;
|
||||
int i;
|
||||
out = fopen(zFilename, "w");
|
||||
if( out==0 ){
|
||||
fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
|
||||
zFilename);
|
||||
return;
|
||||
}
|
||||
for(pHdr=mem.pFirst; pHdr; pHdr=pHdr->pNext){
|
||||
char *z = (char*)pHdr;
|
||||
z -= pHdr->nBacktraceSlots*sizeof(void*) + pHdr->nTitle;
|
||||
fprintf(out, "**** %lld bytes at %p from %s ****\n",
|
||||
pHdr->iSize, &pHdr[1], pHdr->nTitle ? z : "???");
|
||||
if( pHdr->nBacktrace ){
|
||||
fflush(out);
|
||||
pBt = (void**)pHdr;
|
||||
pBt -= pHdr->nBacktraceSlots;
|
||||
backtrace_symbols_fd(pBt, pHdr->nBacktrace, fileno(out));
|
||||
fprintf(out, "\n");
|
||||
}
|
||||
}
|
||||
fprintf(out, "COUNTS:\n");
|
||||
for(i=0; i<NCSIZE-1; i++){
|
||||
if( mem.nAlloc[i] ){
|
||||
fprintf(out, " %5d: %10d %10d %10d\n",
|
||||
i*8, mem.nAlloc[i], mem.nCurrent[i], mem.mxCurrent[i]);
|
||||
}
|
||||
}
|
||||
if( mem.nAlloc[NCSIZE-1] ){
|
||||
fprintf(out, " %5d: %10d %10d %10d\n",
|
||||
NCSIZE*8-8, mem.nAlloc[NCSIZE-1],
|
||||
mem.nCurrent[NCSIZE-1], mem.mxCurrent[NCSIZE-1]);
|
||||
}
|
||||
fclose(out);
|
||||
}
|
||||
|
||||
/*
|
||||
** Return the number of times sqlite3MemMalloc() has been called.
|
||||
*/
|
||||
int sqlite3MemdebugMallocCount(){
|
||||
int i;
|
||||
int nTotal = 0;
|
||||
for(i=0; i<NCSIZE; i++){
|
||||
nTotal += mem.nAlloc[i];
|
||||
}
|
||||
return nTotal;
|
||||
}
|
||||
|
||||
|
||||
#endif /* SQLITE_MEMDEBUG */
|
688
mem3.c
Normal file
688
mem3.c
Normal file
|
@ -0,0 +1,688 @@
|
|||
/*
|
||||
** 2007 October 14
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This file contains the C functions that implement a memory
|
||||
** allocation subsystem for use by SQLite.
|
||||
**
|
||||
** This version of the memory allocation subsystem omits all
|
||||
** use of malloc(). The SQLite user supplies a block of memory
|
||||
** before calling sqlite3_initialize() from which allocations
|
||||
** are made and returned by the xMalloc() and xRealloc()
|
||||
** implementations. Once sqlite3_initialize() has been called,
|
||||
** the amount of memory available to SQLite is fixed and cannot
|
||||
** be changed.
|
||||
**
|
||||
** This version of the memory allocation subsystem is included
|
||||
** in the build only if SQLITE_ENABLE_MEMSYS3 is defined.
|
||||
**
|
||||
** $Id: mem3.c,v 1.25 2008/11/19 16:52:44 danielk1977 Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
/*
|
||||
** This version of the memory allocator is only built into the library
|
||||
** SQLITE_ENABLE_MEMSYS3 is defined. Defining this symbol does not
|
||||
** mean that the library will use a memory-pool by default, just that
|
||||
** it is available. The mempool allocator is activated by calling
|
||||
** sqlite3_config().
|
||||
*/
|
||||
#ifdef SQLITE_ENABLE_MEMSYS3
|
||||
|
||||
/*
|
||||
** Maximum size (in Mem3Blocks) of a "small" chunk.
|
||||
*/
|
||||
#define MX_SMALL 10
|
||||
|
||||
|
||||
/*
|
||||
** Number of freelist hash slots
|
||||
*/
|
||||
#define N_HASH 61
|
||||
|
||||
/*
|
||||
** A memory allocation (also called a "chunk") consists of two or
|
||||
** more blocks where each block is 8 bytes. The first 8 bytes are
|
||||
** a header that is not returned to the user.
|
||||
**
|
||||
** A chunk is two or more blocks that is either checked out or
|
||||
** free. The first block has format u.hdr. u.hdr.size4x is 4 times the
|
||||
** size of the allocation in blocks if the allocation is free.
|
||||
** The u.hdr.size4x&1 bit is true if the chunk is checked out and
|
||||
** false if the chunk is on the freelist. The u.hdr.size4x&2 bit
|
||||
** is true if the previous chunk is checked out and false if the
|
||||
** previous chunk is free. The u.hdr.prevSize field is the size of
|
||||
** the previous chunk in blocks if the previous chunk is on the
|
||||
** freelist. If the previous chunk is checked out, then
|
||||
** u.hdr.prevSize can be part of the data for that chunk and should
|
||||
** not be read or written.
|
||||
**
|
||||
** We often identify a chunk by its index in mem3.aPool[]. When
|
||||
** this is done, the chunk index refers to the second block of
|
||||
** the chunk. In this way, the first chunk has an index of 1.
|
||||
** A chunk index of 0 means "no such chunk" and is the equivalent
|
||||
** of a NULL pointer.
|
||||
**
|
||||
** The second block of free chunks is of the form u.list. The
|
||||
** two fields form a double-linked list of chunks of related sizes.
|
||||
** Pointers to the head of the list are stored in mem3.aiSmall[]
|
||||
** for smaller chunks and mem3.aiHash[] for larger chunks.
|
||||
**
|
||||
** The second block of a chunk is user data if the chunk is checked
|
||||
** out. If a chunk is checked out, the user data may extend into
|
||||
** the u.hdr.prevSize value of the following chunk.
|
||||
*/
|
||||
typedef struct Mem3Block Mem3Block;
|
||||
struct Mem3Block {
|
||||
union {
|
||||
struct {
|
||||
u32 prevSize; /* Size of previous chunk in Mem3Block elements */
|
||||
u32 size4x; /* 4x the size of current chunk in Mem3Block elements */
|
||||
} hdr;
|
||||
struct {
|
||||
u32 next; /* Index in mem3.aPool[] of next free chunk */
|
||||
u32 prev; /* Index in mem3.aPool[] of previous free chunk */
|
||||
} list;
|
||||
} u;
|
||||
};
|
||||
|
||||
/*
|
||||
** All of the static variables used by this module are collected
|
||||
** into a single structure named "mem3". This is to keep the
|
||||
** static variables organized and to reduce namespace pollution
|
||||
** when this module is combined with other in the amalgamation.
|
||||
*/
|
||||
static SQLITE_WSD struct Mem3Global {
|
||||
/*
|
||||
** Memory available for allocation. nPool is the size of the array
|
||||
** (in Mem3Blocks) pointed to by aPool less 2.
|
||||
*/
|
||||
u32 nPool;
|
||||
Mem3Block *aPool;
|
||||
|
||||
/*
|
||||
** True if we are evaluating an out-of-memory callback.
|
||||
*/
|
||||
int alarmBusy;
|
||||
|
||||
/*
|
||||
** Mutex to control access to the memory allocation subsystem.
|
||||
*/
|
||||
sqlite3_mutex *mutex;
|
||||
|
||||
/*
|
||||
** The minimum amount of free space that we have seen.
|
||||
*/
|
||||
u32 mnMaster;
|
||||
|
||||
/*
|
||||
** iMaster is the index of the master chunk. Most new allocations
|
||||
** occur off of this chunk. szMaster is the size (in Mem3Blocks)
|
||||
** of the current master. iMaster is 0 if there is not master chunk.
|
||||
** The master chunk is not in either the aiHash[] or aiSmall[].
|
||||
*/
|
||||
u32 iMaster;
|
||||
u32 szMaster;
|
||||
|
||||
/*
|
||||
** Array of lists of free blocks according to the block size
|
||||
** for smaller chunks, or a hash on the block size for larger
|
||||
** chunks.
|
||||
*/
|
||||
u32 aiSmall[MX_SMALL-1]; /* For sizes 2 through MX_SMALL, inclusive */
|
||||
u32 aiHash[N_HASH]; /* For sizes MX_SMALL+1 and larger */
|
||||
} mem3 = { 97535575 };
|
||||
|
||||
#define mem3 GLOBAL(struct Mem3Global, mem3)
|
||||
|
||||
/*
|
||||
** Unlink the chunk at mem3.aPool[i] from list it is currently
|
||||
** on. *pRoot is the list that i is a member of.
|
||||
*/
|
||||
static void memsys3UnlinkFromList(u32 i, u32 *pRoot){
|
||||
u32 next = mem3.aPool[i].u.list.next;
|
||||
u32 prev = mem3.aPool[i].u.list.prev;
|
||||
assert( sqlite3_mutex_held(mem3.mutex) );
|
||||
if( prev==0 ){
|
||||
*pRoot = next;
|
||||
}else{
|
||||
mem3.aPool[prev].u.list.next = next;
|
||||
}
|
||||
if( next ){
|
||||
mem3.aPool[next].u.list.prev = prev;
|
||||
}
|
||||
mem3.aPool[i].u.list.next = 0;
|
||||
mem3.aPool[i].u.list.prev = 0;
|
||||
}
|
||||
|
||||
/*
|
||||
** Unlink the chunk at index i from
|
||||
** whatever list is currently a member of.
|
||||
*/
|
||||
static void memsys3Unlink(u32 i){
|
||||
u32 size, hash;
|
||||
assert( sqlite3_mutex_held(mem3.mutex) );
|
||||
assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 );
|
||||
assert( i>=1 );
|
||||
size = mem3.aPool[i-1].u.hdr.size4x/4;
|
||||
assert( size==mem3.aPool[i+size-1].u.hdr.prevSize );
|
||||
assert( size>=2 );
|
||||
if( size <= MX_SMALL ){
|
||||
memsys3UnlinkFromList(i, &mem3.aiSmall[size-2]);
|
||||
}else{
|
||||
hash = size % N_HASH;
|
||||
memsys3UnlinkFromList(i, &mem3.aiHash[hash]);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Link the chunk at mem3.aPool[i] so that is on the list rooted
|
||||
** at *pRoot.
|
||||
*/
|
||||
static void memsys3LinkIntoList(u32 i, u32 *pRoot){
|
||||
assert( sqlite3_mutex_held(mem3.mutex) );
|
||||
mem3.aPool[i].u.list.next = *pRoot;
|
||||
mem3.aPool[i].u.list.prev = 0;
|
||||
if( *pRoot ){
|
||||
mem3.aPool[*pRoot].u.list.prev = i;
|
||||
}
|
||||
*pRoot = i;
|
||||
}
|
||||
|
||||
/*
|
||||
** Link the chunk at index i into either the appropriate
|
||||
** small chunk list, or into the large chunk hash table.
|
||||
*/
|
||||
static void memsys3Link(u32 i){
|
||||
u32 size, hash;
|
||||
assert( sqlite3_mutex_held(mem3.mutex) );
|
||||
assert( i>=1 );
|
||||
assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 );
|
||||
size = mem3.aPool[i-1].u.hdr.size4x/4;
|
||||
assert( size==mem3.aPool[i+size-1].u.hdr.prevSize );
|
||||
assert( size>=2 );
|
||||
if( size <= MX_SMALL ){
|
||||
memsys3LinkIntoList(i, &mem3.aiSmall[size-2]);
|
||||
}else{
|
||||
hash = size % N_HASH;
|
||||
memsys3LinkIntoList(i, &mem3.aiHash[hash]);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** If the STATIC_MEM mutex is not already held, obtain it now. The mutex
|
||||
** will already be held (obtained by code in malloc.c) if
|
||||
** sqlite3GlobalConfig.bMemStat is true.
|
||||
*/
|
||||
static void memsys3Enter(void){
|
||||
if( sqlite3GlobalConfig.bMemstat==0 && mem3.mutex==0 ){
|
||||
mem3.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
|
||||
}
|
||||
sqlite3_mutex_enter(mem3.mutex);
|
||||
}
|
||||
static void memsys3Leave(void){
|
||||
sqlite3_mutex_leave(mem3.mutex);
|
||||
}
|
||||
|
||||
/*
|
||||
** Called when we are unable to satisfy an allocation of nBytes.
|
||||
*/
|
||||
static void memsys3OutOfMemory(int nByte){
|
||||
if( !mem3.alarmBusy ){
|
||||
mem3.alarmBusy = 1;
|
||||
assert( sqlite3_mutex_held(mem3.mutex) );
|
||||
sqlite3_mutex_leave(mem3.mutex);
|
||||
sqlite3_release_memory(nByte);
|
||||
sqlite3_mutex_enter(mem3.mutex);
|
||||
mem3.alarmBusy = 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** Chunk i is a free chunk that has been unlinked. Adjust its
|
||||
** size parameters for check-out and return a pointer to the
|
||||
** user portion of the chunk.
|
||||
*/
|
||||
static void *memsys3Checkout(u32 i, u32 nBlock){
|
||||
u32 x;
|
||||
assert( sqlite3_mutex_held(mem3.mutex) );
|
||||
assert( i>=1 );
|
||||
assert( mem3.aPool[i-1].u.hdr.size4x/4==nBlock );
|
||||
assert( mem3.aPool[i+nBlock-1].u.hdr.prevSize==nBlock );
|
||||
x = mem3.aPool[i-1].u.hdr.size4x;
|
||||
mem3.aPool[i-1].u.hdr.size4x = nBlock*4 | 1 | (x&2);
|
||||
mem3.aPool[i+nBlock-1].u.hdr.prevSize = nBlock;
|
||||
mem3.aPool[i+nBlock-1].u.hdr.size4x |= 2;
|
||||
return &mem3.aPool[i];
|
||||
}
|
||||
|
||||
/*
|
||||
** Carve a piece off of the end of the mem3.iMaster free chunk.
|
||||
** Return a pointer to the new allocation. Or, if the master chunk
|
||||
** is not large enough, return 0.
|
||||
*/
|
||||
static void *memsys3FromMaster(u32 nBlock){
|
||||
assert( sqlite3_mutex_held(mem3.mutex) );
|
||||
assert( mem3.szMaster>=nBlock );
|
||||
if( nBlock>=mem3.szMaster-1 ){
|
||||
/* Use the entire master */
|
||||
void *p = memsys3Checkout(mem3.iMaster, mem3.szMaster);
|
||||
mem3.iMaster = 0;
|
||||
mem3.szMaster = 0;
|
||||
mem3.mnMaster = 0;
|
||||
return p;
|
||||
}else{
|
||||
/* Split the master block. Return the tail. */
|
||||
u32 newi, x;
|
||||
newi = mem3.iMaster + mem3.szMaster - nBlock;
|
||||
assert( newi > mem3.iMaster+1 );
|
||||
mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = nBlock;
|
||||
mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x |= 2;
|
||||
mem3.aPool[newi-1].u.hdr.size4x = nBlock*4 + 1;
|
||||
mem3.szMaster -= nBlock;
|
||||
mem3.aPool[newi-1].u.hdr.prevSize = mem3.szMaster;
|
||||
x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2;
|
||||
mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x;
|
||||
if( mem3.szMaster < mem3.mnMaster ){
|
||||
mem3.mnMaster = mem3.szMaster;
|
||||
}
|
||||
return (void*)&mem3.aPool[newi];
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** *pRoot is the head of a list of free chunks of the same size
|
||||
** or same size hash. In other words, *pRoot is an entry in either
|
||||
** mem3.aiSmall[] or mem3.aiHash[].
|
||||
**
|
||||
** This routine examines all entries on the given list and tries
|
||||
** to coalesce each entries with adjacent free chunks.
|
||||
**
|
||||
** If it sees a chunk that is larger than mem3.iMaster, it replaces
|
||||
** the current mem3.iMaster with the new larger chunk. In order for
|
||||
** this mem3.iMaster replacement to work, the master chunk must be
|
||||
** linked into the hash tables. That is not the normal state of
|
||||
** affairs, of course. The calling routine must link the master
|
||||
** chunk before invoking this routine, then must unlink the (possibly
|
||||
** changed) master chunk once this routine has finished.
|
||||
*/
|
||||
static void memsys3Merge(u32 *pRoot){
|
||||
u32 iNext, prev, size, i, x;
|
||||
|
||||
assert( sqlite3_mutex_held(mem3.mutex) );
|
||||
for(i=*pRoot; i>0; i=iNext){
|
||||
iNext = mem3.aPool[i].u.list.next;
|
||||
size = mem3.aPool[i-1].u.hdr.size4x;
|
||||
assert( (size&1)==0 );
|
||||
if( (size&2)==0 ){
|
||||
memsys3UnlinkFromList(i, pRoot);
|
||||
assert( i > mem3.aPool[i-1].u.hdr.prevSize );
|
||||
prev = i - mem3.aPool[i-1].u.hdr.prevSize;
|
||||
if( prev==iNext ){
|
||||
iNext = mem3.aPool[prev].u.list.next;
|
||||
}
|
||||
memsys3Unlink(prev);
|
||||
size = i + size/4 - prev;
|
||||
x = mem3.aPool[prev-1].u.hdr.size4x & 2;
|
||||
mem3.aPool[prev-1].u.hdr.size4x = size*4 | x;
|
||||
mem3.aPool[prev+size-1].u.hdr.prevSize = size;
|
||||
memsys3Link(prev);
|
||||
i = prev;
|
||||
}else{
|
||||
size /= 4;
|
||||
}
|
||||
if( size>mem3.szMaster ){
|
||||
mem3.iMaster = i;
|
||||
mem3.szMaster = size;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Return a block of memory of at least nBytes in size.
|
||||
** Return NULL if unable.
|
||||
**
|
||||
** This function assumes that the necessary mutexes, if any, are
|
||||
** already held by the caller. Hence "Unsafe".
|
||||
*/
|
||||
static void *memsys3MallocUnsafe(int nByte){
|
||||
u32 i;
|
||||
u32 nBlock;
|
||||
u32 toFree;
|
||||
|
||||
assert( sqlite3_mutex_held(mem3.mutex) );
|
||||
assert( sizeof(Mem3Block)==8 );
|
||||
if( nByte<=12 ){
|
||||
nBlock = 2;
|
||||
}else{
|
||||
nBlock = (nByte + 11)/8;
|
||||
}
|
||||
assert( nBlock>=2 );
|
||||
|
||||
/* STEP 1:
|
||||
** Look for an entry of the correct size in either the small
|
||||
** chunk table or in the large chunk hash table. This is
|
||||
** successful most of the time (about 9 times out of 10).
|
||||
*/
|
||||
if( nBlock <= MX_SMALL ){
|
||||
i = mem3.aiSmall[nBlock-2];
|
||||
if( i>0 ){
|
||||
memsys3UnlinkFromList(i, &mem3.aiSmall[nBlock-2]);
|
||||
return memsys3Checkout(i, nBlock);
|
||||
}
|
||||
}else{
|
||||
int hash = nBlock % N_HASH;
|
||||
for(i=mem3.aiHash[hash]; i>0; i=mem3.aPool[i].u.list.next){
|
||||
if( mem3.aPool[i-1].u.hdr.size4x/4==nBlock ){
|
||||
memsys3UnlinkFromList(i, &mem3.aiHash[hash]);
|
||||
return memsys3Checkout(i, nBlock);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* STEP 2:
|
||||
** Try to satisfy the allocation by carving a piece off of the end
|
||||
** of the master chunk. This step usually works if step 1 fails.
|
||||
*/
|
||||
if( mem3.szMaster>=nBlock ){
|
||||
return memsys3FromMaster(nBlock);
|
||||
}
|
||||
|
||||
|
||||
/* STEP 3:
|
||||
** Loop through the entire memory pool. Coalesce adjacent free
|
||||
** chunks. Recompute the master chunk as the largest free chunk.
|
||||
** Then try again to satisfy the allocation by carving a piece off
|
||||
** of the end of the master chunk. This step happens very
|
||||
** rarely (we hope!)
|
||||
*/
|
||||
for(toFree=nBlock*16; toFree<(mem3.nPool*16); toFree *= 2){
|
||||
memsys3OutOfMemory(toFree);
|
||||
if( mem3.iMaster ){
|
||||
memsys3Link(mem3.iMaster);
|
||||
mem3.iMaster = 0;
|
||||
mem3.szMaster = 0;
|
||||
}
|
||||
for(i=0; i<N_HASH; i++){
|
||||
memsys3Merge(&mem3.aiHash[i]);
|
||||
}
|
||||
for(i=0; i<MX_SMALL-1; i++){
|
||||
memsys3Merge(&mem3.aiSmall[i]);
|
||||
}
|
||||
if( mem3.szMaster ){
|
||||
memsys3Unlink(mem3.iMaster);
|
||||
if( mem3.szMaster>=nBlock ){
|
||||
return memsys3FromMaster(nBlock);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* If none of the above worked, then we fail. */
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
** Free an outstanding memory allocation.
|
||||
**
|
||||
** This function assumes that the necessary mutexes, if any, are
|
||||
** already held by the caller. Hence "Unsafe".
|
||||
*/
|
||||
void memsys3FreeUnsafe(void *pOld){
|
||||
Mem3Block *p = (Mem3Block*)pOld;
|
||||
int i;
|
||||
u32 size, x;
|
||||
assert( sqlite3_mutex_held(mem3.mutex) );
|
||||
assert( p>mem3.aPool && p<&mem3.aPool[mem3.nPool] );
|
||||
i = p - mem3.aPool;
|
||||
assert( (mem3.aPool[i-1].u.hdr.size4x&1)==1 );
|
||||
size = mem3.aPool[i-1].u.hdr.size4x/4;
|
||||
assert( i+size<=mem3.nPool+1 );
|
||||
mem3.aPool[i-1].u.hdr.size4x &= ~1;
|
||||
mem3.aPool[i+size-1].u.hdr.prevSize = size;
|
||||
mem3.aPool[i+size-1].u.hdr.size4x &= ~2;
|
||||
memsys3Link(i);
|
||||
|
||||
/* Try to expand the master using the newly freed chunk */
|
||||
if( mem3.iMaster ){
|
||||
while( (mem3.aPool[mem3.iMaster-1].u.hdr.size4x&2)==0 ){
|
||||
size = mem3.aPool[mem3.iMaster-1].u.hdr.prevSize;
|
||||
mem3.iMaster -= size;
|
||||
mem3.szMaster += size;
|
||||
memsys3Unlink(mem3.iMaster);
|
||||
x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2;
|
||||
mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x;
|
||||
mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = mem3.szMaster;
|
||||
}
|
||||
x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2;
|
||||
while( (mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x&1)==0 ){
|
||||
memsys3Unlink(mem3.iMaster+mem3.szMaster);
|
||||
mem3.szMaster += mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x/4;
|
||||
mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x;
|
||||
mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = mem3.szMaster;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Return the size of an outstanding allocation, in bytes. The
|
||||
** size returned omits the 8-byte header overhead. This only
|
||||
** works for chunks that are currently checked out.
|
||||
*/
|
||||
static int memsys3Size(void *p){
|
||||
Mem3Block *pBlock;
|
||||
if( p==0 ) return 0;
|
||||
pBlock = (Mem3Block*)p;
|
||||
assert( (pBlock[-1].u.hdr.size4x&1)!=0 );
|
||||
return (pBlock[-1].u.hdr.size4x&~3)*2 - 4;
|
||||
}
|
||||
|
||||
/*
|
||||
** Round up a request size to the next valid allocation size.
|
||||
*/
|
||||
static int memsys3Roundup(int n){
|
||||
if( n<=12 ){
|
||||
return 12;
|
||||
}else{
|
||||
return ((n+11)&~7) - 4;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Allocate nBytes of memory.
|
||||
*/
|
||||
static void *memsys3Malloc(int nBytes){
|
||||
sqlite3_int64 *p;
|
||||
assert( nBytes>0 ); /* malloc.c filters out 0 byte requests */
|
||||
memsys3Enter();
|
||||
p = memsys3MallocUnsafe(nBytes);
|
||||
memsys3Leave();
|
||||
return (void*)p;
|
||||
}
|
||||
|
||||
/*
|
||||
** Free memory.
|
||||
*/
|
||||
void memsys3Free(void *pPrior){
|
||||
assert( pPrior );
|
||||
memsys3Enter();
|
||||
memsys3FreeUnsafe(pPrior);
|
||||
memsys3Leave();
|
||||
}
|
||||
|
||||
/*
|
||||
** Change the size of an existing memory allocation
|
||||
*/
|
||||
void *memsys3Realloc(void *pPrior, int nBytes){
|
||||
int nOld;
|
||||
void *p;
|
||||
if( pPrior==0 ){
|
||||
return sqlite3_malloc(nBytes);
|
||||
}
|
||||
if( nBytes<=0 ){
|
||||
sqlite3_free(pPrior);
|
||||
return 0;
|
||||
}
|
||||
nOld = memsys3Size(pPrior);
|
||||
if( nBytes<=nOld && nBytes>=nOld-128 ){
|
||||
return pPrior;
|
||||
}
|
||||
memsys3Enter();
|
||||
p = memsys3MallocUnsafe(nBytes);
|
||||
if( p ){
|
||||
if( nOld<nBytes ){
|
||||
memcpy(p, pPrior, nOld);
|
||||
}else{
|
||||
memcpy(p, pPrior, nBytes);
|
||||
}
|
||||
memsys3FreeUnsafe(pPrior);
|
||||
}
|
||||
memsys3Leave();
|
||||
return p;
|
||||
}
|
||||
|
||||
/*
|
||||
** Initialize this module.
|
||||
*/
|
||||
static int memsys3Init(void *NotUsed){
|
||||
UNUSED_PARAMETER(NotUsed);
|
||||
if( !sqlite3GlobalConfig.pHeap ){
|
||||
return SQLITE_ERROR;
|
||||
}
|
||||
|
||||
/* Store a pointer to the memory block in global structure mem3. */
|
||||
assert( sizeof(Mem3Block)==8 );
|
||||
mem3.aPool = (Mem3Block *)sqlite3GlobalConfig.pHeap;
|
||||
mem3.nPool = (sqlite3GlobalConfig.nHeap / sizeof(Mem3Block)) - 2;
|
||||
|
||||
/* Initialize the master block. */
|
||||
mem3.szMaster = mem3.nPool;
|
||||
mem3.mnMaster = mem3.szMaster;
|
||||
mem3.iMaster = 1;
|
||||
mem3.aPool[0].u.hdr.size4x = (mem3.szMaster<<2) + 2;
|
||||
mem3.aPool[mem3.nPool].u.hdr.prevSize = mem3.nPool;
|
||||
mem3.aPool[mem3.nPool].u.hdr.size4x = 1;
|
||||
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Deinitialize this module.
|
||||
*/
|
||||
static void memsys3Shutdown(void *NotUsed){
|
||||
UNUSED_PARAMETER(NotUsed);
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*
|
||||
** Open the file indicated and write a log of all unfreed memory
|
||||
** allocations into that log.
|
||||
*/
|
||||
void sqlite3Memsys3Dump(const char *zFilename){
|
||||
#ifdef SQLITE_DEBUG
|
||||
FILE *out;
|
||||
u32 i, j;
|
||||
u32 size;
|
||||
if( zFilename==0 || zFilename[0]==0 ){
|
||||
out = stdout;
|
||||
}else{
|
||||
out = fopen(zFilename, "w");
|
||||
if( out==0 ){
|
||||
fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
|
||||
zFilename);
|
||||
return;
|
||||
}
|
||||
}
|
||||
memsys3Enter();
|
||||
fprintf(out, "CHUNKS:\n");
|
||||
for(i=1; i<=mem3.nPool; i+=size/4){
|
||||
size = mem3.aPool[i-1].u.hdr.size4x;
|
||||
if( size/4<=1 ){
|
||||
fprintf(out, "%p size error\n", &mem3.aPool[i]);
|
||||
assert( 0 );
|
||||
break;
|
||||
}
|
||||
if( (size&1)==0 && mem3.aPool[i+size/4-1].u.hdr.prevSize!=size/4 ){
|
||||
fprintf(out, "%p tail size does not match\n", &mem3.aPool[i]);
|
||||
assert( 0 );
|
||||
break;
|
||||
}
|
||||
if( ((mem3.aPool[i+size/4-1].u.hdr.size4x&2)>>1)!=(size&1) ){
|
||||
fprintf(out, "%p tail checkout bit is incorrect\n", &mem3.aPool[i]);
|
||||
assert( 0 );
|
||||
break;
|
||||
}
|
||||
if( size&1 ){
|
||||
fprintf(out, "%p %6d bytes checked out\n", &mem3.aPool[i], (size/4)*8-8);
|
||||
}else{
|
||||
fprintf(out, "%p %6d bytes free%s\n", &mem3.aPool[i], (size/4)*8-8,
|
||||
i==mem3.iMaster ? " **master**" : "");
|
||||
}
|
||||
}
|
||||
for(i=0; i<MX_SMALL-1; i++){
|
||||
if( mem3.aiSmall[i]==0 ) continue;
|
||||
fprintf(out, "small(%2d):", i);
|
||||
for(j = mem3.aiSmall[i]; j>0; j=mem3.aPool[j].u.list.next){
|
||||
fprintf(out, " %p(%d)", &mem3.aPool[j],
|
||||
(mem3.aPool[j-1].u.hdr.size4x/4)*8-8);
|
||||
}
|
||||
fprintf(out, "\n");
|
||||
}
|
||||
for(i=0; i<N_HASH; i++){
|
||||
if( mem3.aiHash[i]==0 ) continue;
|
||||
fprintf(out, "hash(%2d):", i);
|
||||
for(j = mem3.aiHash[i]; j>0; j=mem3.aPool[j].u.list.next){
|
||||
fprintf(out, " %p(%d)", &mem3.aPool[j],
|
||||
(mem3.aPool[j-1].u.hdr.size4x/4)*8-8);
|
||||
}
|
||||
fprintf(out, "\n");
|
||||
}
|
||||
fprintf(out, "master=%d\n", mem3.iMaster);
|
||||
fprintf(out, "nowUsed=%d\n", mem3.nPool*8 - mem3.szMaster*8);
|
||||
fprintf(out, "mxUsed=%d\n", mem3.nPool*8 - mem3.mnMaster*8);
|
||||
sqlite3_mutex_leave(mem3.mutex);
|
||||
if( out==stdout ){
|
||||
fflush(stdout);
|
||||
}else{
|
||||
fclose(out);
|
||||
}
|
||||
#else
|
||||
UNUSED_PARAMETER(zFilename);
|
||||
#endif
|
||||
}
|
||||
|
||||
/*
|
||||
** This routine is the only routine in this file with external
|
||||
** linkage.
|
||||
**
|
||||
** Populate the low-level memory allocation function pointers in
|
||||
** sqlite3GlobalConfig.m with pointers to the routines in this file. The
|
||||
** arguments specify the block of memory to manage.
|
||||
**
|
||||
** This routine is only called by sqlite3_config(), and therefore
|
||||
** is not required to be threadsafe (it is not).
|
||||
*/
|
||||
const sqlite3_mem_methods *sqlite3MemGetMemsys3(void){
|
||||
static const sqlite3_mem_methods mempoolMethods = {
|
||||
memsys3Malloc,
|
||||
memsys3Free,
|
||||
memsys3Realloc,
|
||||
memsys3Size,
|
||||
memsys3Roundup,
|
||||
memsys3Init,
|
||||
memsys3Shutdown,
|
||||
0
|
||||
};
|
||||
return &mempoolMethods;
|
||||
}
|
||||
|
||||
#endif /* SQLITE_ENABLE_MEMSYS3 */
|
488
mem5.c
Normal file
488
mem5.c
Normal file
|
@ -0,0 +1,488 @@
|
|||
/*
|
||||
** 2007 October 14
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This file contains the C functions that implement a memory
|
||||
** allocation subsystem for use by SQLite.
|
||||
**
|
||||
** This version of the memory allocation subsystem omits all
|
||||
** use of malloc(). The SQLite user supplies a block of memory
|
||||
** before calling sqlite3_initialize() from which allocations
|
||||
** are made and returned by the xMalloc() and xRealloc()
|
||||
** implementations. Once sqlite3_initialize() has been called,
|
||||
** the amount of memory available to SQLite is fixed and cannot
|
||||
** be changed.
|
||||
**
|
||||
** This version of the memory allocation subsystem is included
|
||||
** in the build only if SQLITE_ENABLE_MEMSYS5 is defined.
|
||||
**
|
||||
** $Id: mem5.c,v 1.19 2008/11/19 16:52:44 danielk1977 Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
/*
|
||||
** This version of the memory allocator is used only when
|
||||
** SQLITE_ENABLE_MEMSYS5 is defined.
|
||||
*/
|
||||
#ifdef SQLITE_ENABLE_MEMSYS5
|
||||
|
||||
/*
|
||||
** A minimum allocation is an instance of the following structure.
|
||||
** Larger allocations are an array of these structures where the
|
||||
** size of the array is a power of 2.
|
||||
*/
|
||||
typedef struct Mem5Link Mem5Link;
|
||||
struct Mem5Link {
|
||||
int next; /* Index of next free chunk */
|
||||
int prev; /* Index of previous free chunk */
|
||||
};
|
||||
|
||||
/*
|
||||
** Maximum size of any allocation is ((1<<LOGMAX)*mem5.nAtom). Since
|
||||
** mem5.nAtom is always at least 8, this is not really a practical
|
||||
** limitation.
|
||||
*/
|
||||
#define LOGMAX 30
|
||||
|
||||
/*
|
||||
** Masks used for mem5.aCtrl[] elements.
|
||||
*/
|
||||
#define CTRL_LOGSIZE 0x1f /* Log2 Size of this block relative to POW2_MIN */
|
||||
#define CTRL_FREE 0x20 /* True if not checked out */
|
||||
|
||||
/*
|
||||
** All of the static variables used by this module are collected
|
||||
** into a single structure named "mem5". This is to keep the
|
||||
** static variables organized and to reduce namespace pollution
|
||||
** when this module is combined with other in the amalgamation.
|
||||
*/
|
||||
static SQLITE_WSD struct Mem5Global {
|
||||
/*
|
||||
** Memory available for allocation
|
||||
*/
|
||||
int nAtom; /* Smallest possible allocation in bytes */
|
||||
int nBlock; /* Number of nAtom sized blocks in zPool */
|
||||
u8 *zPool;
|
||||
|
||||
/*
|
||||
** Mutex to control access to the memory allocation subsystem.
|
||||
*/
|
||||
sqlite3_mutex *mutex;
|
||||
|
||||
/*
|
||||
** Performance statistics
|
||||
*/
|
||||
u64 nAlloc; /* Total number of calls to malloc */
|
||||
u64 totalAlloc; /* Total of all malloc calls - includes internal frag */
|
||||
u64 totalExcess; /* Total internal fragmentation */
|
||||
u32 currentOut; /* Current checkout, including internal fragmentation */
|
||||
u32 currentCount; /* Current number of distinct checkouts */
|
||||
u32 maxOut; /* Maximum instantaneous currentOut */
|
||||
u32 maxCount; /* Maximum instantaneous currentCount */
|
||||
u32 maxRequest; /* Largest allocation (exclusive of internal frag) */
|
||||
|
||||
/*
|
||||
** Lists of free blocks of various sizes.
|
||||
*/
|
||||
int aiFreelist[LOGMAX+1];
|
||||
|
||||
/*
|
||||
** Space for tracking which blocks are checked out and the size
|
||||
** of each block. One byte per block.
|
||||
*/
|
||||
u8 *aCtrl;
|
||||
|
||||
} mem5 = { 19804167 };
|
||||
|
||||
#define mem5 GLOBAL(struct Mem5Global, mem5)
|
||||
|
||||
#define MEM5LINK(idx) ((Mem5Link *)(&mem5.zPool[(idx)*mem5.nAtom]))
|
||||
|
||||
/*
|
||||
** Unlink the chunk at mem5.aPool[i] from list it is currently
|
||||
** on. It should be found on mem5.aiFreelist[iLogsize].
|
||||
*/
|
||||
static void memsys5Unlink(int i, int iLogsize){
|
||||
int next, prev;
|
||||
assert( i>=0 && i<mem5.nBlock );
|
||||
assert( iLogsize>=0 && iLogsize<=LOGMAX );
|
||||
assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
|
||||
|
||||
next = MEM5LINK(i)->next;
|
||||
prev = MEM5LINK(i)->prev;
|
||||
if( prev<0 ){
|
||||
mem5.aiFreelist[iLogsize] = next;
|
||||
}else{
|
||||
MEM5LINK(prev)->next = next;
|
||||
}
|
||||
if( next>=0 ){
|
||||
MEM5LINK(next)->prev = prev;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Link the chunk at mem5.aPool[i] so that is on the iLogsize
|
||||
** free list.
|
||||
*/
|
||||
static void memsys5Link(int i, int iLogsize){
|
||||
int x;
|
||||
assert( sqlite3_mutex_held(mem5.mutex) );
|
||||
assert( i>=0 && i<mem5.nBlock );
|
||||
assert( iLogsize>=0 && iLogsize<=LOGMAX );
|
||||
assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
|
||||
|
||||
x = MEM5LINK(i)->next = mem5.aiFreelist[iLogsize];
|
||||
MEM5LINK(i)->prev = -1;
|
||||
if( x>=0 ){
|
||||
assert( x<mem5.nBlock );
|
||||
MEM5LINK(x)->prev = i;
|
||||
}
|
||||
mem5.aiFreelist[iLogsize] = i;
|
||||
}
|
||||
|
||||
/*
|
||||
** If the STATIC_MEM mutex is not already held, obtain it now. The mutex
|
||||
** will already be held (obtained by code in malloc.c) if
|
||||
** sqlite3GlobalConfig.bMemStat is true.
|
||||
*/
|
||||
static void memsys5Enter(void){
|
||||
if( sqlite3GlobalConfig.bMemstat==0 && mem5.mutex==0 ){
|
||||
mem5.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
|
||||
}
|
||||
sqlite3_mutex_enter(mem5.mutex);
|
||||
}
|
||||
static void memsys5Leave(void){
|
||||
sqlite3_mutex_leave(mem5.mutex);
|
||||
}
|
||||
|
||||
/*
|
||||
** Return the size of an outstanding allocation, in bytes. The
|
||||
** size returned omits the 8-byte header overhead. This only
|
||||
** works for chunks that are currently checked out.
|
||||
*/
|
||||
static int memsys5Size(void *p){
|
||||
int iSize = 0;
|
||||
if( p ){
|
||||
int i = ((u8 *)p-mem5.zPool)/mem5.nAtom;
|
||||
assert( i>=0 && i<mem5.nBlock );
|
||||
iSize = mem5.nAtom * (1 << (mem5.aCtrl[i]&CTRL_LOGSIZE));
|
||||
}
|
||||
return iSize;
|
||||
}
|
||||
|
||||
/*
|
||||
** Find the first entry on the freelist iLogsize. Unlink that
|
||||
** entry and return its index.
|
||||
*/
|
||||
static int memsys5UnlinkFirst(int iLogsize){
|
||||
int i;
|
||||
int iFirst;
|
||||
|
||||
assert( iLogsize>=0 && iLogsize<=LOGMAX );
|
||||
i = iFirst = mem5.aiFreelist[iLogsize];
|
||||
assert( iFirst>=0 );
|
||||
while( i>0 ){
|
||||
if( i<iFirst ) iFirst = i;
|
||||
i = MEM5LINK(i)->next;
|
||||
}
|
||||
memsys5Unlink(iFirst, iLogsize);
|
||||
return iFirst;
|
||||
}
|
||||
|
||||
/*
|
||||
** Return a block of memory of at least nBytes in size.
|
||||
** Return NULL if unable.
|
||||
*/
|
||||
static void *memsys5MallocUnsafe(int nByte){
|
||||
int i; /* Index of a mem5.aPool[] slot */
|
||||
int iBin; /* Index into mem5.aiFreelist[] */
|
||||
int iFullSz; /* Size of allocation rounded up to power of 2 */
|
||||
int iLogsize; /* Log2 of iFullSz/POW2_MIN */
|
||||
|
||||
/* Keep track of the maximum allocation request. Even unfulfilled
|
||||
** requests are counted */
|
||||
if( (u32)nByte>mem5.maxRequest ){
|
||||
mem5.maxRequest = nByte;
|
||||
}
|
||||
|
||||
/* Round nByte up to the next valid power of two */
|
||||
for(iFullSz=mem5.nAtom, iLogsize=0; iFullSz<nByte; iFullSz *= 2, iLogsize++){}
|
||||
|
||||
/* Make sure mem5.aiFreelist[iLogsize] contains at least one free
|
||||
** block. If not, then split a block of the next larger power of
|
||||
** two in order to create a new free block of size iLogsize.
|
||||
*/
|
||||
for(iBin=iLogsize; mem5.aiFreelist[iBin]<0 && iBin<=LOGMAX; iBin++){}
|
||||
if( iBin>LOGMAX ) return 0;
|
||||
i = memsys5UnlinkFirst(iBin);
|
||||
while( iBin>iLogsize ){
|
||||
int newSize;
|
||||
|
||||
iBin--;
|
||||
newSize = 1 << iBin;
|
||||
mem5.aCtrl[i+newSize] = CTRL_FREE | iBin;
|
||||
memsys5Link(i+newSize, iBin);
|
||||
}
|
||||
mem5.aCtrl[i] = iLogsize;
|
||||
|
||||
/* Update allocator performance statistics. */
|
||||
mem5.nAlloc++;
|
||||
mem5.totalAlloc += iFullSz;
|
||||
mem5.totalExcess += iFullSz - nByte;
|
||||
mem5.currentCount++;
|
||||
mem5.currentOut += iFullSz;
|
||||
if( mem5.maxCount<mem5.currentCount ) mem5.maxCount = mem5.currentCount;
|
||||
if( mem5.maxOut<mem5.currentOut ) mem5.maxOut = mem5.currentOut;
|
||||
|
||||
/* Return a pointer to the allocated memory. */
|
||||
return (void*)&mem5.zPool[i*mem5.nAtom];
|
||||
}
|
||||
|
||||
/*
|
||||
** Free an outstanding memory allocation.
|
||||
*/
|
||||
static void memsys5FreeUnsafe(void *pOld){
|
||||
u32 size, iLogsize;
|
||||
int iBlock;
|
||||
|
||||
/* Set iBlock to the index of the block pointed to by pOld in
|
||||
** the array of mem5.nAtom byte blocks pointed to by mem5.zPool.
|
||||
*/
|
||||
iBlock = ((u8 *)pOld-mem5.zPool)/mem5.nAtom;
|
||||
|
||||
/* Check that the pointer pOld points to a valid, non-free block. */
|
||||
assert( iBlock>=0 && iBlock<mem5.nBlock );
|
||||
assert( ((u8 *)pOld-mem5.zPool)%mem5.nAtom==0 );
|
||||
assert( (mem5.aCtrl[iBlock] & CTRL_FREE)==0 );
|
||||
|
||||
iLogsize = mem5.aCtrl[iBlock] & CTRL_LOGSIZE;
|
||||
size = 1<<iLogsize;
|
||||
assert( iBlock+size-1<(u32)mem5.nBlock );
|
||||
|
||||
mem5.aCtrl[iBlock] |= CTRL_FREE;
|
||||
mem5.aCtrl[iBlock+size-1] |= CTRL_FREE;
|
||||
assert( mem5.currentCount>0 );
|
||||
assert( mem5.currentOut>=(size*mem5.nAtom) );
|
||||
mem5.currentCount--;
|
||||
mem5.currentOut -= size*mem5.nAtom;
|
||||
assert( mem5.currentOut>0 || mem5.currentCount==0 );
|
||||
assert( mem5.currentCount>0 || mem5.currentOut==0 );
|
||||
|
||||
mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
|
||||
while( iLogsize<LOGMAX ){
|
||||
int iBuddy;
|
||||
if( (iBlock>>iLogsize) & 1 ){
|
||||
iBuddy = iBlock - size;
|
||||
}else{
|
||||
iBuddy = iBlock + size;
|
||||
}
|
||||
assert( iBuddy>=0 );
|
||||
if( (iBuddy+(1<<iLogsize))>mem5.nBlock ) break;
|
||||
if( mem5.aCtrl[iBuddy]!=(CTRL_FREE | iLogsize) ) break;
|
||||
memsys5Unlink(iBuddy, iLogsize);
|
||||
iLogsize++;
|
||||
if( iBuddy<iBlock ){
|
||||
mem5.aCtrl[iBuddy] = CTRL_FREE | iLogsize;
|
||||
mem5.aCtrl[iBlock] = 0;
|
||||
iBlock = iBuddy;
|
||||
}else{
|
||||
mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
|
||||
mem5.aCtrl[iBuddy] = 0;
|
||||
}
|
||||
size *= 2;
|
||||
}
|
||||
memsys5Link(iBlock, iLogsize);
|
||||
}
|
||||
|
||||
/*
|
||||
** Allocate nBytes of memory
|
||||
*/
|
||||
static void *memsys5Malloc(int nBytes){
|
||||
sqlite3_int64 *p = 0;
|
||||
if( nBytes>0 ){
|
||||
memsys5Enter();
|
||||
p = memsys5MallocUnsafe(nBytes);
|
||||
memsys5Leave();
|
||||
}
|
||||
return (void*)p;
|
||||
}
|
||||
|
||||
/*
|
||||
** Free memory.
|
||||
*/
|
||||
static void memsys5Free(void *pPrior){
|
||||
if( pPrior==0 ){
|
||||
assert(0);
|
||||
return;
|
||||
}
|
||||
memsys5Enter();
|
||||
memsys5FreeUnsafe(pPrior);
|
||||
memsys5Leave();
|
||||
}
|
||||
|
||||
/*
|
||||
** Change the size of an existing memory allocation
|
||||
*/
|
||||
static void *memsys5Realloc(void *pPrior, int nBytes){
|
||||
int nOld;
|
||||
void *p;
|
||||
if( pPrior==0 ){
|
||||
return memsys5Malloc(nBytes);
|
||||
}
|
||||
if( nBytes<=0 ){
|
||||
memsys5Free(pPrior);
|
||||
return 0;
|
||||
}
|
||||
nOld = memsys5Size(pPrior);
|
||||
if( nBytes<=nOld ){
|
||||
return pPrior;
|
||||
}
|
||||
memsys5Enter();
|
||||
p = memsys5MallocUnsafe(nBytes);
|
||||
if( p ){
|
||||
memcpy(p, pPrior, nOld);
|
||||
memsys5FreeUnsafe(pPrior);
|
||||
}
|
||||
memsys5Leave();
|
||||
return p;
|
||||
}
|
||||
|
||||
/*
|
||||
** Round up a request size to the next valid allocation size.
|
||||
*/
|
||||
static int memsys5Roundup(int n){
|
||||
int iFullSz;
|
||||
for(iFullSz=mem5.nAtom; iFullSz<n; iFullSz *= 2);
|
||||
return iFullSz;
|
||||
}
|
||||
|
||||
static int memsys5Log(int iValue){
|
||||
int iLog;
|
||||
for(iLog=0; (1<<iLog)<iValue; iLog++);
|
||||
return iLog;
|
||||
}
|
||||
|
||||
/*
|
||||
** Initialize this module.
|
||||
*/
|
||||
static int memsys5Init(void *NotUsed){
|
||||
int ii;
|
||||
int nByte = sqlite3GlobalConfig.nHeap;
|
||||
u8 *zByte = (u8 *)sqlite3GlobalConfig.pHeap;
|
||||
int nMinLog; /* Log of minimum allocation size in bytes*/
|
||||
int iOffset;
|
||||
|
||||
UNUSED_PARAMETER(NotUsed);
|
||||
|
||||
if( !zByte ){
|
||||
return SQLITE_ERROR;
|
||||
}
|
||||
|
||||
nMinLog = memsys5Log(sqlite3GlobalConfig.mnReq);
|
||||
mem5.nAtom = (1<<nMinLog);
|
||||
while( (int)sizeof(Mem5Link)>mem5.nAtom ){
|
||||
mem5.nAtom = mem5.nAtom << 1;
|
||||
}
|
||||
|
||||
mem5.nBlock = (nByte / (mem5.nAtom+sizeof(u8)));
|
||||
mem5.zPool = zByte;
|
||||
mem5.aCtrl = (u8 *)&mem5.zPool[mem5.nBlock*mem5.nAtom];
|
||||
|
||||
for(ii=0; ii<=LOGMAX; ii++){
|
||||
mem5.aiFreelist[ii] = -1;
|
||||
}
|
||||
|
||||
iOffset = 0;
|
||||
for(ii=LOGMAX; ii>=0; ii--){
|
||||
int nAlloc = (1<<ii);
|
||||
if( (iOffset+nAlloc)<=mem5.nBlock ){
|
||||
mem5.aCtrl[iOffset] = ii | CTRL_FREE;
|
||||
memsys5Link(iOffset, ii);
|
||||
iOffset += nAlloc;
|
||||
}
|
||||
assert((iOffset+nAlloc)>mem5.nBlock);
|
||||
}
|
||||
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Deinitialize this module.
|
||||
*/
|
||||
static void memsys5Shutdown(void *NotUsed){
|
||||
UNUSED_PARAMETER(NotUsed);
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
** Open the file indicated and write a log of all unfreed memory
|
||||
** allocations into that log.
|
||||
*/
|
||||
void sqlite3Memsys5Dump(const char *zFilename){
|
||||
#ifdef SQLITE_DEBUG
|
||||
FILE *out;
|
||||
int i, j, n;
|
||||
int nMinLog;
|
||||
|
||||
if( zFilename==0 || zFilename[0]==0 ){
|
||||
out = stdout;
|
||||
}else{
|
||||
out = fopen(zFilename, "w");
|
||||
if( out==0 ){
|
||||
fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
|
||||
zFilename);
|
||||
return;
|
||||
}
|
||||
}
|
||||
memsys5Enter();
|
||||
nMinLog = memsys5Log(mem5.nAtom);
|
||||
for(i=0; i<=LOGMAX && i+nMinLog<32; i++){
|
||||
for(n=0, j=mem5.aiFreelist[i]; j>=0; j = MEM5LINK(j)->next, n++){}
|
||||
fprintf(out, "freelist items of size %d: %d\n", mem5.nAtom << i, n);
|
||||
}
|
||||
fprintf(out, "mem5.nAlloc = %llu\n", mem5.nAlloc);
|
||||
fprintf(out, "mem5.totalAlloc = %llu\n", mem5.totalAlloc);
|
||||
fprintf(out, "mem5.totalExcess = %llu\n", mem5.totalExcess);
|
||||
fprintf(out, "mem5.currentOut = %u\n", mem5.currentOut);
|
||||
fprintf(out, "mem5.currentCount = %u\n", mem5.currentCount);
|
||||
fprintf(out, "mem5.maxOut = %u\n", mem5.maxOut);
|
||||
fprintf(out, "mem5.maxCount = %u\n", mem5.maxCount);
|
||||
fprintf(out, "mem5.maxRequest = %u\n", mem5.maxRequest);
|
||||
memsys5Leave();
|
||||
if( out==stdout ){
|
||||
fflush(stdout);
|
||||
}else{
|
||||
fclose(out);
|
||||
}
|
||||
#else
|
||||
UNUSED_PARAMETER(zFilename);
|
||||
#endif
|
||||
}
|
||||
|
||||
/*
|
||||
** This routine is the only routine in this file with external
|
||||
** linkage. It returns a pointer to a static sqlite3_mem_methods
|
||||
** struct populated with the memsys5 methods.
|
||||
*/
|
||||
const sqlite3_mem_methods *sqlite3MemGetMemsys5(void){
|
||||
static const sqlite3_mem_methods memsys5Methods = {
|
||||
memsys5Malloc,
|
||||
memsys5Free,
|
||||
memsys5Realloc,
|
||||
memsys5Size,
|
||||
memsys5Roundup,
|
||||
memsys5Init,
|
||||
memsys5Shutdown,
|
||||
0
|
||||
};
|
||||
return &memsys5Methods;
|
||||
}
|
||||
|
||||
#endif /* SQLITE_ENABLE_MEMSYS5 */
|
245
memjournal.c
Normal file
245
memjournal.c
Normal file
|
@ -0,0 +1,245 @@
|
|||
/*
|
||||
** 2008 October 7
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
**
|
||||
** This file contains code use to implement an in-memory rollback journal.
|
||||
** The in-memory rollback journal is used to journal transactions for
|
||||
** ":memory:" databases and when the journal_mode=MEMORY pragma is used.
|
||||
**
|
||||
** @(#) $Id: memjournal.c,v 1.8 2008/12/20 02:14:40 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
/* Forward references to internal structures */
|
||||
typedef struct MemJournal MemJournal;
|
||||
typedef struct FilePoint FilePoint;
|
||||
typedef struct FileChunk FileChunk;
|
||||
|
||||
/* Space to hold the rollback journal is allocated in increments of
|
||||
** this many bytes.
|
||||
*/
|
||||
#define JOURNAL_CHUNKSIZE 1024
|
||||
|
||||
/* Macro to find the minimum of two numeric values.
|
||||
*/
|
||||
#ifndef MIN
|
||||
# define MIN(x,y) ((x)<(y)?(x):(y))
|
||||
#endif
|
||||
|
||||
/*
|
||||
** The rollback journal is composed of a linked list of these structures.
|
||||
*/
|
||||
struct FileChunk {
|
||||
FileChunk *pNext; /* Next chunk in the journal */
|
||||
u8 zChunk[JOURNAL_CHUNKSIZE]; /* Content of this chunk */
|
||||
};
|
||||
|
||||
/*
|
||||
** An instance of this object serves as a cursor into the rollback journal.
|
||||
** The cursor can be either for reading or writing.
|
||||
*/
|
||||
struct FilePoint {
|
||||
sqlite3_int64 iOffset; /* Offset from the beginning of the file */
|
||||
FileChunk *pChunk; /* Specific chunk into which cursor points */
|
||||
};
|
||||
|
||||
/*
|
||||
** This subclass is a subclass of sqlite3_file. Each open memory-journal
|
||||
** is an instance of this class.
|
||||
*/
|
||||
struct MemJournal {
|
||||
sqlite3_io_methods *pMethod; /* Parent class. MUST BE FIRST */
|
||||
FileChunk *pFirst; /* Head of in-memory chunk-list */
|
||||
FilePoint endpoint; /* Pointer to the end of the file */
|
||||
FilePoint readpoint; /* Pointer to the end of the last xRead() */
|
||||
};
|
||||
|
||||
/*
|
||||
** Read data from the file.
|
||||
*/
|
||||
static int memjrnlRead(
|
||||
sqlite3_file *pJfd, /* The journal file from which to read */
|
||||
void *zBuf, /* Put the results here */
|
||||
int iAmt, /* Number of bytes to read */
|
||||
sqlite_int64 iOfst /* Begin reading at this offset */
|
||||
){
|
||||
MemJournal *p = (MemJournal *)pJfd;
|
||||
u8 *zOut = zBuf;
|
||||
int nRead = iAmt;
|
||||
int iChunkOffset;
|
||||
FileChunk *pChunk;
|
||||
|
||||
assert( iOfst+iAmt<=p->endpoint.iOffset );
|
||||
|
||||
if( p->readpoint.iOffset!=iOfst || iOfst==0 ){
|
||||
sqlite3_int64 iOff = 0;
|
||||
for(pChunk=p->pFirst;
|
||||
pChunk && (iOff+JOURNAL_CHUNKSIZE)<=iOfst;
|
||||
pChunk=pChunk->pNext
|
||||
){
|
||||
iOff += JOURNAL_CHUNKSIZE;
|
||||
}
|
||||
}else{
|
||||
pChunk = p->readpoint.pChunk;
|
||||
}
|
||||
|
||||
iChunkOffset = (int)(iOfst%JOURNAL_CHUNKSIZE);
|
||||
do {
|
||||
int iSpace = JOURNAL_CHUNKSIZE - iChunkOffset;
|
||||
int nCopy = MIN(nRead, (JOURNAL_CHUNKSIZE - iChunkOffset));
|
||||
memcpy(zOut, &pChunk->zChunk[iChunkOffset], nCopy);
|
||||
zOut += nCopy;
|
||||
nRead -= iSpace;
|
||||
iChunkOffset = 0;
|
||||
} while( nRead>=0 && (pChunk=pChunk->pNext)!=0 && nRead>0 );
|
||||
p->readpoint.iOffset = iOfst+iAmt;
|
||||
p->readpoint.pChunk = pChunk;
|
||||
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Write data to the file.
|
||||
*/
|
||||
static int memjrnlWrite(
|
||||
sqlite3_file *pJfd, /* The journal file into which to write */
|
||||
const void *zBuf, /* Take data to be written from here */
|
||||
int iAmt, /* Number of bytes to write */
|
||||
sqlite_int64 iOfst /* Begin writing at this offset into the file */
|
||||
){
|
||||
MemJournal *p = (MemJournal *)pJfd;
|
||||
int nWrite = iAmt;
|
||||
u8 *zWrite = (u8 *)zBuf;
|
||||
|
||||
/* An in-memory journal file should only ever be appended to. Random
|
||||
** access writes are not required by sqlite.
|
||||
*/
|
||||
assert(iOfst==p->endpoint.iOffset);
|
||||
UNUSED_PARAMETER(iOfst);
|
||||
|
||||
while( nWrite>0 ){
|
||||
FileChunk *pChunk = p->endpoint.pChunk;
|
||||
int iChunkOffset = (int)(p->endpoint.iOffset%JOURNAL_CHUNKSIZE);
|
||||
int iSpace = MIN(nWrite, JOURNAL_CHUNKSIZE - iChunkOffset);
|
||||
|
||||
if( iChunkOffset==0 ){
|
||||
/* New chunk is required to extend the file. */
|
||||
FileChunk *pNew = sqlite3_malloc(sizeof(FileChunk));
|
||||
if( !pNew ){
|
||||
return SQLITE_IOERR_NOMEM;
|
||||
}
|
||||
pNew->pNext = 0;
|
||||
if( pChunk ){
|
||||
assert( p->pFirst );
|
||||
pChunk->pNext = pNew;
|
||||
}else{
|
||||
assert( !p->pFirst );
|
||||
p->pFirst = pNew;
|
||||
}
|
||||
p->endpoint.pChunk = pNew;
|
||||
}
|
||||
|
||||
memcpy(&p->endpoint.pChunk->zChunk[iChunkOffset], zWrite, iSpace);
|
||||
zWrite += iSpace;
|
||||
nWrite -= iSpace;
|
||||
p->endpoint.iOffset += iSpace;
|
||||
}
|
||||
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Truncate the file.
|
||||
*/
|
||||
static int memjrnlTruncate(sqlite3_file *pJfd, sqlite_int64 size){
|
||||
MemJournal *p = (MemJournal *)pJfd;
|
||||
FileChunk *pChunk;
|
||||
assert(size==0);
|
||||
UNUSED_PARAMETER(size);
|
||||
pChunk = p->pFirst;
|
||||
while( pChunk ){
|
||||
FileChunk *pTmp = pChunk;
|
||||
pChunk = pChunk->pNext;
|
||||
sqlite3_free(pTmp);
|
||||
}
|
||||
sqlite3MemJournalOpen(pJfd);
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Close the file.
|
||||
*/
|
||||
static int memjrnlClose(sqlite3_file *pJfd){
|
||||
memjrnlTruncate(pJfd, 0);
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** Sync the file.
|
||||
*/
|
||||
static int memjrnlSync(sqlite3_file *NotUsed, int NotUsed2){
|
||||
UNUSED_PARAMETER2(NotUsed, NotUsed2);
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Query the size of the file in bytes.
|
||||
*/
|
||||
static int memjrnlFileSize(sqlite3_file *pJfd, sqlite_int64 *pSize){
|
||||
MemJournal *p = (MemJournal *)pJfd;
|
||||
*pSize = (sqlite_int64) p->endpoint.iOffset;
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Table of methods for MemJournal sqlite3_file object.
|
||||
*/
|
||||
static struct sqlite3_io_methods MemJournalMethods = {
|
||||
1, /* iVersion */
|
||||
memjrnlClose, /* xClose */
|
||||
memjrnlRead, /* xRead */
|
||||
memjrnlWrite, /* xWrite */
|
||||
memjrnlTruncate, /* xTruncate */
|
||||
memjrnlSync, /* xSync */
|
||||
memjrnlFileSize, /* xFileSize */
|
||||
0, /* xLock */
|
||||
0, /* xUnlock */
|
||||
0, /* xCheckReservedLock */
|
||||
0, /* xFileControl */
|
||||
0, /* xSectorSize */
|
||||
0 /* xDeviceCharacteristics */
|
||||
};
|
||||
|
||||
/*
|
||||
** Open a journal file.
|
||||
*/
|
||||
void sqlite3MemJournalOpen(sqlite3_file *pJfd){
|
||||
MemJournal *p = (MemJournal *)pJfd;
|
||||
memset(p, 0, sqlite3MemJournalSize());
|
||||
p->pMethod = &MemJournalMethods;
|
||||
}
|
||||
|
||||
/*
|
||||
** Return true if the file-handle passed as an argument is
|
||||
** an in-memory journal
|
||||
*/
|
||||
int sqlite3IsMemJournal(sqlite3_file *pJfd){
|
||||
return pJfd->pMethods==&MemJournalMethods;
|
||||
}
|
||||
|
||||
/*
|
||||
** Return the number of bytes required to store a MemJournal that uses vfs
|
||||
** pVfs to create the underlying on-disk files.
|
||||
*/
|
||||
int sqlite3MemJournalSize(void){
|
||||
return sizeof(MemJournal);
|
||||
}
|
147
mutex.c
Normal file
147
mutex.c
Normal file
|
@ -0,0 +1,147 @@
|
|||
/*
|
||||
** 2007 August 14
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This file contains the C functions that implement mutexes.
|
||||
**
|
||||
** This file contains code that is common across all mutex implementations.
|
||||
|
||||
**
|
||||
** $Id: mutex.c,v 1.29 2008/10/07 15:25:48 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
#ifndef SQLITE_MUTEX_OMIT
|
||||
/*
|
||||
** Initialize the mutex system.
|
||||
*/
|
||||
int sqlite3MutexInit(void){
|
||||
int rc = SQLITE_OK;
|
||||
if( sqlite3GlobalConfig.bCoreMutex ){
|
||||
if( !sqlite3GlobalConfig.mutex.xMutexAlloc ){
|
||||
/* If the xMutexAlloc method has not been set, then the user did not
|
||||
** install a mutex implementation via sqlite3_config() prior to
|
||||
** sqlite3_initialize() being called. This block copies pointers to
|
||||
** the default implementation into the sqlite3GlobalConfig structure.
|
||||
**
|
||||
** The danger is that although sqlite3_config() is not a threadsafe
|
||||
** API, sqlite3_initialize() is, and so multiple threads may be
|
||||
** attempting to run this function simultaneously. To guard write
|
||||
** access to the sqlite3GlobalConfig structure, the 'MASTER' static mutex
|
||||
** is obtained before modifying it.
|
||||
*/
|
||||
sqlite3_mutex_methods *p = sqlite3DefaultMutex();
|
||||
sqlite3_mutex *pMaster = 0;
|
||||
|
||||
rc = p->xMutexInit();
|
||||
if( rc==SQLITE_OK ){
|
||||
pMaster = p->xMutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
|
||||
assert(pMaster);
|
||||
p->xMutexEnter(pMaster);
|
||||
assert( sqlite3GlobalConfig.mutex.xMutexAlloc==0
|
||||
|| sqlite3GlobalConfig.mutex.xMutexAlloc==p->xMutexAlloc
|
||||
);
|
||||
if( !sqlite3GlobalConfig.mutex.xMutexAlloc ){
|
||||
sqlite3GlobalConfig.mutex = *p;
|
||||
}
|
||||
p->xMutexLeave(pMaster);
|
||||
}
|
||||
}else{
|
||||
rc = sqlite3GlobalConfig.mutex.xMutexInit();
|
||||
}
|
||||
}
|
||||
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** Shutdown the mutex system. This call frees resources allocated by
|
||||
** sqlite3MutexInit().
|
||||
*/
|
||||
int sqlite3MutexEnd(void){
|
||||
int rc = SQLITE_OK;
|
||||
rc = sqlite3GlobalConfig.mutex.xMutexEnd();
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** Retrieve a pointer to a static mutex or allocate a new dynamic one.
|
||||
*/
|
||||
sqlite3_mutex *sqlite3_mutex_alloc(int id){
|
||||
#ifndef SQLITE_OMIT_AUTOINIT
|
||||
if( sqlite3_initialize() ) return 0;
|
||||
#endif
|
||||
return sqlite3GlobalConfig.mutex.xMutexAlloc(id);
|
||||
}
|
||||
|
||||
sqlite3_mutex *sqlite3MutexAlloc(int id){
|
||||
if( !sqlite3GlobalConfig.bCoreMutex ){
|
||||
return 0;
|
||||
}
|
||||
return sqlite3GlobalConfig.mutex.xMutexAlloc(id);
|
||||
}
|
||||
|
||||
/*
|
||||
** Free a dynamic mutex.
|
||||
*/
|
||||
void sqlite3_mutex_free(sqlite3_mutex *p){
|
||||
if( p ){
|
||||
sqlite3GlobalConfig.mutex.xMutexFree(p);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Obtain the mutex p. If some other thread already has the mutex, block
|
||||
** until it can be obtained.
|
||||
*/
|
||||
void sqlite3_mutex_enter(sqlite3_mutex *p){
|
||||
if( p ){
|
||||
sqlite3GlobalConfig.mutex.xMutexEnter(p);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Obtain the mutex p. If successful, return SQLITE_OK. Otherwise, if another
|
||||
** thread holds the mutex and it cannot be obtained, return SQLITE_BUSY.
|
||||
*/
|
||||
int sqlite3_mutex_try(sqlite3_mutex *p){
|
||||
int rc = SQLITE_OK;
|
||||
if( p ){
|
||||
return sqlite3GlobalConfig.mutex.xMutexTry(p);
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** The sqlite3_mutex_leave() routine exits a mutex that was previously
|
||||
** entered by the same thread. The behavior is undefined if the mutex
|
||||
** is not currently entered. If a NULL pointer is passed as an argument
|
||||
** this function is a no-op.
|
||||
*/
|
||||
void sqlite3_mutex_leave(sqlite3_mutex *p){
|
||||
if( p ){
|
||||
sqlite3GlobalConfig.mutex.xMutexLeave(p);
|
||||
}
|
||||
}
|
||||
|
||||
#ifndef NDEBUG
|
||||
/*
|
||||
** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
|
||||
** intended for use inside assert() statements.
|
||||
*/
|
||||
int sqlite3_mutex_held(sqlite3_mutex *p){
|
||||
return p==0 || sqlite3GlobalConfig.mutex.xMutexHeld(p);
|
||||
}
|
||||
int sqlite3_mutex_notheld(sqlite3_mutex *p){
|
||||
return p==0 || sqlite3GlobalConfig.mutex.xMutexNotheld(p);
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* SQLITE_OMIT_MUTEX */
|
73
mutex.h
Normal file
73
mutex.h
Normal file
|
@ -0,0 +1,73 @@
|
|||
/*
|
||||
** 2007 August 28
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
**
|
||||
** This file contains the common header for all mutex implementations.
|
||||
** The sqliteInt.h header #includes this file so that it is available
|
||||
** to all source files. We break it out in an effort to keep the code
|
||||
** better organized.
|
||||
**
|
||||
** NOTE: source files should *not* #include this header file directly.
|
||||
** Source files should #include the sqliteInt.h file and let that file
|
||||
** include this one indirectly.
|
||||
**
|
||||
** $Id: mutex.h,v 1.9 2008/10/07 15:25:48 drh Exp $
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
** Figure out what version of the code to use. The choices are
|
||||
**
|
||||
** SQLITE_MUTEX_OMIT No mutex logic. Not even stubs. The
|
||||
** mutexes implemention cannot be overridden
|
||||
** at start-time.
|
||||
**
|
||||
** SQLITE_MUTEX_NOOP For single-threaded applications. No
|
||||
** mutual exclusion is provided. But this
|
||||
** implementation can be overridden at
|
||||
** start-time.
|
||||
**
|
||||
** SQLITE_MUTEX_PTHREADS For multi-threaded applications on Unix.
|
||||
**
|
||||
** SQLITE_MUTEX_W32 For multi-threaded applications on Win32.
|
||||
**
|
||||
** SQLITE_MUTEX_OS2 For multi-threaded applications on OS/2.
|
||||
*/
|
||||
#if !SQLITE_THREADSAFE
|
||||
# define SQLITE_MUTEX_OMIT
|
||||
#endif
|
||||
#if SQLITE_THREADSAFE && !defined(SQLITE_MUTEX_NOOP)
|
||||
# if SQLITE_OS_UNIX
|
||||
# define SQLITE_MUTEX_PTHREADS
|
||||
# elif SQLITE_OS_WIN
|
||||
# define SQLITE_MUTEX_W32
|
||||
# elif SQLITE_OS_OS2
|
||||
# define SQLITE_MUTEX_OS2
|
||||
# else
|
||||
# define SQLITE_MUTEX_NOOP
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#ifdef SQLITE_MUTEX_OMIT
|
||||
/*
|
||||
** If this is a no-op implementation, implement everything as macros.
|
||||
*/
|
||||
#define sqlite3_mutex_alloc(X) ((sqlite3_mutex*)8)
|
||||
#define sqlite3_mutex_free(X)
|
||||
#define sqlite3_mutex_enter(X)
|
||||
#define sqlite3_mutex_try(X) SQLITE_OK
|
||||
#define sqlite3_mutex_leave(X)
|
||||
#define sqlite3_mutex_held(X) 1
|
||||
#define sqlite3_mutex_notheld(X) 1
|
||||
#define sqlite3MutexAlloc(X) ((sqlite3_mutex*)8)
|
||||
#define sqlite3MutexInit() SQLITE_OK
|
||||
#define sqlite3MutexEnd()
|
||||
#endif /* defined(SQLITE_OMIT_MUTEX) */
|
186
mutex_noop.c
Normal file
186
mutex_noop.c
Normal file
|
@ -0,0 +1,186 @@
|
|||
/*
|
||||
** 2008 October 07
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This file contains the C functions that implement mutexes.
|
||||
**
|
||||
** This implementation in this file does not provide any mutual
|
||||
** exclusion and is thus suitable for use only in applications
|
||||
** that use SQLite in a single thread. The routines defined
|
||||
** here are place-holders. Applications can substitute working
|
||||
** mutex routines at start-time using the
|
||||
**
|
||||
** sqlite3_config(SQLITE_CONFIG_MUTEX,...)
|
||||
**
|
||||
** interface.
|
||||
**
|
||||
** If compiled with SQLITE_DEBUG, then additional logic is inserted
|
||||
** that does error checking on mutexes to make sure they are being
|
||||
** called correctly.
|
||||
**
|
||||
** $Id: mutex_noop.c,v 1.3 2008/12/05 17:17:08 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
|
||||
#if defined(SQLITE_MUTEX_NOOP) && !defined(SQLITE_DEBUG)
|
||||
/*
|
||||
** Stub routines for all mutex methods.
|
||||
**
|
||||
** This routines provide no mutual exclusion or error checking.
|
||||
*/
|
||||
static int noopMutexHeld(sqlite3_mutex *p){ return 1; }
|
||||
static int noopMutexNotheld(sqlite3_mutex *p){ return 1; }
|
||||
static int noopMutexInit(void){ return SQLITE_OK; }
|
||||
static int noopMutexEnd(void){ return SQLITE_OK; }
|
||||
static sqlite3_mutex *noopMutexAlloc(int id){ return (sqlite3_mutex*)8; }
|
||||
static void noopMutexFree(sqlite3_mutex *p){ return; }
|
||||
static void noopMutexEnter(sqlite3_mutex *p){ return; }
|
||||
static int noopMutexTry(sqlite3_mutex *p){ return SQLITE_OK; }
|
||||
static void noopMutexLeave(sqlite3_mutex *p){ return; }
|
||||
|
||||
sqlite3_mutex_methods *sqlite3DefaultMutex(void){
|
||||
static sqlite3_mutex_methods sMutex = {
|
||||
noopMutexInit,
|
||||
noopMutexEnd,
|
||||
noopMutexAlloc,
|
||||
noopMutexFree,
|
||||
noopMutexEnter,
|
||||
noopMutexTry,
|
||||
noopMutexLeave,
|
||||
|
||||
noopMutexHeld,
|
||||
noopMutexNotheld
|
||||
};
|
||||
|
||||
return &sMutex;
|
||||
}
|
||||
#endif /* defined(SQLITE_MUTEX_NOOP) && !defined(SQLITE_DEBUG) */
|
||||
|
||||
#if defined(SQLITE_MUTEX_NOOP) && defined(SQLITE_DEBUG)
|
||||
/*
|
||||
** In this implementation, error checking is provided for testing
|
||||
** and debugging purposes. The mutexes still do not provide any
|
||||
** mutual exclusion.
|
||||
*/
|
||||
|
||||
/*
|
||||
** The mutex object
|
||||
*/
|
||||
struct sqlite3_mutex {
|
||||
int id; /* The mutex type */
|
||||
int cnt; /* Number of entries without a matching leave */
|
||||
};
|
||||
|
||||
/*
|
||||
** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
|
||||
** intended for use inside assert() statements.
|
||||
*/
|
||||
static int debugMutexHeld(sqlite3_mutex *p){
|
||||
return p==0 || p->cnt>0;
|
||||
}
|
||||
static int debugMutexNotheld(sqlite3_mutex *p){
|
||||
return p==0 || p->cnt==0;
|
||||
}
|
||||
|
||||
/*
|
||||
** Initialize and deinitialize the mutex subsystem.
|
||||
*/
|
||||
static int debugMutexInit(void){ return SQLITE_OK; }
|
||||
static int debugMutexEnd(void){ return SQLITE_OK; }
|
||||
|
||||
/*
|
||||
** The sqlite3_mutex_alloc() routine allocates a new
|
||||
** mutex and returns a pointer to it. If it returns NULL
|
||||
** that means that a mutex could not be allocated.
|
||||
*/
|
||||
static sqlite3_mutex *debugMutexAlloc(int id){
|
||||
static sqlite3_mutex aStatic[6];
|
||||
sqlite3_mutex *pNew = 0;
|
||||
switch( id ){
|
||||
case SQLITE_MUTEX_FAST:
|
||||
case SQLITE_MUTEX_RECURSIVE: {
|
||||
pNew = sqlite3Malloc(sizeof(*pNew));
|
||||
if( pNew ){
|
||||
pNew->id = id;
|
||||
pNew->cnt = 0;
|
||||
}
|
||||
break;
|
||||
}
|
||||
default: {
|
||||
assert( id-2 >= 0 );
|
||||
assert( id-2 < (int)(sizeof(aStatic)/sizeof(aStatic[0])) );
|
||||
pNew = &aStatic[id-2];
|
||||
pNew->id = id;
|
||||
break;
|
||||
}
|
||||
}
|
||||
return pNew;
|
||||
}
|
||||
|
||||
/*
|
||||
** This routine deallocates a previously allocated mutex.
|
||||
*/
|
||||
static void debugMutexFree(sqlite3_mutex *p){
|
||||
assert( p->cnt==0 );
|
||||
assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );
|
||||
sqlite3_free(p);
|
||||
}
|
||||
|
||||
/*
|
||||
** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
|
||||
** to enter a mutex. If another thread is already within the mutex,
|
||||
** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
|
||||
** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK
|
||||
** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can
|
||||
** be entered multiple times by the same thread. In such cases the,
|
||||
** mutex must be exited an equal number of times before another thread
|
||||
** can enter. If the same thread tries to enter any other kind of mutex
|
||||
** more than once, the behavior is undefined.
|
||||
*/
|
||||
static void debugMutexEnter(sqlite3_mutex *p){
|
||||
assert( p->id==SQLITE_MUTEX_RECURSIVE || debugMutexNotheld(p) );
|
||||
p->cnt++;
|
||||
}
|
||||
static int debugMutexTry(sqlite3_mutex *p){
|
||||
assert( p->id==SQLITE_MUTEX_RECURSIVE || debugMutexNotheld(p) );
|
||||
p->cnt++;
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** The sqlite3_mutex_leave() routine exits a mutex that was
|
||||
** previously entered by the same thread. The behavior
|
||||
** is undefined if the mutex is not currently entered or
|
||||
** is not currently allocated. SQLite will never do either.
|
||||
*/
|
||||
static void debugMutexLeave(sqlite3_mutex *p){
|
||||
assert( debugMutexHeld(p) );
|
||||
p->cnt--;
|
||||
assert( p->id==SQLITE_MUTEX_RECURSIVE || debugMutexNotheld(p) );
|
||||
}
|
||||
|
||||
sqlite3_mutex_methods *sqlite3DefaultMutex(void){
|
||||
static sqlite3_mutex_methods sMutex = {
|
||||
debugMutexInit,
|
||||
debugMutexEnd,
|
||||
debugMutexAlloc,
|
||||
debugMutexFree,
|
||||
debugMutexEnter,
|
||||
debugMutexTry,
|
||||
debugMutexLeave,
|
||||
|
||||
debugMutexHeld,
|
||||
debugMutexNotheld
|
||||
};
|
||||
|
||||
return &sMutex;
|
||||
}
|
||||
#endif /* defined(SQLITE_MUTEX_NOOP) && defined(SQLITE_DEBUG) */
|
273
mutex_os2.c
Normal file
273
mutex_os2.c
Normal file
|
@ -0,0 +1,273 @@
|
|||
/*
|
||||
** 2007 August 28
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This file contains the C functions that implement mutexes for OS/2
|
||||
**
|
||||
** $Id: mutex_os2.c,v 1.11 2008/11/22 19:50:54 pweilbacher Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
/*
|
||||
** The code in this file is only used if SQLITE_MUTEX_OS2 is defined.
|
||||
** See the mutex.h file for details.
|
||||
*/
|
||||
#ifdef SQLITE_MUTEX_OS2
|
||||
|
||||
/********************** OS/2 Mutex Implementation **********************
|
||||
**
|
||||
** This implementation of mutexes is built using the OS/2 API.
|
||||
*/
|
||||
|
||||
/*
|
||||
** The mutex object
|
||||
** Each recursive mutex is an instance of the following structure.
|
||||
*/
|
||||
struct sqlite3_mutex {
|
||||
HMTX mutex; /* Mutex controlling the lock */
|
||||
int id; /* Mutex type */
|
||||
int nRef; /* Number of references */
|
||||
TID owner; /* Thread holding this mutex */
|
||||
};
|
||||
|
||||
#define OS2_MUTEX_INITIALIZER 0,0,0,0
|
||||
|
||||
/*
|
||||
** Initialize and deinitialize the mutex subsystem.
|
||||
*/
|
||||
static int os2MutexInit(void){ return SQLITE_OK; }
|
||||
static int os2MutexEnd(void){ return SQLITE_OK; }
|
||||
|
||||
/*
|
||||
** The sqlite3_mutex_alloc() routine allocates a new
|
||||
** mutex and returns a pointer to it. If it returns NULL
|
||||
** that means that a mutex could not be allocated.
|
||||
** SQLite will unwind its stack and return an error. The argument
|
||||
** to sqlite3_mutex_alloc() is one of these integer constants:
|
||||
**
|
||||
** <ul>
|
||||
** <li> SQLITE_MUTEX_FAST 0
|
||||
** <li> SQLITE_MUTEX_RECURSIVE 1
|
||||
** <li> SQLITE_MUTEX_STATIC_MASTER 2
|
||||
** <li> SQLITE_MUTEX_STATIC_MEM 3
|
||||
** <li> SQLITE_MUTEX_STATIC_PRNG 4
|
||||
** </ul>
|
||||
**
|
||||
** The first two constants cause sqlite3_mutex_alloc() to create
|
||||
** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
|
||||
** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
|
||||
** The mutex implementation does not need to make a distinction
|
||||
** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
|
||||
** not want to. But SQLite will only request a recursive mutex in
|
||||
** cases where it really needs one. If a faster non-recursive mutex
|
||||
** implementation is available on the host platform, the mutex subsystem
|
||||
** might return such a mutex in response to SQLITE_MUTEX_FAST.
|
||||
**
|
||||
** The other allowed parameters to sqlite3_mutex_alloc() each return
|
||||
** a pointer to a static preexisting mutex. Three static mutexes are
|
||||
** used by the current version of SQLite. Future versions of SQLite
|
||||
** may add additional static mutexes. Static mutexes are for internal
|
||||
** use by SQLite only. Applications that use SQLite mutexes should
|
||||
** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
|
||||
** SQLITE_MUTEX_RECURSIVE.
|
||||
**
|
||||
** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
|
||||
** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
|
||||
** returns a different mutex on every call. But for the static
|
||||
** mutex types, the same mutex is returned on every call that has
|
||||
** the same type number.
|
||||
*/
|
||||
static sqlite3_mutex *os2MutexAlloc(int iType){
|
||||
sqlite3_mutex *p = NULL;
|
||||
switch( iType ){
|
||||
case SQLITE_MUTEX_FAST:
|
||||
case SQLITE_MUTEX_RECURSIVE: {
|
||||
p = sqlite3MallocZero( sizeof(*p) );
|
||||
if( p ){
|
||||
p->id = iType;
|
||||
if( DosCreateMutexSem( 0, &p->mutex, 0, FALSE ) != NO_ERROR ){
|
||||
sqlite3_free( p );
|
||||
p = NULL;
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
default: {
|
||||
static volatile int isInit = 0;
|
||||
static sqlite3_mutex staticMutexes[] = {
|
||||
{ OS2_MUTEX_INITIALIZER, },
|
||||
{ OS2_MUTEX_INITIALIZER, },
|
||||
{ OS2_MUTEX_INITIALIZER, },
|
||||
{ OS2_MUTEX_INITIALIZER, },
|
||||
{ OS2_MUTEX_INITIALIZER, },
|
||||
{ OS2_MUTEX_INITIALIZER, },
|
||||
};
|
||||
if ( !isInit ){
|
||||
APIRET rc;
|
||||
PTIB ptib;
|
||||
PPIB ppib;
|
||||
HMTX mutex;
|
||||
char name[32];
|
||||
DosGetInfoBlocks( &ptib, &ppib );
|
||||
sqlite3_snprintf( sizeof(name), name, "\\SEM32\\SQLITE%04x",
|
||||
ppib->pib_ulpid );
|
||||
while( !isInit ){
|
||||
mutex = 0;
|
||||
rc = DosCreateMutexSem( name, &mutex, 0, FALSE);
|
||||
if( rc == NO_ERROR ){
|
||||
unsigned int i;
|
||||
if( !isInit ){
|
||||
for( i = 0; i < sizeof(staticMutexes)/sizeof(staticMutexes[0]); i++ ){
|
||||
DosCreateMutexSem( 0, &staticMutexes[i].mutex, 0, FALSE );
|
||||
}
|
||||
isInit = 1;
|
||||
}
|
||||
DosCloseMutexSem( mutex );
|
||||
}else if( rc == ERROR_DUPLICATE_NAME ){
|
||||
DosSleep( 1 );
|
||||
}else{
|
||||
return p;
|
||||
}
|
||||
}
|
||||
}
|
||||
assert( iType-2 >= 0 );
|
||||
assert( iType-2 < sizeof(staticMutexes)/sizeof(staticMutexes[0]) );
|
||||
p = &staticMutexes[iType-2];
|
||||
p->id = iType;
|
||||
break;
|
||||
}
|
||||
}
|
||||
return p;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** This routine deallocates a previously allocated mutex.
|
||||
** SQLite is careful to deallocate every mutex that it allocates.
|
||||
*/
|
||||
static void os2MutexFree(sqlite3_mutex *p){
|
||||
if( p==0 ) return;
|
||||
assert( p->nRef==0 );
|
||||
assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );
|
||||
DosCloseMutexSem( p->mutex );
|
||||
sqlite3_free( p );
|
||||
}
|
||||
|
||||
/*
|
||||
** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
|
||||
** to enter a mutex. If another thread is already within the mutex,
|
||||
** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
|
||||
** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK
|
||||
** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can
|
||||
** be entered multiple times by the same thread. In such cases the,
|
||||
** mutex must be exited an equal number of times before another thread
|
||||
** can enter. If the same thread tries to enter any other kind of mutex
|
||||
** more than once, the behavior is undefined.
|
||||
*/
|
||||
static void os2MutexEnter(sqlite3_mutex *p){
|
||||
TID tid;
|
||||
PID holder1;
|
||||
ULONG holder2;
|
||||
if( p==0 ) return;
|
||||
assert( p->id==SQLITE_MUTEX_RECURSIVE || os2MutexNotheld(p) );
|
||||
DosRequestMutexSem(p->mutex, SEM_INDEFINITE_WAIT);
|
||||
DosQueryMutexSem(p->mutex, &holder1, &tid, &holder2);
|
||||
p->owner = tid;
|
||||
p->nRef++;
|
||||
}
|
||||
static int os2MutexTry(sqlite3_mutex *p){
|
||||
int rc;
|
||||
TID tid;
|
||||
PID holder1;
|
||||
ULONG holder2;
|
||||
if( p==0 ) return SQLITE_OK;
|
||||
assert( p->id==SQLITE_MUTEX_RECURSIVE || os2MutexNotheld(p) );
|
||||
if( DosRequestMutexSem(p->mutex, SEM_IMMEDIATE_RETURN) == NO_ERROR) {
|
||||
DosQueryMutexSem(p->mutex, &holder1, &tid, &holder2);
|
||||
p->owner = tid;
|
||||
p->nRef++;
|
||||
rc = SQLITE_OK;
|
||||
} else {
|
||||
rc = SQLITE_BUSY;
|
||||
}
|
||||
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** The sqlite3_mutex_leave() routine exits a mutex that was
|
||||
** previously entered by the same thread. The behavior
|
||||
** is undefined if the mutex is not currently entered or
|
||||
** is not currently allocated. SQLite will never do either.
|
||||
*/
|
||||
static void os2MutexLeave(sqlite3_mutex *p){
|
||||
TID tid;
|
||||
PID holder1;
|
||||
ULONG holder2;
|
||||
if( p==0 ) return;
|
||||
assert( p->nRef>0 );
|
||||
DosQueryMutexSem(p->mutex, &holder1, &tid, &holder2);
|
||||
assert( p->owner==tid );
|
||||
p->nRef--;
|
||||
assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE );
|
||||
DosReleaseMutexSem(p->mutex);
|
||||
}
|
||||
|
||||
#ifdef SQLITE_DEBUG
|
||||
/*
|
||||
** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
|
||||
** intended for use inside assert() statements.
|
||||
*/
|
||||
static int os2MutexHeld(sqlite3_mutex *p){
|
||||
TID tid;
|
||||
PID pid;
|
||||
ULONG ulCount;
|
||||
PTIB ptib;
|
||||
if( p!=0 ) {
|
||||
DosQueryMutexSem(p->mutex, &pid, &tid, &ulCount);
|
||||
} else {
|
||||
DosGetInfoBlocks(&ptib, NULL);
|
||||
tid = ptib->tib_ptib2->tib2_ultid;
|
||||
}
|
||||
return p==0 || (p->nRef!=0 && p->owner==tid);
|
||||
}
|
||||
static int os2MutexNotheld(sqlite3_mutex *p){
|
||||
TID tid;
|
||||
PID pid;
|
||||
ULONG ulCount;
|
||||
PTIB ptib;
|
||||
if( p!= 0 ) {
|
||||
DosQueryMutexSem(p->mutex, &pid, &tid, &ulCount);
|
||||
} else {
|
||||
DosGetInfoBlocks(&ptib, NULL);
|
||||
tid = ptib->tib_ptib2->tib2_ultid;
|
||||
}
|
||||
return p==0 || p->nRef==0 || p->owner!=tid;
|
||||
}
|
||||
#endif
|
||||
|
||||
sqlite3_mutex_methods *sqlite3DefaultMutex(void){
|
||||
static sqlite3_mutex_methods sMutex = {
|
||||
os2MutexInit,
|
||||
os2MutexEnd,
|
||||
os2MutexAlloc,
|
||||
os2MutexFree,
|
||||
os2MutexEnter,
|
||||
os2MutexTry,
|
||||
os2MutexLeave,
|
||||
#ifdef SQLITE_DEBUG
|
||||
os2MutexHeld,
|
||||
os2MutexNotheld
|
||||
#endif
|
||||
};
|
||||
|
||||
return &sMutex;
|
||||
}
|
||||
#endif /* SQLITE_MUTEX_OS2 */
|
328
mutex_unix.c
Normal file
328
mutex_unix.c
Normal file
|
@ -0,0 +1,328 @@
|
|||
/*
|
||||
** 2007 August 28
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This file contains the C functions that implement mutexes for pthreads
|
||||
**
|
||||
** $Id: mutex_unix.c,v 1.16 2008/12/08 18:19:18 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
/*
|
||||
** The code in this file is only used if we are compiling threadsafe
|
||||
** under unix with pthreads.
|
||||
**
|
||||
** Note that this implementation requires a version of pthreads that
|
||||
** supports recursive mutexes.
|
||||
*/
|
||||
#ifdef SQLITE_MUTEX_PTHREADS
|
||||
|
||||
#include <pthread.h>
|
||||
|
||||
|
||||
/*
|
||||
** Each recursive mutex is an instance of the following structure.
|
||||
*/
|
||||
struct sqlite3_mutex {
|
||||
pthread_mutex_t mutex; /* Mutex controlling the lock */
|
||||
int id; /* Mutex type */
|
||||
int nRef; /* Number of entrances */
|
||||
pthread_t owner; /* Thread that is within this mutex */
|
||||
#ifdef SQLITE_DEBUG
|
||||
int trace; /* True to trace changes */
|
||||
#endif
|
||||
};
|
||||
#ifdef SQLITE_DEBUG
|
||||
#define SQLITE3_MUTEX_INITIALIZER { PTHREAD_MUTEX_INITIALIZER, 0, 0, (pthread_t)0, 0 }
|
||||
#else
|
||||
#define SQLITE3_MUTEX_INITIALIZER { PTHREAD_MUTEX_INITIALIZER, 0, 0, (pthread_t)0 }
|
||||
#endif
|
||||
|
||||
/*
|
||||
** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
|
||||
** intended for use only inside assert() statements. On some platforms,
|
||||
** there might be race conditions that can cause these routines to
|
||||
** deliver incorrect results. In particular, if pthread_equal() is
|
||||
** not an atomic operation, then these routines might delivery
|
||||
** incorrect results. On most platforms, pthread_equal() is a
|
||||
** comparison of two integers and is therefore atomic. But we are
|
||||
** told that HPUX is not such a platform. If so, then these routines
|
||||
** will not always work correctly on HPUX.
|
||||
**
|
||||
** On those platforms where pthread_equal() is not atomic, SQLite
|
||||
** should be compiled without -DSQLITE_DEBUG and with -DNDEBUG to
|
||||
** make sure no assert() statements are evaluated and hence these
|
||||
** routines are never called.
|
||||
*/
|
||||
#if !defined(NDEBUG) || defined(SQLITE_DEBUG)
|
||||
static int pthreadMutexHeld(sqlite3_mutex *p){
|
||||
return (p->nRef!=0 && pthread_equal(p->owner, pthread_self()));
|
||||
}
|
||||
static int pthreadMutexNotheld(sqlite3_mutex *p){
|
||||
return p->nRef==0 || pthread_equal(p->owner, pthread_self())==0;
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
** Initialize and deinitialize the mutex subsystem.
|
||||
*/
|
||||
static int pthreadMutexInit(void){ return SQLITE_OK; }
|
||||
static int pthreadMutexEnd(void){ return SQLITE_OK; }
|
||||
|
||||
/*
|
||||
** The sqlite3_mutex_alloc() routine allocates a new
|
||||
** mutex and returns a pointer to it. If it returns NULL
|
||||
** that means that a mutex could not be allocated. SQLite
|
||||
** will unwind its stack and return an error. The argument
|
||||
** to sqlite3_mutex_alloc() is one of these integer constants:
|
||||
**
|
||||
** <ul>
|
||||
** <li> SQLITE_MUTEX_FAST
|
||||
** <li> SQLITE_MUTEX_RECURSIVE
|
||||
** <li> SQLITE_MUTEX_STATIC_MASTER
|
||||
** <li> SQLITE_MUTEX_STATIC_MEM
|
||||
** <li> SQLITE_MUTEX_STATIC_MEM2
|
||||
** <li> SQLITE_MUTEX_STATIC_PRNG
|
||||
** <li> SQLITE_MUTEX_STATIC_LRU
|
||||
** </ul>
|
||||
**
|
||||
** The first two constants cause sqlite3_mutex_alloc() to create
|
||||
** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
|
||||
** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
|
||||
** The mutex implementation does not need to make a distinction
|
||||
** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
|
||||
** not want to. But SQLite will only request a recursive mutex in
|
||||
** cases where it really needs one. If a faster non-recursive mutex
|
||||
** implementation is available on the host platform, the mutex subsystem
|
||||
** might return such a mutex in response to SQLITE_MUTEX_FAST.
|
||||
**
|
||||
** The other allowed parameters to sqlite3_mutex_alloc() each return
|
||||
** a pointer to a static preexisting mutex. Three static mutexes are
|
||||
** used by the current version of SQLite. Future versions of SQLite
|
||||
** may add additional static mutexes. Static mutexes are for internal
|
||||
** use by SQLite only. Applications that use SQLite mutexes should
|
||||
** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
|
||||
** SQLITE_MUTEX_RECURSIVE.
|
||||
**
|
||||
** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
|
||||
** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
|
||||
** returns a different mutex on every call. But for the static
|
||||
** mutex types, the same mutex is returned on every call that has
|
||||
** the same type number.
|
||||
*/
|
||||
static sqlite3_mutex *pthreadMutexAlloc(int iType){
|
||||
static sqlite3_mutex staticMutexes[] = {
|
||||
SQLITE3_MUTEX_INITIALIZER,
|
||||
SQLITE3_MUTEX_INITIALIZER,
|
||||
SQLITE3_MUTEX_INITIALIZER,
|
||||
SQLITE3_MUTEX_INITIALIZER,
|
||||
SQLITE3_MUTEX_INITIALIZER,
|
||||
SQLITE3_MUTEX_INITIALIZER
|
||||
};
|
||||
sqlite3_mutex *p;
|
||||
switch( iType ){
|
||||
case SQLITE_MUTEX_RECURSIVE: {
|
||||
p = sqlite3MallocZero( sizeof(*p) );
|
||||
if( p ){
|
||||
#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
|
||||
/* If recursive mutexes are not available, we will have to
|
||||
** build our own. See below. */
|
||||
pthread_mutex_init(&p->mutex, 0);
|
||||
#else
|
||||
/* Use a recursive mutex if it is available */
|
||||
pthread_mutexattr_t recursiveAttr;
|
||||
pthread_mutexattr_init(&recursiveAttr);
|
||||
pthread_mutexattr_settype(&recursiveAttr, PTHREAD_MUTEX_RECURSIVE);
|
||||
pthread_mutex_init(&p->mutex, &recursiveAttr);
|
||||
pthread_mutexattr_destroy(&recursiveAttr);
|
||||
#endif
|
||||
p->id = iType;
|
||||
}
|
||||
break;
|
||||
}
|
||||
case SQLITE_MUTEX_FAST: {
|
||||
p = sqlite3MallocZero( sizeof(*p) );
|
||||
if( p ){
|
||||
p->id = iType;
|
||||
pthread_mutex_init(&p->mutex, 0);
|
||||
}
|
||||
break;
|
||||
}
|
||||
default: {
|
||||
assert( iType-2 >= 0 );
|
||||
assert( iType-2 < ArraySize(staticMutexes) );
|
||||
p = &staticMutexes[iType-2];
|
||||
p->id = iType;
|
||||
break;
|
||||
}
|
||||
}
|
||||
return p;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** This routine deallocates a previously
|
||||
** allocated mutex. SQLite is careful to deallocate every
|
||||
** mutex that it allocates.
|
||||
*/
|
||||
static void pthreadMutexFree(sqlite3_mutex *p){
|
||||
assert( p->nRef==0 );
|
||||
assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );
|
||||
pthread_mutex_destroy(&p->mutex);
|
||||
sqlite3_free(p);
|
||||
}
|
||||
|
||||
/*
|
||||
** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
|
||||
** to enter a mutex. If another thread is already within the mutex,
|
||||
** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
|
||||
** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK
|
||||
** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can
|
||||
** be entered multiple times by the same thread. In such cases the,
|
||||
** mutex must be exited an equal number of times before another thread
|
||||
** can enter. If the same thread tries to enter any other kind of mutex
|
||||
** more than once, the behavior is undefined.
|
||||
*/
|
||||
static void pthreadMutexEnter(sqlite3_mutex *p){
|
||||
assert( p->id==SQLITE_MUTEX_RECURSIVE || pthreadMutexNotheld(p) );
|
||||
|
||||
#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
|
||||
/* If recursive mutexes are not available, then we have to grow
|
||||
** our own. This implementation assumes that pthread_equal()
|
||||
** is atomic - that it cannot be deceived into thinking self
|
||||
** and p->owner are equal if p->owner changes between two values
|
||||
** that are not equal to self while the comparison is taking place.
|
||||
** This implementation also assumes a coherent cache - that
|
||||
** separate processes cannot read different values from the same
|
||||
** address at the same time. If either of these two conditions
|
||||
** are not met, then the mutexes will fail and problems will result.
|
||||
*/
|
||||
{
|
||||
pthread_t self = pthread_self();
|
||||
if( p->nRef>0 && pthread_equal(p->owner, self) ){
|
||||
p->nRef++;
|
||||
}else{
|
||||
pthread_mutex_lock(&p->mutex);
|
||||
assert( p->nRef==0 );
|
||||
p->owner = self;
|
||||
p->nRef = 1;
|
||||
}
|
||||
}
|
||||
#else
|
||||
/* Use the built-in recursive mutexes if they are available.
|
||||
*/
|
||||
pthread_mutex_lock(&p->mutex);
|
||||
p->owner = pthread_self();
|
||||
p->nRef++;
|
||||
#endif
|
||||
|
||||
#ifdef SQLITE_DEBUG
|
||||
if( p->trace ){
|
||||
printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
static int pthreadMutexTry(sqlite3_mutex *p){
|
||||
int rc;
|
||||
assert( p->id==SQLITE_MUTEX_RECURSIVE || pthreadMutexNotheld(p) );
|
||||
|
||||
#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
|
||||
/* If recursive mutexes are not available, then we have to grow
|
||||
** our own. This implementation assumes that pthread_equal()
|
||||
** is atomic - that it cannot be deceived into thinking self
|
||||
** and p->owner are equal if p->owner changes between two values
|
||||
** that are not equal to self while the comparison is taking place.
|
||||
** This implementation also assumes a coherent cache - that
|
||||
** separate processes cannot read different values from the same
|
||||
** address at the same time. If either of these two conditions
|
||||
** are not met, then the mutexes will fail and problems will result.
|
||||
*/
|
||||
{
|
||||
pthread_t self = pthread_self();
|
||||
if( p->nRef>0 && pthread_equal(p->owner, self) ){
|
||||
p->nRef++;
|
||||
rc = SQLITE_OK;
|
||||
}else if( pthread_mutex_trylock(&p->mutex)==0 ){
|
||||
assert( p->nRef==0 );
|
||||
p->owner = self;
|
||||
p->nRef = 1;
|
||||
rc = SQLITE_OK;
|
||||
}else{
|
||||
rc = SQLITE_BUSY;
|
||||
}
|
||||
}
|
||||
#else
|
||||
/* Use the built-in recursive mutexes if they are available.
|
||||
*/
|
||||
if( pthread_mutex_trylock(&p->mutex)==0 ){
|
||||
p->owner = pthread_self();
|
||||
p->nRef++;
|
||||
rc = SQLITE_OK;
|
||||
}else{
|
||||
rc = SQLITE_BUSY;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef SQLITE_DEBUG
|
||||
if( rc==SQLITE_OK && p->trace ){
|
||||
printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
|
||||
}
|
||||
#endif
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** The sqlite3_mutex_leave() routine exits a mutex that was
|
||||
** previously entered by the same thread. The behavior
|
||||
** is undefined if the mutex is not currently entered or
|
||||
** is not currently allocated. SQLite will never do either.
|
||||
*/
|
||||
static void pthreadMutexLeave(sqlite3_mutex *p){
|
||||
assert( pthreadMutexHeld(p) );
|
||||
p->nRef--;
|
||||
assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE );
|
||||
|
||||
#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
|
||||
if( p->nRef==0 ){
|
||||
pthread_mutex_unlock(&p->mutex);
|
||||
}
|
||||
#else
|
||||
pthread_mutex_unlock(&p->mutex);
|
||||
#endif
|
||||
|
||||
#ifdef SQLITE_DEBUG
|
||||
if( p->trace ){
|
||||
printf("leave mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
sqlite3_mutex_methods *sqlite3DefaultMutex(void){
|
||||
static sqlite3_mutex_methods sMutex = {
|
||||
pthreadMutexInit,
|
||||
pthreadMutexEnd,
|
||||
pthreadMutexAlloc,
|
||||
pthreadMutexFree,
|
||||
pthreadMutexEnter,
|
||||
pthreadMutexTry,
|
||||
pthreadMutexLeave,
|
||||
#ifdef SQLITE_DEBUG
|
||||
pthreadMutexHeld,
|
||||
pthreadMutexNotheld
|
||||
#else
|
||||
0,
|
||||
0
|
||||
#endif
|
||||
};
|
||||
|
||||
return &sMutex;
|
||||
}
|
||||
|
||||
#endif /* SQLITE_MUTEX_PTHREAD */
|
254
mutex_w32.c
Normal file
254
mutex_w32.c
Normal file
|
@ -0,0 +1,254 @@
|
|||
/*
|
||||
** 2007 August 14
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This file contains the C functions that implement mutexes for win32
|
||||
**
|
||||
** $Id: mutex_w32.c,v 1.13 2008/12/08 18:19:18 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
/*
|
||||
** The code in this file is only used if we are compiling multithreaded
|
||||
** on a win32 system.
|
||||
*/
|
||||
#ifdef SQLITE_MUTEX_W32
|
||||
|
||||
/*
|
||||
** Each recursive mutex is an instance of the following structure.
|
||||
*/
|
||||
struct sqlite3_mutex {
|
||||
CRITICAL_SECTION mutex; /* Mutex controlling the lock */
|
||||
int id; /* Mutex type */
|
||||
int nRef; /* Number of enterances */
|
||||
DWORD owner; /* Thread holding this mutex */
|
||||
};
|
||||
|
||||
/*
|
||||
** Return true (non-zero) if we are running under WinNT, Win2K, WinXP,
|
||||
** or WinCE. Return false (zero) for Win95, Win98, or WinME.
|
||||
**
|
||||
** Here is an interesting observation: Win95, Win98, and WinME lack
|
||||
** the LockFileEx() API. But we can still statically link against that
|
||||
** API as long as we don't call it win running Win95/98/ME. A call to
|
||||
** this routine is used to determine if the host is Win95/98/ME or
|
||||
** WinNT/2K/XP so that we will know whether or not we can safely call
|
||||
** the LockFileEx() API.
|
||||
**
|
||||
** mutexIsNT() is only used for the TryEnterCriticalSection() API call,
|
||||
** which is only available if your application was compiled with
|
||||
** _WIN32_WINNT defined to a value >= 0x0400. Currently, the only
|
||||
** call to TryEnterCriticalSection() is #ifdef'ed out, so #ifdef
|
||||
** this out as well.
|
||||
*/
|
||||
#if 0
|
||||
#if SQLITE_OS_WINCE
|
||||
# define mutexIsNT() (1)
|
||||
#else
|
||||
static int mutexIsNT(void){
|
||||
static int osType = 0;
|
||||
if( osType==0 ){
|
||||
OSVERSIONINFO sInfo;
|
||||
sInfo.dwOSVersionInfoSize = sizeof(sInfo);
|
||||
GetVersionEx(&sInfo);
|
||||
osType = sInfo.dwPlatformId==VER_PLATFORM_WIN32_NT ? 2 : 1;
|
||||
}
|
||||
return osType==2;
|
||||
}
|
||||
#endif /* SQLITE_OS_WINCE */
|
||||
#endif
|
||||
|
||||
#ifdef SQLITE_DEBUG
|
||||
/*
|
||||
** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
|
||||
** intended for use only inside assert() statements.
|
||||
*/
|
||||
static int winMutexHeld(sqlite3_mutex *p){
|
||||
return p->nRef!=0 && p->owner==GetCurrentThreadId();
|
||||
}
|
||||
static int winMutexNotheld(sqlite3_mutex *p){
|
||||
return p->nRef==0 || p->owner!=GetCurrentThreadId();
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
** Initialize and deinitialize the mutex subsystem.
|
||||
*/
|
||||
static int winMutexInit(void){ return SQLITE_OK; }
|
||||
static int winMutexEnd(void){ return SQLITE_OK; }
|
||||
|
||||
/*
|
||||
** The sqlite3_mutex_alloc() routine allocates a new
|
||||
** mutex and returns a pointer to it. If it returns NULL
|
||||
** that means that a mutex could not be allocated. SQLite
|
||||
** will unwind its stack and return an error. The argument
|
||||
** to sqlite3_mutex_alloc() is one of these integer constants:
|
||||
**
|
||||
** <ul>
|
||||
** <li> SQLITE_MUTEX_FAST 0
|
||||
** <li> SQLITE_MUTEX_RECURSIVE 1
|
||||
** <li> SQLITE_MUTEX_STATIC_MASTER 2
|
||||
** <li> SQLITE_MUTEX_STATIC_MEM 3
|
||||
** <li> SQLITE_MUTEX_STATIC_PRNG 4
|
||||
** </ul>
|
||||
**
|
||||
** The first two constants cause sqlite3_mutex_alloc() to create
|
||||
** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
|
||||
** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
|
||||
** The mutex implementation does not need to make a distinction
|
||||
** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
|
||||
** not want to. But SQLite will only request a recursive mutex in
|
||||
** cases where it really needs one. If a faster non-recursive mutex
|
||||
** implementation is available on the host platform, the mutex subsystem
|
||||
** might return such a mutex in response to SQLITE_MUTEX_FAST.
|
||||
**
|
||||
** The other allowed parameters to sqlite3_mutex_alloc() each return
|
||||
** a pointer to a static preexisting mutex. Three static mutexes are
|
||||
** used by the current version of SQLite. Future versions of SQLite
|
||||
** may add additional static mutexes. Static mutexes are for internal
|
||||
** use by SQLite only. Applications that use SQLite mutexes should
|
||||
** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
|
||||
** SQLITE_MUTEX_RECURSIVE.
|
||||
**
|
||||
** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
|
||||
** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
|
||||
** returns a different mutex on every call. But for the static
|
||||
** mutex types, the same mutex is returned on every call that has
|
||||
** the same type number.
|
||||
*/
|
||||
static sqlite3_mutex *winMutexAlloc(int iType){
|
||||
sqlite3_mutex *p;
|
||||
|
||||
switch( iType ){
|
||||
case SQLITE_MUTEX_FAST:
|
||||
case SQLITE_MUTEX_RECURSIVE: {
|
||||
p = sqlite3MallocZero( sizeof(*p) );
|
||||
if( p ){
|
||||
p->id = iType;
|
||||
InitializeCriticalSection(&p->mutex);
|
||||
}
|
||||
break;
|
||||
}
|
||||
default: {
|
||||
static sqlite3_mutex staticMutexes[6];
|
||||
static int isInit = 0;
|
||||
while( !isInit ){
|
||||
static long lock = 0;
|
||||
if( InterlockedIncrement(&lock)==1 ){
|
||||
int i;
|
||||
for(i=0; i<sizeof(staticMutexes)/sizeof(staticMutexes[0]); i++){
|
||||
InitializeCriticalSection(&staticMutexes[i].mutex);
|
||||
}
|
||||
isInit = 1;
|
||||
}else{
|
||||
Sleep(1);
|
||||
}
|
||||
}
|
||||
assert( iType-2 >= 0 );
|
||||
assert( iType-2 < sizeof(staticMutexes)/sizeof(staticMutexes[0]) );
|
||||
p = &staticMutexes[iType-2];
|
||||
p->id = iType;
|
||||
break;
|
||||
}
|
||||
}
|
||||
return p;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** This routine deallocates a previously
|
||||
** allocated mutex. SQLite is careful to deallocate every
|
||||
** mutex that it allocates.
|
||||
*/
|
||||
static void winMutexFree(sqlite3_mutex *p){
|
||||
assert( p );
|
||||
assert( p->nRef==0 );
|
||||
assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );
|
||||
DeleteCriticalSection(&p->mutex);
|
||||
sqlite3_free(p);
|
||||
}
|
||||
|
||||
/*
|
||||
** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
|
||||
** to enter a mutex. If another thread is already within the mutex,
|
||||
** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
|
||||
** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK
|
||||
** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can
|
||||
** be entered multiple times by the same thread. In such cases the,
|
||||
** mutex must be exited an equal number of times before another thread
|
||||
** can enter. If the same thread tries to enter any other kind of mutex
|
||||
** more than once, the behavior is undefined.
|
||||
*/
|
||||
static void winMutexEnter(sqlite3_mutex *p){
|
||||
assert( p->id==SQLITE_MUTEX_RECURSIVE || winMutexNotheld(p) );
|
||||
EnterCriticalSection(&p->mutex);
|
||||
p->owner = GetCurrentThreadId();
|
||||
p->nRef++;
|
||||
}
|
||||
static int winMutexTry(sqlite3_mutex *p){
|
||||
int rc = SQLITE_BUSY;
|
||||
assert( p->id==SQLITE_MUTEX_RECURSIVE || winMutexNotheld(p) );
|
||||
/*
|
||||
** The sqlite3_mutex_try() routine is very rarely used, and when it
|
||||
** is used it is merely an optimization. So it is OK for it to always
|
||||
** fail.
|
||||
**
|
||||
** The TryEnterCriticalSection() interface is only available on WinNT.
|
||||
** And some windows compilers complain if you try to use it without
|
||||
** first doing some #defines that prevent SQLite from building on Win98.
|
||||
** For that reason, we will omit this optimization for now. See
|
||||
** ticket #2685.
|
||||
*/
|
||||
#if 0
|
||||
if( mutexIsNT() && TryEnterCriticalSection(&p->mutex) ){
|
||||
p->owner = GetCurrentThreadId();
|
||||
p->nRef++;
|
||||
rc = SQLITE_OK;
|
||||
}
|
||||
#endif
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** The sqlite3_mutex_leave() routine exits a mutex that was
|
||||
** previously entered by the same thread. The behavior
|
||||
** is undefined if the mutex is not currently entered or
|
||||
** is not currently allocated. SQLite will never do either.
|
||||
*/
|
||||
static void winMutexLeave(sqlite3_mutex *p){
|
||||
assert( p->nRef>0 );
|
||||
assert( p->owner==GetCurrentThreadId() );
|
||||
p->nRef--;
|
||||
assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE );
|
||||
LeaveCriticalSection(&p->mutex);
|
||||
}
|
||||
|
||||
sqlite3_mutex_methods *sqlite3DefaultMutex(void){
|
||||
static sqlite3_mutex_methods sMutex = {
|
||||
winMutexInit,
|
||||
winMutexEnd,
|
||||
winMutexAlloc,
|
||||
winMutexFree,
|
||||
winMutexEnter,
|
||||
winMutexTry,
|
||||
winMutexLeave,
|
||||
#ifdef SQLITE_DEBUG
|
||||
winMutexHeld,
|
||||
winMutexNotheld
|
||||
#else
|
||||
0,
|
||||
0
|
||||
#endif
|
||||
};
|
||||
|
||||
return &sMutex;
|
||||
}
|
||||
#endif /* SQLITE_MUTEX_W32 */
|
149
opcodes.c
149
opcodes.c
|
@ -1,148 +1,9 @@
|
|||
/* Automatically generated. Do not edit */
|
||||
/* See the mkopcodec.awk script for details. */
|
||||
#if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
|
||||
const char *const sqlite3OpcodeNames[] = { "?",
|
||||
/* 1 */ "ReadCookie",
|
||||
/* 2 */ "AutoCommit",
|
||||
/* 3 */ "Found",
|
||||
/* 4 */ "NullRow",
|
||||
/* 5 */ "MoveLe",
|
||||
/* 6 */ "Variable",
|
||||
/* 7 */ "Pull",
|
||||
/* 8 */ "RealAffinity",
|
||||
/* 9 */ "Sort",
|
||||
/* 10 */ "IfNot",
|
||||
/* 11 */ "Gosub",
|
||||
/* 12 */ "NotFound",
|
||||
/* 13 */ "MoveLt",
|
||||
/* 14 */ "Rowid",
|
||||
/* 15 */ "CreateIndex",
|
||||
/* 16 */ "Not",
|
||||
/* 17 */ "Push",
|
||||
/* 18 */ "Explain",
|
||||
/* 19 */ "Statement",
|
||||
/* 20 */ "Callback",
|
||||
/* 21 */ "MemLoad",
|
||||
/* 22 */ "DropIndex",
|
||||
/* 23 */ "Null",
|
||||
/* 24 */ "Int64",
|
||||
/* 25 */ "LoadAnalysis",
|
||||
/* 26 */ "IdxInsert",
|
||||
/* 27 */ "VUpdate",
|
||||
/* 28 */ "Next",
|
||||
/* 29 */ "SetNumColumns",
|
||||
/* 30 */ "MemInt",
|
||||
/* 31 */ "Dup",
|
||||
/* 32 */ "Rewind",
|
||||
/* 33 */ "Last",
|
||||
/* 34 */ "MustBeInt",
|
||||
/* 35 */ "MoveGe",
|
||||
/* 36 */ "IncrVacuum",
|
||||
/* 37 */ "String",
|
||||
/* 38 */ "VFilter",
|
||||
/* 39 */ "ForceInt",
|
||||
/* 40 */ "Close",
|
||||
/* 41 */ "AggFinal",
|
||||
/* 42 */ "AbsValue",
|
||||
/* 43 */ "RowData",
|
||||
/* 44 */ "IdxRowid",
|
||||
/* 45 */ "MoveGt",
|
||||
/* 46 */ "OpenPseudo",
|
||||
/* 47 */ "Halt",
|
||||
/* 48 */ "MemMove",
|
||||
/* 49 */ "NewRowid",
|
||||
/* 50 */ "IdxLT",
|
||||
/* 51 */ "Distinct",
|
||||
/* 52 */ "MemMax",
|
||||
/* 53 */ "Function",
|
||||
/* 54 */ "IntegrityCk",
|
||||
/* 55 */ "FifoWrite",
|
||||
/* 56 */ "NotExists",
|
||||
/* 57 */ "VDestroy",
|
||||
/* 58 */ "MemStore",
|
||||
/* 59 */ "IdxDelete",
|
||||
/* 60 */ "Or",
|
||||
/* 61 */ "And",
|
||||
/* 62 */ "Vacuum",
|
||||
/* 63 */ "If",
|
||||
/* 64 */ "Destroy",
|
||||
/* 65 */ "IsNull",
|
||||
/* 66 */ "NotNull",
|
||||
/* 67 */ "Ne",
|
||||
/* 68 */ "Eq",
|
||||
/* 69 */ "Gt",
|
||||
/* 70 */ "Le",
|
||||
/* 71 */ "Lt",
|
||||
/* 72 */ "Ge",
|
||||
/* 73 */ "AggStep",
|
||||
/* 74 */ "BitAnd",
|
||||
/* 75 */ "BitOr",
|
||||
/* 76 */ "ShiftLeft",
|
||||
/* 77 */ "ShiftRight",
|
||||
/* 78 */ "Add",
|
||||
/* 79 */ "Subtract",
|
||||
/* 80 */ "Multiply",
|
||||
/* 81 */ "Divide",
|
||||
/* 82 */ "Remainder",
|
||||
/* 83 */ "Concat",
|
||||
/* 84 */ "Clear",
|
||||
/* 85 */ "Negative",
|
||||
/* 86 */ "Insert",
|
||||
/* 87 */ "BitNot",
|
||||
/* 88 */ "String8",
|
||||
/* 89 */ "VBegin",
|
||||
/* 90 */ "IdxGE",
|
||||
/* 91 */ "OpenEphemeral",
|
||||
/* 92 */ "IfMemZero",
|
||||
/* 93 */ "VRowid",
|
||||
/* 94 */ "MakeRecord",
|
||||
/* 95 */ "SetCookie",
|
||||
/* 96 */ "Prev",
|
||||
/* 97 */ "ContextPush",
|
||||
/* 98 */ "DropTrigger",
|
||||
/* 99 */ "IdxGT",
|
||||
/* 100 */ "MemNull",
|
||||
/* 101 */ "IfMemNeg",
|
||||
/* 102 */ "VColumn",
|
||||
/* 103 */ "Return",
|
||||
/* 104 */ "OpenWrite",
|
||||
/* 105 */ "Integer",
|
||||
/* 106 */ "Transaction",
|
||||
/* 107 */ "CollSeq",
|
||||
/* 108 */ "VRename",
|
||||
/* 109 */ "Sequence",
|
||||
/* 110 */ "ContextPop",
|
||||
/* 111 */ "VCreate",
|
||||
/* 112 */ "CreateTable",
|
||||
/* 113 */ "AddImm",
|
||||
/* 114 */ "DropTable",
|
||||
/* 115 */ "IsUnique",
|
||||
/* 116 */ "VOpen",
|
||||
/* 117 */ "Noop",
|
||||
/* 118 */ "RowKey",
|
||||
/* 119 */ "Expire",
|
||||
/* 120 */ "FifoRead",
|
||||
/* 121 */ "Delete",
|
||||
/* 122 */ "IfMemPos",
|
||||
/* 123 */ "MemIncr",
|
||||
/* 124 */ "Blob",
|
||||
/* 125 */ "Real",
|
||||
/* 126 */ "HexBlob",
|
||||
/* 127 */ "MakeIdxRec",
|
||||
/* 128 */ "Goto",
|
||||
/* 129 */ "ParseSchema",
|
||||
/* 130 */ "VNext",
|
||||
/* 131 */ "Pop",
|
||||
/* 132 */ "TableLock",
|
||||
/* 133 */ "VerifyCookie",
|
||||
/* 134 */ "Column",
|
||||
/* 135 */ "OpenRead",
|
||||
/* 136 */ "ResetCount",
|
||||
/* 137 */ "NotUsed_137",
|
||||
/* 138 */ "ToText",
|
||||
/* 139 */ "ToBlob",
|
||||
/* 140 */ "ToNumeric",
|
||||
/* 141 */ "ToInt",
|
||||
/* 142 */ "ToReal",
|
||||
};
|
||||
const char *sqlite3OpcodeName(int i){
|
||||
static const char *const azName[] = { "?",
|
||||
};
|
||||
return azName[i];
|
||||
}
|
||||
#endif
|
||||
|
|
325
opcodes.h
325
opcodes.h
|
@ -1,160 +1,181 @@
|
|||
/* Automatically generated. Do not edit */
|
||||
/* See the mkopcodeh.awk script for details */
|
||||
#define OP_ReadCookie 1
|
||||
#define OP_AutoCommit 2
|
||||
#define OP_Found 3
|
||||
#define OP_NullRow 4
|
||||
#define OP_Lt 71 /* same as TK_LT */
|
||||
#define OP_MoveLe 5
|
||||
#define OP_Variable 6
|
||||
#define OP_Pull 7
|
||||
#define OP_RealAffinity 8
|
||||
#define OP_Sort 9
|
||||
#define OP_IfNot 10
|
||||
#define OP_Gosub 11
|
||||
#define OP_Add 78 /* same as TK_PLUS */
|
||||
#define OP_NotFound 12
|
||||
#define OP_IsNull 65 /* same as TK_ISNULL */
|
||||
#define OP_MoveLt 13
|
||||
#define OP_Rowid 14
|
||||
#define OP_CreateIndex 15
|
||||
#define OP_Push 17
|
||||
#define OP_Explain 18
|
||||
#define OP_Statement 19
|
||||
#define OP_Callback 20
|
||||
#define OP_MemLoad 21
|
||||
#define OP_DropIndex 22
|
||||
#define OP_Null 23
|
||||
#define OP_ToInt 141 /* same as TK_TO_INT */
|
||||
#define OP_Int64 24
|
||||
#define OP_LoadAnalysis 25
|
||||
#define OP_IdxInsert 26
|
||||
#define OP_VUpdate 27
|
||||
#define OP_Next 28
|
||||
#define OP_SetNumColumns 29
|
||||
#define OP_ToNumeric 140 /* same as TK_TO_NUMERIC*/
|
||||
#define OP_Ge 72 /* same as TK_GE */
|
||||
#define OP_BitNot 87 /* same as TK_BITNOT */
|
||||
#define OP_MemInt 30
|
||||
#define OP_Dup 31
|
||||
#define OP_Rewind 32
|
||||
#define OP_Multiply 80 /* same as TK_STAR */
|
||||
#define OP_ToReal 142 /* same as TK_TO_REAL */
|
||||
#define OP_Gt 69 /* same as TK_GT */
|
||||
#define OP_Last 33
|
||||
#define OP_MustBeInt 34
|
||||
#define OP_Ne 67 /* same as TK_NE */
|
||||
#define OP_MoveGe 35
|
||||
#define OP_IncrVacuum 36
|
||||
#define OP_String 37
|
||||
#define OP_VFilter 38
|
||||
#define OP_ForceInt 39
|
||||
#define OP_Close 40
|
||||
#define OP_AggFinal 41
|
||||
#define OP_AbsValue 42
|
||||
#define OP_RowData 43
|
||||
#define OP_IdxRowid 44
|
||||
#define OP_BitOr 75 /* same as TK_BITOR */
|
||||
#define OP_NotNull 66 /* same as TK_NOTNULL */
|
||||
#define OP_MoveGt 45
|
||||
#define OP_Not 16 /* same as TK_NOT */
|
||||
#define OP_OpenPseudo 46
|
||||
#define OP_Halt 47
|
||||
#define OP_MemMove 48
|
||||
#define OP_VRowid 1
|
||||
#define OP_VFilter 2
|
||||
#define OP_IfNeg 3
|
||||
#define OP_ContextPop 4
|
||||
#define OP_IntegrityCk 5
|
||||
#define OP_DropTrigger 6
|
||||
#define OP_DropIndex 7
|
||||
#define OP_IdxInsert 8
|
||||
#define OP_Delete 9
|
||||
#define OP_SeekLt 10
|
||||
#define OP_OpenEphemeral 11
|
||||
#define OP_VerifyCookie 12
|
||||
#define OP_Blob 13
|
||||
#define OP_RowKey 14
|
||||
#define OP_IsUnique 15
|
||||
#define OP_SetNumColumns 16
|
||||
#define OP_Eq 71 /* same as TK_EQ */
|
||||
#define OP_VUpdate 17
|
||||
#define OP_Expire 18
|
||||
#define OP_NullRow 20
|
||||
#define OP_OpenPseudo 21
|
||||
#define OP_OpenWrite 22
|
||||
#define OP_OpenRead 23
|
||||
#define OP_Transaction 24
|
||||
#define OP_AutoCommit 25
|
||||
#define OP_Copy 26
|
||||
#define OP_Halt 27
|
||||
#define OP_VRename 28
|
||||
#define OP_Vacuum 29
|
||||
#define OP_RowData 30
|
||||
#define OP_NotExists 31
|
||||
#define OP_SetCookie 32
|
||||
#define OP_Move 33
|
||||
#define OP_Variable 34
|
||||
#define OP_Pagecount 35
|
||||
#define OP_VNext 36
|
||||
#define OP_VDestroy 37
|
||||
#define OP_TableLock 38
|
||||
#define OP_RowSetAdd 39
|
||||
#define OP_LoadAnalysis 40
|
||||
#define OP_IdxDelete 41
|
||||
#define OP_Sort 42
|
||||
#define OP_ResetCount 43
|
||||
#define OP_NotNull 69 /* same as TK_NOTNULL */
|
||||
#define OP_Ge 75 /* same as TK_GE */
|
||||
#define OP_Remainder 85 /* same as TK_REM */
|
||||
#define OP_Divide 84 /* same as TK_SLASH */
|
||||
#define OP_Integer 44
|
||||
#define OP_Explain 45
|
||||
#define OP_IncrVacuum 46
|
||||
#define OP_AggStep 47
|
||||
#define OP_CreateIndex 48
|
||||
#define OP_NewRowid 49
|
||||
#define OP_Real 125 /* same as TK_FLOAT */
|
||||
#define OP_IdxLT 50
|
||||
#define OP_Distinct 51
|
||||
#define OP_MemMax 52
|
||||
#define OP_Function 53
|
||||
#define OP_IntegrityCk 54
|
||||
#define OP_Remainder 82 /* same as TK_REM */
|
||||
#define OP_HexBlob 126 /* same as TK_BLOB */
|
||||
#define OP_ShiftLeft 76 /* same as TK_LSHIFT */
|
||||
#define OP_FifoWrite 55
|
||||
#define OP_BitAnd 74 /* same as TK_BITAND */
|
||||
#define OP_Or 60 /* same as TK_OR */
|
||||
#define OP_NotExists 56
|
||||
#define OP_VDestroy 57
|
||||
#define OP_MemStore 58
|
||||
#define OP_IdxDelete 59
|
||||
#define OP_Vacuum 62
|
||||
#define OP_If 63
|
||||
#define OP_Destroy 64
|
||||
#define OP_AggStep 73
|
||||
#define OP_Clear 84
|
||||
#define OP_Insert 86
|
||||
#define OP_VBegin 89
|
||||
#define OP_IdxGE 90
|
||||
#define OP_OpenEphemeral 91
|
||||
#define OP_Divide 81 /* same as TK_SLASH */
|
||||
#define OP_String8 88 /* same as TK_STRING */
|
||||
#define OP_IfMemZero 92
|
||||
#define OP_Concat 83 /* same as TK_CONCAT */
|
||||
#define OP_VRowid 93
|
||||
#define OP_And 64 /* same as TK_AND */
|
||||
#define OP_ShiftLeft 79 /* same as TK_LSHIFT */
|
||||
#define OP_Real 129 /* same as TK_FLOAT */
|
||||
#define OP_Return 50
|
||||
#define OP_Trace 51
|
||||
#define OP_IfPos 52
|
||||
#define OP_IdxLT 53
|
||||
#define OP_Rewind 54
|
||||
#define OP_SeekGe 55
|
||||
#define OP_Affinity 56
|
||||
#define OP_Gt 72 /* same as TK_GT */
|
||||
#define OP_AddImm 57
|
||||
#define OP_Subtract 82 /* same as TK_MINUS */
|
||||
#define OP_Null 58
|
||||
#define OP_VColumn 59
|
||||
#define OP_Clear 60
|
||||
#define OP_IsNull 68 /* same as TK_ISNULL */
|
||||
#define OP_If 61
|
||||
#define OP_Permutation 62
|
||||
#define OP_ToBlob 142 /* same as TK_TO_BLOB */
|
||||
#define OP_RealAffinity 65
|
||||
#define OP_Yield 66
|
||||
#define OP_AggFinal 67
|
||||
#define OP_IfZero 76
|
||||
#define OP_Last 87
|
||||
#define OP_Rowid 88
|
||||
#define OP_Sequence 89
|
||||
#define OP_NotFound 92
|
||||
#define OP_SeekGt 93
|
||||
#define OP_MakeRecord 94
|
||||
#define OP_SetCookie 95
|
||||
#define OP_Prev 96
|
||||
#define OP_ContextPush 97
|
||||
#define OP_DropTrigger 98
|
||||
#define OP_IdxGT 99
|
||||
#define OP_MemNull 100
|
||||
#define OP_IfMemNeg 101
|
||||
#define OP_And 61 /* same as TK_AND */
|
||||
#define OP_VColumn 102
|
||||
#define OP_Return 103
|
||||
#define OP_OpenWrite 104
|
||||
#define OP_Integer 105
|
||||
#define OP_Transaction 106
|
||||
#define OP_CollSeq 107
|
||||
#define OP_VRename 108
|
||||
#define OP_ToBlob 139 /* same as TK_TO_BLOB */
|
||||
#define OP_Sequence 109
|
||||
#define OP_ContextPop 110
|
||||
#define OP_ShiftRight 77 /* same as TK_RSHIFT */
|
||||
#define OP_VCreate 111
|
||||
#define OP_CreateTable 112
|
||||
#define OP_AddImm 113
|
||||
#define OP_ToText 138 /* same as TK_TO_TEXT */
|
||||
#define OP_DropTable 114
|
||||
#define OP_IsUnique 115
|
||||
#define OP_VOpen 116
|
||||
#define OP_Noop 117
|
||||
#define OP_RowKey 118
|
||||
#define OP_Expire 119
|
||||
#define OP_FifoRead 120
|
||||
#define OP_Delete 121
|
||||
#define OP_IfMemPos 122
|
||||
#define OP_Subtract 79 /* same as TK_MINUS */
|
||||
#define OP_MemIncr 123
|
||||
#define OP_Blob 124
|
||||
#define OP_MakeIdxRec 127
|
||||
#define OP_Goto 128
|
||||
#define OP_Negative 85 /* same as TK_UMINUS */
|
||||
#define OP_ParseSchema 129
|
||||
#define OP_Eq 68 /* same as TK_EQ */
|
||||
#define OP_VNext 130
|
||||
#define OP_Pop 131
|
||||
#define OP_Le 70 /* same as TK_LE */
|
||||
#define OP_TableLock 132
|
||||
#define OP_VerifyCookie 133
|
||||
#define OP_Column 134
|
||||
#define OP_OpenRead 135
|
||||
#define OP_ResetCount 136
|
||||
#define OP_ToText 141 /* same as TK_TO_TEXT */
|
||||
#define OP_BitAnd 77 /* same as TK_BITAND */
|
||||
#define OP_Add 81 /* same as TK_PLUS */
|
||||
#define OP_ResultRow 95
|
||||
#define OP_String 96
|
||||
#define OP_Goto 97
|
||||
#define OP_Noop 98
|
||||
#define OP_VCreate 99
|
||||
#define OP_RowSetRead 100
|
||||
#define OP_DropTable 101
|
||||
#define OP_IdxRowid 102
|
||||
#define OP_Insert 103
|
||||
#define OP_Column 104
|
||||
#define OP_Not 19 /* same as TK_NOT */
|
||||
#define OP_Compare 105
|
||||
#define OP_Le 73 /* same as TK_LE */
|
||||
#define OP_BitOr 78 /* same as TK_BITOR */
|
||||
#define OP_Multiply 83 /* same as TK_STAR */
|
||||
#define OP_String8 91 /* same as TK_STRING */
|
||||
#define OP_VOpen 106
|
||||
#define OP_CreateTable 107
|
||||
#define OP_Found 108
|
||||
#define OP_Seek 109
|
||||
#define OP_Close 110
|
||||
#define OP_Savepoint 111
|
||||
#define OP_Statement 112
|
||||
#define OP_IfNot 113
|
||||
#define OP_ToInt 144 /* same as TK_TO_INT */
|
||||
#define OP_VBegin 114
|
||||
#define OP_MemMax 115
|
||||
#define OP_Next 116
|
||||
#define OP_Prev 117
|
||||
#define OP_SeekLe 118
|
||||
#define OP_Lt 74 /* same as TK_LT */
|
||||
#define OP_Ne 70 /* same as TK_NE */
|
||||
#define OP_MustBeInt 119
|
||||
#define OP_ShiftRight 80 /* same as TK_RSHIFT */
|
||||
#define OP_CollSeq 120
|
||||
#define OP_Gosub 121
|
||||
#define OP_ContextPush 122
|
||||
#define OP_ParseSchema 123
|
||||
#define OP_Destroy 124
|
||||
#define OP_IdxGE 125
|
||||
#define OP_ReadCookie 126
|
||||
#define OP_BitNot 90 /* same as TK_BITNOT */
|
||||
#define OP_Or 63 /* same as TK_OR */
|
||||
#define OP_Jump 127
|
||||
#define OP_ToReal 145 /* same as TK_TO_REAL */
|
||||
#define OP_ToNumeric 143 /* same as TK_TO_NUMERIC*/
|
||||
#define OP_Function 128
|
||||
#define OP_Concat 86 /* same as TK_CONCAT */
|
||||
#define OP_SCopy 130
|
||||
#define OP_Int64 131
|
||||
|
||||
/* The following opcode values are never used */
|
||||
#define OP_NotUsed_132 132
|
||||
#define OP_NotUsed_133 133
|
||||
#define OP_NotUsed_134 134
|
||||
#define OP_NotUsed_135 135
|
||||
#define OP_NotUsed_136 136
|
||||
#define OP_NotUsed_137 137
|
||||
#define OP_NotUsed_138 138
|
||||
#define OP_NotUsed_139 139
|
||||
#define OP_NotUsed_140 140
|
||||
|
||||
/* Opcodes that are guaranteed to never push a value onto the stack
|
||||
** contain a 1 their corresponding position of the following mask
|
||||
** set. See the opcodeNoPush() function in vdbeaux.c */
|
||||
#define NOPUSH_MASK_0 0x3fbc
|
||||
#define NOPUSH_MASK_1 0x3e5b
|
||||
#define NOPUSH_MASK_2 0xe3df
|
||||
#define NOPUSH_MASK_3 0xff9c
|
||||
#define NOPUSH_MASK_4 0xfffe
|
||||
#define NOPUSH_MASK_5 0x9ef7
|
||||
#define NOPUSH_MASK_6 0xddaf
|
||||
#define NOPUSH_MASK_7 0x0ebe
|
||||
#define NOPUSH_MASK_8 0x7dbf
|
||||
#define NOPUSH_MASK_9 0x0000
|
||||
|
||||
/* Properties such as "out2" or "jump" that are specified in
|
||||
** comments following the "case" for each opcode in the vdbe.c
|
||||
** are encoded into bitvectors as follows:
|
||||
*/
|
||||
#define OPFLG_JUMP 0x0001 /* jump: P2 holds jmp target */
|
||||
#define OPFLG_OUT2_PRERELEASE 0x0002 /* out2-prerelease: */
|
||||
#define OPFLG_IN1 0x0004 /* in1: P1 is an input */
|
||||
#define OPFLG_IN2 0x0008 /* in2: P2 is an input */
|
||||
#define OPFLG_IN3 0x0010 /* in3: P3 is an input */
|
||||
#define OPFLG_OUT3 0x0020 /* out3: P3 is an output */
|
||||
#define OPFLG_INITIALIZER {\
|
||||
/* 0 */ 0x00, 0x02, 0x01, 0x05, 0x00, 0x00, 0x00, 0x00,\
|
||||
/* 8 */ 0x08, 0x00, 0x11, 0x00, 0x00, 0x02, 0x00, 0x11,\
|
||||
/* 16 */ 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x00,\
|
||||
/* 24 */ 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x11,\
|
||||
/* 32 */ 0x10, 0x00, 0x02, 0x02, 0x01, 0x00, 0x00, 0x08,\
|
||||
/* 40 */ 0x00, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00,\
|
||||
/* 48 */ 0x02, 0x02, 0x04, 0x00, 0x05, 0x11, 0x01, 0x11,\
|
||||
/* 56 */ 0x00, 0x04, 0x02, 0x00, 0x00, 0x05, 0x00, 0x2c,\
|
||||
/* 64 */ 0x2c, 0x04, 0x04, 0x00, 0x05, 0x05, 0x15, 0x15,\
|
||||
/* 72 */ 0x15, 0x15, 0x15, 0x15, 0x05, 0x2c, 0x2c, 0x2c,\
|
||||
/* 80 */ 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x01,\
|
||||
/* 88 */ 0x02, 0x02, 0x04, 0x02, 0x11, 0x11, 0x00, 0x00,\
|
||||
/* 96 */ 0x02, 0x01, 0x00, 0x00, 0x21, 0x00, 0x02, 0x00,\
|
||||
/* 104 */ 0x00, 0x00, 0x00, 0x02, 0x11, 0x08, 0x00, 0x00,\
|
||||
/* 112 */ 0x00, 0x05, 0x00, 0x0c, 0x01, 0x01, 0x11, 0x05,\
|
||||
/* 120 */ 0x00, 0x01, 0x00, 0x00, 0x02, 0x11, 0x02, 0x01,\
|
||||
/* 128 */ 0x00, 0x02, 0x04, 0x02, 0x00, 0x00, 0x00, 0x00,\
|
||||
/* 136 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x04, 0x04,\
|
||||
/* 144 */ 0x04, 0x04,}
|
||||
|
|
290
os.c
290
os.c
|
@ -12,85 +12,267 @@
|
|||
**
|
||||
** This file contains OS interface code that is common to all
|
||||
** architectures.
|
||||
**
|
||||
** $Id: os.c,v 1.125 2008/12/08 18:19:18 drh Exp $
|
||||
*/
|
||||
#define _SQLITE_OS_C_ 1
|
||||
#include "sqliteInt.h"
|
||||
#include "os.h"
|
||||
#undef _SQLITE_OS_C_
|
||||
|
||||
/*
|
||||
** The default SQLite sqlite3_vfs implementations do not allocate
|
||||
** memory (actually, os_unix.c allocates a small amount of memory
|
||||
** from within OsOpen()), but some third-party implementations may.
|
||||
** So we test the effects of a malloc() failing and the sqlite3OsXXX()
|
||||
** function returning SQLITE_IOERR_NOMEM using the DO_OS_MALLOC_TEST macro.
|
||||
**
|
||||
** The following functions are instrumented for malloc() failure
|
||||
** testing:
|
||||
**
|
||||
** sqlite3OsOpen()
|
||||
** sqlite3OsRead()
|
||||
** sqlite3OsWrite()
|
||||
** sqlite3OsSync()
|
||||
** sqlite3OsLock()
|
||||
**
|
||||
*/
|
||||
#if defined(SQLITE_TEST) && (SQLITE_OS_WIN==0)
|
||||
#define DO_OS_MALLOC_TEST if (1) { \
|
||||
void *pTstAlloc = sqlite3Malloc(10); \
|
||||
if (!pTstAlloc) return SQLITE_IOERR_NOMEM; \
|
||||
sqlite3_free(pTstAlloc); \
|
||||
}
|
||||
#else
|
||||
#define DO_OS_MALLOC_TEST
|
||||
#endif
|
||||
|
||||
/*
|
||||
** The following routines are convenience wrappers around methods
|
||||
** of the OsFile object. This is mostly just syntactic sugar. All
|
||||
** of the sqlite3_file object. This is mostly just syntactic sugar. All
|
||||
** of this would be completely automatic if SQLite were coded using
|
||||
** C++ instead of plain old C.
|
||||
*/
|
||||
int sqlite3OsClose(OsFile **pId){
|
||||
OsFile *id;
|
||||
if( pId!=0 && (id = *pId)!=0 ){
|
||||
return id->pMethod->xClose(pId);
|
||||
}else{
|
||||
return SQLITE_OK;
|
||||
int sqlite3OsClose(sqlite3_file *pId){
|
||||
int rc = SQLITE_OK;
|
||||
if( pId->pMethods ){
|
||||
rc = pId->pMethods->xClose(pId);
|
||||
pId->pMethods = 0;
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
int sqlite3OsOpenDirectory(OsFile *id, const char *zName){
|
||||
return id->pMethod->xOpenDirectory(id, zName);
|
||||
int sqlite3OsRead(sqlite3_file *id, void *pBuf, int amt, i64 offset){
|
||||
DO_OS_MALLOC_TEST;
|
||||
return id->pMethods->xRead(id, pBuf, amt, offset);
|
||||
}
|
||||
int sqlite3OsRead(OsFile *id, void *pBuf, int amt){
|
||||
return id->pMethod->xRead(id, pBuf, amt);
|
||||
int sqlite3OsWrite(sqlite3_file *id, const void *pBuf, int amt, i64 offset){
|
||||
DO_OS_MALLOC_TEST;
|
||||
return id->pMethods->xWrite(id, pBuf, amt, offset);
|
||||
}
|
||||
int sqlite3OsWrite(OsFile *id, const void *pBuf, int amt){
|
||||
return id->pMethod->xWrite(id, pBuf, amt);
|
||||
int sqlite3OsTruncate(sqlite3_file *id, i64 size){
|
||||
return id->pMethods->xTruncate(id, size);
|
||||
}
|
||||
int sqlite3OsSeek(OsFile *id, i64 offset){
|
||||
return id->pMethod->xSeek(id, offset);
|
||||
int sqlite3OsSync(sqlite3_file *id, int flags){
|
||||
DO_OS_MALLOC_TEST;
|
||||
return id->pMethods->xSync(id, flags);
|
||||
}
|
||||
int sqlite3OsTruncate(OsFile *id, i64 size){
|
||||
return id->pMethod->xTruncate(id, size);
|
||||
int sqlite3OsFileSize(sqlite3_file *id, i64 *pSize){
|
||||
DO_OS_MALLOC_TEST;
|
||||
return id->pMethods->xFileSize(id, pSize);
|
||||
}
|
||||
int sqlite3OsSync(OsFile *id, int fullsync){
|
||||
return id->pMethod->xSync(id, fullsync);
|
||||
int sqlite3OsLock(sqlite3_file *id, int lockType){
|
||||
DO_OS_MALLOC_TEST;
|
||||
return id->pMethods->xLock(id, lockType);
|
||||
}
|
||||
void sqlite3OsSetFullSync(OsFile *id, int value){
|
||||
id->pMethod->xSetFullSync(id, value);
|
||||
int sqlite3OsUnlock(sqlite3_file *id, int lockType){
|
||||
return id->pMethods->xUnlock(id, lockType);
|
||||
}
|
||||
int sqlite3OsFileSize(OsFile *id, i64 *pSize){
|
||||
return id->pMethod->xFileSize(id, pSize);
|
||||
int sqlite3OsCheckReservedLock(sqlite3_file *id, int *pResOut){
|
||||
DO_OS_MALLOC_TEST;
|
||||
return id->pMethods->xCheckReservedLock(id, pResOut);
|
||||
}
|
||||
int sqlite3OsLock(OsFile *id, int lockType){
|
||||
return id->pMethod->xLock(id, lockType);
|
||||
int sqlite3OsFileControl(sqlite3_file *id, int op, void *pArg){
|
||||
return id->pMethods->xFileControl(id, op, pArg);
|
||||
}
|
||||
int sqlite3OsUnlock(OsFile *id, int lockType){
|
||||
return id->pMethod->xUnlock(id, lockType);
|
||||
int sqlite3OsSectorSize(sqlite3_file *id){
|
||||
int (*xSectorSize)(sqlite3_file*) = id->pMethods->xSectorSize;
|
||||
return (xSectorSize ? xSectorSize(id) : SQLITE_DEFAULT_SECTOR_SIZE);
|
||||
}
|
||||
int sqlite3OsCheckReservedLock(OsFile *id){
|
||||
return id->pMethod->xCheckReservedLock(id);
|
||||
}
|
||||
int sqlite3OsSectorSize(OsFile *id){
|
||||
int (*xSectorSize)(OsFile*) = id->pMethod->xSectorSize;
|
||||
return xSectorSize ? xSectorSize(id) : SQLITE_DEFAULT_SECTOR_SIZE;
|
||||
int sqlite3OsDeviceCharacteristics(sqlite3_file *id){
|
||||
return id->pMethods->xDeviceCharacteristics(id);
|
||||
}
|
||||
|
||||
#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
|
||||
/* These methods are currently only used for testing and debugging. */
|
||||
int sqlite3OsFileHandle(OsFile *id){
|
||||
return id->pMethod->xFileHandle(id);
|
||||
}
|
||||
int sqlite3OsLockState(OsFile *id){
|
||||
return id->pMethod->xLockState(id);
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef SQLITE_ENABLE_REDEF_IO
|
||||
/*
|
||||
** A function to return a pointer to the virtual function table.
|
||||
** This routine really does not accomplish very much since the
|
||||
** virtual function table is a global variable and anybody who
|
||||
** can call this function can just as easily access the variable
|
||||
** for themselves. Nevertheless, we include this routine for
|
||||
** backwards compatibility with an earlier redefinable I/O
|
||||
** interface design.
|
||||
** The next group of routines are convenience wrappers around the
|
||||
** VFS methods.
|
||||
*/
|
||||
struct sqlite3OsVtbl *sqlite3_os_switch(void){
|
||||
return &sqlite3Os;
|
||||
int sqlite3OsOpen(
|
||||
sqlite3_vfs *pVfs,
|
||||
const char *zPath,
|
||||
sqlite3_file *pFile,
|
||||
int flags,
|
||||
int *pFlagsOut
|
||||
){
|
||||
DO_OS_MALLOC_TEST;
|
||||
return pVfs->xOpen(pVfs, zPath, pFile, flags, pFlagsOut);
|
||||
}
|
||||
int sqlite3OsDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){
|
||||
return pVfs->xDelete(pVfs, zPath, dirSync);
|
||||
}
|
||||
int sqlite3OsAccess(
|
||||
sqlite3_vfs *pVfs,
|
||||
const char *zPath,
|
||||
int flags,
|
||||
int *pResOut
|
||||
){
|
||||
DO_OS_MALLOC_TEST;
|
||||
return pVfs->xAccess(pVfs, zPath, flags, pResOut);
|
||||
}
|
||||
int sqlite3OsFullPathname(
|
||||
sqlite3_vfs *pVfs,
|
||||
const char *zPath,
|
||||
int nPathOut,
|
||||
char *zPathOut
|
||||
){
|
||||
return pVfs->xFullPathname(pVfs, zPath, nPathOut, zPathOut);
|
||||
}
|
||||
#ifndef SQLITE_OMIT_LOAD_EXTENSION
|
||||
void *sqlite3OsDlOpen(sqlite3_vfs *pVfs, const char *zPath){
|
||||
return pVfs->xDlOpen(pVfs, zPath);
|
||||
}
|
||||
void sqlite3OsDlError(sqlite3_vfs *pVfs, int nByte, char *zBufOut){
|
||||
pVfs->xDlError(pVfs, nByte, zBufOut);
|
||||
}
|
||||
void (*sqlite3OsDlSym(sqlite3_vfs *pVfs, void *pHdle, const char *zSym))(void){
|
||||
return pVfs->xDlSym(pVfs, pHdle, zSym);
|
||||
}
|
||||
void sqlite3OsDlClose(sqlite3_vfs *pVfs, void *pHandle){
|
||||
pVfs->xDlClose(pVfs, pHandle);
|
||||
}
|
||||
#endif /* SQLITE_OMIT_LOAD_EXTENSION */
|
||||
int sqlite3OsRandomness(sqlite3_vfs *pVfs, int nByte, char *zBufOut){
|
||||
return pVfs->xRandomness(pVfs, nByte, zBufOut);
|
||||
}
|
||||
int sqlite3OsSleep(sqlite3_vfs *pVfs, int nMicro){
|
||||
return pVfs->xSleep(pVfs, nMicro);
|
||||
}
|
||||
int sqlite3OsCurrentTime(sqlite3_vfs *pVfs, double *pTimeOut){
|
||||
return pVfs->xCurrentTime(pVfs, pTimeOut);
|
||||
}
|
||||
|
||||
int sqlite3OsOpenMalloc(
|
||||
sqlite3_vfs *pVfs,
|
||||
const char *zFile,
|
||||
sqlite3_file **ppFile,
|
||||
int flags,
|
||||
int *pOutFlags
|
||||
){
|
||||
int rc = SQLITE_NOMEM;
|
||||
sqlite3_file *pFile;
|
||||
pFile = (sqlite3_file *)sqlite3Malloc(pVfs->szOsFile);
|
||||
if( pFile ){
|
||||
rc = sqlite3OsOpen(pVfs, zFile, pFile, flags, pOutFlags);
|
||||
if( rc!=SQLITE_OK ){
|
||||
sqlite3_free(pFile);
|
||||
}else{
|
||||
*ppFile = pFile;
|
||||
}
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
int sqlite3OsCloseFree(sqlite3_file *pFile){
|
||||
int rc = SQLITE_OK;
|
||||
assert( pFile );
|
||||
rc = sqlite3OsClose(pFile);
|
||||
sqlite3_free(pFile);
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** The list of all registered VFS implementations.
|
||||
*/
|
||||
static sqlite3_vfs * SQLITE_WSD vfsList = 0;
|
||||
#define vfsList GLOBAL(sqlite3_vfs *, vfsList)
|
||||
|
||||
/*
|
||||
** Locate a VFS by name. If no name is given, simply return the
|
||||
** first VFS on the list.
|
||||
*/
|
||||
sqlite3_vfs *sqlite3_vfs_find(const char *zVfs){
|
||||
sqlite3_vfs *pVfs = 0;
|
||||
#if SQLITE_THREADSAFE
|
||||
sqlite3_mutex *mutex;
|
||||
#endif
|
||||
#ifndef SQLITE_OMIT_AUTOINIT
|
||||
int rc = sqlite3_initialize();
|
||||
if( rc ) return 0;
|
||||
#endif
|
||||
#if SQLITE_THREADSAFE
|
||||
mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
|
||||
#endif
|
||||
sqlite3_mutex_enter(mutex);
|
||||
for(pVfs = vfsList; pVfs; pVfs=pVfs->pNext){
|
||||
if( zVfs==0 ) break;
|
||||
if( strcmp(zVfs, pVfs->zName)==0 ) break;
|
||||
}
|
||||
sqlite3_mutex_leave(mutex);
|
||||
return pVfs;
|
||||
}
|
||||
|
||||
/*
|
||||
** Unlink a VFS from the linked list
|
||||
*/
|
||||
static void vfsUnlink(sqlite3_vfs *pVfs){
|
||||
assert( sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)) );
|
||||
if( pVfs==0 ){
|
||||
/* No-op */
|
||||
}else if( vfsList==pVfs ){
|
||||
vfsList = pVfs->pNext;
|
||||
}else if( vfsList ){
|
||||
sqlite3_vfs *p = vfsList;
|
||||
while( p->pNext && p->pNext!=pVfs ){
|
||||
p = p->pNext;
|
||||
}
|
||||
if( p->pNext==pVfs ){
|
||||
p->pNext = pVfs->pNext;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Register a VFS with the system. It is harmless to register the same
|
||||
** VFS multiple times. The new VFS becomes the default if makeDflt is
|
||||
** true.
|
||||
*/
|
||||
int sqlite3_vfs_register(sqlite3_vfs *pVfs, int makeDflt){
|
||||
sqlite3_mutex *mutex = 0;
|
||||
#ifndef SQLITE_OMIT_AUTOINIT
|
||||
int rc = sqlite3_initialize();
|
||||
if( rc ) return rc;
|
||||
#endif
|
||||
mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
|
||||
sqlite3_mutex_enter(mutex);
|
||||
vfsUnlink(pVfs);
|
||||
if( makeDflt || vfsList==0 ){
|
||||
pVfs->pNext = vfsList;
|
||||
vfsList = pVfs;
|
||||
}else{
|
||||
pVfs->pNext = vfsList->pNext;
|
||||
vfsList->pNext = pVfs;
|
||||
}
|
||||
assert(vfsList);
|
||||
sqlite3_mutex_leave(mutex);
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Unregister a VFS so that it is no longer accessible.
|
||||
*/
|
||||
int sqlite3_vfs_unregister(sqlite3_vfs *pVfs){
|
||||
#if SQLITE_THREADSAFE
|
||||
sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
|
||||
#endif
|
||||
sqlite3_mutex_enter(mutex);
|
||||
vfsUnlink(pVfs);
|
||||
sqlite3_mutex_leave(mutex);
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
|
438
os.h
438
os.h
|
@ -13,60 +13,78 @@
|
|||
** This header file (together with is companion C source-code file
|
||||
** "os.c") attempt to abstract the underlying operating system so that
|
||||
** the SQLite library will work on both POSIX and windows systems.
|
||||
**
|
||||
** This header file is #include-ed by sqliteInt.h and thus ends up
|
||||
** being included by every source file.
|
||||
**
|
||||
** $Id: os.h,v 1.107 2009/01/14 23:03:41 drh Exp $
|
||||
*/
|
||||
#ifndef _SQLITE_OS_H_
|
||||
#define _SQLITE_OS_H_
|
||||
|
||||
/*
|
||||
** Figure out if we are dealing with Unix, Windows, or some other
|
||||
** operating system.
|
||||
** operating system. After the following block of preprocess macros,
|
||||
** all of SQLITE_OS_UNIX, SQLITE_OS_WIN, SQLITE_OS_OS2, and SQLITE_OS_OTHER
|
||||
** will defined to either 1 or 0. One of the four will be 1. The other
|
||||
** three will be 0.
|
||||
*/
|
||||
#if defined(OS_OTHER)
|
||||
# if OS_OTHER==1
|
||||
# undef OS_UNIX
|
||||
# define OS_UNIX 0
|
||||
# undef OS_WIN
|
||||
# define OS_WIN 0
|
||||
# undef OS_OS2
|
||||
# define OS_OS2 0
|
||||
#if defined(SQLITE_OS_OTHER)
|
||||
# if SQLITE_OS_OTHER==1
|
||||
# undef SQLITE_OS_UNIX
|
||||
# define SQLITE_OS_UNIX 0
|
||||
# undef SQLITE_OS_WIN
|
||||
# define SQLITE_OS_WIN 0
|
||||
# undef SQLITE_OS_OS2
|
||||
# define SQLITE_OS_OS2 0
|
||||
# else
|
||||
# undef OS_OTHER
|
||||
# undef SQLITE_OS_OTHER
|
||||
# endif
|
||||
#endif
|
||||
#if !defined(OS_UNIX) && !defined(OS_OTHER)
|
||||
# define OS_OTHER 0
|
||||
# ifndef OS_WIN
|
||||
#if !defined(SQLITE_OS_UNIX) && !defined(SQLITE_OS_OTHER)
|
||||
# define SQLITE_OS_OTHER 0
|
||||
# ifndef SQLITE_OS_WIN
|
||||
# if defined(_WIN32) || defined(WIN32) || defined(__CYGWIN__) || defined(__MINGW32__) || defined(__BORLANDC__)
|
||||
# define OS_WIN 1
|
||||
# define OS_UNIX 0
|
||||
# define OS_OS2 0
|
||||
# define SQLITE_OS_WIN 1
|
||||
# define SQLITE_OS_UNIX 0
|
||||
# define SQLITE_OS_OS2 0
|
||||
# elif defined(__EMX__) || defined(_OS2) || defined(OS2) || defined(_OS2_) || defined(__OS2__)
|
||||
# define OS_WIN 0
|
||||
# define OS_UNIX 0
|
||||
# define OS_OS2 1
|
||||
# define SQLITE_OS_WIN 0
|
||||
# define SQLITE_OS_UNIX 0
|
||||
# define SQLITE_OS_OS2 1
|
||||
# else
|
||||
# define OS_WIN 0
|
||||
# define OS_UNIX 1
|
||||
# define OS_OS2 0
|
||||
# define SQLITE_OS_WIN 0
|
||||
# define SQLITE_OS_UNIX 1
|
||||
# define SQLITE_OS_OS2 0
|
||||
# endif
|
||||
# else
|
||||
# define OS_UNIX 0
|
||||
# define OS_OS2 0
|
||||
# define SQLITE_OS_UNIX 0
|
||||
# define SQLITE_OS_OS2 0
|
||||
# endif
|
||||
#else
|
||||
# ifndef OS_WIN
|
||||
# define OS_WIN 0
|
||||
# ifndef SQLITE_OS_WIN
|
||||
# define SQLITE_OS_WIN 0
|
||||
# endif
|
||||
#endif
|
||||
|
||||
/*
|
||||
** Determine if we are dealing with WindowsCE - which has a much
|
||||
** reduced API.
|
||||
*/
|
||||
#if defined(_WIN32_WCE)
|
||||
# define SQLITE_OS_WINCE 1
|
||||
#else
|
||||
# define SQLITE_OS_WINCE 0
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
** Define the maximum size of a temporary filename
|
||||
*/
|
||||
#if OS_WIN
|
||||
#if SQLITE_OS_WIN
|
||||
# include <windows.h>
|
||||
# define SQLITE_TEMPNAME_SIZE (MAX_PATH+50)
|
||||
#elif OS_OS2
|
||||
#elif SQLITE_OS_OS2
|
||||
# if (__GNUC__ > 3 || __GNUC__ == 3 && __GNUC_MINOR__ >= 3) && defined(OS2_HIGH_MEMORY)
|
||||
# include <os2safe.h> /* has to be included before os2.h for linking to work */
|
||||
# endif
|
||||
|
@ -76,7 +94,9 @@
|
|||
# define INCL_DOSMISC
|
||||
# define INCL_DOSPROCESS
|
||||
# define INCL_DOSMODULEMGR
|
||||
# define INCL_DOSSEMAPHORES
|
||||
# include <os2.h>
|
||||
# include <uconv.h>
|
||||
# define SQLITE_TEMPNAME_SIZE (CCHMAXPATHCOMP)
|
||||
#else
|
||||
# define SQLITE_TEMPNAME_SIZE 200
|
||||
|
@ -103,7 +123,7 @@
|
|||
** If sqlite is being embedded in another program, you may wish to change the
|
||||
** prefix to reflect your program's name, so that if your program exits
|
||||
** prematurely, old temporary files can be easily identified. This can be done
|
||||
** using -DTEMP_FILE_PREFIX=myprefix_ on the compiler command line.
|
||||
** using -DSQLITE_TEMP_FILE_PREFIX=myprefix_ on the compiler command line.
|
||||
**
|
||||
** 2006-10-31: The default prefix used to be "sqlite_". But then
|
||||
** Mcafee started using SQLite in their anti-virus product and it
|
||||
|
@ -117,143 +137,10 @@
|
|||
** enough to know that calling the developer will not help get rid
|
||||
** of the file.
|
||||
*/
|
||||
#ifndef TEMP_FILE_PREFIX
|
||||
# define TEMP_FILE_PREFIX "etilqs_"
|
||||
#ifndef SQLITE_TEMP_FILE_PREFIX
|
||||
# define SQLITE_TEMP_FILE_PREFIX "etilqs_"
|
||||
#endif
|
||||
|
||||
/*
|
||||
** Define the interfaces for Unix, Windows, and OS/2.
|
||||
*/
|
||||
#if OS_UNIX
|
||||
#define sqlite3OsOpenReadWrite sqlite3UnixOpenReadWrite
|
||||
#define sqlite3OsOpenExclusive sqlite3UnixOpenExclusive
|
||||
#define sqlite3OsOpenReadOnly sqlite3UnixOpenReadOnly
|
||||
#define sqlite3OsDelete sqlite3UnixDelete
|
||||
#define sqlite3OsFileExists sqlite3UnixFileExists
|
||||
#define sqlite3OsFullPathname sqlite3UnixFullPathname
|
||||
#define sqlite3OsIsDirWritable sqlite3UnixIsDirWritable
|
||||
#define sqlite3OsSyncDirectory sqlite3UnixSyncDirectory
|
||||
#define sqlite3OsTempFileName sqlite3UnixTempFileName
|
||||
#define sqlite3OsRandomSeed sqlite3UnixRandomSeed
|
||||
#define sqlite3OsSleep sqlite3UnixSleep
|
||||
#define sqlite3OsCurrentTime sqlite3UnixCurrentTime
|
||||
#define sqlite3OsEnterMutex sqlite3UnixEnterMutex
|
||||
#define sqlite3OsLeaveMutex sqlite3UnixLeaveMutex
|
||||
#define sqlite3OsInMutex sqlite3UnixInMutex
|
||||
#define sqlite3OsThreadSpecificData sqlite3UnixThreadSpecificData
|
||||
#define sqlite3OsMalloc sqlite3GenericMalloc
|
||||
#define sqlite3OsRealloc sqlite3GenericRealloc
|
||||
#define sqlite3OsFree sqlite3GenericFree
|
||||
#define sqlite3OsAllocationSize sqlite3GenericAllocationSize
|
||||
#define sqlite3OsDlopen sqlite3UnixDlopen
|
||||
#define sqlite3OsDlsym sqlite3UnixDlsym
|
||||
#define sqlite3OsDlclose sqlite3UnixDlclose
|
||||
#endif
|
||||
#if OS_WIN
|
||||
#define sqlite3OsOpenReadWrite sqlite3WinOpenReadWrite
|
||||
#define sqlite3OsOpenExclusive sqlite3WinOpenExclusive
|
||||
#define sqlite3OsOpenReadOnly sqlite3WinOpenReadOnly
|
||||
#define sqlite3OsDelete sqlite3WinDelete
|
||||
#define sqlite3OsFileExists sqlite3WinFileExists
|
||||
#define sqlite3OsFullPathname sqlite3WinFullPathname
|
||||
#define sqlite3OsIsDirWritable sqlite3WinIsDirWritable
|
||||
#define sqlite3OsSyncDirectory sqlite3WinSyncDirectory
|
||||
#define sqlite3OsTempFileName sqlite3WinTempFileName
|
||||
#define sqlite3OsRandomSeed sqlite3WinRandomSeed
|
||||
#define sqlite3OsSleep sqlite3WinSleep
|
||||
#define sqlite3OsCurrentTime sqlite3WinCurrentTime
|
||||
#define sqlite3OsEnterMutex sqlite3WinEnterMutex
|
||||
#define sqlite3OsLeaveMutex sqlite3WinLeaveMutex
|
||||
#define sqlite3OsInMutex sqlite3WinInMutex
|
||||
#define sqlite3OsThreadSpecificData sqlite3WinThreadSpecificData
|
||||
#define sqlite3OsMalloc sqlite3GenericMalloc
|
||||
#define sqlite3OsRealloc sqlite3GenericRealloc
|
||||
#define sqlite3OsFree sqlite3GenericFree
|
||||
#define sqlite3OsAllocationSize sqlite3GenericAllocationSize
|
||||
#define sqlite3OsDlopen sqlite3WinDlopen
|
||||
#define sqlite3OsDlsym sqlite3WinDlsym
|
||||
#define sqlite3OsDlclose sqlite3WinDlclose
|
||||
#endif
|
||||
#if OS_OS2
|
||||
#define sqlite3OsOpenReadWrite sqlite3Os2OpenReadWrite
|
||||
#define sqlite3OsOpenExclusive sqlite3Os2OpenExclusive
|
||||
#define sqlite3OsOpenReadOnly sqlite3Os2OpenReadOnly
|
||||
#define sqlite3OsDelete sqlite3Os2Delete
|
||||
#define sqlite3OsFileExists sqlite3Os2FileExists
|
||||
#define sqlite3OsFullPathname sqlite3Os2FullPathname
|
||||
#define sqlite3OsIsDirWritable sqlite3Os2IsDirWritable
|
||||
#define sqlite3OsSyncDirectory sqlite3Os2SyncDirectory
|
||||
#define sqlite3OsTempFileName sqlite3Os2TempFileName
|
||||
#define sqlite3OsRandomSeed sqlite3Os2RandomSeed
|
||||
#define sqlite3OsSleep sqlite3Os2Sleep
|
||||
#define sqlite3OsCurrentTime sqlite3Os2CurrentTime
|
||||
#define sqlite3OsEnterMutex sqlite3Os2EnterMutex
|
||||
#define sqlite3OsLeaveMutex sqlite3Os2LeaveMutex
|
||||
#define sqlite3OsInMutex sqlite3Os2InMutex
|
||||
#define sqlite3OsThreadSpecificData sqlite3Os2ThreadSpecificData
|
||||
#define sqlite3OsMalloc sqlite3GenericMalloc
|
||||
#define sqlite3OsRealloc sqlite3GenericRealloc
|
||||
#define sqlite3OsFree sqlite3GenericFree
|
||||
#define sqlite3OsAllocationSize sqlite3GenericAllocationSize
|
||||
#define sqlite3OsDlopen sqlite3Os2Dlopen
|
||||
#define sqlite3OsDlsym sqlite3Os2Dlsym
|
||||
#define sqlite3OsDlclose sqlite3Os2Dlclose
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
|
||||
/*
|
||||
** If using an alternative OS interface, then we must have an "os_other.h"
|
||||
** header file available for that interface. Presumably the "os_other.h"
|
||||
** header file contains #defines similar to those above.
|
||||
*/
|
||||
#if OS_OTHER
|
||||
# include "os_other.h"
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
/*
|
||||
** Forward declarations
|
||||
*/
|
||||
typedef struct OsFile OsFile;
|
||||
typedef struct IoMethod IoMethod;
|
||||
|
||||
/*
|
||||
** An instance of the following structure contains pointers to all
|
||||
** methods on an OsFile object.
|
||||
*/
|
||||
struct IoMethod {
|
||||
int (*xClose)(OsFile**);
|
||||
int (*xOpenDirectory)(OsFile*, const char*);
|
||||
int (*xRead)(OsFile*, void*, int amt);
|
||||
int (*xWrite)(OsFile*, const void*, int amt);
|
||||
int (*xSeek)(OsFile*, i64 offset);
|
||||
int (*xTruncate)(OsFile*, i64 size);
|
||||
int (*xSync)(OsFile*, int);
|
||||
void (*xSetFullSync)(OsFile *id, int setting);
|
||||
int (*xFileHandle)(OsFile *id);
|
||||
int (*xFileSize)(OsFile*, i64 *pSize);
|
||||
int (*xLock)(OsFile*, int);
|
||||
int (*xUnlock)(OsFile*, int);
|
||||
int (*xLockState)(OsFile *id);
|
||||
int (*xCheckReservedLock)(OsFile *id);
|
||||
int (*xSectorSize)(OsFile *id);
|
||||
};
|
||||
|
||||
/*
|
||||
** The OsFile object describes an open disk file in an OS-dependent way.
|
||||
** The version of OsFile defined here is a generic version. Each OS
|
||||
** implementation defines its own subclass of this structure that contains
|
||||
** additional information needed to handle file I/O. But the pMethod
|
||||
** entry (pointing to the virtual function table) always occurs first
|
||||
** so that we can always find the appropriate methods.
|
||||
*/
|
||||
struct OsFile {
|
||||
IoMethod const *pMethod;
|
||||
};
|
||||
|
||||
/*
|
||||
** The following values may be passed as the second argument to
|
||||
** sqlite3OsLock(). The various locks exhibit the following semantics:
|
||||
|
@ -346,203 +233,44 @@ extern unsigned int sqlite3_pending_byte;
|
|||
#define SHARED_SIZE 510
|
||||
|
||||
/*
|
||||
** Prototypes for operating system interface routines.
|
||||
** Functions for accessing sqlite3_file methods
|
||||
*/
|
||||
int sqlite3OsClose(OsFile**);
|
||||
int sqlite3OsOpenDirectory(OsFile*, const char*);
|
||||
int sqlite3OsRead(OsFile*, void*, int amt);
|
||||
int sqlite3OsWrite(OsFile*, const void*, int amt);
|
||||
int sqlite3OsSeek(OsFile*, i64 offset);
|
||||
int sqlite3OsTruncate(OsFile*, i64 size);
|
||||
int sqlite3OsSync(OsFile*, int);
|
||||
void sqlite3OsSetFullSync(OsFile *id, int setting);
|
||||
int sqlite3OsFileSize(OsFile*, i64 *pSize);
|
||||
int sqlite3OsLock(OsFile*, int);
|
||||
int sqlite3OsUnlock(OsFile*, int);
|
||||
int sqlite3OsCheckReservedLock(OsFile *id);
|
||||
int sqlite3OsOpenReadWrite(const char*, OsFile**, int*);
|
||||
int sqlite3OsOpenExclusive(const char*, OsFile**, int);
|
||||
int sqlite3OsOpenReadOnly(const char*, OsFile**);
|
||||
int sqlite3OsDelete(const char*);
|
||||
int sqlite3OsFileExists(const char*);
|
||||
char *sqlite3OsFullPathname(const char*);
|
||||
int sqlite3OsIsDirWritable(char*);
|
||||
int sqlite3OsSyncDirectory(const char*);
|
||||
int sqlite3OsSectorSize(OsFile *id);
|
||||
int sqlite3OsTempFileName(char*);
|
||||
int sqlite3OsRandomSeed(char*);
|
||||
int sqlite3OsSleep(int ms);
|
||||
int sqlite3OsCurrentTime(double*);
|
||||
void sqlite3OsEnterMutex(void);
|
||||
void sqlite3OsLeaveMutex(void);
|
||||
int sqlite3OsInMutex(int);
|
||||
ThreadData *sqlite3OsThreadSpecificData(int);
|
||||
void *sqlite3OsMalloc(int);
|
||||
void *sqlite3OsRealloc(void *, int);
|
||||
void sqlite3OsFree(void *);
|
||||
int sqlite3OsAllocationSize(void *);
|
||||
void *sqlite3OsDlopen(const char*);
|
||||
void *sqlite3OsDlsym(void*, const char*);
|
||||
int sqlite3OsDlclose(void*);
|
||||
|
||||
#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
|
||||
int sqlite3OsFileHandle(OsFile *id);
|
||||
int sqlite3OsLockState(OsFile *id);
|
||||
#endif
|
||||
int sqlite3OsClose(sqlite3_file*);
|
||||
int sqlite3OsRead(sqlite3_file*, void*, int amt, i64 offset);
|
||||
int sqlite3OsWrite(sqlite3_file*, const void*, int amt, i64 offset);
|
||||
int sqlite3OsTruncate(sqlite3_file*, i64 size);
|
||||
int sqlite3OsSync(sqlite3_file*, int);
|
||||
int sqlite3OsFileSize(sqlite3_file*, i64 *pSize);
|
||||
int sqlite3OsLock(sqlite3_file*, int);
|
||||
int sqlite3OsUnlock(sqlite3_file*, int);
|
||||
int sqlite3OsCheckReservedLock(sqlite3_file *id, int *pResOut);
|
||||
int sqlite3OsFileControl(sqlite3_file*,int,void*);
|
||||
#define SQLITE_FCNTL_DB_UNCHANGED 0xca093fa0
|
||||
int sqlite3OsSectorSize(sqlite3_file *id);
|
||||
int sqlite3OsDeviceCharacteristics(sqlite3_file *id);
|
||||
|
||||
/*
|
||||
** If the SQLITE_ENABLE_REDEF_IO macro is defined, then the OS-layer
|
||||
** interface routines are not called directly but are invoked using
|
||||
** pointers to functions. This allows the implementation of various
|
||||
** OS-layer interface routines to be modified at run-time. There are
|
||||
** obscure but legitimate reasons for wanting to do this. But for
|
||||
** most users, a direct call to the underlying interface is preferable
|
||||
** so the the redefinable I/O interface is turned off by default.
|
||||
** Functions for accessing sqlite3_vfs methods
|
||||
*/
|
||||
#ifdef SQLITE_ENABLE_REDEF_IO
|
||||
int sqlite3OsOpen(sqlite3_vfs *, const char *, sqlite3_file*, int, int *);
|
||||
int sqlite3OsDelete(sqlite3_vfs *, const char *, int);
|
||||
int sqlite3OsAccess(sqlite3_vfs *, const char *, int, int *pResOut);
|
||||
int sqlite3OsFullPathname(sqlite3_vfs *, const char *, int, char *);
|
||||
#ifndef SQLITE_OMIT_LOAD_EXTENSION
|
||||
void *sqlite3OsDlOpen(sqlite3_vfs *, const char *);
|
||||
void sqlite3OsDlError(sqlite3_vfs *, int, char *);
|
||||
void (*sqlite3OsDlSym(sqlite3_vfs *, void *, const char *))(void);
|
||||
void sqlite3OsDlClose(sqlite3_vfs *, void *);
|
||||
#endif /* SQLITE_OMIT_LOAD_EXTENSION */
|
||||
int sqlite3OsRandomness(sqlite3_vfs *, int, char *);
|
||||
int sqlite3OsSleep(sqlite3_vfs *, int);
|
||||
int sqlite3OsCurrentTime(sqlite3_vfs *, double*);
|
||||
|
||||
/*
|
||||
** When redefinable I/O is enabled, a single global instance of the
|
||||
** following structure holds pointers to the routines that SQLite
|
||||
** uses to talk with the underlying operating system. Modify this
|
||||
** structure (before using any SQLite API!) to accomodate perculiar
|
||||
** operating system interfaces or behaviors.
|
||||
** Convenience functions for opening and closing files using
|
||||
** sqlite3_malloc() to obtain space for the file-handle structure.
|
||||
*/
|
||||
struct sqlite3OsVtbl {
|
||||
int (*xOpenReadWrite)(const char*, OsFile**, int*);
|
||||
int (*xOpenExclusive)(const char*, OsFile**, int);
|
||||
int (*xOpenReadOnly)(const char*, OsFile**);
|
||||
|
||||
int (*xDelete)(const char*);
|
||||
int (*xFileExists)(const char*);
|
||||
char *(*xFullPathname)(const char*);
|
||||
int (*xIsDirWritable)(char*);
|
||||
int (*xSyncDirectory)(const char*);
|
||||
int (*xTempFileName)(char*);
|
||||
|
||||
int (*xRandomSeed)(char*);
|
||||
int (*xSleep)(int ms);
|
||||
int (*xCurrentTime)(double*);
|
||||
|
||||
void (*xEnterMutex)(void);
|
||||
void (*xLeaveMutex)(void);
|
||||
int (*xInMutex)(int);
|
||||
ThreadData *(*xThreadSpecificData)(int);
|
||||
|
||||
void *(*xMalloc)(int);
|
||||
void *(*xRealloc)(void *, int);
|
||||
void (*xFree)(void *);
|
||||
int (*xAllocationSize)(void *);
|
||||
|
||||
void *(*xDlopen)(const char*);
|
||||
void *(*xDlsym)(void*, const char*);
|
||||
int (*xDlclose)(void*);
|
||||
};
|
||||
|
||||
/* Macro used to comment out routines that do not exists when there is
|
||||
** no disk I/O or extension loading
|
||||
*/
|
||||
#ifdef SQLITE_OMIT_DISKIO
|
||||
# define IF_DISKIO(X) 0
|
||||
#else
|
||||
# define IF_DISKIO(X) X
|
||||
#endif
|
||||
#ifdef SQLITE_OMIT_LOAD_EXTENSION
|
||||
# define IF_DLOPEN(X) 0
|
||||
#else
|
||||
# define IF_DLOPEN(X) X
|
||||
#endif
|
||||
|
||||
|
||||
#if defined(_SQLITE_OS_C_) || defined(SQLITE_AMALGAMATION)
|
||||
/*
|
||||
** The os.c file implements the global virtual function table.
|
||||
** We have to put this file here because the initializers
|
||||
** (ex: sqlite3OsRandomSeed) are macros that are about to be
|
||||
** redefined.
|
||||
*/
|
||||
struct sqlite3OsVtbl sqlite3Os = {
|
||||
IF_DISKIO( sqlite3OsOpenReadWrite ),
|
||||
IF_DISKIO( sqlite3OsOpenExclusive ),
|
||||
IF_DISKIO( sqlite3OsOpenReadOnly ),
|
||||
IF_DISKIO( sqlite3OsDelete ),
|
||||
IF_DISKIO( sqlite3OsFileExists ),
|
||||
IF_DISKIO( sqlite3OsFullPathname ),
|
||||
IF_DISKIO( sqlite3OsIsDirWritable ),
|
||||
IF_DISKIO( sqlite3OsSyncDirectory ),
|
||||
IF_DISKIO( sqlite3OsTempFileName ),
|
||||
sqlite3OsRandomSeed,
|
||||
sqlite3OsSleep,
|
||||
sqlite3OsCurrentTime,
|
||||
sqlite3OsEnterMutex,
|
||||
sqlite3OsLeaveMutex,
|
||||
sqlite3OsInMutex,
|
||||
sqlite3OsThreadSpecificData,
|
||||
sqlite3OsMalloc,
|
||||
sqlite3OsRealloc,
|
||||
sqlite3OsFree,
|
||||
sqlite3OsAllocationSize,
|
||||
IF_DLOPEN( sqlite3OsDlopen ),
|
||||
IF_DLOPEN( sqlite3OsDlsym ),
|
||||
IF_DLOPEN( sqlite3OsDlclose ),
|
||||
};
|
||||
#else
|
||||
/*
|
||||
** Files other than os.c just reference the global virtual function table.
|
||||
*/
|
||||
extern struct sqlite3OsVtbl sqlite3Os;
|
||||
#endif /* _SQLITE_OS_C_ */
|
||||
|
||||
|
||||
/* This additional API routine is available with redefinable I/O */
|
||||
struct sqlite3OsVtbl *sqlite3_os_switch(void);
|
||||
|
||||
|
||||
/*
|
||||
** Redefine the OS interface to go through the virtual function table
|
||||
** rather than calling routines directly.
|
||||
*/
|
||||
#undef sqlite3OsOpenReadWrite
|
||||
#undef sqlite3OsOpenExclusive
|
||||
#undef sqlite3OsOpenReadOnly
|
||||
#undef sqlite3OsDelete
|
||||
#undef sqlite3OsFileExists
|
||||
#undef sqlite3OsFullPathname
|
||||
#undef sqlite3OsIsDirWritable
|
||||
#undef sqlite3OsSyncDirectory
|
||||
#undef sqlite3OsTempFileName
|
||||
#undef sqlite3OsRandomSeed
|
||||
#undef sqlite3OsSleep
|
||||
#undef sqlite3OsCurrentTime
|
||||
#undef sqlite3OsEnterMutex
|
||||
#undef sqlite3OsLeaveMutex
|
||||
#undef sqlite3OsInMutex
|
||||
#undef sqlite3OsThreadSpecificData
|
||||
#undef sqlite3OsMalloc
|
||||
#undef sqlite3OsRealloc
|
||||
#undef sqlite3OsFree
|
||||
#undef sqlite3OsAllocationSize
|
||||
#define sqlite3OsOpenReadWrite sqlite3Os.xOpenReadWrite
|
||||
#define sqlite3OsOpenExclusive sqlite3Os.xOpenExclusive
|
||||
#define sqlite3OsOpenReadOnly sqlite3Os.xOpenReadOnly
|
||||
#define sqlite3OsDelete sqlite3Os.xDelete
|
||||
#define sqlite3OsFileExists sqlite3Os.xFileExists
|
||||
#define sqlite3OsFullPathname sqlite3Os.xFullPathname
|
||||
#define sqlite3OsIsDirWritable sqlite3Os.xIsDirWritable
|
||||
#define sqlite3OsSyncDirectory sqlite3Os.xSyncDirectory
|
||||
#define sqlite3OsTempFileName sqlite3Os.xTempFileName
|
||||
#define sqlite3OsRandomSeed sqlite3Os.xRandomSeed
|
||||
#define sqlite3OsSleep sqlite3Os.xSleep
|
||||
#define sqlite3OsCurrentTime sqlite3Os.xCurrentTime
|
||||
#define sqlite3OsEnterMutex sqlite3Os.xEnterMutex
|
||||
#define sqlite3OsLeaveMutex sqlite3Os.xLeaveMutex
|
||||
#define sqlite3OsInMutex sqlite3Os.xInMutex
|
||||
#define sqlite3OsThreadSpecificData sqlite3Os.xThreadSpecificData
|
||||
#define sqlite3OsMalloc sqlite3Os.xMalloc
|
||||
#define sqlite3OsRealloc sqlite3Os.xRealloc
|
||||
#define sqlite3OsFree sqlite3Os.xFree
|
||||
#define sqlite3OsAllocationSize sqlite3Os.xAllocationSize
|
||||
|
||||
#endif /* SQLITE_ENABLE_REDEF_IO */
|
||||
int sqlite3OsOpenMalloc(sqlite3_vfs *, const char *, sqlite3_file **, int,int*);
|
||||
int sqlite3OsCloseFree(sqlite3_file *);
|
||||
|
||||
#endif /* _SQLITE_OS_H_ */
|
||||
|
|
135
os_common.h
135
os_common.h
|
@ -16,7 +16,11 @@
|
|||
**
|
||||
** This file should be #included by the os_*.c files only. It is not a
|
||||
** general purpose header file.
|
||||
**
|
||||
** $Id: os_common.h,v 1.37 2008/05/29 20:22:37 shane Exp $
|
||||
*/
|
||||
#ifndef _OS_COMMON_H_
|
||||
#define _OS_COMMON_H_
|
||||
|
||||
/*
|
||||
** At least two bugs have slipped in because we changed the MEMORY_DEBUG
|
||||
|
@ -37,16 +41,16 @@ unsigned int sqlite3_pending_byte = 0x40000000;
|
|||
#endif
|
||||
|
||||
#ifdef SQLITE_DEBUG
|
||||
int sqlite3_os_trace = 0;
|
||||
#define OSTRACE1(X) if( sqlite3_os_trace ) sqlite3DebugPrintf(X)
|
||||
#define OSTRACE2(X,Y) if( sqlite3_os_trace ) sqlite3DebugPrintf(X,Y)
|
||||
#define OSTRACE3(X,Y,Z) if( sqlite3_os_trace ) sqlite3DebugPrintf(X,Y,Z)
|
||||
#define OSTRACE4(X,Y,Z,A) if( sqlite3_os_trace ) sqlite3DebugPrintf(X,Y,Z,A)
|
||||
#define OSTRACE5(X,Y,Z,A,B) if( sqlite3_os_trace ) sqlite3DebugPrintf(X,Y,Z,A,B)
|
||||
int sqlite3OSTrace = 0;
|
||||
#define OSTRACE1(X) if( sqlite3OSTrace ) sqlite3DebugPrintf(X)
|
||||
#define OSTRACE2(X,Y) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y)
|
||||
#define OSTRACE3(X,Y,Z) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z)
|
||||
#define OSTRACE4(X,Y,Z,A) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z,A)
|
||||
#define OSTRACE5(X,Y,Z,A,B) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z,A,B)
|
||||
#define OSTRACE6(X,Y,Z,A,B,C) \
|
||||
if(sqlite3_os_trace) sqlite3DebugPrintf(X,Y,Z,A,B,C)
|
||||
if(sqlite3OSTrace) sqlite3DebugPrintf(X,Y,Z,A,B,C)
|
||||
#define OSTRACE7(X,Y,Z,A,B,C,D) \
|
||||
if(sqlite3_os_trace) sqlite3DebugPrintf(X,Y,Z,A,B,C,D)
|
||||
if(sqlite3OSTrace) sqlite3DebugPrintf(X,Y,Z,A,B,C,D)
|
||||
#else
|
||||
#define OSTRACE1(X)
|
||||
#define OSTRACE2(X,Y)
|
||||
|
@ -62,22 +66,22 @@ int sqlite3_os_trace = 0;
|
|||
** on i486 hardware.
|
||||
*/
|
||||
#ifdef SQLITE_PERFORMANCE_TRACE
|
||||
__inline__ unsigned long long int hwtime(void){
|
||||
unsigned long long int x;
|
||||
__asm__("rdtsc\n\t"
|
||||
"mov %%edx, %%ecx\n\t"
|
||||
:"=A" (x));
|
||||
return x;
|
||||
}
|
||||
static unsigned long long int g_start;
|
||||
static unsigned int elapse;
|
||||
#define TIMER_START g_start=hwtime()
|
||||
#define TIMER_END elapse=hwtime()-g_start
|
||||
#define TIMER_ELAPSED elapse
|
||||
|
||||
/*
|
||||
** hwtime.h contains inline assembler code for implementing
|
||||
** high-performance timing routines.
|
||||
*/
|
||||
#include "hwtime.h"
|
||||
|
||||
static sqlite_uint64 g_start;
|
||||
static sqlite_uint64 g_elapsed;
|
||||
#define TIMER_START g_start=sqlite3Hwtime()
|
||||
#define TIMER_END g_elapsed=sqlite3Hwtime()-g_start
|
||||
#define TIMER_ELAPSED g_elapsed
|
||||
#else
|
||||
#define TIMER_START
|
||||
#define TIMER_END
|
||||
#define TIMER_ELAPSED 0
|
||||
#define TIMER_ELAPSED ((sqlite_uint64)0)
|
||||
#endif
|
||||
|
||||
/*
|
||||
|
@ -86,19 +90,22 @@ static unsigned int elapse;
|
|||
** is used for testing the I/O recovery logic.
|
||||
*/
|
||||
#ifdef SQLITE_TEST
|
||||
int sqlite3_io_error_hit = 0;
|
||||
int sqlite3_io_error_pending = 0;
|
||||
int sqlite3_io_error_persist = 0;
|
||||
int sqlite3_io_error_hit = 0; /* Total number of I/O Errors */
|
||||
int sqlite3_io_error_hardhit = 0; /* Number of non-benign errors */
|
||||
int sqlite3_io_error_pending = 0; /* Count down to first I/O error */
|
||||
int sqlite3_io_error_persist = 0; /* True if I/O errors persist */
|
||||
int sqlite3_io_error_benign = 0; /* True if errors are benign */
|
||||
int sqlite3_diskfull_pending = 0;
|
||||
int sqlite3_diskfull = 0;
|
||||
#define SimulateIOErrorBenign(X) sqlite3_io_error_benign=(X)
|
||||
#define SimulateIOError(CODE) \
|
||||
if( sqlite3_io_error_pending || sqlite3_io_error_hit ) \
|
||||
if( sqlite3_io_error_pending-- == 1 \
|
||||
|| (sqlite3_io_error_persist && sqlite3_io_error_hit) ) \
|
||||
if( (sqlite3_io_error_persist && sqlite3_io_error_hit) \
|
||||
|| sqlite3_io_error_pending-- == 1 ) \
|
||||
{ local_ioerr(); CODE; }
|
||||
static void local_ioerr(){
|
||||
IOTRACE(("IOERR\n"));
|
||||
sqlite3_io_error_hit = 1;
|
||||
sqlite3_io_error_hit++;
|
||||
if( !sqlite3_io_error_benign ) sqlite3_io_error_hardhit++;
|
||||
}
|
||||
#define SimulateDiskfullError(CODE) \
|
||||
if( sqlite3_diskfull_pending ){ \
|
||||
|
@ -112,6 +119,7 @@ static void local_ioerr(){
|
|||
} \
|
||||
}
|
||||
#else
|
||||
#define SimulateIOErrorBenign(X)
|
||||
#define SimulateIOError(A)
|
||||
#define SimulateDiskfullError(A)
|
||||
#endif
|
||||
|
@ -126,73 +134,4 @@ int sqlite3_open_file_count = 0;
|
|||
#define OpenCounter(X)
|
||||
#endif
|
||||
|
||||
/*
|
||||
** sqlite3GenericMalloc
|
||||
** sqlite3GenericRealloc
|
||||
** sqlite3GenericOsFree
|
||||
** sqlite3GenericAllocationSize
|
||||
**
|
||||
** Implementation of the os level dynamic memory allocation interface in terms
|
||||
** of the standard malloc(), realloc() and free() found in many operating
|
||||
** systems. No rocket science here.
|
||||
**
|
||||
** There are two versions of these four functions here. The version
|
||||
** implemented here is only used if memory-management or memory-debugging is
|
||||
** enabled. This version allocates an extra 8-bytes at the beginning of each
|
||||
** block and stores the size of the allocation there.
|
||||
**
|
||||
** If neither memory-management or debugging is enabled, the second
|
||||
** set of implementations is used instead.
|
||||
*/
|
||||
#if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || defined (SQLITE_MEMDEBUG)
|
||||
void *sqlite3GenericMalloc(int n){
|
||||
char *p = (char *)malloc(n+8);
|
||||
assert(n>0);
|
||||
assert(sizeof(int)<=8);
|
||||
if( p ){
|
||||
*(int *)p = n;
|
||||
p += 8;
|
||||
}
|
||||
return (void *)p;
|
||||
}
|
||||
void *sqlite3GenericRealloc(void *p, int n){
|
||||
char *p2 = ((char *)p - 8);
|
||||
assert(n>0);
|
||||
p2 = (char*)realloc(p2, n+8);
|
||||
if( p2 ){
|
||||
*(int *)p2 = n;
|
||||
p2 += 8;
|
||||
}
|
||||
return (void *)p2;
|
||||
}
|
||||
void sqlite3GenericFree(void *p){
|
||||
assert(p);
|
||||
free((void *)((char *)p - 8));
|
||||
}
|
||||
int sqlite3GenericAllocationSize(void *p){
|
||||
return p ? *(int *)((char *)p - 8) : 0;
|
||||
}
|
||||
#else
|
||||
void *sqlite3GenericMalloc(int n){
|
||||
char *p = (char *)malloc(n);
|
||||
return (void *)p;
|
||||
}
|
||||
void *sqlite3GenericRealloc(void *p, int n){
|
||||
assert(n>0);
|
||||
p = realloc(p, n);
|
||||
return p;
|
||||
}
|
||||
void sqlite3GenericFree(void *p){
|
||||
assert(p);
|
||||
free(p);
|
||||
}
|
||||
/* Never actually used, but needed for the linker */
|
||||
int sqlite3GenericAllocationSize(void *p){ return 0; }
|
||||
#endif
|
||||
|
||||
/*
|
||||
** The default size of a disk sector
|
||||
*/
|
||||
#ifndef PAGER_SECTOR_SIZE
|
||||
# define PAGER_SECTOR_SIZE 512
|
||||
#endif
|
||||
#endif /* !defined(_OS_COMMON_H_) */
|
||||
|
|
68
pager.h
68
pager.h
|
@ -13,17 +13,25 @@
|
|||
** subsystem. The page cache subsystem reads and writes a file a page
|
||||
** at a time and provides a journal for rollback.
|
||||
**
|
||||
** @(#) $Id: pager.h,v 1.61 2007/05/08 21:45:28 drh Exp $
|
||||
** @(#) $Id: pager.h,v 1.93 2009/01/07 15:18:21 danielk1977 Exp $
|
||||
*/
|
||||
|
||||
#ifndef _PAGER_H_
|
||||
#define _PAGER_H_
|
||||
|
||||
/*
|
||||
** If defined as non-zero, auto-vacuum is enabled by default. Otherwise
|
||||
** it must be turned on for each database using "PRAGMA auto_vacuum = 1".
|
||||
*/
|
||||
#ifndef SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT
|
||||
#define SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT -1
|
||||
#endif
|
||||
|
||||
/*
|
||||
** The type used to represent a page number. The first page in a file
|
||||
** is called page 1. 0 is used to represent "not a page".
|
||||
*/
|
||||
typedef unsigned int Pgno;
|
||||
typedef u32 Pgno;
|
||||
|
||||
/*
|
||||
** Each open file is managed by a separate instance of the "Pager" structure.
|
||||
|
@ -50,16 +58,24 @@ typedef struct PgHdr DbPage;
|
|||
#define PAGER_LOCKINGMODE_NORMAL 0
|
||||
#define PAGER_LOCKINGMODE_EXCLUSIVE 1
|
||||
|
||||
/*
|
||||
** Valid values for the second argument to sqlite3PagerJournalMode().
|
||||
*/
|
||||
#define PAGER_JOURNALMODE_QUERY -1
|
||||
#define PAGER_JOURNALMODE_DELETE 0 /* Commit by deleting journal file */
|
||||
#define PAGER_JOURNALMODE_PERSIST 1 /* Commit by zeroing journal header */
|
||||
#define PAGER_JOURNALMODE_OFF 2 /* Journal omitted. */
|
||||
#define PAGER_JOURNALMODE_TRUNCATE 3 /* Commit by truncating journal */
|
||||
#define PAGER_JOURNALMODE_MEMORY 4 /* In-memory journal file */
|
||||
|
||||
/*
|
||||
** See source code comments for a detailed description of the following
|
||||
** routines:
|
||||
*/
|
||||
int sqlite3PagerOpen(Pager **ppPager, const char *zFilename,
|
||||
int nExtra, int flags);
|
||||
void sqlite3PagerSetBusyhandler(Pager*, BusyHandler *pBusyHandler);
|
||||
void sqlite3PagerSetDestructor(Pager*, void(*)(DbPage*,int));
|
||||
void sqlite3PagerSetReiniter(Pager*, void(*)(DbPage*,int));
|
||||
int sqlite3PagerSetPagesize(Pager*, int);
|
||||
int sqlite3PagerOpen(sqlite3_vfs *, Pager **ppPager, const char*, int,int,int);
|
||||
void sqlite3PagerSetBusyhandler(Pager*, int(*)(void *), void *);
|
||||
void sqlite3PagerSetReiniter(Pager*, void(*)(DbPage*));
|
||||
int sqlite3PagerSetPagesize(Pager*, u16*);
|
||||
int sqlite3PagerMaxPageCount(Pager*, int);
|
||||
int sqlite3PagerReadFileheader(Pager*, int, unsigned char*);
|
||||
void sqlite3PagerSetCachesize(Pager*, int);
|
||||
|
@ -67,35 +83,41 @@ int sqlite3PagerClose(Pager *pPager);
|
|||
int sqlite3PagerAcquire(Pager *pPager, Pgno pgno, DbPage **ppPage, int clrFlag);
|
||||
#define sqlite3PagerGet(A,B,C) sqlite3PagerAcquire(A,B,C,0)
|
||||
DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno);
|
||||
int sqlite3PagerPageRefcount(DbPage*);
|
||||
int sqlite3PagerRef(DbPage*);
|
||||
int sqlite3PagerUnref(DbPage*);
|
||||
int sqlite3PagerWrite(DbPage*);
|
||||
int sqlite3PagerOverwrite(Pager *pPager, Pgno pgno, void*);
|
||||
int sqlite3PagerPagecount(Pager*);
|
||||
int sqlite3PagerTruncate(Pager*,Pgno);
|
||||
int sqlite3PagerPagecount(Pager*, int*);
|
||||
int sqlite3PagerBegin(DbPage*, int exFlag);
|
||||
int sqlite3PagerCommitPhaseOne(Pager*,const char *zMaster, Pgno);
|
||||
int sqlite3PagerCommitPhaseOne(Pager*,const char *zMaster, int);
|
||||
int sqlite3PagerCommitPhaseTwo(Pager*);
|
||||
int sqlite3PagerRollback(Pager*);
|
||||
int sqlite3PagerIsreadonly(Pager*);
|
||||
int sqlite3PagerStmtBegin(Pager*);
|
||||
int sqlite3PagerStmtCommit(Pager*);
|
||||
int sqlite3PagerStmtRollback(Pager*);
|
||||
u8 sqlite3PagerIsreadonly(Pager*);
|
||||
void sqlite3PagerDontRollback(DbPage*);
|
||||
void sqlite3PagerDontWrite(DbPage*);
|
||||
int sqlite3PagerDontWrite(DbPage*);
|
||||
int sqlite3PagerRefcount(Pager*);
|
||||
void sqlite3PagerSetSafetyLevel(Pager*,int,int);
|
||||
const char *sqlite3PagerFilename(Pager*);
|
||||
const sqlite3_vfs *sqlite3PagerVfs(Pager*);
|
||||
sqlite3_file *sqlite3PagerFile(Pager*);
|
||||
const char *sqlite3PagerDirname(Pager*);
|
||||
const char *sqlite3PagerJournalname(Pager*);
|
||||
int sqlite3PagerNosync(Pager*);
|
||||
int sqlite3PagerMovepage(Pager*,DbPage*,Pgno);
|
||||
int sqlite3PagerMovepage(Pager*,DbPage*,Pgno,int);
|
||||
void *sqlite3PagerGetData(DbPage *);
|
||||
void *sqlite3PagerGetExtra(DbPage *);
|
||||
int sqlite3PagerLockingMode(Pager *, int);
|
||||
int sqlite3PagerJournalMode(Pager *, int);
|
||||
i64 sqlite3PagerJournalSizeLimit(Pager *, i64);
|
||||
void *sqlite3PagerTempSpace(Pager*);
|
||||
int sqlite3PagerSync(Pager *pPager);
|
||||
|
||||
#if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) && !defined(SQLITE_OMIT_DISKIO)
|
||||
int sqlite3PagerReleaseMemory(int);
|
||||
int sqlite3PagerOpenSavepoint(Pager *pPager, int n);
|
||||
int sqlite3PagerSavepoint(Pager *pPager, int op, int iSavepoint);
|
||||
|
||||
#ifndef SQLITE_OMIT_AUTOVACUUM
|
||||
void sqlite3PagerTruncateImage(Pager*,Pgno);
|
||||
Pgno sqlite3PagerImageSize(Pager *);
|
||||
#endif
|
||||
|
||||
#ifdef SQLITE_HAS_CODEC
|
||||
|
@ -107,14 +129,10 @@ int sqlite3PagerLockingMode(Pager *, int);
|
|||
int sqlite3PagerIswriteable(DbPage*);
|
||||
#endif
|
||||
|
||||
#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
|
||||
int sqlite3PagerLockstate(Pager*);
|
||||
#endif
|
||||
|
||||
#ifdef SQLITE_TEST
|
||||
int *sqlite3PagerStats(Pager*);
|
||||
void sqlite3PagerRefdump(Pager*);
|
||||
int pager3_refinfo_enable;
|
||||
int sqlite3PagerIsMemdb(Pager*);
|
||||
#endif
|
||||
|
||||
#ifdef SQLITE_TEST
|
||||
|
|
282
parse.h
282
parse.h
|
@ -10,143 +10,145 @@
|
|||
#define TK_COMMIT 10
|
||||
#define TK_END 11
|
||||
#define TK_ROLLBACK 12
|
||||
#define TK_CREATE 13
|
||||
#define TK_TABLE 14
|
||||
#define TK_IF 15
|
||||
#define TK_NOT 16
|
||||
#define TK_EXISTS 17
|
||||
#define TK_TEMP 18
|
||||
#define TK_LP 19
|
||||
#define TK_RP 20
|
||||
#define TK_AS 21
|
||||
#define TK_COMMA 22
|
||||
#define TK_ID 23
|
||||
#define TK_ABORT 24
|
||||
#define TK_AFTER 25
|
||||
#define TK_ANALYZE 26
|
||||
#define TK_ASC 27
|
||||
#define TK_ATTACH 28
|
||||
#define TK_BEFORE 29
|
||||
#define TK_CASCADE 30
|
||||
#define TK_CAST 31
|
||||
#define TK_CONFLICT 32
|
||||
#define TK_DATABASE 33
|
||||
#define TK_DESC 34
|
||||
#define TK_DETACH 35
|
||||
#define TK_EACH 36
|
||||
#define TK_FAIL 37
|
||||
#define TK_FOR 38
|
||||
#define TK_IGNORE 39
|
||||
#define TK_INITIALLY 40
|
||||
#define TK_INSTEAD 41
|
||||
#define TK_LIKE_KW 42
|
||||
#define TK_MATCH 43
|
||||
#define TK_KEY 44
|
||||
#define TK_OF 45
|
||||
#define TK_OFFSET 46
|
||||
#define TK_PRAGMA 47
|
||||
#define TK_RAISE 48
|
||||
#define TK_REPLACE 49
|
||||
#define TK_RESTRICT 50
|
||||
#define TK_ROW 51
|
||||
#define TK_TRIGGER 52
|
||||
#define TK_VACUUM 53
|
||||
#define TK_VIEW 54
|
||||
#define TK_VIRTUAL 55
|
||||
#define TK_REINDEX 56
|
||||
#define TK_RENAME 57
|
||||
#define TK_CTIME_KW 58
|
||||
#define TK_ANY 59
|
||||
#define TK_OR 60
|
||||
#define TK_AND 61
|
||||
#define TK_IS 62
|
||||
#define TK_BETWEEN 63
|
||||
#define TK_IN 64
|
||||
#define TK_ISNULL 65
|
||||
#define TK_NOTNULL 66
|
||||
#define TK_NE 67
|
||||
#define TK_EQ 68
|
||||
#define TK_GT 69
|
||||
#define TK_LE 70
|
||||
#define TK_LT 71
|
||||
#define TK_GE 72
|
||||
#define TK_ESCAPE 73
|
||||
#define TK_BITAND 74
|
||||
#define TK_BITOR 75
|
||||
#define TK_LSHIFT 76
|
||||
#define TK_RSHIFT 77
|
||||
#define TK_PLUS 78
|
||||
#define TK_MINUS 79
|
||||
#define TK_STAR 80
|
||||
#define TK_SLASH 81
|
||||
#define TK_REM 82
|
||||
#define TK_CONCAT 83
|
||||
#define TK_COLLATE 84
|
||||
#define TK_UMINUS 85
|
||||
#define TK_UPLUS 86
|
||||
#define TK_BITNOT 87
|
||||
#define TK_STRING 88
|
||||
#define TK_JOIN_KW 89
|
||||
#define TK_CONSTRAINT 90
|
||||
#define TK_DEFAULT 91
|
||||
#define TK_NULL 92
|
||||
#define TK_PRIMARY 93
|
||||
#define TK_UNIQUE 94
|
||||
#define TK_CHECK 95
|
||||
#define TK_REFERENCES 96
|
||||
#define TK_AUTOINCR 97
|
||||
#define TK_ON 98
|
||||
#define TK_DELETE 99
|
||||
#define TK_UPDATE 100
|
||||
#define TK_INSERT 101
|
||||
#define TK_SET 102
|
||||
#define TK_DEFERRABLE 103
|
||||
#define TK_FOREIGN 104
|
||||
#define TK_DROP 105
|
||||
#define TK_UNION 106
|
||||
#define TK_ALL 107
|
||||
#define TK_EXCEPT 108
|
||||
#define TK_INTERSECT 109
|
||||
#define TK_SELECT 110
|
||||
#define TK_DISTINCT 111
|
||||
#define TK_DOT 112
|
||||
#define TK_FROM 113
|
||||
#define TK_JOIN 114
|
||||
#define TK_USING 115
|
||||
#define TK_ORDER 116
|
||||
#define TK_BY 117
|
||||
#define TK_GROUP 118
|
||||
#define TK_HAVING 119
|
||||
#define TK_LIMIT 120
|
||||
#define TK_WHERE 121
|
||||
#define TK_INTO 122
|
||||
#define TK_VALUES 123
|
||||
#define TK_INTEGER 124
|
||||
#define TK_FLOAT 125
|
||||
#define TK_BLOB 126
|
||||
#define TK_REGISTER 127
|
||||
#define TK_VARIABLE 128
|
||||
#define TK_CASE 129
|
||||
#define TK_WHEN 130
|
||||
#define TK_THEN 131
|
||||
#define TK_ELSE 132
|
||||
#define TK_INDEX 133
|
||||
#define TK_ALTER 134
|
||||
#define TK_TO 135
|
||||
#define TK_ADD 136
|
||||
#define TK_COLUMNKW 137
|
||||
#define TK_TO_TEXT 138
|
||||
#define TK_TO_BLOB 139
|
||||
#define TK_TO_NUMERIC 140
|
||||
#define TK_TO_INT 141
|
||||
#define TK_TO_REAL 142
|
||||
#define TK_END_OF_FILE 143
|
||||
#define TK_ILLEGAL 144
|
||||
#define TK_SPACE 145
|
||||
#define TK_UNCLOSED_STRING 146
|
||||
#define TK_COMMENT 147
|
||||
#define TK_FUNCTION 148
|
||||
#define TK_COLUMN 149
|
||||
#define TK_AGG_FUNCTION 150
|
||||
#define TK_AGG_COLUMN 151
|
||||
#define TK_CONST_FUNC 152
|
||||
#define TK_SAVEPOINT 13
|
||||
#define TK_RELEASE 14
|
||||
#define TK_TO 15
|
||||
#define TK_CREATE 16
|
||||
#define TK_TABLE 17
|
||||
#define TK_IF 18
|
||||
#define TK_NOT 19
|
||||
#define TK_EXISTS 20
|
||||
#define TK_TEMP 21
|
||||
#define TK_LP 22
|
||||
#define TK_RP 23
|
||||
#define TK_AS 24
|
||||
#define TK_COMMA 25
|
||||
#define TK_ID 26
|
||||
#define TK_ABORT 27
|
||||
#define TK_AFTER 28
|
||||
#define TK_ANALYZE 29
|
||||
#define TK_ASC 30
|
||||
#define TK_ATTACH 31
|
||||
#define TK_BEFORE 32
|
||||
#define TK_CASCADE 33
|
||||
#define TK_CAST 34
|
||||
#define TK_CONFLICT 35
|
||||
#define TK_DATABASE 36
|
||||
#define TK_DESC 37
|
||||
#define TK_DETACH 38
|
||||
#define TK_EACH 39
|
||||
#define TK_FAIL 40
|
||||
#define TK_FOR 41
|
||||
#define TK_IGNORE 42
|
||||
#define TK_INITIALLY 43
|
||||
#define TK_INSTEAD 44
|
||||
#define TK_LIKE_KW 45
|
||||
#define TK_MATCH 46
|
||||
#define TK_KEY 47
|
||||
#define TK_OF 48
|
||||
#define TK_OFFSET 49
|
||||
#define TK_PRAGMA 50
|
||||
#define TK_RAISE 51
|
||||
#define TK_REPLACE 52
|
||||
#define TK_RESTRICT 53
|
||||
#define TK_ROW 54
|
||||
#define TK_TRIGGER 55
|
||||
#define TK_VACUUM 56
|
||||
#define TK_VIEW 57
|
||||
#define TK_VIRTUAL 58
|
||||
#define TK_REINDEX 59
|
||||
#define TK_RENAME 60
|
||||
#define TK_CTIME_KW 61
|
||||
#define TK_ANY 62
|
||||
#define TK_OR 63
|
||||
#define TK_AND 64
|
||||
#define TK_IS 65
|
||||
#define TK_BETWEEN 66
|
||||
#define TK_IN 67
|
||||
#define TK_ISNULL 68
|
||||
#define TK_NOTNULL 69
|
||||
#define TK_NE 70
|
||||
#define TK_EQ 71
|
||||
#define TK_GT 72
|
||||
#define TK_LE 73
|
||||
#define TK_LT 74
|
||||
#define TK_GE 75
|
||||
#define TK_ESCAPE 76
|
||||
#define TK_BITAND 77
|
||||
#define TK_BITOR 78
|
||||
#define TK_LSHIFT 79
|
||||
#define TK_RSHIFT 80
|
||||
#define TK_PLUS 81
|
||||
#define TK_MINUS 82
|
||||
#define TK_STAR 83
|
||||
#define TK_SLASH 84
|
||||
#define TK_REM 85
|
||||
#define TK_CONCAT 86
|
||||
#define TK_COLLATE 87
|
||||
#define TK_UMINUS 88
|
||||
#define TK_UPLUS 89
|
||||
#define TK_BITNOT 90
|
||||
#define TK_STRING 91
|
||||
#define TK_JOIN_KW 92
|
||||
#define TK_CONSTRAINT 93
|
||||
#define TK_DEFAULT 94
|
||||
#define TK_NULL 95
|
||||
#define TK_PRIMARY 96
|
||||
#define TK_UNIQUE 97
|
||||
#define TK_CHECK 98
|
||||
#define TK_REFERENCES 99
|
||||
#define TK_AUTOINCR 100
|
||||
#define TK_ON 101
|
||||
#define TK_DELETE 102
|
||||
#define TK_UPDATE 103
|
||||
#define TK_INSERT 104
|
||||
#define TK_SET 105
|
||||
#define TK_DEFERRABLE 106
|
||||
#define TK_FOREIGN 107
|
||||
#define TK_DROP 108
|
||||
#define TK_UNION 109
|
||||
#define TK_ALL 110
|
||||
#define TK_EXCEPT 111
|
||||
#define TK_INTERSECT 112
|
||||
#define TK_SELECT 113
|
||||
#define TK_DISTINCT 114
|
||||
#define TK_DOT 115
|
||||
#define TK_FROM 116
|
||||
#define TK_JOIN 117
|
||||
#define TK_INDEXED 118
|
||||
#define TK_BY 119
|
||||
#define TK_USING 120
|
||||
#define TK_ORDER 121
|
||||
#define TK_GROUP 122
|
||||
#define TK_HAVING 123
|
||||
#define TK_LIMIT 124
|
||||
#define TK_WHERE 125
|
||||
#define TK_INTO 126
|
||||
#define TK_VALUES 127
|
||||
#define TK_INTEGER 128
|
||||
#define TK_FLOAT 129
|
||||
#define TK_BLOB 130
|
||||
#define TK_REGISTER 131
|
||||
#define TK_VARIABLE 132
|
||||
#define TK_CASE 133
|
||||
#define TK_WHEN 134
|
||||
#define TK_THEN 135
|
||||
#define TK_ELSE 136
|
||||
#define TK_INDEX 137
|
||||
#define TK_ALTER 138
|
||||
#define TK_ADD 139
|
||||
#define TK_COLUMNKW 140
|
||||
#define TK_TO_TEXT 141
|
||||
#define TK_TO_BLOB 142
|
||||
#define TK_TO_NUMERIC 143
|
||||
#define TK_TO_INT 144
|
||||
#define TK_TO_REAL 145
|
||||
#define TK_END_OF_FILE 146
|
||||
#define TK_ILLEGAL 147
|
||||
#define TK_SPACE 148
|
||||
#define TK_UNCLOSED_STRING 149
|
||||
#define TK_FUNCTION 150
|
||||
#define TK_COLUMN 151
|
||||
#define TK_AGG_FUNCTION 152
|
||||
#define TK_AGG_COLUMN 153
|
||||
#define TK_CONST_FUNC 154
|
||||
|
|
580
pcache.c
Normal file
580
pcache.c
Normal file
|
@ -0,0 +1,580 @@
|
|||
/*
|
||||
** 2008 August 05
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This file implements that page cache.
|
||||
**
|
||||
** @(#) $Id: pcache.c,v 1.39 2008/12/04 20:40:10 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
/*
|
||||
** A complete page cache is an instance of this structure.
|
||||
*/
|
||||
struct PCache {
|
||||
PgHdr *pDirty, *pDirtyTail; /* List of dirty pages in LRU order */
|
||||
PgHdr *pSynced; /* Last synced page in dirty page list */
|
||||
int nRef; /* Number of referenced pages */
|
||||
int nMax; /* Configured cache size */
|
||||
int nMin; /* Configured minimum cache size */
|
||||
int szPage; /* Size of every page in this cache */
|
||||
int szExtra; /* Size of extra space for each page */
|
||||
int bPurgeable; /* True if pages are on backing store */
|
||||
int (*xStress)(void*,PgHdr*); /* Call to try make a page clean */
|
||||
void *pStress; /* Argument to xStress */
|
||||
sqlite3_pcache *pCache; /* Pluggable cache module */
|
||||
PgHdr *pPage1;
|
||||
};
|
||||
|
||||
/*
|
||||
** Some of the assert() macros in this code are too expensive to run
|
||||
** even during normal debugging. Use them only rarely on long-running
|
||||
** tests. Enable the expensive asserts using the
|
||||
** -DSQLITE_ENABLE_EXPENSIVE_ASSERT=1 compile-time option.
|
||||
*/
|
||||
#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
|
||||
# define expensive_assert(X) assert(X)
|
||||
#else
|
||||
# define expensive_assert(X)
|
||||
#endif
|
||||
|
||||
/********************************** Linked List Management ********************/
|
||||
|
||||
#if !defined(NDEBUG) && defined(SQLITE_ENABLE_EXPENSIVE_ASSERT)
|
||||
/*
|
||||
** Check that the pCache->pSynced variable is set correctly. If it
|
||||
** is not, either fail an assert or return zero. Otherwise, return
|
||||
** non-zero. This is only used in debugging builds, as follows:
|
||||
**
|
||||
** expensive_assert( pcacheCheckSynced(pCache) );
|
||||
*/
|
||||
static int pcacheCheckSynced(PCache *pCache){
|
||||
PgHdr *p;
|
||||
for(p=pCache->pDirtyTail; p!=pCache->pSynced; p=p->pDirtyPrev){
|
||||
assert( p->nRef || (p->flags&PGHDR_NEED_SYNC) );
|
||||
}
|
||||
return (p==0 || p->nRef || (p->flags&PGHDR_NEED_SYNC)==0);
|
||||
}
|
||||
#endif /* !NDEBUG && SQLITE_ENABLE_EXPENSIVE_ASSERT */
|
||||
|
||||
/*
|
||||
** Remove page pPage from the list of dirty pages.
|
||||
*/
|
||||
static void pcacheRemoveFromDirtyList(PgHdr *pPage){
|
||||
PCache *p = pPage->pCache;
|
||||
|
||||
assert( pPage->pDirtyNext || pPage==p->pDirtyTail );
|
||||
assert( pPage->pDirtyPrev || pPage==p->pDirty );
|
||||
|
||||
/* Update the PCache1.pSynced variable if necessary. */
|
||||
if( p->pSynced==pPage ){
|
||||
PgHdr *pSynced = pPage->pDirtyPrev;
|
||||
while( pSynced && (pSynced->flags&PGHDR_NEED_SYNC) ){
|
||||
pSynced = pSynced->pDirtyPrev;
|
||||
}
|
||||
p->pSynced = pSynced;
|
||||
}
|
||||
|
||||
if( pPage->pDirtyNext ){
|
||||
pPage->pDirtyNext->pDirtyPrev = pPage->pDirtyPrev;
|
||||
}else{
|
||||
assert( pPage==p->pDirtyTail );
|
||||
p->pDirtyTail = pPage->pDirtyPrev;
|
||||
}
|
||||
if( pPage->pDirtyPrev ){
|
||||
pPage->pDirtyPrev->pDirtyNext = pPage->pDirtyNext;
|
||||
}else{
|
||||
assert( pPage==p->pDirty );
|
||||
p->pDirty = pPage->pDirtyNext;
|
||||
}
|
||||
pPage->pDirtyNext = 0;
|
||||
pPage->pDirtyPrev = 0;
|
||||
|
||||
expensive_assert( pcacheCheckSynced(p) );
|
||||
}
|
||||
|
||||
/*
|
||||
** Add page pPage to the head of the dirty list (PCache1.pDirty is set to
|
||||
** pPage).
|
||||
*/
|
||||
static void pcacheAddToDirtyList(PgHdr *pPage){
|
||||
PCache *p = pPage->pCache;
|
||||
|
||||
assert( pPage->pDirtyNext==0 && pPage->pDirtyPrev==0 && p->pDirty!=pPage );
|
||||
|
||||
pPage->pDirtyNext = p->pDirty;
|
||||
if( pPage->pDirtyNext ){
|
||||
assert( pPage->pDirtyNext->pDirtyPrev==0 );
|
||||
pPage->pDirtyNext->pDirtyPrev = pPage;
|
||||
}
|
||||
p->pDirty = pPage;
|
||||
if( !p->pDirtyTail ){
|
||||
p->pDirtyTail = pPage;
|
||||
}
|
||||
if( !p->pSynced && 0==(pPage->flags&PGHDR_NEED_SYNC) ){
|
||||
p->pSynced = pPage;
|
||||
}
|
||||
expensive_assert( pcacheCheckSynced(p) );
|
||||
}
|
||||
|
||||
/*
|
||||
** Wrapper around the pluggable caches xUnpin method. If the cache is
|
||||
** being used for an in-memory database, this function is a no-op.
|
||||
*/
|
||||
static void pcacheUnpin(PgHdr *p){
|
||||
PCache *pCache = p->pCache;
|
||||
if( pCache->bPurgeable ){
|
||||
if( p->pgno==1 ){
|
||||
pCache->pPage1 = 0;
|
||||
}
|
||||
sqlite3GlobalConfig.pcache.xUnpin(pCache->pCache, p, 0);
|
||||
}
|
||||
}
|
||||
|
||||
/*************************************************** General Interfaces ******
|
||||
**
|
||||
** Initialize and shutdown the page cache subsystem. Neither of these
|
||||
** functions are threadsafe.
|
||||
*/
|
||||
int sqlite3PcacheInitialize(void){
|
||||
if( sqlite3GlobalConfig.pcache.xInit==0 ){
|
||||
sqlite3PCacheSetDefault();
|
||||
}
|
||||
return sqlite3GlobalConfig.pcache.xInit(sqlite3GlobalConfig.pcache.pArg);
|
||||
}
|
||||
void sqlite3PcacheShutdown(void){
|
||||
if( sqlite3GlobalConfig.pcache.xShutdown ){
|
||||
sqlite3GlobalConfig.pcache.xShutdown(sqlite3GlobalConfig.pcache.pArg);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Return the size in bytes of a PCache object.
|
||||
*/
|
||||
int sqlite3PcacheSize(void){ return sizeof(PCache); }
|
||||
|
||||
/*
|
||||
** Create a new PCache object. Storage space to hold the object
|
||||
** has already been allocated and is passed in as the p pointer.
|
||||
** The caller discovers how much space needs to be allocated by
|
||||
** calling sqlite3PcacheSize().
|
||||
*/
|
||||
void sqlite3PcacheOpen(
|
||||
int szPage, /* Size of every page */
|
||||
int szExtra, /* Extra space associated with each page */
|
||||
int bPurgeable, /* True if pages are on backing store */
|
||||
int (*xStress)(void*,PgHdr*),/* Call to try to make pages clean */
|
||||
void *pStress, /* Argument to xStress */
|
||||
PCache *p /* Preallocated space for the PCache */
|
||||
){
|
||||
memset(p, 0, sizeof(PCache));
|
||||
p->szPage = szPage;
|
||||
p->szExtra = szExtra;
|
||||
p->bPurgeable = bPurgeable;
|
||||
p->xStress = xStress;
|
||||
p->pStress = pStress;
|
||||
p->nMax = 100;
|
||||
p->nMin = 10;
|
||||
}
|
||||
|
||||
/*
|
||||
** Change the page size for PCache object. The caller must ensure that there
|
||||
** are no outstanding page references when this function is called.
|
||||
*/
|
||||
void sqlite3PcacheSetPageSize(PCache *pCache, int szPage){
|
||||
assert( pCache->nRef==0 && pCache->pDirty==0 );
|
||||
if( pCache->pCache ){
|
||||
sqlite3GlobalConfig.pcache.xDestroy(pCache->pCache);
|
||||
pCache->pCache = 0;
|
||||
}
|
||||
pCache->szPage = szPage;
|
||||
}
|
||||
|
||||
/*
|
||||
** Try to obtain a page from the cache.
|
||||
*/
|
||||
int sqlite3PcacheFetch(
|
||||
PCache *pCache, /* Obtain the page from this cache */
|
||||
Pgno pgno, /* Page number to obtain */
|
||||
int createFlag, /* If true, create page if it does not exist already */
|
||||
PgHdr **ppPage /* Write the page here */
|
||||
){
|
||||
PgHdr *pPage = 0;
|
||||
int eCreate;
|
||||
|
||||
assert( pCache!=0 );
|
||||
assert( pgno>0 );
|
||||
|
||||
/* If the pluggable cache (sqlite3_pcache*) has not been allocated,
|
||||
** allocate it now.
|
||||
*/
|
||||
if( !pCache->pCache && createFlag ){
|
||||
sqlite3_pcache *p;
|
||||
int nByte;
|
||||
nByte = pCache->szPage + pCache->szExtra + sizeof(PgHdr);
|
||||
p = sqlite3GlobalConfig.pcache.xCreate(nByte, pCache->bPurgeable);
|
||||
if( !p ){
|
||||
return SQLITE_NOMEM;
|
||||
}
|
||||
sqlite3GlobalConfig.pcache.xCachesize(p, pCache->nMax);
|
||||
pCache->pCache = p;
|
||||
}
|
||||
|
||||
eCreate = createFlag ? 1 : 0;
|
||||
if( eCreate && (!pCache->bPurgeable || !pCache->pDirty) ){
|
||||
eCreate = 2;
|
||||
}
|
||||
if( pCache->pCache ){
|
||||
pPage = sqlite3GlobalConfig.pcache.xFetch(pCache->pCache, pgno, eCreate);
|
||||
}
|
||||
|
||||
if( !pPage && eCreate==1 ){
|
||||
PgHdr *pPg;
|
||||
|
||||
/* Find a dirty page to write-out and recycle. First try to find a
|
||||
** page that does not require a journal-sync (one with PGHDR_NEED_SYNC
|
||||
** cleared), but if that is not possible settle for any other
|
||||
** unreferenced dirty page.
|
||||
*/
|
||||
expensive_assert( pcacheCheckSynced(pCache) );
|
||||
for(pPg=pCache->pSynced;
|
||||
pPg && (pPg->nRef || (pPg->flags&PGHDR_NEED_SYNC));
|
||||
pPg=pPg->pDirtyPrev
|
||||
);
|
||||
if( !pPg ){
|
||||
for(pPg=pCache->pDirtyTail; pPg && pPg->nRef; pPg=pPg->pDirtyPrev);
|
||||
}
|
||||
if( pPg ){
|
||||
int rc;
|
||||
rc = pCache->xStress(pCache->pStress, pPg);
|
||||
if( rc!=SQLITE_OK && rc!=SQLITE_BUSY ){
|
||||
return rc;
|
||||
}
|
||||
}
|
||||
|
||||
pPage = sqlite3GlobalConfig.pcache.xFetch(pCache->pCache, pgno, 2);
|
||||
}
|
||||
|
||||
if( pPage ){
|
||||
if( 0==pPage->nRef ){
|
||||
pCache->nRef++;
|
||||
}
|
||||
pPage->nRef++;
|
||||
pPage->pData = (void*)&pPage[1];
|
||||
pPage->pExtra = (void*)&((char*)pPage->pData)[pCache->szPage];
|
||||
pPage->pCache = pCache;
|
||||
pPage->pgno = pgno;
|
||||
if( pgno==1 ){
|
||||
pCache->pPage1 = pPage;
|
||||
}
|
||||
}
|
||||
*ppPage = pPage;
|
||||
return (pPage==0 && eCreate) ? SQLITE_NOMEM : SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Decrement the reference count on a page. If the page is clean and the
|
||||
** reference count drops to 0, then it is made elible for recycling.
|
||||
*/
|
||||
void sqlite3PcacheRelease(PgHdr *p){
|
||||
assert( p->nRef>0 );
|
||||
p->nRef--;
|
||||
if( p->nRef==0 ){
|
||||
PCache *pCache = p->pCache;
|
||||
pCache->nRef--;
|
||||
if( (p->flags&PGHDR_DIRTY)==0 ){
|
||||
pcacheUnpin(p);
|
||||
}else{
|
||||
/* Move the page to the head of the dirty list. */
|
||||
pcacheRemoveFromDirtyList(p);
|
||||
pcacheAddToDirtyList(p);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Increase the reference count of a supplied page by 1.
|
||||
*/
|
||||
void sqlite3PcacheRef(PgHdr *p){
|
||||
assert(p->nRef>0);
|
||||
p->nRef++;
|
||||
}
|
||||
|
||||
/*
|
||||
** Drop a page from the cache. There must be exactly one reference to the
|
||||
** page. This function deletes that reference, so after it returns the
|
||||
** page pointed to by p is invalid.
|
||||
*/
|
||||
void sqlite3PcacheDrop(PgHdr *p){
|
||||
PCache *pCache;
|
||||
assert( p->nRef==1 );
|
||||
if( p->flags&PGHDR_DIRTY ){
|
||||
pcacheRemoveFromDirtyList(p);
|
||||
}
|
||||
pCache = p->pCache;
|
||||
pCache->nRef--;
|
||||
if( p->pgno==1 ){
|
||||
pCache->pPage1 = 0;
|
||||
}
|
||||
sqlite3GlobalConfig.pcache.xUnpin(pCache->pCache, p, 1);
|
||||
}
|
||||
|
||||
/*
|
||||
** Make sure the page is marked as dirty. If it isn't dirty already,
|
||||
** make it so.
|
||||
*/
|
||||
void sqlite3PcacheMakeDirty(PgHdr *p){
|
||||
PCache *pCache;
|
||||
p->flags &= ~PGHDR_DONT_WRITE;
|
||||
assert( p->nRef>0 );
|
||||
if( 0==(p->flags & PGHDR_DIRTY) ){
|
||||
pCache = p->pCache;
|
||||
p->flags |= PGHDR_DIRTY;
|
||||
pcacheAddToDirtyList( p);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Make sure the page is marked as clean. If it isn't clean already,
|
||||
** make it so.
|
||||
*/
|
||||
void sqlite3PcacheMakeClean(PgHdr *p){
|
||||
if( (p->flags & PGHDR_DIRTY) ){
|
||||
pcacheRemoveFromDirtyList(p);
|
||||
p->flags &= ~(PGHDR_DIRTY|PGHDR_NEED_SYNC);
|
||||
if( p->nRef==0 ){
|
||||
pcacheUnpin(p);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Make every page in the cache clean.
|
||||
*/
|
||||
void sqlite3PcacheCleanAll(PCache *pCache){
|
||||
PgHdr *p;
|
||||
while( (p = pCache->pDirty)!=0 ){
|
||||
sqlite3PcacheMakeClean(p);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Clear the PGHDR_NEED_SYNC flag from all dirty pages.
|
||||
*/
|
||||
void sqlite3PcacheClearSyncFlags(PCache *pCache){
|
||||
PgHdr *p;
|
||||
for(p=pCache->pDirty; p; p=p->pDirtyNext){
|
||||
p->flags &= ~PGHDR_NEED_SYNC;
|
||||
}
|
||||
pCache->pSynced = pCache->pDirtyTail;
|
||||
}
|
||||
|
||||
/*
|
||||
** Change the page number of page p to newPgno.
|
||||
*/
|
||||
void sqlite3PcacheMove(PgHdr *p, Pgno newPgno){
|
||||
PCache *pCache = p->pCache;
|
||||
assert( p->nRef>0 );
|
||||
assert( newPgno>0 );
|
||||
sqlite3GlobalConfig.pcache.xRekey(pCache->pCache, p, p->pgno, newPgno);
|
||||
p->pgno = newPgno;
|
||||
if( (p->flags&PGHDR_DIRTY) && (p->flags&PGHDR_NEED_SYNC) ){
|
||||
pcacheRemoveFromDirtyList(p);
|
||||
pcacheAddToDirtyList(p);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Drop every cache entry whose page number is greater than "pgno". The
|
||||
** caller must ensure that there are no outstanding references to any pages
|
||||
** other than page 1 with a page number greater than pgno.
|
||||
**
|
||||
** If there is a reference to page 1 and the pgno parameter passed to this
|
||||
** function is 0, then the data area associated with page 1 is zeroed, but
|
||||
** the page object is not dropped.
|
||||
*/
|
||||
void sqlite3PcacheTruncate(PCache *pCache, Pgno pgno){
|
||||
if( pCache->pCache ){
|
||||
PgHdr *p;
|
||||
PgHdr *pNext;
|
||||
for(p=pCache->pDirty; p; p=pNext){
|
||||
pNext = p->pDirtyNext;
|
||||
if( p->pgno>pgno ){
|
||||
assert( p->flags&PGHDR_DIRTY );
|
||||
sqlite3PcacheMakeClean(p);
|
||||
}
|
||||
}
|
||||
if( pgno==0 && pCache->pPage1 ){
|
||||
memset(pCache->pPage1->pData, 0, pCache->szPage);
|
||||
pgno = 1;
|
||||
}
|
||||
sqlite3GlobalConfig.pcache.xTruncate(pCache->pCache, pgno+1);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Close a cache.
|
||||
*/
|
||||
void sqlite3PcacheClose(PCache *pCache){
|
||||
if( pCache->pCache ){
|
||||
sqlite3GlobalConfig.pcache.xDestroy(pCache->pCache);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Discard the contents of the cache.
|
||||
*/
|
||||
int sqlite3PcacheClear(PCache *pCache){
|
||||
sqlite3PcacheTruncate(pCache, 0);
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Merge two lists of pages connected by pDirty and in pgno order.
|
||||
** Do not both fixing the pDirtyPrev pointers.
|
||||
*/
|
||||
static PgHdr *pcacheMergeDirtyList(PgHdr *pA, PgHdr *pB){
|
||||
PgHdr result, *pTail;
|
||||
pTail = &result;
|
||||
while( pA && pB ){
|
||||
if( pA->pgno<pB->pgno ){
|
||||
pTail->pDirty = pA;
|
||||
pTail = pA;
|
||||
pA = pA->pDirty;
|
||||
}else{
|
||||
pTail->pDirty = pB;
|
||||
pTail = pB;
|
||||
pB = pB->pDirty;
|
||||
}
|
||||
}
|
||||
if( pA ){
|
||||
pTail->pDirty = pA;
|
||||
}else if( pB ){
|
||||
pTail->pDirty = pB;
|
||||
}else{
|
||||
pTail->pDirty = 0;
|
||||
}
|
||||
return result.pDirty;
|
||||
}
|
||||
|
||||
/*
|
||||
** Sort the list of pages in accending order by pgno. Pages are
|
||||
** connected by pDirty pointers. The pDirtyPrev pointers are
|
||||
** corrupted by this sort.
|
||||
*/
|
||||
#define N_SORT_BUCKET_ALLOC 25
|
||||
#define N_SORT_BUCKET 25
|
||||
#ifdef SQLITE_TEST
|
||||
int sqlite3_pager_n_sort_bucket = 0;
|
||||
#undef N_SORT_BUCKET
|
||||
#define N_SORT_BUCKET \
|
||||
(sqlite3_pager_n_sort_bucket?sqlite3_pager_n_sort_bucket:N_SORT_BUCKET_ALLOC)
|
||||
#endif
|
||||
static PgHdr *pcacheSortDirtyList(PgHdr *pIn){
|
||||
PgHdr *a[N_SORT_BUCKET_ALLOC], *p;
|
||||
int i;
|
||||
memset(a, 0, sizeof(a));
|
||||
while( pIn ){
|
||||
p = pIn;
|
||||
pIn = p->pDirty;
|
||||
p->pDirty = 0;
|
||||
for(i=0; i<N_SORT_BUCKET-1; i++){
|
||||
if( a[i]==0 ){
|
||||
a[i] = p;
|
||||
break;
|
||||
}else{
|
||||
p = pcacheMergeDirtyList(a[i], p);
|
||||
a[i] = 0;
|
||||
}
|
||||
}
|
||||
if( i==N_SORT_BUCKET-1 ){
|
||||
/* Coverage: To get here, there need to be 2^(N_SORT_BUCKET)
|
||||
** elements in the input list. This is possible, but impractical.
|
||||
** Testing this line is the point of global variable
|
||||
** sqlite3_pager_n_sort_bucket.
|
||||
*/
|
||||
a[i] = pcacheMergeDirtyList(a[i], p);
|
||||
}
|
||||
}
|
||||
p = a[0];
|
||||
for(i=1; i<N_SORT_BUCKET; i++){
|
||||
p = pcacheMergeDirtyList(p, a[i]);
|
||||
}
|
||||
return p;
|
||||
}
|
||||
|
||||
/*
|
||||
** Return a list of all dirty pages in the cache, sorted by page number.
|
||||
*/
|
||||
PgHdr *sqlite3PcacheDirtyList(PCache *pCache){
|
||||
PgHdr *p;
|
||||
for(p=pCache->pDirty; p; p=p->pDirtyNext){
|
||||
p->pDirty = p->pDirtyNext;
|
||||
}
|
||||
return pcacheSortDirtyList(pCache->pDirty);
|
||||
}
|
||||
|
||||
/*
|
||||
** Return the total number of referenced pages held by the cache.
|
||||
*/
|
||||
int sqlite3PcacheRefCount(PCache *pCache){
|
||||
return pCache->nRef;
|
||||
}
|
||||
|
||||
/*
|
||||
** Return the number of references to the page supplied as an argument.
|
||||
*/
|
||||
int sqlite3PcachePageRefcount(PgHdr *p){
|
||||
return p->nRef;
|
||||
}
|
||||
|
||||
/*
|
||||
** Return the total number of pages in the cache.
|
||||
*/
|
||||
int sqlite3PcachePagecount(PCache *pCache){
|
||||
int nPage = 0;
|
||||
if( pCache->pCache ){
|
||||
nPage = sqlite3GlobalConfig.pcache.xPagecount(pCache->pCache);
|
||||
}
|
||||
return nPage;
|
||||
}
|
||||
|
||||
#ifdef SQLITE_TEST
|
||||
/*
|
||||
** Get the suggested cache-size value.
|
||||
*/
|
||||
int sqlite3PcacheGetCachesize(PCache *pCache){
|
||||
return pCache->nMax;
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
** Set the suggested cache-size value.
|
||||
*/
|
||||
void sqlite3PcacheSetCachesize(PCache *pCache, int mxPage){
|
||||
pCache->nMax = mxPage;
|
||||
if( pCache->pCache ){
|
||||
sqlite3GlobalConfig.pcache.xCachesize(pCache->pCache, mxPage);
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef SQLITE_CHECK_PAGES
|
||||
/*
|
||||
** For all dirty pages currently in the cache, invoke the specified
|
||||
** callback. This is only used if the SQLITE_CHECK_PAGES macro is
|
||||
** defined.
|
||||
*/
|
||||
void sqlite3PcacheIterateDirty(PCache *pCache, void (*xIter)(PgHdr *)){
|
||||
PgHdr *pDirty;
|
||||
for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext){
|
||||
xIter(pDirty);
|
||||
}
|
||||
}
|
||||
#endif
|
157
pcache.h
Normal file
157
pcache.h
Normal file
|
@ -0,0 +1,157 @@
|
|||
/*
|
||||
** 2008 August 05
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This header file defines the interface that the sqlite page cache
|
||||
** subsystem.
|
||||
**
|
||||
** @(#) $Id: pcache.h,v 1.16 2008/11/19 16:52:44 danielk1977 Exp $
|
||||
*/
|
||||
|
||||
#ifndef _PCACHE_H_
|
||||
|
||||
typedef struct PgHdr PgHdr;
|
||||
typedef struct PCache PCache;
|
||||
|
||||
/*
|
||||
** Every page in the cache is controlled by an instance of the following
|
||||
** structure.
|
||||
*/
|
||||
struct PgHdr {
|
||||
void *pData; /* Content of this page */
|
||||
void *pExtra; /* Extra content */
|
||||
PgHdr *pDirty; /* Transient list of dirty pages */
|
||||
Pgno pgno; /* Page number for this page */
|
||||
Pager *pPager; /* The pager this page is part of */
|
||||
#ifdef SQLITE_CHECK_PAGES
|
||||
u32 pageHash; /* Hash of page content */
|
||||
#endif
|
||||
u16 flags; /* PGHDR flags defined below */
|
||||
|
||||
/**********************************************************************
|
||||
** Elements above are public. All that follows is private to pcache.c
|
||||
** and should not be accessed by other modules.
|
||||
*/
|
||||
i16 nRef; /* Number of users of this page */
|
||||
PCache *pCache; /* Cache that owns this page */
|
||||
|
||||
PgHdr *pDirtyNext; /* Next element in list of dirty pages */
|
||||
PgHdr *pDirtyPrev; /* Previous element in list of dirty pages */
|
||||
};
|
||||
|
||||
/* Bit values for PgHdr.flags */
|
||||
#define PGHDR_DIRTY 0x002 /* Page has changed */
|
||||
#define PGHDR_NEED_SYNC 0x004 /* Fsync the rollback journal before
|
||||
** writing this page to the database */
|
||||
#define PGHDR_NEED_READ 0x008 /* Content is unread */
|
||||
#define PGHDR_REUSE_UNLIKELY 0x010 /* A hint that reuse is unlikely */
|
||||
#define PGHDR_DONT_WRITE 0x020 /* Do not write content to disk */
|
||||
|
||||
/* Initialize and shutdown the page cache subsystem */
|
||||
int sqlite3PcacheInitialize(void);
|
||||
void sqlite3PcacheShutdown(void);
|
||||
|
||||
/* Page cache buffer management:
|
||||
** These routines implement SQLITE_CONFIG_PAGECACHE.
|
||||
*/
|
||||
void sqlite3PCacheBufferSetup(void *, int sz, int n);
|
||||
|
||||
/* Create a new pager cache.
|
||||
** Under memory stress, invoke xStress to try to make pages clean.
|
||||
** Only clean and unpinned pages can be reclaimed.
|
||||
*/
|
||||
void sqlite3PcacheOpen(
|
||||
int szPage, /* Size of every page */
|
||||
int szExtra, /* Extra space associated with each page */
|
||||
int bPurgeable, /* True if pages are on backing store */
|
||||
int (*xStress)(void*, PgHdr*), /* Call to try to make pages clean */
|
||||
void *pStress, /* Argument to xStress */
|
||||
PCache *pToInit /* Preallocated space for the PCache */
|
||||
);
|
||||
|
||||
/* Modify the page-size after the cache has been created. */
|
||||
void sqlite3PcacheSetPageSize(PCache *, int);
|
||||
|
||||
/* Return the size in bytes of a PCache object. Used to preallocate
|
||||
** storage space.
|
||||
*/
|
||||
int sqlite3PcacheSize(void);
|
||||
|
||||
/* One release per successful fetch. Page is pinned until released.
|
||||
** Reference counted.
|
||||
*/
|
||||
int sqlite3PcacheFetch(PCache*, Pgno, int createFlag, PgHdr**);
|
||||
void sqlite3PcacheRelease(PgHdr*);
|
||||
|
||||
void sqlite3PcacheDrop(PgHdr*); /* Remove page from cache */
|
||||
void sqlite3PcacheMakeDirty(PgHdr*); /* Make sure page is marked dirty */
|
||||
void sqlite3PcacheMakeClean(PgHdr*); /* Mark a single page as clean */
|
||||
void sqlite3PcacheCleanAll(PCache*); /* Mark all dirty list pages as clean */
|
||||
|
||||
/* Change a page number. Used by incr-vacuum. */
|
||||
void sqlite3PcacheMove(PgHdr*, Pgno);
|
||||
|
||||
/* Remove all pages with pgno>x. Reset the cache if x==0 */
|
||||
void sqlite3PcacheTruncate(PCache*, Pgno x);
|
||||
|
||||
/* Get a list of all dirty pages in the cache, sorted by page number */
|
||||
PgHdr *sqlite3PcacheDirtyList(PCache*);
|
||||
|
||||
/* Reset and close the cache object */
|
||||
void sqlite3PcacheClose(PCache*);
|
||||
|
||||
/* Clear flags from pages of the page cache */
|
||||
void sqlite3PcacheClearSyncFlags(PCache *);
|
||||
|
||||
/* Discard the contents of the cache */
|
||||
int sqlite3PcacheClear(PCache*);
|
||||
|
||||
/* Return the total number of outstanding page references */
|
||||
int sqlite3PcacheRefCount(PCache*);
|
||||
|
||||
/* Increment the reference count of an existing page */
|
||||
void sqlite3PcacheRef(PgHdr*);
|
||||
|
||||
int sqlite3PcachePageRefcount(PgHdr*);
|
||||
|
||||
/* Return the total number of pages stored in the cache */
|
||||
int sqlite3PcachePagecount(PCache*);
|
||||
|
||||
#ifdef SQLITE_CHECK_PAGES
|
||||
/* Iterate through all dirty pages currently stored in the cache. This
|
||||
** interface is only available if SQLITE_CHECK_PAGES is defined when the
|
||||
** library is built.
|
||||
*/
|
||||
void sqlite3PcacheIterateDirty(PCache *pCache, void (*xIter)(PgHdr *));
|
||||
#endif
|
||||
|
||||
/* Set and get the suggested cache-size for the specified pager-cache.
|
||||
**
|
||||
** If no global maximum is configured, then the system attempts to limit
|
||||
** the total number of pages cached by purgeable pager-caches to the sum
|
||||
** of the suggested cache-sizes.
|
||||
*/
|
||||
void sqlite3PcacheSetCachesize(PCache *, int);
|
||||
#ifdef SQLITE_TEST
|
||||
int sqlite3PcacheGetCachesize(PCache *);
|
||||
#endif
|
||||
|
||||
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
|
||||
/* Try to return memory used by the pcache module to the main memory heap */
|
||||
int sqlite3PcacheReleaseMemory(int);
|
||||
#endif
|
||||
|
||||
#ifdef SQLITE_TEST
|
||||
void sqlite3PcacheStats(int*,int*,int*,int*);
|
||||
#endif
|
||||
|
||||
void sqlite3PCacheSetDefault(void);
|
||||
|
||||
#endif /* _PCACHE_H_ */
|
751
pcache1.c
Normal file
751
pcache1.c
Normal file
|
@ -0,0 +1,751 @@
|
|||
/*
|
||||
** 2008 November 05
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
**
|
||||
** This file implements the default page cache implementation (the
|
||||
** sqlite3_pcache interface). It also contains part of the implementation
|
||||
** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features.
|
||||
** If the default page cache implementation is overriden, then neither of
|
||||
** these two features are available.
|
||||
**
|
||||
** @(#) $Id: pcache1.c,v 1.7 2009/01/07 15:18:21 danielk1977 Exp $
|
||||
*/
|
||||
|
||||
#include "sqliteInt.h"
|
||||
|
||||
typedef struct PCache1 PCache1;
|
||||
typedef struct PgHdr1 PgHdr1;
|
||||
typedef struct PgFreeslot PgFreeslot;
|
||||
|
||||
/* Pointers to structures of this type are cast and returned as
|
||||
** opaque sqlite3_pcache* handles
|
||||
*/
|
||||
struct PCache1 {
|
||||
/* Cache configuration parameters. Page size (szPage) and the purgeable
|
||||
** flag (bPurgeable) are set when the cache is created. nMax may be
|
||||
** modified at any time by a call to the pcache1CacheSize() method.
|
||||
** The global mutex must be held when accessing nMax.
|
||||
*/
|
||||
int szPage; /* Size of allocated pages in bytes */
|
||||
int bPurgeable; /* True if cache is purgeable */
|
||||
unsigned int nMin; /* Minimum number of pages reserved */
|
||||
unsigned int nMax; /* Configured "cache_size" value */
|
||||
|
||||
/* Hash table of all pages. The following variables may only be accessed
|
||||
** when the accessor is holding the global mutex (see pcache1EnterMutex()
|
||||
** and pcache1LeaveMutex()).
|
||||
*/
|
||||
unsigned int nRecyclable; /* Number of pages in the LRU list */
|
||||
unsigned int nPage; /* Total number of pages in apHash */
|
||||
unsigned int nHash; /* Number of slots in apHash[] */
|
||||
PgHdr1 **apHash; /* Hash table for fast lookup by key */
|
||||
|
||||
unsigned int iMaxKey; /* Largest key seen since xTruncate() */
|
||||
};
|
||||
|
||||
/*
|
||||
** Each cache entry is represented by an instance of the following
|
||||
** structure. A buffer of PgHdr1.pCache->szPage bytes is allocated
|
||||
** directly after the structure in memory (see the PGHDR1_TO_PAGE()
|
||||
** macro below).
|
||||
*/
|
||||
struct PgHdr1 {
|
||||
unsigned int iKey; /* Key value (page number) */
|
||||
PgHdr1 *pNext; /* Next in hash table chain */
|
||||
PCache1 *pCache; /* Cache that currently owns this page */
|
||||
PgHdr1 *pLruNext; /* Next in LRU list of unpinned pages */
|
||||
PgHdr1 *pLruPrev; /* Previous in LRU list of unpinned pages */
|
||||
};
|
||||
|
||||
/*
|
||||
** Free slots in the allocator used to divide up the buffer provided using
|
||||
** the SQLITE_CONFIG_PAGECACHE mechanism.
|
||||
*/
|
||||
struct PgFreeslot {
|
||||
PgFreeslot *pNext; /* Next free slot */
|
||||
};
|
||||
|
||||
/*
|
||||
** Global data used by this cache.
|
||||
*/
|
||||
static SQLITE_WSD struct PCacheGlobal {
|
||||
sqlite3_mutex *mutex; /* static mutex MUTEX_STATIC_LRU */
|
||||
|
||||
int nMaxPage; /* Sum of nMaxPage for purgeable caches */
|
||||
int nMinPage; /* Sum of nMinPage for purgeable caches */
|
||||
int nCurrentPage; /* Number of purgeable pages allocated */
|
||||
PgHdr1 *pLruHead, *pLruTail; /* LRU list of unpinned pages */
|
||||
|
||||
/* Variables related to SQLITE_CONFIG_PAGECACHE settings. */
|
||||
int szSlot; /* Size of each free slot */
|
||||
void *pStart, *pEnd; /* Bounds of pagecache malloc range */
|
||||
PgFreeslot *pFree; /* Free page blocks */
|
||||
} pcache1_g;
|
||||
|
||||
/*
|
||||
** All code in this file should access the global structure above via the
|
||||
** alias "pcache1". This ensures that the WSD emulation is used when
|
||||
** compiling for systems that do not support real WSD.
|
||||
*/
|
||||
#define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g))
|
||||
|
||||
/*
|
||||
** When a PgHdr1 structure is allocated, the associated PCache1.szPage
|
||||
** bytes of data are located directly after it in memory (i.e. the total
|
||||
** size of the allocation is sizeof(PgHdr1)+PCache1.szPage byte). The
|
||||
** PGHDR1_TO_PAGE() macro takes a pointer to a PgHdr1 structure as
|
||||
** an argument and returns a pointer to the associated block of szPage
|
||||
** bytes. The PAGE_TO_PGHDR1() macro does the opposite: its argument is
|
||||
** a pointer to a block of szPage bytes of data and the return value is
|
||||
** a pointer to the associated PgHdr1 structure.
|
||||
**
|
||||
** assert( PGHDR1_TO_PAGE(PAGE_TO_PGHDR1(X))==X );
|
||||
*/
|
||||
#define PGHDR1_TO_PAGE(p) (void *)(&((unsigned char *)p)[sizeof(PgHdr1)])
|
||||
#define PAGE_TO_PGHDR1(p) (PgHdr1 *)(&((unsigned char *)p)[-1*(int)sizeof(PgHdr1)])
|
||||
|
||||
/*
|
||||
** Macros to enter and leave the global LRU mutex.
|
||||
*/
|
||||
#define pcache1EnterMutex() sqlite3_mutex_enter(pcache1.mutex)
|
||||
#define pcache1LeaveMutex() sqlite3_mutex_leave(pcache1.mutex)
|
||||
|
||||
/******************************************************************************/
|
||||
/******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/
|
||||
|
||||
/*
|
||||
** This function is called during initialization if a static buffer is
|
||||
** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE
|
||||
** verb to sqlite3_config(). Parameter pBuf points to an allocation large
|
||||
** enough to contain 'n' buffers of 'sz' bytes each.
|
||||
*/
|
||||
void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){
|
||||
PgFreeslot *p;
|
||||
sz &= ~7;
|
||||
pcache1.szSlot = sz;
|
||||
pcache1.pStart = pBuf;
|
||||
pcache1.pFree = 0;
|
||||
while( n-- ){
|
||||
p = (PgFreeslot*)pBuf;
|
||||
p->pNext = pcache1.pFree;
|
||||
pcache1.pFree = p;
|
||||
pBuf = (void*)&((char*)pBuf)[sz];
|
||||
}
|
||||
pcache1.pEnd = pBuf;
|
||||
}
|
||||
|
||||
/*
|
||||
** Malloc function used within this file to allocate space from the buffer
|
||||
** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no
|
||||
** such buffer exists or there is no space left in it, this function falls
|
||||
** back to sqlite3Malloc().
|
||||
*/
|
||||
static void *pcache1Alloc(int nByte){
|
||||
void *p;
|
||||
assert( sqlite3_mutex_held(pcache1.mutex) );
|
||||
if( nByte<=pcache1.szSlot && pcache1.pFree ){
|
||||
p = (PgHdr1 *)pcache1.pFree;
|
||||
pcache1.pFree = pcache1.pFree->pNext;
|
||||
sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
|
||||
sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, 1);
|
||||
}else{
|
||||
|
||||
/* Allocate a new buffer using sqlite3Malloc. Before doing so, exit the
|
||||
** global pcache mutex and unlock the pager-cache object pCache. This is
|
||||
** so that if the attempt to allocate a new buffer causes the the
|
||||
** configured soft-heap-limit to be breached, it will be possible to
|
||||
** reclaim memory from this pager-cache.
|
||||
*/
|
||||
pcache1LeaveMutex();
|
||||
p = sqlite3Malloc(nByte);
|
||||
pcache1EnterMutex();
|
||||
if( p ){
|
||||
int sz = sqlite3MallocSize(p);
|
||||
sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz);
|
||||
}
|
||||
}
|
||||
return p;
|
||||
}
|
||||
|
||||
/*
|
||||
** Free an allocated buffer obtained from pcache1Alloc().
|
||||
*/
|
||||
static void pcache1Free(void *p){
|
||||
assert( sqlite3_mutex_held(pcache1.mutex) );
|
||||
if( p==0 ) return;
|
||||
if( p>=pcache1.pStart && p<pcache1.pEnd ){
|
||||
PgFreeslot *pSlot;
|
||||
sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, -1);
|
||||
pSlot = (PgFreeslot*)p;
|
||||
pSlot->pNext = pcache1.pFree;
|
||||
pcache1.pFree = pSlot;
|
||||
}else{
|
||||
int iSize = sqlite3MallocSize(p);
|
||||
sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, -iSize);
|
||||
sqlite3_free(p);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Allocate a new page object initially associated with cache pCache.
|
||||
*/
|
||||
static PgHdr1 *pcache1AllocPage(PCache1 *pCache){
|
||||
int nByte = sizeof(PgHdr1) + pCache->szPage;
|
||||
PgHdr1 *p = (PgHdr1 *)pcache1Alloc(nByte);
|
||||
if( p ){
|
||||
memset(p, 0, nByte);
|
||||
if( pCache->bPurgeable ){
|
||||
pcache1.nCurrentPage++;
|
||||
}
|
||||
}
|
||||
return p;
|
||||
}
|
||||
|
||||
/*
|
||||
** Free a page object allocated by pcache1AllocPage().
|
||||
*/
|
||||
static void pcache1FreePage(PgHdr1 *p){
|
||||
if( p ){
|
||||
if( p->pCache->bPurgeable ){
|
||||
pcache1.nCurrentPage--;
|
||||
}
|
||||
pcache1Free(p);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Malloc function used by SQLite to obtain space from the buffer configured
|
||||
** using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer
|
||||
** exists, this function falls back to sqlite3Malloc().
|
||||
*/
|
||||
void *sqlite3PageMalloc(int sz){
|
||||
void *p;
|
||||
pcache1EnterMutex();
|
||||
p = pcache1Alloc(sz);
|
||||
pcache1LeaveMutex();
|
||||
return p;
|
||||
}
|
||||
|
||||
/*
|
||||
** Free an allocated buffer obtained from sqlite3PageMalloc().
|
||||
*/
|
||||
void sqlite3PageFree(void *p){
|
||||
pcache1EnterMutex();
|
||||
pcache1Free(p);
|
||||
pcache1LeaveMutex();
|
||||
}
|
||||
|
||||
/******************************************************************************/
|
||||
/******** General Implementation Functions ************************************/
|
||||
|
||||
/*
|
||||
** This function is used to resize the hash table used by the cache passed
|
||||
** as the first argument.
|
||||
**
|
||||
** The global mutex must be held when this function is called.
|
||||
*/
|
||||
static int pcache1ResizeHash(PCache1 *p){
|
||||
PgHdr1 **apNew;
|
||||
unsigned int nNew;
|
||||
unsigned int i;
|
||||
|
||||
assert( sqlite3_mutex_held(pcache1.mutex) );
|
||||
|
||||
nNew = p->nHash*2;
|
||||
if( nNew<256 ){
|
||||
nNew = 256;
|
||||
}
|
||||
|
||||
pcache1LeaveMutex();
|
||||
if( p->nHash ){ sqlite3BeginBenignMalloc(); }
|
||||
apNew = (PgHdr1 **)sqlite3_malloc(sizeof(PgHdr1 *)*nNew);
|
||||
if( p->nHash ){ sqlite3EndBenignMalloc(); }
|
||||
pcache1EnterMutex();
|
||||
if( apNew ){
|
||||
memset(apNew, 0, sizeof(PgHdr1 *)*nNew);
|
||||
for(i=0; i<p->nHash; i++){
|
||||
PgHdr1 *pPage;
|
||||
PgHdr1 *pNext = p->apHash[i];
|
||||
while( (pPage = pNext)!=0 ){
|
||||
unsigned int h = pPage->iKey % nNew;
|
||||
pNext = pPage->pNext;
|
||||
pPage->pNext = apNew[h];
|
||||
apNew[h] = pPage;
|
||||
}
|
||||
}
|
||||
sqlite3_free(p->apHash);
|
||||
p->apHash = apNew;
|
||||
p->nHash = nNew;
|
||||
}
|
||||
|
||||
return (p->apHash ? SQLITE_OK : SQLITE_NOMEM);
|
||||
}
|
||||
|
||||
/*
|
||||
** This function is used internally to remove the page pPage from the
|
||||
** global LRU list, if is part of it. If pPage is not part of the global
|
||||
** LRU list, then this function is a no-op.
|
||||
**
|
||||
** The global mutex must be held when this function is called.
|
||||
*/
|
||||
static void pcache1PinPage(PgHdr1 *pPage){
|
||||
assert( sqlite3_mutex_held(pcache1.mutex) );
|
||||
if( pPage && (pPage->pLruNext || pPage==pcache1.pLruTail) ){
|
||||
if( pPage->pLruPrev ){
|
||||
pPage->pLruPrev->pLruNext = pPage->pLruNext;
|
||||
}
|
||||
if( pPage->pLruNext ){
|
||||
pPage->pLruNext->pLruPrev = pPage->pLruPrev;
|
||||
}
|
||||
if( pcache1.pLruHead==pPage ){
|
||||
pcache1.pLruHead = pPage->pLruNext;
|
||||
}
|
||||
if( pcache1.pLruTail==pPage ){
|
||||
pcache1.pLruTail = pPage->pLruPrev;
|
||||
}
|
||||
pPage->pLruNext = 0;
|
||||
pPage->pLruPrev = 0;
|
||||
pPage->pCache->nRecyclable--;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** Remove the page supplied as an argument from the hash table
|
||||
** (PCache1.apHash structure) that it is currently stored in.
|
||||
**
|
||||
** The global mutex must be held when this function is called.
|
||||
*/
|
||||
static void pcache1RemoveFromHash(PgHdr1 *pPage){
|
||||
unsigned int h;
|
||||
PCache1 *pCache = pPage->pCache;
|
||||
PgHdr1 **pp;
|
||||
|
||||
h = pPage->iKey % pCache->nHash;
|
||||
for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext);
|
||||
*pp = (*pp)->pNext;
|
||||
|
||||
pCache->nPage--;
|
||||
}
|
||||
|
||||
/*
|
||||
** If there are currently more than pcache.nMaxPage pages allocated, try
|
||||
** to recycle pages to reduce the number allocated to pcache.nMaxPage.
|
||||
*/
|
||||
static void pcache1EnforceMaxPage(void){
|
||||
assert( sqlite3_mutex_held(pcache1.mutex) );
|
||||
while( pcache1.nCurrentPage>pcache1.nMaxPage && pcache1.pLruTail ){
|
||||
PgHdr1 *p = pcache1.pLruTail;
|
||||
pcache1PinPage(p);
|
||||
pcache1RemoveFromHash(p);
|
||||
pcache1FreePage(p);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Discard all pages from cache pCache with a page number (key value)
|
||||
** greater than or equal to iLimit. Any pinned pages that meet this
|
||||
** criteria are unpinned before they are discarded.
|
||||
**
|
||||
** The global mutex must be held when this function is called.
|
||||
*/
|
||||
static void pcache1TruncateUnsafe(
|
||||
PCache1 *pCache,
|
||||
unsigned int iLimit
|
||||
){
|
||||
unsigned int h;
|
||||
assert( sqlite3_mutex_held(pcache1.mutex) );
|
||||
for(h=0; h<pCache->nHash; h++){
|
||||
PgHdr1 **pp = &pCache->apHash[h];
|
||||
PgHdr1 *pPage;
|
||||
while( (pPage = *pp)!=0 ){
|
||||
if( pPage->iKey>=iLimit ){
|
||||
pcache1PinPage(pPage);
|
||||
*pp = pPage->pNext;
|
||||
pcache1FreePage(pPage);
|
||||
}else{
|
||||
pp = &pPage->pNext;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/******************************************************************************/
|
||||
/******** sqlite3_pcache Methods **********************************************/
|
||||
|
||||
/*
|
||||
** Implementation of the sqlite3_pcache.xInit method.
|
||||
*/
|
||||
static int pcache1Init(void *NotUsed){
|
||||
UNUSED_PARAMETER(NotUsed);
|
||||
memset(&pcache1, 0, sizeof(pcache1));
|
||||
if( sqlite3GlobalConfig.bCoreMutex ){
|
||||
pcache1.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU);
|
||||
}
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Implementation of the sqlite3_pcache.xShutdown method.
|
||||
*/
|
||||
static void pcache1Shutdown(void *NotUsed){
|
||||
UNUSED_PARAMETER(NotUsed);
|
||||
/* no-op */
|
||||
}
|
||||
|
||||
/*
|
||||
** Implementation of the sqlite3_pcache.xCreate method.
|
||||
**
|
||||
** Allocate a new cache.
|
||||
*/
|
||||
static sqlite3_pcache *pcache1Create(int szPage, int bPurgeable){
|
||||
PCache1 *pCache;
|
||||
|
||||
pCache = (PCache1 *)sqlite3_malloc(sizeof(PCache1));
|
||||
if( pCache ){
|
||||
memset(pCache, 0, sizeof(PCache1));
|
||||
pCache->szPage = szPage;
|
||||
pCache->bPurgeable = (bPurgeable ? 1 : 0);
|
||||
if( bPurgeable ){
|
||||
pCache->nMin = 10;
|
||||
pcache1EnterMutex();
|
||||
pcache1.nMinPage += pCache->nMin;
|
||||
pcache1LeaveMutex();
|
||||
}
|
||||
}
|
||||
return (sqlite3_pcache *)pCache;
|
||||
}
|
||||
|
||||
/*
|
||||
** Implementation of the sqlite3_pcache.xCachesize method.
|
||||
**
|
||||
** Configure the cache_size limit for a cache.
|
||||
*/
|
||||
static void pcache1Cachesize(sqlite3_pcache *p, int nMax){
|
||||
PCache1 *pCache = (PCache1 *)p;
|
||||
if( pCache->bPurgeable ){
|
||||
pcache1EnterMutex();
|
||||
pcache1.nMaxPage += (nMax - pCache->nMax);
|
||||
pCache->nMax = nMax;
|
||||
pcache1EnforceMaxPage();
|
||||
pcache1LeaveMutex();
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Implementation of the sqlite3_pcache.xPagecount method.
|
||||
*/
|
||||
static int pcache1Pagecount(sqlite3_pcache *p){
|
||||
int n;
|
||||
pcache1EnterMutex();
|
||||
n = ((PCache1 *)p)->nPage;
|
||||
pcache1LeaveMutex();
|
||||
return n;
|
||||
}
|
||||
|
||||
/*
|
||||
** Implementation of the sqlite3_pcache.xFetch method.
|
||||
**
|
||||
** Fetch a page by key value.
|
||||
**
|
||||
** Whether or not a new page may be allocated by this function depends on
|
||||
** the value of the createFlag argument.
|
||||
**
|
||||
** There are three different approaches to obtaining space for a page,
|
||||
** depending on the value of parameter createFlag (which may be 0, 1 or 2).
|
||||
**
|
||||
** 1. Regardless of the value of createFlag, the cache is searched for a
|
||||
** copy of the requested page. If one is found, it is returned.
|
||||
**
|
||||
** 2. If createFlag==0 and the page is not already in the cache, NULL is
|
||||
** returned.
|
||||
**
|
||||
** 3. If createFlag is 1, the cache is marked as purgeable and the page is
|
||||
** not already in the cache, and if either of the following are true,
|
||||
** return NULL:
|
||||
**
|
||||
** (a) the number of pages pinned by the cache is greater than
|
||||
** PCache1.nMax, or
|
||||
** (b) the number of pages pinned by the cache is greater than
|
||||
** the sum of nMax for all purgeable caches, less the sum of
|
||||
** nMin for all other purgeable caches.
|
||||
**
|
||||
** 4. If none of the first three conditions apply and the cache is marked
|
||||
** as purgeable, and if one of the following is true:
|
||||
**
|
||||
** (a) The number of pages allocated for the cache is already
|
||||
** PCache1.nMax, or
|
||||
**
|
||||
** (b) The number of pages allocated for all purgeable caches is
|
||||
** already equal to or greater than the sum of nMax for all
|
||||
** purgeable caches,
|
||||
**
|
||||
** then attempt to recycle a page from the LRU list. If it is the right
|
||||
** size, return the recycled buffer. Otherwise, free the buffer and
|
||||
** proceed to step 5.
|
||||
**
|
||||
** 5. Otherwise, allocate and return a new page buffer.
|
||||
*/
|
||||
static void *pcache1Fetch(sqlite3_pcache *p, unsigned int iKey, int createFlag){
|
||||
unsigned int nPinned;
|
||||
PCache1 *pCache = (PCache1 *)p;
|
||||
PgHdr1 *pPage = 0;
|
||||
|
||||
pcache1EnterMutex();
|
||||
if( createFlag==1 ) sqlite3BeginBenignMalloc();
|
||||
|
||||
/* Search the hash table for an existing entry. */
|
||||
if( pCache->nHash>0 ){
|
||||
unsigned int h = iKey % pCache->nHash;
|
||||
for(pPage=pCache->apHash[h]; pPage&&pPage->iKey!=iKey; pPage=pPage->pNext);
|
||||
}
|
||||
|
||||
if( pPage || createFlag==0 ){
|
||||
pcache1PinPage(pPage);
|
||||
goto fetch_out;
|
||||
}
|
||||
|
||||
/* Step 3 of header comment. */
|
||||
nPinned = pCache->nPage - pCache->nRecyclable;
|
||||
if( createFlag==1 && pCache->bPurgeable && (
|
||||
nPinned>=(pcache1.nMaxPage+pCache->nMin-pcache1.nMinPage)
|
||||
|| nPinned>=(pCache->nMax)
|
||||
)){
|
||||
goto fetch_out;
|
||||
}
|
||||
|
||||
if( pCache->nPage>=pCache->nHash && pcache1ResizeHash(pCache) ){
|
||||
goto fetch_out;
|
||||
}
|
||||
|
||||
/* Step 4. Try to recycle a page buffer if appropriate. */
|
||||
if( pCache->bPurgeable && pcache1.pLruTail && (
|
||||
pCache->nPage>=pCache->nMax-1 || pcache1.nCurrentPage>=pcache1.nMaxPage
|
||||
)){
|
||||
pPage = pcache1.pLruTail;
|
||||
pcache1RemoveFromHash(pPage);
|
||||
pcache1PinPage(pPage);
|
||||
if( pPage->pCache->szPage!=pCache->szPage ){
|
||||
pcache1FreePage(pPage);
|
||||
pPage = 0;
|
||||
}else{
|
||||
pcache1.nCurrentPage -= (pPage->pCache->bPurgeable - pCache->bPurgeable);
|
||||
}
|
||||
}
|
||||
|
||||
/* Step 5. If a usable page buffer has still not been found,
|
||||
** attempt to allocate a new one.
|
||||
*/
|
||||
if( !pPage ){
|
||||
pPage = pcache1AllocPage(pCache);
|
||||
}
|
||||
|
||||
if( pPage ){
|
||||
unsigned int h = iKey % pCache->nHash;
|
||||
memset(pPage, 0, pCache->szPage + sizeof(PgHdr1));
|
||||
pCache->nPage++;
|
||||
pPage->iKey = iKey;
|
||||
pPage->pNext = pCache->apHash[h];
|
||||
pPage->pCache = pCache;
|
||||
pCache->apHash[h] = pPage;
|
||||
}
|
||||
|
||||
fetch_out:
|
||||
if( pPage && iKey>pCache->iMaxKey ){
|
||||
pCache->iMaxKey = iKey;
|
||||
}
|
||||
if( createFlag==1 ) sqlite3EndBenignMalloc();
|
||||
pcache1LeaveMutex();
|
||||
return (pPage ? PGHDR1_TO_PAGE(pPage) : 0);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** Implementation of the sqlite3_pcache.xUnpin method.
|
||||
**
|
||||
** Mark a page as unpinned (eligible for asynchronous recycling).
|
||||
*/
|
||||
static void pcache1Unpin(sqlite3_pcache *p, void *pPg, int reuseUnlikely){
|
||||
PCache1 *pCache = (PCache1 *)p;
|
||||
PgHdr1 *pPage = PAGE_TO_PGHDR1(pPg);
|
||||
|
||||
pcache1EnterMutex();
|
||||
|
||||
/* It is an error to call this function if the page is already
|
||||
** part of the global LRU list.
|
||||
*/
|
||||
assert( pPage->pLruPrev==0 && pPage->pLruNext==0 );
|
||||
assert( pcache1.pLruHead!=pPage && pcache1.pLruTail!=pPage );
|
||||
|
||||
if( reuseUnlikely || pcache1.nCurrentPage>pcache1.nMaxPage ){
|
||||
pcache1RemoveFromHash(pPage);
|
||||
pcache1FreePage(pPage);
|
||||
}else{
|
||||
/* Add the page to the global LRU list. Normally, the page is added to
|
||||
** the head of the list (last page to be recycled). However, if the
|
||||
** reuseUnlikely flag passed to this function is true, the page is added
|
||||
** to the tail of the list (first page to be recycled).
|
||||
*/
|
||||
if( pcache1.pLruHead ){
|
||||
pcache1.pLruHead->pLruPrev = pPage;
|
||||
pPage->pLruNext = pcache1.pLruHead;
|
||||
pcache1.pLruHead = pPage;
|
||||
}else{
|
||||
pcache1.pLruTail = pPage;
|
||||
pcache1.pLruHead = pPage;
|
||||
}
|
||||
pCache->nRecyclable++;
|
||||
}
|
||||
|
||||
pcache1LeaveMutex();
|
||||
}
|
||||
|
||||
/*
|
||||
** Implementation of the sqlite3_pcache.xRekey method.
|
||||
*/
|
||||
static void pcache1Rekey(
|
||||
sqlite3_pcache *p,
|
||||
void *pPg,
|
||||
unsigned int iOld,
|
||||
unsigned int iNew
|
||||
){
|
||||
PCache1 *pCache = (PCache1 *)p;
|
||||
PgHdr1 *pPage = PAGE_TO_PGHDR1(pPg);
|
||||
PgHdr1 **pp;
|
||||
unsigned int h;
|
||||
assert( pPage->iKey==iOld );
|
||||
|
||||
pcache1EnterMutex();
|
||||
|
||||
h = iOld%pCache->nHash;
|
||||
pp = &pCache->apHash[h];
|
||||
while( (*pp)!=pPage ){
|
||||
pp = &(*pp)->pNext;
|
||||
}
|
||||
*pp = pPage->pNext;
|
||||
|
||||
h = iNew%pCache->nHash;
|
||||
pPage->iKey = iNew;
|
||||
pPage->pNext = pCache->apHash[h];
|
||||
pCache->apHash[h] = pPage;
|
||||
|
||||
if( iNew>pCache->iMaxKey ){
|
||||
pCache->iMaxKey = iNew;
|
||||
}
|
||||
|
||||
pcache1LeaveMutex();
|
||||
}
|
||||
|
||||
/*
|
||||
** Implementation of the sqlite3_pcache.xTruncate method.
|
||||
**
|
||||
** Discard all unpinned pages in the cache with a page number equal to
|
||||
** or greater than parameter iLimit. Any pinned pages with a page number
|
||||
** equal to or greater than iLimit are implicitly unpinned.
|
||||
*/
|
||||
static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){
|
||||
PCache1 *pCache = (PCache1 *)p;
|
||||
pcache1EnterMutex();
|
||||
if( iLimit<=pCache->iMaxKey ){
|
||||
pcache1TruncateUnsafe(pCache, iLimit);
|
||||
pCache->iMaxKey = iLimit-1;
|
||||
}
|
||||
pcache1LeaveMutex();
|
||||
}
|
||||
|
||||
/*
|
||||
** Implementation of the sqlite3_pcache.xDestroy method.
|
||||
**
|
||||
** Destroy a cache allocated using pcache1Create().
|
||||
*/
|
||||
static void pcache1Destroy(sqlite3_pcache *p){
|
||||
PCache1 *pCache = (PCache1 *)p;
|
||||
pcache1EnterMutex();
|
||||
pcache1TruncateUnsafe(pCache, 0);
|
||||
pcache1.nMaxPage -= pCache->nMax;
|
||||
pcache1.nMinPage -= pCache->nMin;
|
||||
pcache1EnforceMaxPage();
|
||||
pcache1LeaveMutex();
|
||||
sqlite3_free(pCache->apHash);
|
||||
sqlite3_free(pCache);
|
||||
}
|
||||
|
||||
/*
|
||||
** This function is called during initialization (sqlite3_initialize()) to
|
||||
** install the default pluggable cache module, assuming the user has not
|
||||
** already provided an alternative.
|
||||
*/
|
||||
void sqlite3PCacheSetDefault(void){
|
||||
static sqlite3_pcache_methods defaultMethods = {
|
||||
0, /* pArg */
|
||||
pcache1Init, /* xInit */
|
||||
pcache1Shutdown, /* xShutdown */
|
||||
pcache1Create, /* xCreate */
|
||||
pcache1Cachesize, /* xCachesize */
|
||||
pcache1Pagecount, /* xPagecount */
|
||||
pcache1Fetch, /* xFetch */
|
||||
pcache1Unpin, /* xUnpin */
|
||||
pcache1Rekey, /* xRekey */
|
||||
pcache1Truncate, /* xTruncate */
|
||||
pcache1Destroy /* xDestroy */
|
||||
};
|
||||
sqlite3_config(SQLITE_CONFIG_PCACHE, &defaultMethods);
|
||||
}
|
||||
|
||||
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
|
||||
/*
|
||||
** This function is called to free superfluous dynamically allocated memory
|
||||
** held by the pager system. Memory in use by any SQLite pager allocated
|
||||
** by the current thread may be sqlite3_free()ed.
|
||||
**
|
||||
** nReq is the number of bytes of memory required. Once this much has
|
||||
** been released, the function returns. The return value is the total number
|
||||
** of bytes of memory released.
|
||||
*/
|
||||
int sqlite3PcacheReleaseMemory(int nReq){
|
||||
int nFree = 0;
|
||||
if( pcache1.pStart==0 ){
|
||||
PgHdr1 *p;
|
||||
pcache1EnterMutex();
|
||||
while( (nReq<0 || nFree<nReq) && (p=pcache1.pLruTail) ){
|
||||
nFree += sqlite3MallocSize(p);
|
||||
pcache1PinPage(p);
|
||||
pcache1RemoveFromHash(p);
|
||||
pcache1FreePage(p);
|
||||
}
|
||||
pcache1LeaveMutex();
|
||||
}
|
||||
return nFree;
|
||||
}
|
||||
#endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
|
||||
|
||||
#ifdef SQLITE_TEST
|
||||
/*
|
||||
** This function is used by test procedures to inspect the internal state
|
||||
** of the global cache.
|
||||
*/
|
||||
void sqlite3PcacheStats(
|
||||
int *pnCurrent, /* OUT: Total number of pages cached */
|
||||
int *pnMax, /* OUT: Global maximum cache size */
|
||||
int *pnMin, /* OUT: Sum of PCache1.nMin for purgeable caches */
|
||||
int *pnRecyclable /* OUT: Total number of pages available for recycling */
|
||||
){
|
||||
PgHdr1 *p;
|
||||
int nRecyclable = 0;
|
||||
for(p=pcache1.pLruHead; p; p=p->pLruNext){
|
||||
nRecyclable++;
|
||||
}
|
||||
*pnCurrent = pcache1.nCurrentPage;
|
||||
*pnMax = pcache1.nMaxPage;
|
||||
*pnMin = pcache1.nMinPage;
|
||||
*pnRecyclable = nRecyclable;
|
||||
}
|
||||
#endif
|
316
prepare.c
316
prepare.c
|
@ -13,20 +13,29 @@
|
|||
** interface, and routines that contribute to loading the database schema
|
||||
** from disk.
|
||||
**
|
||||
** $Id: prepare.c,v 1.52 2007/08/13 14:41:19 danielk1977 Exp $
|
||||
** $Id: prepare.c,v 1.104 2009/01/09 02:49:32 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
#include "os.h"
|
||||
#include <ctype.h>
|
||||
|
||||
/*
|
||||
** Fill the InitData structure with an error message that indicates
|
||||
** that the database is corrupt.
|
||||
*/
|
||||
static void corruptSchema(InitData *pData, const char *zExtra){
|
||||
if( !sqlite3MallocFailed() ){
|
||||
sqlite3SetString(pData->pzErrMsg, "malformed database schema",
|
||||
zExtra!=0 && zExtra[0]!=0 ? " - " : (char*)0, zExtra, (char*)0);
|
||||
static void corruptSchema(
|
||||
InitData *pData, /* Initialization context */
|
||||
const char *zObj, /* Object being parsed at the point of error */
|
||||
const char *zExtra /* Error information */
|
||||
){
|
||||
sqlite3 *db = pData->db;
|
||||
if( !db->mallocFailed && (db->flags & SQLITE_RecoveryMode)==0 ){
|
||||
if( zObj==0 ) zObj = "?";
|
||||
sqlite3SetString(pData->pzErrMsg, pData->db,
|
||||
"malformed database schema (%s)", zObj);
|
||||
if( zExtra && zExtra[0] ){
|
||||
*pData->pzErrMsg = sqlite3MAppendf(pData->db, *pData->pzErrMsg, "%s - %s",
|
||||
*pData->pzErrMsg, zExtra);
|
||||
}
|
||||
}
|
||||
pData->rc = SQLITE_CORRUPT;
|
||||
}
|
||||
|
@ -43,26 +52,25 @@ static void corruptSchema(InitData *pData, const char *zExtra){
|
|||
** argv[2] = SQL text for the CREATE statement.
|
||||
**
|
||||
*/
|
||||
int sqlite3InitCallback(void *pInit, int argc, char **argv, char **azColName){
|
||||
int sqlite3InitCallback(void *pInit, int argc, char **argv, char **NotUsed){
|
||||
InitData *pData = (InitData*)pInit;
|
||||
sqlite3 *db = pData->db;
|
||||
int iDb = pData->iDb;
|
||||
|
||||
pData->rc = SQLITE_OK;
|
||||
assert( argc==3 );
|
||||
UNUSED_PARAMETER2(NotUsed, argc);
|
||||
assert( sqlite3_mutex_held(db->mutex) );
|
||||
DbClearProperty(db, iDb, DB_Empty);
|
||||
if( sqlite3MallocFailed() ){
|
||||
corruptSchema(pData, 0);
|
||||
if( db->mallocFailed ){
|
||||
corruptSchema(pData, argv[0], 0);
|
||||
return SQLITE_NOMEM;
|
||||
}
|
||||
|
||||
assert( argc==3 );
|
||||
assert( iDb>=0 && iDb<db->nDb );
|
||||
if( argv==0 ) return 0; /* Might happen if EMPTY_RESULT_CALLBACKS are on */
|
||||
if( argv[1]==0 ){
|
||||
corruptSchema(pData, 0);
|
||||
return 1;
|
||||
}
|
||||
assert( iDb>=0 && iDb<db->nDb );
|
||||
if( argv[2] && argv[2][0] ){
|
||||
corruptSchema(pData, argv[0], 0);
|
||||
}else if( argv[2] && argv[2][0] ){
|
||||
/* Call the parser to process a CREATE TABLE, INDEX or VIEW.
|
||||
** But because db->init.busy is set to 1, no VDBE code is generated
|
||||
** or executed. All the parser does is build the internal data
|
||||
|
@ -70,22 +78,27 @@ int sqlite3InitCallback(void *pInit, int argc, char **argv, char **azColName){
|
|||
*/
|
||||
char *zErr;
|
||||
int rc;
|
||||
u8 lookasideEnabled;
|
||||
assert( db->init.busy );
|
||||
db->init.iDb = iDb;
|
||||
db->init.newTnum = atoi(argv[1]);
|
||||
lookasideEnabled = db->lookaside.bEnabled;
|
||||
db->lookaside.bEnabled = 0;
|
||||
rc = sqlite3_exec(db, argv[2], 0, 0, &zErr);
|
||||
db->init.iDb = 0;
|
||||
db->lookaside.bEnabled = lookasideEnabled;
|
||||
assert( rc!=SQLITE_OK || zErr==0 );
|
||||
if( SQLITE_OK!=rc ){
|
||||
pData->rc = rc;
|
||||
if( rc==SQLITE_NOMEM ){
|
||||
sqlite3FailedMalloc();
|
||||
db->mallocFailed = 1;
|
||||
}else if( rc!=SQLITE_INTERRUPT ){
|
||||
corruptSchema(pData, zErr);
|
||||
corruptSchema(pData, argv[0], zErr);
|
||||
}
|
||||
sqlite3_free(zErr);
|
||||
return 1;
|
||||
sqlite3DbFree(db, zErr);
|
||||
}
|
||||
}else if( argv[0]==0 ){
|
||||
corruptSchema(pData, 0, 0);
|
||||
}else{
|
||||
/* If the SQL column is blank it means this is an index that
|
||||
** was created to be the PRIMARY KEY or to fulfill a UNIQUE
|
||||
|
@ -157,6 +170,8 @@ static int sqlite3InitOne(sqlite3 *db, int iDb, char **pzErrMsg){
|
|||
|
||||
assert( iDb>=0 && iDb<db->nDb );
|
||||
assert( db->aDb[iDb].pSchema );
|
||||
assert( sqlite3_mutex_held(db->mutex) );
|
||||
assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
|
||||
|
||||
/* zMasterSchema and zInitScript are set to point at the master schema
|
||||
** and initialisation script appropriate for the database being
|
||||
|
@ -170,24 +185,25 @@ static int sqlite3InitOne(sqlite3 *db, int iDb, char **pzErrMsg){
|
|||
zMasterName = SCHEMA_TABLE(iDb);
|
||||
|
||||
/* Construct the schema tables. */
|
||||
sqlite3SafetyOff(db);
|
||||
azArg[0] = zMasterName;
|
||||
azArg[1] = "1";
|
||||
azArg[2] = zMasterSchema;
|
||||
azArg[3] = 0;
|
||||
initData.db = db;
|
||||
initData.iDb = iDb;
|
||||
initData.rc = SQLITE_OK;
|
||||
initData.pzErrMsg = pzErrMsg;
|
||||
rc = sqlite3InitCallback(&initData, 3, (char **)azArg, 0);
|
||||
if( rc ){
|
||||
sqlite3SafetyOn(db);
|
||||
return initData.rc;
|
||||
(void)sqlite3SafetyOff(db);
|
||||
sqlite3InitCallback(&initData, 3, (char **)azArg, 0);
|
||||
(void)sqlite3SafetyOn(db);
|
||||
if( initData.rc ){
|
||||
rc = initData.rc;
|
||||
goto error_out;
|
||||
}
|
||||
pTab = sqlite3FindTable(db, zMasterName, db->aDb[iDb].zName);
|
||||
if( pTab ){
|
||||
pTab->readOnly = 1;
|
||||
pTab->tabFlags |= TF_Readonly;
|
||||
}
|
||||
sqlite3SafetyOn(db);
|
||||
|
||||
/* Create a cursor to hold the database open
|
||||
*/
|
||||
|
@ -198,10 +214,16 @@ static int sqlite3InitOne(sqlite3 *db, int iDb, char **pzErrMsg){
|
|||
}
|
||||
return SQLITE_OK;
|
||||
}
|
||||
rc = sqlite3BtreeCursor(pDb->pBt, MASTER_ROOT, 0, 0, 0, &curMain);
|
||||
curMain = sqlite3MallocZero(sqlite3BtreeCursorSize());
|
||||
if( !curMain ){
|
||||
rc = SQLITE_NOMEM;
|
||||
goto error_out;
|
||||
}
|
||||
sqlite3BtreeEnter(pDb->pBt);
|
||||
rc = sqlite3BtreeCursor(pDb->pBt, MASTER_ROOT, 0, 0, curMain);
|
||||
if( rc!=SQLITE_OK && rc!=SQLITE_EMPTY ){
|
||||
sqlite3SetString(pzErrMsg, sqlite3ErrStr(rc), (char*)0);
|
||||
return rc;
|
||||
sqlite3SetString(pzErrMsg, db, "%s", sqlite3ErrStr(rc));
|
||||
goto initone_error_out;
|
||||
}
|
||||
|
||||
/* Get the database meta information.
|
||||
|
@ -223,13 +245,12 @@ static int sqlite3InitOne(sqlite3 *db, int iDb, char **pzErrMsg){
|
|||
*/
|
||||
if( rc==SQLITE_OK ){
|
||||
int i;
|
||||
for(i=0; rc==SQLITE_OK && i<sizeof(meta)/sizeof(meta[0]); i++){
|
||||
for(i=0; i<ArraySize(meta); i++){
|
||||
rc = sqlite3BtreeGetMeta(pDb->pBt, i+1, (u32 *)&meta[i]);
|
||||
}
|
||||
if( rc ){
|
||||
sqlite3SetString(pzErrMsg, sqlite3ErrStr(rc), (char*)0);
|
||||
sqlite3BtreeCloseCursor(curMain);
|
||||
return rc;
|
||||
sqlite3SetString(pzErrMsg, db, "%s", sqlite3ErrStr(rc));
|
||||
goto initone_error_out;
|
||||
}
|
||||
}
|
||||
}else{
|
||||
memset(meta, 0, sizeof(meta));
|
||||
|
@ -249,10 +270,10 @@ static int sqlite3InitOne(sqlite3 *db, int iDb, char **pzErrMsg){
|
|||
}else{
|
||||
/* If opening an attached database, the encoding much match ENC(db) */
|
||||
if( meta[4]!=ENC(db) ){
|
||||
sqlite3BtreeCloseCursor(curMain);
|
||||
sqlite3SetString(pzErrMsg, "attached databases must use the same"
|
||||
" text encoding as main database", (char*)0);
|
||||
return SQLITE_ERROR;
|
||||
sqlite3SetString(pzErrMsg, db, "attached databases must use the same"
|
||||
" text encoding as main database");
|
||||
rc = SQLITE_ERROR;
|
||||
goto initone_error_out;
|
||||
}
|
||||
}
|
||||
}else{
|
||||
|
@ -260,10 +281,13 @@ static int sqlite3InitOne(sqlite3 *db, int iDb, char **pzErrMsg){
|
|||
}
|
||||
pDb->pSchema->enc = ENC(db);
|
||||
|
||||
if( pDb->pSchema->cache_size==0 ){
|
||||
size = meta[2];
|
||||
if( size==0 ){ size = SQLITE_DEFAULT_CACHE_SIZE; }
|
||||
if( size<0 ) size = -size;
|
||||
pDb->pSchema->cache_size = size;
|
||||
sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
|
||||
}
|
||||
|
||||
/*
|
||||
** file_format==1 Version 3.0.0.
|
||||
|
@ -271,16 +295,24 @@ static int sqlite3InitOne(sqlite3 *db, int iDb, char **pzErrMsg){
|
|||
** file_format==3 Version 3.1.4. // ditto but with non-NULL defaults
|
||||
** file_format==4 Version 3.3.0. // DESC indices. Boolean constants
|
||||
*/
|
||||
pDb->pSchema->file_format = meta[1];
|
||||
pDb->pSchema->file_format = (u8)meta[1];
|
||||
if( pDb->pSchema->file_format==0 ){
|
||||
pDb->pSchema->file_format = 1;
|
||||
}
|
||||
if( pDb->pSchema->file_format>SQLITE_MAX_FILE_FORMAT ){
|
||||
sqlite3BtreeCloseCursor(curMain);
|
||||
sqlite3SetString(pzErrMsg, "unsupported file format", (char*)0);
|
||||
return SQLITE_ERROR;
|
||||
sqlite3SetString(pzErrMsg, db, "unsupported file format");
|
||||
rc = SQLITE_ERROR;
|
||||
goto initone_error_out;
|
||||
}
|
||||
|
||||
/* Ticket #2804: When we open a database in the newer file format,
|
||||
** clear the legacy_file_format pragma flag so that a VACUUM will
|
||||
** not downgrade the database and thus invalidate any descending
|
||||
** indices that the user might have created.
|
||||
*/
|
||||
if( iDb==0 && meta[1]>=4 ){
|
||||
db->flags &= ~SQLITE_LegacyFileFmt;
|
||||
}
|
||||
|
||||
/* Read the schema information out of the schema tables
|
||||
*/
|
||||
|
@ -290,23 +322,31 @@ static int sqlite3InitOne(sqlite3 *db, int iDb, char **pzErrMsg){
|
|||
rc = SQLITE_OK;
|
||||
}else{
|
||||
char *zSql;
|
||||
zSql = sqlite3MPrintf(
|
||||
zSql = sqlite3MPrintf(db,
|
||||
"SELECT name, rootpage, sql FROM '%q'.%s",
|
||||
db->aDb[iDb].zName, zMasterName);
|
||||
sqlite3SafetyOff(db);
|
||||
(void)sqlite3SafetyOff(db);
|
||||
#ifndef SQLITE_OMIT_AUTHORIZATION
|
||||
{
|
||||
int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
|
||||
xAuth = db->xAuth;
|
||||
db->xAuth = 0;
|
||||
#endif
|
||||
rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
|
||||
if( rc==SQLITE_ABORT ) rc = initData.rc;
|
||||
sqlite3SafetyOn(db);
|
||||
sqliteFree(zSql);
|
||||
#ifndef SQLITE_OMIT_AUTHORIZATION
|
||||
db->xAuth = xAuth;
|
||||
}
|
||||
#endif
|
||||
if( rc==SQLITE_OK ) rc = initData.rc;
|
||||
(void)sqlite3SafetyOn(db);
|
||||
sqlite3DbFree(db, zSql);
|
||||
#ifndef SQLITE_OMIT_ANALYZE
|
||||
if( rc==SQLITE_OK ){
|
||||
sqlite3AnalysisLoad(db, iDb);
|
||||
}
|
||||
#endif
|
||||
sqlite3BtreeCloseCursor(curMain);
|
||||
}
|
||||
if( sqlite3MallocFailed() ){
|
||||
/* sqlite3SetString(pzErrMsg, "out of memory", (char*)0); */
|
||||
if( db->mallocFailed ){
|
||||
rc = SQLITE_NOMEM;
|
||||
sqlite3ResetInternalSchema(db, 0);
|
||||
}
|
||||
|
@ -317,11 +357,25 @@ static int sqlite3InitOne(sqlite3 *db, int iDb, char **pzErrMsg){
|
|||
** will attempt to compile the supplied statement against whatever subset
|
||||
** of the schema was loaded before the error occured. The primary
|
||||
** purpose of this is to allow access to the sqlite_master table
|
||||
** even when it's contents have been corrupted.
|
||||
** even when its contents have been corrupted.
|
||||
*/
|
||||
DbSetProperty(db, iDb, DB_SchemaLoaded);
|
||||
rc = SQLITE_OK;
|
||||
}
|
||||
|
||||
/* Jump here for an error that occurs after successfully allocating
|
||||
** curMain and calling sqlite3BtreeEnter(). For an error that occurs
|
||||
** before that point, jump to error_out.
|
||||
*/
|
||||
initone_error_out:
|
||||
sqlite3BtreeCloseCursor(curMain);
|
||||
sqlite3_free(curMain);
|
||||
sqlite3BtreeLeave(pDb->pBt);
|
||||
|
||||
error_out:
|
||||
if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){
|
||||
db->mallocFailed = 1;
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
|
||||
|
@ -339,6 +393,7 @@ int sqlite3Init(sqlite3 *db, char **pzErrMsg){
|
|||
int i, rc;
|
||||
int commit_internal = !(db->flags&SQLITE_InternChanges);
|
||||
|
||||
assert( sqlite3_mutex_held(db->mutex) );
|
||||
if( db->init.busy ) return SQLITE_OK;
|
||||
rc = SQLITE_OK;
|
||||
db->init.busy = 1;
|
||||
|
@ -378,6 +433,7 @@ int sqlite3Init(sqlite3 *db, char **pzErrMsg){
|
|||
int sqlite3ReadSchema(Parse *pParse){
|
||||
int rc = SQLITE_OK;
|
||||
sqlite3 *db = pParse->db;
|
||||
assert( sqlite3_mutex_held(db->mutex) );
|
||||
if( !db->init.busy ){
|
||||
rc = sqlite3Init(db, &pParse->zErrMsg);
|
||||
}
|
||||
|
@ -400,11 +456,15 @@ static int schemaIsValid(sqlite3 *db){
|
|||
int cookie;
|
||||
int allOk = 1;
|
||||
|
||||
curTemp = (BtCursor *)sqlite3Malloc(sqlite3BtreeCursorSize());
|
||||
if( curTemp ){
|
||||
assert( sqlite3_mutex_held(db->mutex) );
|
||||
for(iDb=0; allOk && iDb<db->nDb; iDb++){
|
||||
Btree *pBt;
|
||||
pBt = db->aDb[iDb].pBt;
|
||||
if( pBt==0 ) continue;
|
||||
rc = sqlite3BtreeCursor(pBt, MASTER_ROOT, 0, 0, 0, &curTemp);
|
||||
memset(curTemp, 0, sqlite3BtreeCursorSize());
|
||||
rc = sqlite3BtreeCursor(pBt, MASTER_ROOT, 0, 0, curTemp);
|
||||
if( rc==SQLITE_OK ){
|
||||
rc = sqlite3BtreeGetMeta(pBt, 1, (u32 *)&cookie);
|
||||
if( rc==SQLITE_OK && cookie!=db->aDb[iDb].pSchema->schema_cookie ){
|
||||
|
@ -412,7 +472,16 @@ static int schemaIsValid(sqlite3 *db){
|
|||
}
|
||||
sqlite3BtreeCloseCursor(curTemp);
|
||||
}
|
||||
if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){
|
||||
db->mallocFailed = 1;
|
||||
}
|
||||
}
|
||||
sqlite3_free(curTemp);
|
||||
}else{
|
||||
allOk = 0;
|
||||
db->mallocFailed = 1;
|
||||
}
|
||||
|
||||
return allOk;
|
||||
}
|
||||
|
||||
|
@ -432,17 +501,18 @@ int sqlite3SchemaToIndex(sqlite3 *db, Schema *pSchema){
|
|||
** function should never be used.
|
||||
**
|
||||
** We return -1000000 instead of the more usual -1 simply because using
|
||||
** -1000000 as incorrectly using -1000000 index into db->aDb[] is much
|
||||
** -1000000 as the incorrect index into db->aDb[] is much
|
||||
** more likely to cause a segfault than -1 (of course there are assert()
|
||||
** statements too, but it never hurts to play the odds).
|
||||
*/
|
||||
assert( sqlite3_mutex_held(db->mutex) );
|
||||
if( pSchema ){
|
||||
for(i=0; i<db->nDb; i++){
|
||||
for(i=0; ALWAYS(i<db->nDb); i++){
|
||||
if( db->aDb[i].pSchema==pSchema ){
|
||||
break;
|
||||
}
|
||||
}
|
||||
assert( i>=0 &&i>=0 && i<db->nDb );
|
||||
assert( i>=0 && i<db->nDb );
|
||||
}
|
||||
return i;
|
||||
}
|
||||
|
@ -450,7 +520,7 @@ int sqlite3SchemaToIndex(sqlite3 *db, Schema *pSchema){
|
|||
/*
|
||||
** Compile the UTF-8 encoded SQL statement zSql into a statement handle.
|
||||
*/
|
||||
int sqlite3Prepare(
|
||||
static int sqlite3Prepare(
|
||||
sqlite3 *db, /* Database handle. */
|
||||
const char *zSql, /* UTF-8 encoded SQL statement. */
|
||||
int nBytes, /* Length of zSql in bytes. */
|
||||
|
@ -463,46 +533,53 @@ int sqlite3Prepare(
|
|||
int rc = SQLITE_OK;
|
||||
int i;
|
||||
|
||||
/* Assert that malloc() has not failed */
|
||||
assert( !sqlite3MallocFailed() );
|
||||
|
||||
assert( ppStmt );
|
||||
*ppStmt = 0;
|
||||
if( sqlite3SafetyOn(db) ){
|
||||
return SQLITE_MISUSE;
|
||||
}
|
||||
assert( !db->mallocFailed );
|
||||
assert( sqlite3_mutex_held(db->mutex) );
|
||||
|
||||
/* If any attached database schemas are locked, do not proceed with
|
||||
** compilation. Instead return SQLITE_LOCKED immediately.
|
||||
*/
|
||||
for(i=0; i<db->nDb; i++) {
|
||||
Btree *pBt = db->aDb[i].pBt;
|
||||
if( pBt && sqlite3BtreeSchemaLocked(pBt) ){
|
||||
if( pBt ){
|
||||
rc = sqlite3BtreeSchemaLocked(pBt);
|
||||
if( rc ){
|
||||
const char *zDb = db->aDb[i].zName;
|
||||
sqlite3Error(db, SQLITE_LOCKED, "database schema is locked: %s", zDb);
|
||||
sqlite3SafetyOff(db);
|
||||
return SQLITE_LOCKED;
|
||||
(void)sqlite3SafetyOff(db);
|
||||
return sqlite3ApiExit(db, SQLITE_LOCKED);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
memset(&sParse, 0, sizeof(sParse));
|
||||
sParse.db = db;
|
||||
if( nBytes>=0 && zSql[nBytes]!=0 ){
|
||||
if( nBytes>=0 && (nBytes==0 || zSql[nBytes-1]!=0) ){
|
||||
char *zSqlCopy;
|
||||
if( nBytes>SQLITE_MAX_SQL_LENGTH ){
|
||||
return SQLITE_TOOBIG;
|
||||
int mxLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH];
|
||||
if( nBytes>mxLen ){
|
||||
sqlite3Error(db, SQLITE_TOOBIG, "statement too long");
|
||||
(void)sqlite3SafetyOff(db);
|
||||
return sqlite3ApiExit(db, SQLITE_TOOBIG);
|
||||
}
|
||||
zSqlCopy = sqlite3StrNDup(zSql, nBytes);
|
||||
zSqlCopy = sqlite3DbStrNDup(db, zSql, nBytes);
|
||||
if( zSqlCopy ){
|
||||
sqlite3RunParser(&sParse, zSqlCopy, &zErrMsg);
|
||||
sqliteFree(zSqlCopy);
|
||||
}
|
||||
sqlite3DbFree(db, zSqlCopy);
|
||||
sParse.zTail = &zSql[sParse.zTail-zSqlCopy];
|
||||
}else{
|
||||
sParse.zTail = &zSql[nBytes];
|
||||
}
|
||||
}else{
|
||||
sqlite3RunParser(&sParse, zSql, &zErrMsg);
|
||||
}
|
||||
|
||||
if( sqlite3MallocFailed() ){
|
||||
if( db->mallocFailed ){
|
||||
sParse.rc = SQLITE_NOMEM;
|
||||
}
|
||||
if( sParse.rc==SQLITE_DONE ) sParse.rc = SQLITE_OK;
|
||||
|
@ -512,7 +589,7 @@ int sqlite3Prepare(
|
|||
if( sParse.rc==SQLITE_SCHEMA ){
|
||||
sqlite3ResetInternalSchema(db, 0);
|
||||
}
|
||||
if( sqlite3MallocFailed() ){
|
||||
if( db->mallocFailed ){
|
||||
sParse.rc = SQLITE_NOMEM;
|
||||
}
|
||||
if( pzTail ){
|
||||
|
@ -524,16 +601,19 @@ int sqlite3Prepare(
|
|||
if( rc==SQLITE_OK && sParse.pVdbe && sParse.explain ){
|
||||
if( sParse.explain==2 ){
|
||||
sqlite3VdbeSetNumCols(sParse.pVdbe, 3);
|
||||
sqlite3VdbeSetColName(sParse.pVdbe, 0, COLNAME_NAME, "order", P3_STATIC);
|
||||
sqlite3VdbeSetColName(sParse.pVdbe, 1, COLNAME_NAME, "from", P3_STATIC);
|
||||
sqlite3VdbeSetColName(sParse.pVdbe, 2, COLNAME_NAME, "detail", P3_STATIC);
|
||||
sqlite3VdbeSetColName(sParse.pVdbe, 0, COLNAME_NAME, "order", SQLITE_STATIC);
|
||||
sqlite3VdbeSetColName(sParse.pVdbe, 1, COLNAME_NAME, "from", SQLITE_STATIC);
|
||||
sqlite3VdbeSetColName(sParse.pVdbe, 2, COLNAME_NAME, "detail", SQLITE_STATIC);
|
||||
}else{
|
||||
sqlite3VdbeSetNumCols(sParse.pVdbe, 5);
|
||||
sqlite3VdbeSetColName(sParse.pVdbe, 0, COLNAME_NAME, "addr", P3_STATIC);
|
||||
sqlite3VdbeSetColName(sParse.pVdbe, 1, COLNAME_NAME, "opcode", P3_STATIC);
|
||||
sqlite3VdbeSetColName(sParse.pVdbe, 2, COLNAME_NAME, "p1", P3_STATIC);
|
||||
sqlite3VdbeSetColName(sParse.pVdbe, 3, COLNAME_NAME, "p2", P3_STATIC);
|
||||
sqlite3VdbeSetColName(sParse.pVdbe, 4, COLNAME_NAME, "p3", P3_STATIC);
|
||||
sqlite3VdbeSetNumCols(sParse.pVdbe, 8);
|
||||
sqlite3VdbeSetColName(sParse.pVdbe, 0, COLNAME_NAME, "addr", SQLITE_STATIC);
|
||||
sqlite3VdbeSetColName(sParse.pVdbe, 1, COLNAME_NAME, "opcode", SQLITE_STATIC);
|
||||
sqlite3VdbeSetColName(sParse.pVdbe, 2, COLNAME_NAME, "p1", SQLITE_STATIC);
|
||||
sqlite3VdbeSetColName(sParse.pVdbe, 3, COLNAME_NAME, "p2", SQLITE_STATIC);
|
||||
sqlite3VdbeSetColName(sParse.pVdbe, 4, COLNAME_NAME, "p3", SQLITE_STATIC);
|
||||
sqlite3VdbeSetColName(sParse.pVdbe, 5, COLNAME_NAME, "p4", SQLITE_STATIC);
|
||||
sqlite3VdbeSetColName(sParse.pVdbe, 6, COLNAME_NAME, "p5", SQLITE_STATIC);
|
||||
sqlite3VdbeSetColName(sParse.pVdbe, 7, COLNAME_NAME, "comment", SQLITE_STATIC);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
@ -543,9 +623,9 @@ int sqlite3Prepare(
|
|||
}
|
||||
|
||||
if( saveSqlFlag ){
|
||||
sqlite3VdbeSetSql(sParse.pVdbe, zSql, sParse.zTail - zSql);
|
||||
sqlite3VdbeSetSql(sParse.pVdbe, zSql, (int)(sParse.zTail - zSql));
|
||||
}
|
||||
if( rc!=SQLITE_OK || sqlite3MallocFailed() ){
|
||||
if( rc!=SQLITE_OK || db->mallocFailed ){
|
||||
sqlite3_finalize((sqlite3_stmt*)sParse.pVdbe);
|
||||
assert(!(*ppStmt));
|
||||
}else{
|
||||
|
@ -554,16 +634,34 @@ int sqlite3Prepare(
|
|||
|
||||
if( zErrMsg ){
|
||||
sqlite3Error(db, rc, "%s", zErrMsg);
|
||||
sqliteFree(zErrMsg);
|
||||
sqlite3DbFree(db, zErrMsg);
|
||||
}else{
|
||||
sqlite3Error(db, rc, 0);
|
||||
}
|
||||
|
||||
rc = sqlite3ApiExit(db, rc);
|
||||
sqlite3ReleaseThreadData();
|
||||
assert( (rc&db->errMask)==rc );
|
||||
return rc;
|
||||
}
|
||||
static int sqlite3LockAndPrepare(
|
||||
sqlite3 *db, /* Database handle. */
|
||||
const char *zSql, /* UTF-8 encoded SQL statement. */
|
||||
int nBytes, /* Length of zSql in bytes. */
|
||||
int saveSqlFlag, /* True to copy SQL text into the sqlite3_stmt */
|
||||
sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
|
||||
const char **pzTail /* OUT: End of parsed string */
|
||||
){
|
||||
int rc;
|
||||
if( !sqlite3SafetyCheckOk(db) ){
|
||||
return SQLITE_MISUSE;
|
||||
}
|
||||
sqlite3_mutex_enter(db->mutex);
|
||||
sqlite3BtreeEnterAll(db);
|
||||
rc = sqlite3Prepare(db, zSql, nBytes, saveSqlFlag, ppStmt, pzTail);
|
||||
sqlite3BtreeLeaveAll(db);
|
||||
sqlite3_mutex_leave(db->mutex);
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** Rerun the compilation of a statement after a schema change.
|
||||
|
@ -576,20 +674,23 @@ int sqlite3Reprepare(Vdbe *p){
|
|||
const char *zSql;
|
||||
sqlite3 *db;
|
||||
|
||||
zSql = sqlite3VdbeGetSql(p);
|
||||
if( zSql==0 ){
|
||||
return 0;
|
||||
}
|
||||
assert( sqlite3_mutex_held(sqlite3VdbeDb(p)->mutex) );
|
||||
zSql = sqlite3_sql((sqlite3_stmt *)p);
|
||||
assert( zSql!=0 ); /* Reprepare only called for prepare_v2() statements */
|
||||
db = sqlite3VdbeDb(p);
|
||||
rc = sqlite3Prepare(db, zSql, -1, 0, &pNew, 0);
|
||||
assert( sqlite3_mutex_held(db->mutex) );
|
||||
rc = sqlite3LockAndPrepare(db, zSql, -1, 0, &pNew, 0);
|
||||
if( rc ){
|
||||
if( rc==SQLITE_NOMEM ){
|
||||
db->mallocFailed = 1;
|
||||
}
|
||||
assert( pNew==0 );
|
||||
return 0;
|
||||
}else{
|
||||
assert( pNew!=0 );
|
||||
}
|
||||
sqlite3VdbeSwap((Vdbe*)pNew, p);
|
||||
sqlite3_transfer_bindings(pNew, (sqlite3_stmt*)p);
|
||||
sqlite3TransferBindings(pNew, (sqlite3_stmt*)p);
|
||||
sqlite3VdbeResetStepResult((Vdbe*)pNew);
|
||||
sqlite3VdbeFinalize((Vdbe*)pNew);
|
||||
return 1;
|
||||
|
@ -611,7 +712,10 @@ int sqlite3_prepare(
|
|||
sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
|
||||
const char **pzTail /* OUT: End of parsed string */
|
||||
){
|
||||
return sqlite3Prepare(db,zSql,nBytes,0,ppStmt,pzTail);
|
||||
int rc;
|
||||
rc = sqlite3LockAndPrepare(db,zSql,nBytes,0,ppStmt,pzTail);
|
||||
assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */
|
||||
return rc;
|
||||
}
|
||||
int sqlite3_prepare_v2(
|
||||
sqlite3 *db, /* Database handle. */
|
||||
|
@ -620,7 +724,10 @@ int sqlite3_prepare_v2(
|
|||
sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
|
||||
const char **pzTail /* OUT: End of parsed string */
|
||||
){
|
||||
return sqlite3Prepare(db,zSql,nBytes,1,ppStmt,pzTail);
|
||||
int rc;
|
||||
rc = sqlite3LockAndPrepare(db,zSql,nBytes,1,ppStmt,pzTail);
|
||||
assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */
|
||||
return rc;
|
||||
}
|
||||
|
||||
|
||||
|
@ -644,12 +751,13 @@ static int sqlite3Prepare16(
|
|||
const char *zTail8 = 0;
|
||||
int rc = SQLITE_OK;
|
||||
|
||||
if( sqlite3SafetyCheck(db) ){
|
||||
if( !sqlite3SafetyCheckOk(db) ){
|
||||
return SQLITE_MISUSE;
|
||||
}
|
||||
zSql8 = sqlite3Utf16to8(zSql, nBytes);
|
||||
sqlite3_mutex_enter(db->mutex);
|
||||
zSql8 = sqlite3Utf16to8(db, zSql, nBytes);
|
||||
if( zSql8 ){
|
||||
rc = sqlite3Prepare(db, zSql8, -1, saveSqlFlag, ppStmt, &zTail8);
|
||||
rc = sqlite3LockAndPrepare(db, zSql8, -1, saveSqlFlag, ppStmt, &zTail8);
|
||||
}
|
||||
|
||||
if( zTail8 && pzTail ){
|
||||
|
@ -658,11 +766,13 @@ static int sqlite3Prepare16(
|
|||
** characters between zSql8 and zTail8, and then returning a pointer
|
||||
** the same number of characters into the UTF-16 string.
|
||||
*/
|
||||
int chars_parsed = sqlite3Utf8CharLen(zSql8, zTail8-zSql8);
|
||||
int chars_parsed = sqlite3Utf8CharLen(zSql8, (int)(zTail8-zSql8));
|
||||
*pzTail = (u8 *)zSql + sqlite3Utf16ByteLen(zSql, chars_parsed);
|
||||
}
|
||||
sqliteFree(zSql8);
|
||||
return sqlite3ApiExit(db, rc);
|
||||
sqlite3DbFree(db, zSql8);
|
||||
rc = sqlite3ApiExit(db, rc);
|
||||
sqlite3_mutex_leave(db->mutex);
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -680,7 +790,10 @@ int sqlite3_prepare16(
|
|||
sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
|
||||
const void **pzTail /* OUT: End of parsed string */
|
||||
){
|
||||
return sqlite3Prepare16(db,zSql,nBytes,0,ppStmt,pzTail);
|
||||
int rc;
|
||||
rc = sqlite3Prepare16(db,zSql,nBytes,0,ppStmt,pzTail);
|
||||
assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */
|
||||
return rc;
|
||||
}
|
||||
int sqlite3_prepare16_v2(
|
||||
sqlite3 *db, /* Database handle. */
|
||||
|
@ -689,7 +802,10 @@ int sqlite3_prepare16_v2(
|
|||
sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
|
||||
const void **pzTail /* OUT: End of parsed string */
|
||||
){
|
||||
return sqlite3Prepare16(db,zSql,nBytes,1,ppStmt,pzTail);
|
||||
int rc;
|
||||
rc = sqlite3Prepare16(db,zSql,nBytes,1,ppStmt,pzTail);
|
||||
assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */
|
||||
return rc;
|
||||
}
|
||||
|
||||
#endif /* SQLITE_OMIT_UTF16 */
|
||||
|
|
389
printf.c
389
printf.c
|
@ -5,6 +5,8 @@
|
|||
** an historical reference. Most of the "enhancements" have been backed
|
||||
** out so that the functionality is now the same as standard printf().
|
||||
**
|
||||
** $Id: printf.c,v 1.99 2008/12/10 19:26:24 drh Exp $
|
||||
**
|
||||
**************************************************************************
|
||||
**
|
||||
** The following modules is an enhanced replacement for the "printf" subroutines
|
||||
|
@ -51,7 +53,6 @@
|
|||
**
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
#include <math.h>
|
||||
|
||||
/*
|
||||
** Conversion types fall into various categories as defined by the
|
||||
|
@ -67,14 +68,14 @@
|
|||
#define etPERCENT 8 /* Percent symbol. %% */
|
||||
#define etCHARX 9 /* Characters. %c */
|
||||
/* The rest are extensions, not normally found in printf() */
|
||||
#define etCHARLIT 10 /* Literal characters. %' */
|
||||
#define etSQLESCAPE 11 /* Strings with '\'' doubled. %q */
|
||||
#define etSQLESCAPE2 12 /* Strings with '\'' doubled and enclosed in '',
|
||||
#define etSQLESCAPE 10 /* Strings with '\'' doubled. %q */
|
||||
#define etSQLESCAPE2 11 /* Strings with '\'' doubled and enclosed in '',
|
||||
NULL pointers replaced by SQL NULL. %Q */
|
||||
#define etTOKEN 13 /* a pointer to a Token structure */
|
||||
#define etSRCLIST 14 /* a pointer to a SrcList */
|
||||
#define etPOINTER 15 /* The %p conversion */
|
||||
#define etSQLESCAPE3 16 /* %w -> Strings with '\"' doubled */
|
||||
#define etTOKEN 12 /* a pointer to a Token structure */
|
||||
#define etSRCLIST 13 /* a pointer to a SrcList */
|
||||
#define etPOINTER 14 /* The %p conversion */
|
||||
#define etSQLESCAPE3 15 /* %w -> Strings with '\"' doubled */
|
||||
#define etORDINAL 16 /* %r -> 1st, 2nd, 3rd, 4th, etc. English only */
|
||||
|
||||
|
||||
/*
|
||||
|
@ -113,7 +114,7 @@ static const et_info fmtinfo[] = {
|
|||
{ 'd', 10, 1, etRADIX, 0, 0 },
|
||||
{ 's', 0, 4, etSTRING, 0, 0 },
|
||||
{ 'g', 0, 1, etGENERIC, 30, 0 },
|
||||
{ 'z', 0, 6, etDYNSTRING, 0, 0 },
|
||||
{ 'z', 0, 4, etDYNSTRING, 0, 0 },
|
||||
{ 'q', 0, 4, etSQLESCAPE, 0, 0 },
|
||||
{ 'Q', 0, 4, etSQLESCAPE2, 0, 0 },
|
||||
{ 'w', 0, 4, etSQLESCAPE3, 0, 0 },
|
||||
|
@ -134,8 +135,8 @@ static const et_info fmtinfo[] = {
|
|||
{ 'p', 16, 0, etPOINTER, 0, 1 },
|
||||
{ 'T', 0, 2, etTOKEN, 0, 0 },
|
||||
{ 'S', 0, 2, etSRCLIST, 0, 0 },
|
||||
{ 'r', 10, 3, etORDINAL, 0, 0 },
|
||||
};
|
||||
#define etNINFO (sizeof(fmtinfo)/sizeof(fmtinfo[0]))
|
||||
|
||||
/*
|
||||
** If SQLITE_OMIT_FLOATING_POINT is defined, then none of the floating point
|
||||
|
@ -155,7 +156,7 @@ static const et_info fmtinfo[] = {
|
|||
** 16 (the number of significant digits in a 64-bit float) '0' is
|
||||
** always returned.
|
||||
*/
|
||||
static int et_getdigit(LONGDOUBLE_TYPE *val, int *cnt){
|
||||
static char et_getdigit(LONGDOUBLE_TYPE *val, int *cnt){
|
||||
int digit;
|
||||
LONGDOUBLE_TYPE d;
|
||||
if( (*cnt)++ >= 16 ) return '0';
|
||||
|
@ -163,10 +164,24 @@ static int et_getdigit(LONGDOUBLE_TYPE *val, int *cnt){
|
|||
d = digit;
|
||||
digit += '0';
|
||||
*val = (*val - d)*10.0;
|
||||
return digit;
|
||||
return (char)digit;
|
||||
}
|
||||
#endif /* SQLITE_OMIT_FLOATING_POINT */
|
||||
|
||||
/*
|
||||
** Append N space characters to the given string buffer.
|
||||
*/
|
||||
static void appendSpace(StrAccum *pAccum, int N){
|
||||
static const char zSpaces[] = " ";
|
||||
while( N>=(int)sizeof(zSpaces)-1 ){
|
||||
sqlite3StrAccumAppend(pAccum, zSpaces, sizeof(zSpaces)-1);
|
||||
N -= sizeof(zSpaces)-1;
|
||||
}
|
||||
if( N>0 ){
|
||||
sqlite3StrAccumAppend(pAccum, zSpaces, N);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** On machines with a small stack size, you can redefine the
|
||||
** SQLITE_PRINT_BUF_SIZE to be less than 350. But beware - for
|
||||
|
@ -204,9 +219,8 @@ static int et_getdigit(LONGDOUBLE_TYPE *val, int *cnt){
|
|||
** seems to make a big difference in determining how fast this beast
|
||||
** will run.
|
||||
*/
|
||||
static int vxprintf(
|
||||
void (*func)(void*,const char*,int), /* Consumer of text */
|
||||
void *arg, /* First argument to the consumer */
|
||||
void sqlite3VXPrintf(
|
||||
StrAccum *pAccum, /* Accumulate results here */
|
||||
int useExtended, /* Allow extended %-conversions */
|
||||
const char *fmt, /* Format string */
|
||||
va_list ap /* arguments */
|
||||
|
@ -216,7 +230,6 @@ static int vxprintf(
|
|||
int precision; /* Precision of the current field */
|
||||
int length; /* Length of the field */
|
||||
int idx; /* A general purpose loop counter */
|
||||
int count; /* Total number of characters output */
|
||||
int width; /* Width of the current field */
|
||||
etByte flag_leftjustify; /* True if "-" flag is present */
|
||||
etByte flag_plussign; /* True if "+" flag is present */
|
||||
|
@ -232,12 +245,8 @@ static int vxprintf(
|
|||
const et_info *infop; /* Pointer to the appropriate info structure */
|
||||
char buf[etBUFSIZE]; /* Conversion buffer */
|
||||
char prefix; /* Prefix character. "+" or "-" or " " or '\0'. */
|
||||
etByte errorflag = 0; /* True if an error is encountered */
|
||||
etByte xtype; /* Conversion paradigm */
|
||||
etByte xtype = 0; /* Conversion paradigm */
|
||||
char *zExtra; /* Extra memory used for etTCLESCAPE conversions */
|
||||
static const char spaces[] =
|
||||
" ";
|
||||
#define etSPACESIZE (sizeof(spaces)-1)
|
||||
#ifndef SQLITE_OMIT_FLOATING_POINT
|
||||
int exp, e2; /* exponent of real numbers */
|
||||
double rounder; /* Used for rounding floating point values */
|
||||
|
@ -247,8 +256,7 @@ static int vxprintf(
|
|||
int nsd; /* Number of significant digits returned */
|
||||
#endif
|
||||
|
||||
func(arg,"",0);
|
||||
count = length = 0;
|
||||
length = 0;
|
||||
bufpt = 0;
|
||||
for(; (c=(*fmt))!=0; ++fmt){
|
||||
if( c!='%' ){
|
||||
|
@ -256,14 +264,11 @@ static int vxprintf(
|
|||
bufpt = (char *)fmt;
|
||||
amt = 1;
|
||||
while( (c=(*++fmt))!='%' && c!=0 ) amt++;
|
||||
(*func)(arg,bufpt,amt);
|
||||
count += amt;
|
||||
sqlite3StrAccumAppend(pAccum, bufpt, amt);
|
||||
if( c==0 ) break;
|
||||
}
|
||||
if( (c=(*++fmt))==0 ){
|
||||
errorflag = 1;
|
||||
(*func)(arg,"%",1);
|
||||
count++;
|
||||
sqlite3StrAccumAppend(pAccum, "%", 1);
|
||||
break;
|
||||
}
|
||||
/* Find out what flags are present */
|
||||
|
@ -331,20 +336,20 @@ static int vxprintf(
|
|||
}
|
||||
/* Fetch the info entry for the field */
|
||||
infop = 0;
|
||||
for(idx=0; idx<etNINFO; idx++){
|
||||
for(idx=0; idx<ArraySize(fmtinfo); idx++){
|
||||
if( c==fmtinfo[idx].fmttype ){
|
||||
infop = &fmtinfo[idx];
|
||||
if( useExtended || (infop->flags & FLAG_INTERN)==0 ){
|
||||
xtype = infop->type;
|
||||
}else{
|
||||
return -1;
|
||||
return;
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
zExtra = 0;
|
||||
if( infop==0 ){
|
||||
return -1;
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
|
@ -379,6 +384,7 @@ static int vxprintf(
|
|||
flag_longlong = sizeof(char*)==sizeof(i64);
|
||||
flag_long = sizeof(char*)==sizeof(long int);
|
||||
/* Fall through into the next case */
|
||||
case etORDINAL:
|
||||
case etRADIX:
|
||||
if( infop->flags & FLAG_SIGNED ){
|
||||
i64 v;
|
||||
|
@ -405,6 +411,16 @@ static int vxprintf(
|
|||
precision = width-(prefix!=0);
|
||||
}
|
||||
bufpt = &buf[etBUFSIZE-1];
|
||||
if( xtype==etORDINAL ){
|
||||
static const char zOrd[] = "thstndrd";
|
||||
int x = (int)(longvalue % 10);
|
||||
if( x>=4 || (longvalue/10)%10==1 ){
|
||||
x = 0;
|
||||
}
|
||||
buf[etBUFSIZE-3] = zOrd[x*2];
|
||||
buf[etBUFSIZE-2] = zOrd[x*2+1];
|
||||
bufpt -= 2;
|
||||
}
|
||||
{
|
||||
register const char *cset; /* Use registers for speed */
|
||||
register int base;
|
||||
|
@ -415,7 +431,7 @@ static int vxprintf(
|
|||
longvalue = longvalue/base;
|
||||
}while( longvalue>0 );
|
||||
}
|
||||
length = &buf[etBUFSIZE-1]-bufpt;
|
||||
length = (int)(&buf[etBUFSIZE-1]-bufpt);
|
||||
for(idx=precision-length; idx>0; idx--){
|
||||
*(--bufpt) = '0'; /* Zero pad */
|
||||
}
|
||||
|
@ -424,11 +440,9 @@ static int vxprintf(
|
|||
const char *pre;
|
||||
char x;
|
||||
pre = &aPrefix[infop->prefix];
|
||||
if( *bufpt!=pre[0] ){
|
||||
for(; (x=(*pre))!=0; pre++) *(--bufpt) = x;
|
||||
}
|
||||
}
|
||||
length = &buf[etBUFSIZE-1]-bufpt;
|
||||
length = (int)(&buf[etBUFSIZE-1]-bufpt);
|
||||
break;
|
||||
case etFLOAT:
|
||||
case etEXP:
|
||||
|
@ -456,7 +470,7 @@ static int vxprintf(
|
|||
if( xtype==etFLOAT ) realvalue += rounder;
|
||||
/* Normalize realvalue to within 10.0 > realvalue >= 1.0 */
|
||||
exp = 0;
|
||||
if( sqlite3_isnan(realvalue) ){
|
||||
if( sqlite3IsNaN((double)realvalue) ){
|
||||
bufpt = "NaN";
|
||||
length = 3;
|
||||
break;
|
||||
|
@ -465,9 +479,9 @@ static int vxprintf(
|
|||
while( realvalue>=1e32 && exp<=350 ){ realvalue *= 1e-32; exp+=32; }
|
||||
while( realvalue>=1e8 && exp<=350 ){ realvalue *= 1e-8; exp+=8; }
|
||||
while( realvalue>=10.0 && exp<=350 ){ realvalue *= 0.1; exp++; }
|
||||
while( realvalue<1e-8 && exp>=-350 ){ realvalue *= 1e8; exp-=8; }
|
||||
while( realvalue<1.0 && exp>=-350 ){ realvalue *= 10.0; exp--; }
|
||||
if( exp>350 || exp<-350 ){
|
||||
while( realvalue<1e-8 ){ realvalue *= 1e8; exp-=8; }
|
||||
while( realvalue<1.0 ){ realvalue *= 10.0; exp--; }
|
||||
if( exp>350 ){
|
||||
if( prefix=='-' ){
|
||||
bufpt = "-Inf";
|
||||
}else if( prefix=='+' ){
|
||||
|
@ -475,7 +489,7 @@ static int vxprintf(
|
|||
}else{
|
||||
bufpt = "Inf";
|
||||
}
|
||||
length = strlen(bufpt);
|
||||
length = sqlite3Strlen30(bufpt);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
@ -506,7 +520,7 @@ static int vxprintf(
|
|||
e2 = exp;
|
||||
}
|
||||
nsd = 0;
|
||||
flag_dp = (precision>0) | flag_alternateform | flag_altform2;
|
||||
flag_dp = (precision>0 ?1:0) | flag_alternateform | flag_altform2;
|
||||
/* The sign in front of the number */
|
||||
if( prefix ){
|
||||
*(bufpt++) = prefix;
|
||||
|
@ -525,7 +539,8 @@ static int vxprintf(
|
|||
}
|
||||
/* "0" digits after the decimal point but before the first
|
||||
** significant digit of the number */
|
||||
for(e2++; e2<0 && precision>0; precision--, e2++){
|
||||
for(e2++; e2<0; precision--, e2++){
|
||||
assert( precision>0 );
|
||||
*(bufpt++) = '0';
|
||||
}
|
||||
/* Significant digits after the decimal point */
|
||||
|
@ -545,7 +560,7 @@ static int vxprintf(
|
|||
}
|
||||
}
|
||||
/* Add the "eNNN" suffix */
|
||||
if( flag_exp || (xtype==etEXP && exp) ){
|
||||
if( flag_exp || xtype==etEXP ){
|
||||
*(bufpt++) = aDigits[infop->charset];
|
||||
if( exp<0 ){
|
||||
*(bufpt++) = '-'; exp = -exp;
|
||||
|
@ -553,18 +568,18 @@ static int vxprintf(
|
|||
*(bufpt++) = '+';
|
||||
}
|
||||
if( exp>=100 ){
|
||||
*(bufpt++) = (exp/100)+'0'; /* 100's digit */
|
||||
*(bufpt++) = (char)((exp/100)+'0'); /* 100's digit */
|
||||
exp %= 100;
|
||||
}
|
||||
*(bufpt++) = exp/10+'0'; /* 10's digit */
|
||||
*(bufpt++) = exp%10+'0'; /* 1's digit */
|
||||
*(bufpt++) = (char)(exp/10+'0'); /* 10's digit */
|
||||
*(bufpt++) = (char)(exp%10+'0'); /* 1's digit */
|
||||
}
|
||||
*bufpt = 0;
|
||||
|
||||
/* The converted number is in buf[] and zero terminated. Output it.
|
||||
** Note that the number is in the usual order, not reversed as with
|
||||
** integer conversions. */
|
||||
length = bufpt-buf;
|
||||
length = (int)(bufpt-buf);
|
||||
bufpt = buf;
|
||||
|
||||
/* Special case: Add leading zeros if the flag_zeropad flag is
|
||||
|
@ -582,7 +597,7 @@ static int vxprintf(
|
|||
#endif
|
||||
break;
|
||||
case etSIZE:
|
||||
*(va_arg(ap,int*)) = count;
|
||||
*(va_arg(ap,int*)) = pAccum->nChar;
|
||||
length = width = 0;
|
||||
break;
|
||||
case etPERCENT:
|
||||
|
@ -590,11 +605,11 @@ static int vxprintf(
|
|||
bufpt = buf;
|
||||
length = 1;
|
||||
break;
|
||||
case etCHARLIT:
|
||||
case etCHARX:
|
||||
c = buf[0] = (xtype==etCHARX ? va_arg(ap,int) : *++fmt);
|
||||
c = va_arg(ap,int);
|
||||
buf[0] = (char)c;
|
||||
if( precision>=0 ){
|
||||
for(idx=1; idx<precision; idx++) buf[idx] = c;
|
||||
for(idx=1; idx<precision; idx++) buf[idx] = (char)c;
|
||||
length = precision;
|
||||
}else{
|
||||
length =1;
|
||||
|
@ -609,14 +624,18 @@ static int vxprintf(
|
|||
}else if( xtype==etDYNSTRING ){
|
||||
zExtra = bufpt;
|
||||
}
|
||||
length = strlen(bufpt);
|
||||
if( precision>=0 && precision<length ) length = precision;
|
||||
if( precision>=0 ){
|
||||
for(length=0; length<precision && bufpt[length]; length++){}
|
||||
}else{
|
||||
length = sqlite3Strlen30(bufpt);
|
||||
}
|
||||
break;
|
||||
case etSQLESCAPE:
|
||||
case etSQLESCAPE2:
|
||||
case etSQLESCAPE3: {
|
||||
int i, j, n, ch, isnull;
|
||||
int i, j, n, isnull;
|
||||
int needQuote;
|
||||
char ch;
|
||||
char q = ((xtype==etSQLESCAPE3)?'"':'\''); /* Quote character */
|
||||
char *escarg = va_arg(ap,char*);
|
||||
isnull = escarg==0;
|
||||
|
@ -627,8 +646,11 @@ static int vxprintf(
|
|||
needQuote = !isnull && xtype==etSQLESCAPE2;
|
||||
n += i + 1 + needQuote*2;
|
||||
if( n>etBUFSIZE ){
|
||||
bufpt = zExtra = sqliteMalloc( n );
|
||||
if( bufpt==0 ) return -1;
|
||||
bufpt = zExtra = sqlite3Malloc( n );
|
||||
if( bufpt==0 ){
|
||||
pAccum->mallocFailed = 1;
|
||||
return;
|
||||
}
|
||||
}else{
|
||||
bufpt = buf;
|
||||
}
|
||||
|
@ -647,8 +669,8 @@ static int vxprintf(
|
|||
}
|
||||
case etTOKEN: {
|
||||
Token *pToken = va_arg(ap, Token*);
|
||||
if( pToken && pToken->z ){
|
||||
(*func)(arg, (char*)pToken->z, pToken->n);
|
||||
if( pToken ){
|
||||
sqlite3StrAccumAppend(pAccum, (const char*)pToken->z, pToken->n);
|
||||
}
|
||||
length = width = 0;
|
||||
break;
|
||||
|
@ -658,11 +680,11 @@ static int vxprintf(
|
|||
int k = va_arg(ap, int);
|
||||
struct SrcList_item *pItem = &pSrc->a[k];
|
||||
assert( k>=0 && k<pSrc->nSrc );
|
||||
if( pItem->zDatabase && pItem->zDatabase[0] ){
|
||||
(*func)(arg, pItem->zDatabase, strlen(pItem->zDatabase));
|
||||
(*func)(arg, ".", 1);
|
||||
if( pItem->zDatabase ){
|
||||
sqlite3StrAccumAppend(pAccum, pItem->zDatabase, -1);
|
||||
sqlite3StrAccumAppend(pAccum, ".", 1);
|
||||
}
|
||||
(*func)(arg, pItem->zName, strlen(pItem->zName));
|
||||
sqlite3StrAccumAppend(pAccum, pItem->zName, -1);
|
||||
length = width = 0;
|
||||
break;
|
||||
}
|
||||
|
@ -676,161 +698,181 @@ static int vxprintf(
|
|||
register int nspace;
|
||||
nspace = width-length;
|
||||
if( nspace>0 ){
|
||||
count += nspace;
|
||||
while( nspace>=etSPACESIZE ){
|
||||
(*func)(arg,spaces,etSPACESIZE);
|
||||
nspace -= etSPACESIZE;
|
||||
}
|
||||
if( nspace>0 ) (*func)(arg,spaces,nspace);
|
||||
appendSpace(pAccum, nspace);
|
||||
}
|
||||
}
|
||||
if( length>0 ){
|
||||
(*func)(arg,bufpt,length);
|
||||
count += length;
|
||||
sqlite3StrAccumAppend(pAccum, bufpt, length);
|
||||
}
|
||||
if( flag_leftjustify ){
|
||||
register int nspace;
|
||||
nspace = width-length;
|
||||
if( nspace>0 ){
|
||||
count += nspace;
|
||||
while( nspace>=etSPACESIZE ){
|
||||
(*func)(arg,spaces,etSPACESIZE);
|
||||
nspace -= etSPACESIZE;
|
||||
}
|
||||
if( nspace>0 ) (*func)(arg,spaces,nspace);
|
||||
appendSpace(pAccum, nspace);
|
||||
}
|
||||
}
|
||||
if( zExtra ){
|
||||
sqliteFree(zExtra);
|
||||
sqlite3_free(zExtra);
|
||||
}
|
||||
}/* End for loop over the format string */
|
||||
return errorflag ? -1 : count;
|
||||
} /* End of function */
|
||||
|
||||
|
||||
/* This structure is used to store state information about the
|
||||
** write to memory that is currently in progress.
|
||||
*/
|
||||
struct sgMprintf {
|
||||
char *zBase; /* A base allocation */
|
||||
char *zText; /* The string collected so far */
|
||||
int nChar; /* Length of the string so far */
|
||||
int nTotal; /* Output size if unconstrained */
|
||||
int nAlloc; /* Amount of space allocated in zText */
|
||||
void *(*xRealloc)(void*,int); /* Function used to realloc memory */
|
||||
};
|
||||
|
||||
/*
|
||||
** This function implements the callback from vxprintf.
|
||||
**
|
||||
** This routine add nNewChar characters of text in zNewText to
|
||||
** the sgMprintf structure pointed to by "arg".
|
||||
** Append N bytes of text from z to the StrAccum object.
|
||||
*/
|
||||
static void mout(void *arg, const char *zNewText, int nNewChar){
|
||||
struct sgMprintf *pM = (struct sgMprintf*)arg;
|
||||
pM->nTotal += nNewChar;
|
||||
if( pM->nChar + nNewChar + 1 > pM->nAlloc ){
|
||||
if( pM->xRealloc==0 ){
|
||||
nNewChar = pM->nAlloc - pM->nChar - 1;
|
||||
}else{
|
||||
int nAlloc = pM->nChar + nNewChar*2 + 1;
|
||||
if( pM->zText==pM->zBase ){
|
||||
pM->zText = pM->xRealloc(0, nAlloc);
|
||||
if( pM->zText && pM->nChar ){
|
||||
memcpy(pM->zText, pM->zBase, pM->nChar);
|
||||
void sqlite3StrAccumAppend(StrAccum *p, const char *z, int N){
|
||||
if( p->tooBig | p->mallocFailed ){
|
||||
return;
|
||||
}
|
||||
if( N<0 ){
|
||||
N = sqlite3Strlen30(z);
|
||||
}
|
||||
if( N==0 || z==0 ){
|
||||
return;
|
||||
}
|
||||
if( p->nChar+N >= p->nAlloc ){
|
||||
char *zNew;
|
||||
if( !p->useMalloc ){
|
||||
p->tooBig = 1;
|
||||
N = p->nAlloc - p->nChar - 1;
|
||||
if( N<=0 ){
|
||||
return;
|
||||
}
|
||||
}else{
|
||||
char *zNew;
|
||||
zNew = pM->xRealloc(pM->zText, nAlloc);
|
||||
if( zNew ){
|
||||
pM->zText = zNew;
|
||||
i64 szNew = p->nChar;
|
||||
szNew += N + 1;
|
||||
if( szNew > p->mxAlloc ){
|
||||
sqlite3StrAccumReset(p);
|
||||
p->tooBig = 1;
|
||||
return;
|
||||
}else{
|
||||
p->nAlloc = (int)szNew;
|
||||
}
|
||||
zNew = sqlite3DbMallocRaw(p->db, p->nAlloc );
|
||||
if( zNew ){
|
||||
memcpy(zNew, p->zText, p->nChar);
|
||||
sqlite3StrAccumReset(p);
|
||||
p->zText = zNew;
|
||||
}else{
|
||||
p->mallocFailed = 1;
|
||||
sqlite3StrAccumReset(p);
|
||||
return;
|
||||
}
|
||||
}
|
||||
pM->nAlloc = nAlloc;
|
||||
}
|
||||
}
|
||||
if( pM->zText ){
|
||||
if( nNewChar>0 ){
|
||||
memcpy(&pM->zText[pM->nChar], zNewText, nNewChar);
|
||||
pM->nChar += nNewChar;
|
||||
}
|
||||
pM->zText[pM->nChar] = 0;
|
||||
}
|
||||
memcpy(&p->zText[p->nChar], z, N);
|
||||
p->nChar += N;
|
||||
}
|
||||
|
||||
/*
|
||||
** This routine is a wrapper around xprintf() that invokes mout() as
|
||||
** the consumer.
|
||||
** Finish off a string by making sure it is zero-terminated.
|
||||
** Return a pointer to the resulting string. Return a NULL
|
||||
** pointer if any kind of error was encountered.
|
||||
*/
|
||||
static char *base_vprintf(
|
||||
void *(*xRealloc)(void*,int), /* Routine to realloc memory. May be NULL */
|
||||
int useInternal, /* Use internal %-conversions if true */
|
||||
char *zInitBuf, /* Initially write here, before mallocing */
|
||||
int nInitBuf, /* Size of zInitBuf[] */
|
||||
const char *zFormat, /* format string */
|
||||
va_list ap /* arguments */
|
||||
){
|
||||
struct sgMprintf sM;
|
||||
sM.zBase = sM.zText = zInitBuf;
|
||||
sM.nChar = sM.nTotal = 0;
|
||||
sM.nAlloc = nInitBuf;
|
||||
sM.xRealloc = xRealloc;
|
||||
vxprintf(mout, &sM, useInternal, zFormat, ap);
|
||||
if( xRealloc ){
|
||||
if( sM.zText==sM.zBase ){
|
||||
sM.zText = xRealloc(0, sM.nChar+1);
|
||||
if( sM.zText ){
|
||||
memcpy(sM.zText, sM.zBase, sM.nChar+1);
|
||||
}
|
||||
}else if( sM.nAlloc>sM.nChar+10 ){
|
||||
char *zNew = xRealloc(sM.zText, sM.nChar+1);
|
||||
if( zNew ){
|
||||
sM.zText = zNew;
|
||||
char *sqlite3StrAccumFinish(StrAccum *p){
|
||||
if( p->zText ){
|
||||
p->zText[p->nChar] = 0;
|
||||
if( p->useMalloc && p->zText==p->zBase ){
|
||||
p->zText = sqlite3DbMallocRaw(p->db, p->nChar+1 );
|
||||
if( p->zText ){
|
||||
memcpy(p->zText, p->zBase, p->nChar+1);
|
||||
}else{
|
||||
p->mallocFailed = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
return sM.zText;
|
||||
return p->zText;
|
||||
}
|
||||
|
||||
/*
|
||||
** Realloc that is a real function, not a macro.
|
||||
** Reset an StrAccum string. Reclaim all malloced memory.
|
||||
*/
|
||||
static void *printf_realloc(void *old, int size){
|
||||
return sqliteRealloc(old,size);
|
||||
void sqlite3StrAccumReset(StrAccum *p){
|
||||
if( p->zText!=p->zBase ){
|
||||
sqlite3DbFree(p->db, p->zText);
|
||||
}
|
||||
p->zText = 0;
|
||||
}
|
||||
|
||||
/*
|
||||
** Initialize a string accumulator
|
||||
*/
|
||||
void sqlite3StrAccumInit(StrAccum *p, char *zBase, int n, int mx){
|
||||
p->zText = p->zBase = zBase;
|
||||
p->db = 0;
|
||||
p->nChar = 0;
|
||||
p->nAlloc = n;
|
||||
p->mxAlloc = mx;
|
||||
p->useMalloc = 1;
|
||||
p->tooBig = 0;
|
||||
p->mallocFailed = 0;
|
||||
}
|
||||
|
||||
/*
|
||||
** Print into memory obtained from sqliteMalloc(). Use the internal
|
||||
** %-conversion extensions.
|
||||
*/
|
||||
char *sqlite3VMPrintf(const char *zFormat, va_list ap){
|
||||
char zBase[SQLITE_PRINT_BUF_SIZE];
|
||||
return base_vprintf(printf_realloc, 1, zBase, sizeof(zBase), zFormat, ap);
|
||||
}
|
||||
|
||||
/*
|
||||
** Print into memory obtained from sqliteMalloc(). Use the internal
|
||||
** %-conversion extensions.
|
||||
*/
|
||||
char *sqlite3MPrintf(const char *zFormat, ...){
|
||||
va_list ap;
|
||||
char *sqlite3VMPrintf(sqlite3 *db, const char *zFormat, va_list ap){
|
||||
char *z;
|
||||
char zBase[SQLITE_PRINT_BUF_SIZE];
|
||||
StrAccum acc;
|
||||
sqlite3StrAccumInit(&acc, zBase, sizeof(zBase),
|
||||
db ? db->aLimit[SQLITE_LIMIT_LENGTH] : SQLITE_MAX_LENGTH);
|
||||
acc.db = db;
|
||||
sqlite3VXPrintf(&acc, 1, zFormat, ap);
|
||||
z = sqlite3StrAccumFinish(&acc);
|
||||
if( acc.mallocFailed && db ){
|
||||
db->mallocFailed = 1;
|
||||
}
|
||||
return z;
|
||||
}
|
||||
|
||||
/*
|
||||
** Print into memory obtained from sqliteMalloc(). Use the internal
|
||||
** %-conversion extensions.
|
||||
*/
|
||||
char *sqlite3MPrintf(sqlite3 *db, const char *zFormat, ...){
|
||||
va_list ap;
|
||||
char *z;
|
||||
va_start(ap, zFormat);
|
||||
z = base_vprintf(printf_realloc, 1, zBase, sizeof(zBase), zFormat, ap);
|
||||
z = sqlite3VMPrintf(db, zFormat, ap);
|
||||
va_end(ap);
|
||||
return z;
|
||||
}
|
||||
|
||||
/*
|
||||
** Like sqlite3MPrintf(), but call sqlite3DbFree() on zStr after formatting
|
||||
** the string and before returnning. This routine is intended to be used
|
||||
** to modify an existing string. For example:
|
||||
**
|
||||
** x = sqlite3MPrintf(db, x, "prefix %s suffix", x);
|
||||
**
|
||||
*/
|
||||
char *sqlite3MAppendf(sqlite3 *db, char *zStr, const char *zFormat, ...){
|
||||
va_list ap;
|
||||
char *z;
|
||||
va_start(ap, zFormat);
|
||||
z = sqlite3VMPrintf(db, zFormat, ap);
|
||||
va_end(ap);
|
||||
sqlite3DbFree(db, zStr);
|
||||
return z;
|
||||
}
|
||||
|
||||
/*
|
||||
** Print into memory obtained from sqlite3_malloc(). Omit the internal
|
||||
** %-conversion extensions.
|
||||
*/
|
||||
char *sqlite3_vmprintf(const char *zFormat, va_list ap){
|
||||
char *z;
|
||||
char zBase[SQLITE_PRINT_BUF_SIZE];
|
||||
return base_vprintf(sqlite3_realloc, 0, zBase, sizeof(zBase), zFormat, ap);
|
||||
StrAccum acc;
|
||||
#ifndef SQLITE_OMIT_AUTOINIT
|
||||
if( sqlite3_initialize() ) return 0;
|
||||
#endif
|
||||
sqlite3StrAccumInit(&acc, zBase, sizeof(zBase), SQLITE_MAX_LENGTH);
|
||||
sqlite3VXPrintf(&acc, 0, zFormat, ap);
|
||||
z = sqlite3StrAccumFinish(&acc);
|
||||
return z;
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -840,6 +882,9 @@ char *sqlite3_vmprintf(const char *zFormat, va_list ap){
|
|||
char *sqlite3_mprintf(const char *zFormat, ...){
|
||||
va_list ap;
|
||||
char *z;
|
||||
#ifndef SQLITE_OMIT_AUTOINIT
|
||||
if( sqlite3_initialize() ) return 0;
|
||||
#endif
|
||||
va_start(ap, zFormat);
|
||||
z = sqlite3_vmprintf(zFormat, ap);
|
||||
va_end(ap);
|
||||
|
@ -855,30 +900,36 @@ char *sqlite3_mprintf(const char *zFormat, ...){
|
|||
char *sqlite3_snprintf(int n, char *zBuf, const char *zFormat, ...){
|
||||
char *z;
|
||||
va_list ap;
|
||||
StrAccum acc;
|
||||
|
||||
if( n<=0 ){
|
||||
return zBuf;
|
||||
}
|
||||
zBuf[0] = 0;
|
||||
sqlite3StrAccumInit(&acc, zBuf, n, 0);
|
||||
acc.useMalloc = 0;
|
||||
va_start(ap,zFormat);
|
||||
z = base_vprintf(0, 0, zBuf, n, zFormat, ap);
|
||||
sqlite3VXPrintf(&acc, 0, zFormat, ap);
|
||||
va_end(ap);
|
||||
z = sqlite3StrAccumFinish(&acc);
|
||||
return z;
|
||||
}
|
||||
|
||||
#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) || defined(SQLITE_MEMDEBUG)
|
||||
#if defined(SQLITE_DEBUG)
|
||||
/*
|
||||
** A version of printf() that understands %lld. Used for debugging.
|
||||
** The printf() built into some versions of windows does not understand %lld
|
||||
** and segfaults if you give it a long long int.
|
||||
*/
|
||||
void sqlite3DebugPrintf(const char *zFormat, ...){
|
||||
extern int getpid(void);
|
||||
va_list ap;
|
||||
StrAccum acc;
|
||||
char zBuf[500];
|
||||
va_start(ap, zFormat);
|
||||
base_vprintf(0, 0, zBuf, sizeof(zBuf), zFormat, ap);
|
||||
sqlite3StrAccumInit(&acc, zBuf, sizeof(zBuf), 0);
|
||||
acc.useMalloc = 0;
|
||||
va_start(ap,zFormat);
|
||||
sqlite3VXPrintf(&acc, 0, zFormat, ap);
|
||||
va_end(ap);
|
||||
sqlite3StrAccumFinish(&acc);
|
||||
fprintf(stdout,"%s", zBuf);
|
||||
fflush(stdout);
|
||||
}
|
||||
|
|
107
random.c
107
random.c
|
@ -15,12 +15,20 @@
|
|||
** Random numbers are used by some of the database backends in order
|
||||
** to generate random integer keys for tables or random filenames.
|
||||
**
|
||||
** $Id: random.c,v 1.16 2007/01/05 14:38:56 drh Exp $
|
||||
** $Id: random.c,v 1.29 2008/12/10 19:26:24 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
#include "os.h"
|
||||
|
||||
|
||||
/* All threads share a single random number generator.
|
||||
** This structure is the current state of the generator.
|
||||
*/
|
||||
static SQLITE_WSD struct sqlite3PrngType {
|
||||
unsigned char isInit; /* True if initialized */
|
||||
unsigned char i, j; /* State variables */
|
||||
unsigned char s[256]; /* State variables */
|
||||
} sqlite3Prng;
|
||||
|
||||
/*
|
||||
** Get a single 8-bit random value from the RC4 PRNG. The Mutex
|
||||
** must be held while executing this routine.
|
||||
|
@ -37,17 +45,23 @@
|
|||
** (Later): Actually, OP_NewRowid does not depend on a good source of
|
||||
** randomness any more. But we will leave this code in all the same.
|
||||
*/
|
||||
static int randomByte(void){
|
||||
static u8 randomByte(void){
|
||||
unsigned char t;
|
||||
|
||||
/* All threads share a single random number generator.
|
||||
** This structure is the current state of the generator.
|
||||
|
||||
/* The "wsdPrng" macro will resolve to the pseudo-random number generator
|
||||
** state vector. If writable static data is unsupported on the target,
|
||||
** we have to locate the state vector at run-time. In the more common
|
||||
** case where writable static data is supported, wsdPrng can refer directly
|
||||
** to the "sqlite3Prng" state vector declared above.
|
||||
*/
|
||||
static struct {
|
||||
unsigned char isInit; /* True if initialized */
|
||||
unsigned char i, j; /* State variables */
|
||||
unsigned char s[256]; /* State variables */
|
||||
} prng;
|
||||
#ifdef SQLITE_OMIT_WSD
|
||||
struct sqlite3PrngType *p = &GLOBAL(struct sqlite3PrngType, sqlite3Prng);
|
||||
# define wsdPrng p[0]
|
||||
#else
|
||||
# define wsdPrng sqlite3Prng
|
||||
#endif
|
||||
|
||||
|
||||
/* Initialize the state of the random number generator once,
|
||||
** the first time this routine is called. The seed value does
|
||||
|
@ -58,43 +72,76 @@ static int randomByte(void){
|
|||
** encryption. The RC4 algorithm is being used as a PRNG (pseudo-random
|
||||
** number generator) not as an encryption device.
|
||||
*/
|
||||
if( !prng.isInit ){
|
||||
if( !wsdPrng.isInit ){
|
||||
int i;
|
||||
char k[256];
|
||||
prng.j = 0;
|
||||
prng.i = 0;
|
||||
sqlite3OsRandomSeed(k);
|
||||
wsdPrng.j = 0;
|
||||
wsdPrng.i = 0;
|
||||
sqlite3OsRandomness(sqlite3_vfs_find(0), 256, k);
|
||||
for(i=0; i<256; i++){
|
||||
prng.s[i] = i;
|
||||
wsdPrng.s[i] = (u8)i;
|
||||
}
|
||||
for(i=0; i<256; i++){
|
||||
prng.j += prng.s[i] + k[i];
|
||||
t = prng.s[prng.j];
|
||||
prng.s[prng.j] = prng.s[i];
|
||||
prng.s[i] = t;
|
||||
wsdPrng.j += wsdPrng.s[i] + k[i];
|
||||
t = wsdPrng.s[wsdPrng.j];
|
||||
wsdPrng.s[wsdPrng.j] = wsdPrng.s[i];
|
||||
wsdPrng.s[i] = t;
|
||||
}
|
||||
prng.isInit = 1;
|
||||
wsdPrng.isInit = 1;
|
||||
}
|
||||
|
||||
/* Generate and return single random byte
|
||||
*/
|
||||
prng.i++;
|
||||
t = prng.s[prng.i];
|
||||
prng.j += t;
|
||||
prng.s[prng.i] = prng.s[prng.j];
|
||||
prng.s[prng.j] = t;
|
||||
t += prng.s[prng.i];
|
||||
return prng.s[t];
|
||||
wsdPrng.i++;
|
||||
t = wsdPrng.s[wsdPrng.i];
|
||||
wsdPrng.j += t;
|
||||
wsdPrng.s[wsdPrng.i] = wsdPrng.s[wsdPrng.j];
|
||||
wsdPrng.s[wsdPrng.j] = t;
|
||||
t += wsdPrng.s[wsdPrng.i];
|
||||
return wsdPrng.s[t];
|
||||
}
|
||||
|
||||
/*
|
||||
** Return N random bytes.
|
||||
*/
|
||||
void sqlite3Randomness(int N, void *pBuf){
|
||||
void sqlite3_randomness(int N, void *pBuf){
|
||||
unsigned char *zBuf = pBuf;
|
||||
sqlite3OsEnterMutex();
|
||||
#if SQLITE_THREADSAFE
|
||||
sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_PRNG);
|
||||
#endif
|
||||
sqlite3_mutex_enter(mutex);
|
||||
while( N-- ){
|
||||
*(zBuf++) = randomByte();
|
||||
}
|
||||
sqlite3OsLeaveMutex();
|
||||
sqlite3_mutex_leave(mutex);
|
||||
}
|
||||
|
||||
#ifndef SQLITE_OMIT_BUILTIN_TEST
|
||||
/*
|
||||
** For testing purposes, we sometimes want to preserve the state of
|
||||
** PRNG and restore the PRNG to its saved state at a later time, or
|
||||
** to reset the PRNG to its initial state. These routines accomplish
|
||||
** those tasks.
|
||||
**
|
||||
** The sqlite3_test_control() interface calls these routines to
|
||||
** control the PRNG.
|
||||
*/
|
||||
static SQLITE_WSD struct sqlite3PrngType sqlite3SavedPrng;
|
||||
void sqlite3PrngSaveState(void){
|
||||
memcpy(
|
||||
&GLOBAL(struct sqlite3PrngType, sqlite3SavedPrng),
|
||||
&GLOBAL(struct sqlite3PrngType, sqlite3Prng),
|
||||
sizeof(sqlite3Prng)
|
||||
);
|
||||
}
|
||||
void sqlite3PrngRestoreState(void){
|
||||
memcpy(
|
||||
&GLOBAL(struct sqlite3PrngType, sqlite3Prng),
|
||||
&GLOBAL(struct sqlite3PrngType, sqlite3SavedPrng),
|
||||
sizeof(sqlite3Prng)
|
||||
);
|
||||
}
|
||||
void sqlite3PrngResetState(void){
|
||||
GLOBAL(struct sqlite3PrngType, sqlite3Prng).isInit = 0;
|
||||
}
|
||||
#endif /* SQLITE_OMIT_BUILTIN_TEST */
|
||||
|
|
238
rowset.c
Normal file
238
rowset.c
Normal file
|
@ -0,0 +1,238 @@
|
|||
/*
|
||||
** 2008 December 3
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
**
|
||||
** This module implements an object we call a "Row Set".
|
||||
**
|
||||
** The RowSet object is a bag of rowids. Rowids
|
||||
** are inserted into the bag in an arbitrary order. Then they are
|
||||
** pulled from the bag in sorted order. Rowids only appear in the
|
||||
** bag once. If the same rowid is inserted multiple times, the
|
||||
** second and subsequent inserts make no difference on the output.
|
||||
**
|
||||
** This implementation accumulates rowids in a linked list. For
|
||||
** output, it first sorts the linked list (removing duplicates during
|
||||
** the sort) then returns elements one by one by walking the list.
|
||||
**
|
||||
** Big chunks of rowid/next-ptr pairs are allocated at a time, to
|
||||
** reduce the malloc overhead.
|
||||
**
|
||||
** $Id: rowset.c,v 1.3 2009/01/13 20:14:16 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
/*
|
||||
** The number of rowset entries per allocation chunk.
|
||||
*/
|
||||
#define ROWSET_ENTRY_PER_CHUNK 63
|
||||
|
||||
/*
|
||||
** Each entry in a RowSet is an instance of the following
|
||||
** structure:
|
||||
*/
|
||||
struct RowSetEntry {
|
||||
i64 v; /* ROWID value for this entry */
|
||||
struct RowSetEntry *pNext; /* Next entry on a list of all entries */
|
||||
};
|
||||
|
||||
/*
|
||||
** Index entries are allocated in large chunks (instances of the
|
||||
** following structure) to reduce memory allocation overhead. The
|
||||
** chunks are kept on a linked list so that they can be deallocated
|
||||
** when the RowSet is destroyed.
|
||||
*/
|
||||
struct RowSetChunk {
|
||||
struct RowSetChunk *pNext; /* Next chunk on list of them all */
|
||||
struct RowSetEntry aEntry[ROWSET_ENTRY_PER_CHUNK]; /* Allocated entries */
|
||||
};
|
||||
|
||||
/*
|
||||
** A RowSet in an instance of the following structure.
|
||||
**
|
||||
** A typedef of this structure if found in sqliteInt.h.
|
||||
*/
|
||||
struct RowSet {
|
||||
struct RowSetChunk *pChunk; /* List of all chunk allocations */
|
||||
sqlite3 *db; /* The database connection */
|
||||
struct RowSetEntry *pEntry; /* List of entries in the rowset */
|
||||
struct RowSetEntry *pLast; /* Last entry on the pEntry list */
|
||||
struct RowSetEntry *pFresh; /* Source of new entry objects */
|
||||
u16 nFresh; /* Number of objects on pFresh */
|
||||
u8 isSorted; /* True if content is sorted */
|
||||
};
|
||||
|
||||
/*
|
||||
** Turn bulk memory into a RowSet object. N bytes of memory
|
||||
** are available at pSpace. The db pointer is used as a memory context
|
||||
** for any subsequent allocations that need to occur.
|
||||
** Return a pointer to the new RowSet object.
|
||||
**
|
||||
** It must be the case that N is sufficient to make a Rowset. If not
|
||||
** an assertion fault occurs.
|
||||
**
|
||||
** If N is larger than the minimum, use the surplus as an initial
|
||||
** allocation of entries available to be filled.
|
||||
*/
|
||||
RowSet *sqlite3RowSetInit(sqlite3 *db, void *pSpace, unsigned int N){
|
||||
RowSet *p;
|
||||
assert( N >= sizeof(*p) );
|
||||
p = pSpace;
|
||||
p->pChunk = 0;
|
||||
p->db = db;
|
||||
p->pEntry = 0;
|
||||
p->pLast = 0;
|
||||
p->pFresh = (struct RowSetEntry*)&p[1];
|
||||
p->nFresh = (u16)((N - sizeof(*p))/sizeof(struct RowSetEntry));
|
||||
p->isSorted = 1;
|
||||
return p;
|
||||
}
|
||||
|
||||
/*
|
||||
** Deallocate all chunks from a RowSet.
|
||||
*/
|
||||
void sqlite3RowSetClear(RowSet *p){
|
||||
struct RowSetChunk *pChunk, *pNextChunk;
|
||||
for(pChunk=p->pChunk; pChunk; pChunk = pNextChunk){
|
||||
pNextChunk = pChunk->pNext;
|
||||
sqlite3DbFree(p->db, pChunk);
|
||||
}
|
||||
p->pChunk = 0;
|
||||
p->nFresh = 0;
|
||||
p->pEntry = 0;
|
||||
p->pLast = 0;
|
||||
p->isSorted = 1;
|
||||
}
|
||||
|
||||
/*
|
||||
** Insert a new value into a RowSet.
|
||||
**
|
||||
** The mallocFailed flag of the database connection is set if a
|
||||
** memory allocation fails.
|
||||
*/
|
||||
void sqlite3RowSetInsert(RowSet *p, i64 rowid){
|
||||
struct RowSetEntry *pEntry;
|
||||
struct RowSetEntry *pLast;
|
||||
if( p==0 ) return; /* Must have been a malloc failure */
|
||||
if( p->nFresh==0 ){
|
||||
struct RowSetChunk *pNew;
|
||||
pNew = sqlite3DbMallocRaw(p->db, sizeof(*pNew));
|
||||
if( pNew==0 ){
|
||||
return;
|
||||
}
|
||||
pNew->pNext = p->pChunk;
|
||||
p->pChunk = pNew;
|
||||
p->pFresh = pNew->aEntry;
|
||||
p->nFresh = ROWSET_ENTRY_PER_CHUNK;
|
||||
}
|
||||
pEntry = p->pFresh++;
|
||||
p->nFresh--;
|
||||
pEntry->v = rowid;
|
||||
pEntry->pNext = 0;
|
||||
pLast = p->pLast;
|
||||
if( pLast ){
|
||||
if( p->isSorted && rowid<=pLast->v ){
|
||||
p->isSorted = 0;
|
||||
}
|
||||
pLast->pNext = pEntry;
|
||||
}else{
|
||||
assert( p->pEntry==0 );
|
||||
p->pEntry = pEntry;
|
||||
}
|
||||
p->pLast = pEntry;
|
||||
}
|
||||
|
||||
/*
|
||||
** Merge two lists of RowSet entries. Remove duplicates.
|
||||
**
|
||||
** The input lists are assumed to be in sorted order.
|
||||
*/
|
||||
static struct RowSetEntry *boolidxMerge(
|
||||
struct RowSetEntry *pA, /* First sorted list to be merged */
|
||||
struct RowSetEntry *pB /* Second sorted list to be merged */
|
||||
){
|
||||
struct RowSetEntry head;
|
||||
struct RowSetEntry *pTail;
|
||||
|
||||
pTail = &head;
|
||||
while( pA && pB ){
|
||||
assert( pA->pNext==0 || pA->v<=pA->pNext->v );
|
||||
assert( pB->pNext==0 || pB->v<=pB->pNext->v );
|
||||
if( pA->v<pB->v ){
|
||||
pTail->pNext = pA;
|
||||
pA = pA->pNext;
|
||||
pTail = pTail->pNext;
|
||||
}else if( pB->v<pA->v ){
|
||||
pTail->pNext = pB;
|
||||
pB = pB->pNext;
|
||||
pTail = pTail->pNext;
|
||||
}else{
|
||||
pA = pA->pNext;
|
||||
}
|
||||
}
|
||||
if( pA ){
|
||||
assert( pA->pNext==0 || pA->v<=pA->pNext->v );
|
||||
pTail->pNext = pA;
|
||||
}else{
|
||||
assert( pB==0 || pB->pNext==0 || pB->v<=pB->pNext->v );
|
||||
pTail->pNext = pB;
|
||||
}
|
||||
return head.pNext;
|
||||
}
|
||||
|
||||
/*
|
||||
** Sort all elements of the RowSet into ascending order.
|
||||
*/
|
||||
static void sqlite3RowSetSort(RowSet *p){
|
||||
unsigned int i;
|
||||
struct RowSetEntry *pEntry;
|
||||
struct RowSetEntry *aBucket[40];
|
||||
|
||||
assert( p->isSorted==0 );
|
||||
memset(aBucket, 0, sizeof(aBucket));
|
||||
while( p->pEntry ){
|
||||
pEntry = p->pEntry;
|
||||
p->pEntry = pEntry->pNext;
|
||||
pEntry->pNext = 0;
|
||||
for(i=0; aBucket[i]; i++){
|
||||
pEntry = boolidxMerge(aBucket[i],pEntry);
|
||||
aBucket[i] = 0;
|
||||
}
|
||||
aBucket[i] = pEntry;
|
||||
}
|
||||
pEntry = 0;
|
||||
for(i=0; i<sizeof(aBucket)/sizeof(aBucket[0]); i++){
|
||||
pEntry = boolidxMerge(pEntry,aBucket[i]);
|
||||
}
|
||||
p->pEntry = pEntry;
|
||||
p->pLast = 0;
|
||||
p->isSorted = 1;
|
||||
}
|
||||
|
||||
/*
|
||||
** Extract the next (smallest) element from the RowSet.
|
||||
** Write the element into *pRowid. Return 1 on success. Return
|
||||
** 0 if the RowSet is already empty.
|
||||
*/
|
||||
int sqlite3RowSetNext(RowSet *p, i64 *pRowid){
|
||||
if( !p->isSorted ){
|
||||
sqlite3RowSetSort(p);
|
||||
}
|
||||
if( p->pEntry ){
|
||||
*pRowid = p->pEntry->v;
|
||||
p->pEntry = p->pEntry->pNext;
|
||||
if( p->pEntry==0 ){
|
||||
sqlite3RowSetClear(p);
|
||||
}
|
||||
return 1;
|
||||
}else{
|
||||
return 0;
|
||||
}
|
||||
}
|
92
sqlite3ext.h
92
sqlite3ext.h
|
@ -15,7 +15,7 @@
|
|||
** as extensions by SQLite should #include this file instead of
|
||||
** sqlite3.h.
|
||||
**
|
||||
** @(#) $Id: sqlite3ext.h,v 1.12 2007/07/20 10:48:36 drh Exp $
|
||||
** @(#) $Id: sqlite3ext.h,v 1.25 2008/10/12 00:27:54 shane Exp $
|
||||
*/
|
||||
#ifndef _SQLITE3EXT_H_
|
||||
#define _SQLITE3EXT_H_
|
||||
|
@ -24,13 +24,13 @@
|
|||
typedef struct sqlite3_api_routines sqlite3_api_routines;
|
||||
|
||||
/*
|
||||
** The following structure hold pointers to all of the SQLite API
|
||||
** The following structure holds pointers to all of the SQLite API
|
||||
** routines.
|
||||
**
|
||||
** WARNING: In order to maintain backwards compatibility, add new
|
||||
** interfaces to the end of this structure only. If you insert new
|
||||
** interfaces in the middle of this structure, then older different
|
||||
** versions of SQLite will not be able to load each others shared
|
||||
** versions of SQLite will not be able to load each others' shared
|
||||
** libraries!
|
||||
*/
|
||||
struct sqlite3_api_routines {
|
||||
|
@ -78,7 +78,7 @@ struct sqlite3_api_routines {
|
|||
int (*complete)(const char*sql);
|
||||
int (*complete16)(const void*sql);
|
||||
int (*create_collation)(sqlite3*,const char*,int,void*,int(*)(void*,int,const void*,int,const void*));
|
||||
int (*create_collation16)(sqlite3*,const char*,int,void*,int(*)(void*,int,const void*,int,const void*));
|
||||
int (*create_collation16)(sqlite3*,const void*,int,void*,int(*)(void*,int,const void*,int,const void*));
|
||||
int (*create_function)(sqlite3*,const char*,int,int,void*,void (*xFunc)(sqlite3_context*,int,sqlite3_value**),void (*xStep)(sqlite3_context*,int,sqlite3_value**),void (*xFinal)(sqlite3_context*));
|
||||
int (*create_function16)(sqlite3*,const void*,int,int,void*,void (*xFunc)(sqlite3_context*,int,sqlite3_value**),void (*xStep)(sqlite3_context*,int,sqlite3_value**),void (*xFinal)(sqlite3_context*));
|
||||
int (*create_module)(sqlite3*,const char*,const sqlite3_module*,void*);
|
||||
|
@ -149,11 +149,50 @@ struct sqlite3_api_routines {
|
|||
const void * (*value_text16le)(sqlite3_value*);
|
||||
int (*value_type)(sqlite3_value*);
|
||||
char *(*vmprintf)(const char*,va_list);
|
||||
/* Added ??? */
|
||||
int (*overload_function)(sqlite3*, const char *zFuncName, int nArg);
|
||||
/* Added by 3.3.13 */
|
||||
int (*prepare_v2)(sqlite3*,const char*,int,sqlite3_stmt**,const char**);
|
||||
int (*prepare16_v2)(sqlite3*,const void*,int,sqlite3_stmt**,const void**);
|
||||
int (*clear_bindings)(sqlite3_stmt*);
|
||||
/* Added by 3.4.1 */
|
||||
int (*create_module_v2)(sqlite3*,const char*,const sqlite3_module*,void*,void (*xDestroy)(void *));
|
||||
/* Added by 3.5.0 */
|
||||
int (*bind_zeroblob)(sqlite3_stmt*,int,int);
|
||||
int (*blob_bytes)(sqlite3_blob*);
|
||||
int (*blob_close)(sqlite3_blob*);
|
||||
int (*blob_open)(sqlite3*,const char*,const char*,const char*,sqlite3_int64,int,sqlite3_blob**);
|
||||
int (*blob_read)(sqlite3_blob*,void*,int,int);
|
||||
int (*blob_write)(sqlite3_blob*,const void*,int,int);
|
||||
int (*create_collation_v2)(sqlite3*,const char*,int,void*,int(*)(void*,int,const void*,int,const void*),void(*)(void*));
|
||||
int (*file_control)(sqlite3*,const char*,int,void*);
|
||||
sqlite3_int64 (*memory_highwater)(int);
|
||||
sqlite3_int64 (*memory_used)(void);
|
||||
sqlite3_mutex *(*mutex_alloc)(int);
|
||||
void (*mutex_enter)(sqlite3_mutex*);
|
||||
void (*mutex_free)(sqlite3_mutex*);
|
||||
void (*mutex_leave)(sqlite3_mutex*);
|
||||
int (*mutex_try)(sqlite3_mutex*);
|
||||
int (*open_v2)(const char*,sqlite3**,int,const char*);
|
||||
int (*release_memory)(int);
|
||||
void (*result_error_nomem)(sqlite3_context*);
|
||||
void (*result_error_toobig)(sqlite3_context*);
|
||||
int (*sleep)(int);
|
||||
void (*soft_heap_limit)(int);
|
||||
sqlite3_vfs *(*vfs_find)(const char*);
|
||||
int (*vfs_register)(sqlite3_vfs*,int);
|
||||
int (*vfs_unregister)(sqlite3_vfs*);
|
||||
int (*xthreadsafe)(void);
|
||||
void (*result_zeroblob)(sqlite3_context*,int);
|
||||
void (*result_error_code)(sqlite3_context*,int);
|
||||
int (*test_control)(int, ...);
|
||||
void (*randomness)(int,void*);
|
||||
sqlite3 *(*context_db_handle)(sqlite3_context*);
|
||||
int (*extended_result_codes)(sqlite3*,int);
|
||||
int (*limit)(sqlite3*,int,int);
|
||||
sqlite3_stmt *(*next_stmt)(sqlite3*,sqlite3_stmt*);
|
||||
const char *(*sql)(sqlite3_stmt*);
|
||||
int (*status)(int,int*,int*,int);
|
||||
};
|
||||
|
||||
/*
|
||||
|
@ -169,7 +208,9 @@ struct sqlite3_api_routines {
|
|||
*/
|
||||
#ifndef SQLITE_CORE
|
||||
#define sqlite3_aggregate_context sqlite3_api->aggregate_context
|
||||
#ifndef SQLITE_OMIT_DEPRECATED
|
||||
#define sqlite3_aggregate_count sqlite3_api->aggregate_count
|
||||
#endif
|
||||
#define sqlite3_bind_blob sqlite3_api->bind_blob
|
||||
#define sqlite3_bind_double sqlite3_api->bind_double
|
||||
#define sqlite3_bind_int sqlite3_api->bind_int
|
||||
|
@ -225,14 +266,18 @@ struct sqlite3_api_routines {
|
|||
#define sqlite3_errmsg sqlite3_api->errmsg
|
||||
#define sqlite3_errmsg16 sqlite3_api->errmsg16
|
||||
#define sqlite3_exec sqlite3_api->exec
|
||||
#ifndef SQLITE_OMIT_DEPRECATED
|
||||
#define sqlite3_expired sqlite3_api->expired
|
||||
#endif
|
||||
#define sqlite3_finalize sqlite3_api->finalize
|
||||
#define sqlite3_free sqlite3_api->free
|
||||
#define sqlite3_free_table sqlite3_api->free_table
|
||||
#define sqlite3_get_autocommit sqlite3_api->get_autocommit
|
||||
#define sqlite3_get_auxdata sqlite3_api->get_auxdata
|
||||
#define sqlite3_get_table sqlite3_api->get_table
|
||||
#ifndef SQLITE_OMIT_DEPRECATED
|
||||
#define sqlite3_global_recover sqlite3_api->global_recover
|
||||
#endif
|
||||
#define sqlite3_interrupt sqlite3_api->interruptx
|
||||
#define sqlite3_last_insert_rowid sqlite3_api->last_insert_rowid
|
||||
#define sqlite3_libversion sqlite3_api->libversion
|
||||
|
@ -270,7 +315,9 @@ struct sqlite3_api_routines {
|
|||
#define sqlite3_thread_cleanup sqlite3_api->thread_cleanup
|
||||
#define sqlite3_total_changes sqlite3_api->total_changes
|
||||
#define sqlite3_trace sqlite3_api->trace
|
||||
#ifndef SQLITE_OMIT_DEPRECATED
|
||||
#define sqlite3_transfer_bindings sqlite3_api->transfer_bindings
|
||||
#endif
|
||||
#define sqlite3_update_hook sqlite3_api->update_hook
|
||||
#define sqlite3_user_data sqlite3_api->user_data
|
||||
#define sqlite3_value_blob sqlite3_api->value_blob
|
||||
|
@ -290,9 +337,44 @@ struct sqlite3_api_routines {
|
|||
#define sqlite3_prepare_v2 sqlite3_api->prepare_v2
|
||||
#define sqlite3_prepare16_v2 sqlite3_api->prepare16_v2
|
||||
#define sqlite3_clear_bindings sqlite3_api->clear_bindings
|
||||
#define sqlite3_bind_zeroblob sqlite3_api->bind_zeroblob
|
||||
#define sqlite3_blob_bytes sqlite3_api->blob_bytes
|
||||
#define sqlite3_blob_close sqlite3_api->blob_close
|
||||
#define sqlite3_blob_open sqlite3_api->blob_open
|
||||
#define sqlite3_blob_read sqlite3_api->blob_read
|
||||
#define sqlite3_blob_write sqlite3_api->blob_write
|
||||
#define sqlite3_create_collation_v2 sqlite3_api->create_collation_v2
|
||||
#define sqlite3_file_control sqlite3_api->file_control
|
||||
#define sqlite3_memory_highwater sqlite3_api->memory_highwater
|
||||
#define sqlite3_memory_used sqlite3_api->memory_used
|
||||
#define sqlite3_mutex_alloc sqlite3_api->mutex_alloc
|
||||
#define sqlite3_mutex_enter sqlite3_api->mutex_enter
|
||||
#define sqlite3_mutex_free sqlite3_api->mutex_free
|
||||
#define sqlite3_mutex_leave sqlite3_api->mutex_leave
|
||||
#define sqlite3_mutex_try sqlite3_api->mutex_try
|
||||
#define sqlite3_open_v2 sqlite3_api->open_v2
|
||||
#define sqlite3_release_memory sqlite3_api->release_memory
|
||||
#define sqlite3_result_error_nomem sqlite3_api->result_error_nomem
|
||||
#define sqlite3_result_error_toobig sqlite3_api->result_error_toobig
|
||||
#define sqlite3_sleep sqlite3_api->sleep
|
||||
#define sqlite3_soft_heap_limit sqlite3_api->soft_heap_limit
|
||||
#define sqlite3_vfs_find sqlite3_api->vfs_find
|
||||
#define sqlite3_vfs_register sqlite3_api->vfs_register
|
||||
#define sqlite3_vfs_unregister sqlite3_api->vfs_unregister
|
||||
#define sqlite3_threadsafe sqlite3_api->xthreadsafe
|
||||
#define sqlite3_result_zeroblob sqlite3_api->result_zeroblob
|
||||
#define sqlite3_result_error_code sqlite3_api->result_error_code
|
||||
#define sqlite3_test_control sqlite3_api->test_control
|
||||
#define sqlite3_randomness sqlite3_api->randomness
|
||||
#define sqlite3_context_db_handle sqlite3_api->context_db_handle
|
||||
#define sqlite3_extended_result_codes sqlite3_api->extended_result_codes
|
||||
#define sqlite3_limit sqlite3_api->limit
|
||||
#define sqlite3_next_stmt sqlite3_api->next_stmt
|
||||
#define sqlite3_sql sqlite3_api->sql
|
||||
#define sqlite3_status sqlite3_api->status
|
||||
#endif /* SQLITE_CORE */
|
||||
|
||||
#define SQLITE_EXTENSION_INIT1 const sqlite3_api_routines *sqlite3_api;
|
||||
#define SQLITE_EXTENSION_INIT1 const sqlite3_api_routines *sqlite3_api = 0;
|
||||
#define SQLITE_EXTENSION_INIT2(v) sqlite3_api = v;
|
||||
|
||||
#endif /* _SQLITE3EXT_H_ */
|
||||
|
|
1427
sqliteInt.h
1427
sqliteInt.h
File diff suppressed because it is too large
Load diff
|
@ -12,7 +12,7 @@
|
|||
**
|
||||
** This file defines various limits of what SQLite can process.
|
||||
**
|
||||
** @(#) $Id: sqliteLimit.h,v 1.1 2007/06/19 15:23:48 drh Exp $
|
||||
** @(#) $Id: sqliteLimit.h,v 1.10 2009/01/10 16:15:09 danielk1977 Exp $
|
||||
*/
|
||||
|
||||
/*
|
||||
|
@ -49,18 +49,24 @@
|
|||
|
||||
/*
|
||||
** The maximum length of a single SQL statement in bytes.
|
||||
** The hard limit here is the same as SQLITE_MAX_LENGTH.
|
||||
**
|
||||
** It used to be the case that setting this value to zero would
|
||||
** turn the limit off. That is no longer true. It is not possible
|
||||
** to turn this limit off.
|
||||
*/
|
||||
#ifndef SQLITE_MAX_SQL_LENGTH
|
||||
# define SQLITE_MAX_SQL_LENGTH 1000000
|
||||
# define SQLITE_MAX_SQL_LENGTH 1000000000
|
||||
#endif
|
||||
|
||||
/*
|
||||
** The maximum depth of an expression tree. This is limited to
|
||||
** some extent by SQLITE_MAX_SQL_LENGTH. But sometime you might
|
||||
** want to place more severe limits on the complexity of an
|
||||
** expression. A value of 0 (the default) means do not enforce
|
||||
** any limitation on expression tree depth.
|
||||
** expression.
|
||||
**
|
||||
** A value of 0 used to mean that the limit was not enforced.
|
||||
** But that is no longer true. The limit is now strictly enforced
|
||||
** at all times.
|
||||
*/
|
||||
#ifndef SQLITE_MAX_EXPR_DEPTH
|
||||
# define SQLITE_MAX_EXPR_DEPTH 1000
|
||||
|
@ -90,7 +96,7 @@
|
|||
** The maximum number of arguments to an SQL function.
|
||||
*/
|
||||
#ifndef SQLITE_MAX_FUNCTION_ARG
|
||||
# define SQLITE_MAX_FUNCTION_ARG 100
|
||||
# define SQLITE_MAX_FUNCTION_ARG 127
|
||||
#endif
|
||||
|
||||
/*
|
||||
|
@ -105,11 +111,9 @@
|
|||
#endif
|
||||
|
||||
/*
|
||||
** The maximum number of attached databases. This must be at least 2
|
||||
** in order to support the main database file (0) and the file used to
|
||||
** hold temporary tables (1). And it must be less than 32 because
|
||||
** we use a bitmask of databases with a u32 in places (for example
|
||||
** the Parse.cookieMask field).
|
||||
** The maximum number of attached databases. This must be between 0
|
||||
** and 30. The upper bound on 30 is because a 32-bit integer bitmap
|
||||
** is used internally to track attached databases.
|
||||
*/
|
||||
#ifndef SQLITE_MAX_ATTACHED
|
||||
# define SQLITE_MAX_ATTACHED 10
|
||||
|
@ -123,21 +127,49 @@
|
|||
# define SQLITE_MAX_VARIABLE_NUMBER 999
|
||||
#endif
|
||||
|
||||
/* Maximum page size. The upper bound on this value is 32768. This a limit
|
||||
** imposed by the necessity of storing the value in a 2-byte unsigned integer
|
||||
** and the fact that the page size must be a power of 2.
|
||||
**
|
||||
** If this limit is changed, then the compiled library is technically
|
||||
** incompatible with an SQLite library compiled with a different limit. If
|
||||
** a process operating on a database with a page-size of 65536 bytes
|
||||
** crashes, then an instance of SQLite compiled with the default page-size
|
||||
** limit will not be able to rollback the aborted transaction. This could
|
||||
** lead to database corruption.
|
||||
*/
|
||||
#ifndef SQLITE_MAX_PAGE_SIZE
|
||||
# define SQLITE_MAX_PAGE_SIZE 32768
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
** The default size of a database page.
|
||||
*/
|
||||
#ifndef SQLITE_DEFAULT_PAGE_SIZE
|
||||
# define SQLITE_DEFAULT_PAGE_SIZE 1024
|
||||
#endif
|
||||
|
||||
/* Maximum page size. The upper bound on this value is 32768. This a limit
|
||||
** imposed by the necessity of storing the value in a 2-byte unsigned integer
|
||||
** and the fact that the page size must be a power of 2.
|
||||
*/
|
||||
#ifndef SQLITE_MAX_PAGE_SIZE
|
||||
# define SQLITE_MAX_PAGE_SIZE 32768
|
||||
#if SQLITE_DEFAULT_PAGE_SIZE>SQLITE_MAX_PAGE_SIZE
|
||||
# undef SQLITE_DEFAULT_PAGE_SIZE
|
||||
# define SQLITE_DEFAULT_PAGE_SIZE SQLITE_MAX_PAGE_SIZE
|
||||
#endif
|
||||
|
||||
/*
|
||||
** Ordinarily, if no value is explicitly provided, SQLite creates databases
|
||||
** with page size SQLITE_DEFAULT_PAGE_SIZE. However, based on certain
|
||||
** device characteristics (sector-size and atomic write() support),
|
||||
** SQLite may choose a larger value. This constant is the maximum value
|
||||
** SQLite will choose on its own.
|
||||
*/
|
||||
#ifndef SQLITE_MAX_DEFAULT_PAGE_SIZE
|
||||
# define SQLITE_MAX_DEFAULT_PAGE_SIZE 8192
|
||||
#endif
|
||||
#if SQLITE_MAX_DEFAULT_PAGE_SIZE>SQLITE_MAX_PAGE_SIZE
|
||||
# undef SQLITE_MAX_DEFAULT_PAGE_SIZE
|
||||
# define SQLITE_MAX_DEFAULT_PAGE_SIZE SQLITE_MAX_PAGE_SIZE
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
** Maximum number of pages in one database file.
|
||||
**
|
||||
|
|
122
status.c
Normal file
122
status.c
Normal file
|
@ -0,0 +1,122 @@
|
|||
/*
|
||||
** 2008 June 18
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
**
|
||||
** This module implements the sqlite3_status() interface and related
|
||||
** functionality.
|
||||
**
|
||||
** $Id: status.c,v 1.9 2008/09/02 00:52:52 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
/*
|
||||
** Variables in which to record status information.
|
||||
*/
|
||||
typedef struct sqlite3StatType sqlite3StatType;
|
||||
static SQLITE_WSD struct sqlite3StatType {
|
||||
int nowValue[9]; /* Current value */
|
||||
int mxValue[9]; /* Maximum value */
|
||||
} sqlite3Stat = { {0,}, {0,} };
|
||||
|
||||
|
||||
/* The "wsdStat" macro will resolve to the status information
|
||||
** state vector. If writable static data is unsupported on the target,
|
||||
** we have to locate the state vector at run-time. In the more common
|
||||
** case where writable static data is supported, wsdStat can refer directly
|
||||
** to the "sqlite3Stat" state vector declared above.
|
||||
*/
|
||||
#ifdef SQLITE_OMIT_WSD
|
||||
# define wsdStatInit sqlite3StatType *x = &GLOBAL(sqlite3StatType,sqlite3Stat)
|
||||
# define wsdStat x[0]
|
||||
#else
|
||||
# define wsdStatInit
|
||||
# define wsdStat sqlite3Stat
|
||||
#endif
|
||||
|
||||
/*
|
||||
** Return the current value of a status parameter.
|
||||
*/
|
||||
int sqlite3StatusValue(int op){
|
||||
wsdStatInit;
|
||||
assert( op>=0 && op<ArraySize(wsdStat.nowValue) );
|
||||
return wsdStat.nowValue[op];
|
||||
}
|
||||
|
||||
/*
|
||||
** Add N to the value of a status record. It is assumed that the
|
||||
** caller holds appropriate locks.
|
||||
*/
|
||||
void sqlite3StatusAdd(int op, int N){
|
||||
wsdStatInit;
|
||||
assert( op>=0 && op<ArraySize(wsdStat.nowValue) );
|
||||
wsdStat.nowValue[op] += N;
|
||||
if( wsdStat.nowValue[op]>wsdStat.mxValue[op] ){
|
||||
wsdStat.mxValue[op] = wsdStat.nowValue[op];
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Set the value of a status to X.
|
||||
*/
|
||||
void sqlite3StatusSet(int op, int X){
|
||||
wsdStatInit;
|
||||
assert( op>=0 && op<ArraySize(wsdStat.nowValue) );
|
||||
wsdStat.nowValue[op] = X;
|
||||
if( wsdStat.nowValue[op]>wsdStat.mxValue[op] ){
|
||||
wsdStat.mxValue[op] = wsdStat.nowValue[op];
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Query status information.
|
||||
**
|
||||
** This implementation assumes that reading or writing an aligned
|
||||
** 32-bit integer is an atomic operation. If that assumption is not true,
|
||||
** then this routine is not threadsafe.
|
||||
*/
|
||||
int sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetFlag){
|
||||
wsdStatInit;
|
||||
if( op<0 || op>=ArraySize(wsdStat.nowValue) ){
|
||||
return SQLITE_MISUSE;
|
||||
}
|
||||
*pCurrent = wsdStat.nowValue[op];
|
||||
*pHighwater = wsdStat.mxValue[op];
|
||||
if( resetFlag ){
|
||||
wsdStat.mxValue[op] = wsdStat.nowValue[op];
|
||||
}
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Query status information for a single database connection
|
||||
*/
|
||||
int sqlite3_db_status(
|
||||
sqlite3 *db, /* The database connection whose status is desired */
|
||||
int op, /* Status verb */
|
||||
int *pCurrent, /* Write current value here */
|
||||
int *pHighwater, /* Write high-water mark here */
|
||||
int resetFlag /* Reset high-water mark if true */
|
||||
){
|
||||
switch( op ){
|
||||
case SQLITE_DBSTATUS_LOOKASIDE_USED: {
|
||||
*pCurrent = db->lookaside.nOut;
|
||||
*pHighwater = db->lookaside.mxOut;
|
||||
if( resetFlag ){
|
||||
db->lookaside.mxOut = db->lookaside.nOut;
|
||||
}
|
||||
break;
|
||||
}
|
||||
default: {
|
||||
return SQLITE_ERROR;
|
||||
}
|
||||
}
|
||||
return SQLITE_OK;
|
||||
}
|
46
table.c
46
table.c
|
@ -15,6 +15,8 @@
|
|||
**
|
||||
** These routines are in a separate files so that they will not be linked
|
||||
** if they are not used.
|
||||
**
|
||||
** $Id: table.c,v 1.38 2008/12/10 19:26:24 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
#include <stdlib.h>
|
||||
|
@ -70,17 +72,15 @@ static int sqlite3_get_table_cb(void *pArg, int nCol, char **argv, char **colv){
|
|||
if( p->nRow==0 ){
|
||||
p->nColumn = nCol;
|
||||
for(i=0; i<nCol; i++){
|
||||
if( colv[i]==0 ){
|
||||
z = sqlite3_mprintf("");
|
||||
}else{
|
||||
z = sqlite3_mprintf("%s", colv[i]);
|
||||
}
|
||||
if( z==0 ) goto malloc_failed;
|
||||
p->azResult[p->nData++] = z;
|
||||
}
|
||||
}else if( p->nColumn!=nCol ){
|
||||
sqlite3SetString(&p->zErrMsg,
|
||||
"sqlite3_get_table() called with two or more incompatible queries",
|
||||
(char*)0);
|
||||
sqlite3_free(p->zErrMsg);
|
||||
p->zErrMsg = sqlite3_mprintf(
|
||||
"sqlite3_get_table() called with two or more incompatible queries"
|
||||
);
|
||||
p->rc = SQLITE_ERROR;
|
||||
return 1;
|
||||
}
|
||||
|
@ -92,7 +92,7 @@ static int sqlite3_get_table_cb(void *pArg, int nCol, char **argv, char **colv){
|
|||
if( argv[i]==0 ){
|
||||
z = 0;
|
||||
}else{
|
||||
int n = strlen(argv[i])+1;
|
||||
int n = sqlite3Strlen30(argv[i])+1;
|
||||
z = sqlite3_malloc( n );
|
||||
if( z==0 ) goto malloc_failed;
|
||||
memcpy(z, argv[i], n);
|
||||
|
@ -128,7 +128,7 @@ int sqlite3_get_table(
|
|||
){
|
||||
int rc;
|
||||
TabResult res;
|
||||
if( pazResult==0 ){ return SQLITE_ERROR; }
|
||||
|
||||
*pazResult = 0;
|
||||
if( pnColumn ) *pnColumn = 0;
|
||||
if( pnRow ) *pnRow = 0;
|
||||
|
@ -139,14 +139,15 @@ int sqlite3_get_table(
|
|||
res.nData = 1;
|
||||
res.nAlloc = 20;
|
||||
res.rc = SQLITE_OK;
|
||||
res.azResult = sqlite3_malloc( sizeof(char*)*res.nAlloc );
|
||||
if( res.azResult==0 ) return SQLITE_NOMEM;
|
||||
res.azResult = sqlite3_malloc(sizeof(char*)*res.nAlloc );
|
||||
if( res.azResult==0 ){
|
||||
db->errCode = SQLITE_NOMEM;
|
||||
return SQLITE_NOMEM;
|
||||
}
|
||||
res.azResult[0] = 0;
|
||||
rc = sqlite3_exec(db, zSql, sqlite3_get_table_cb, &res, pzErrMsg);
|
||||
if( res.azResult ){
|
||||
assert( sizeof(res.azResult[0])>= sizeof(res.nData) );
|
||||
res.azResult[0] = (char*)res.nData;
|
||||
}
|
||||
res.azResult[0] = SQLITE_INT_TO_PTR(res.nData);
|
||||
if( (rc&0xff)==SQLITE_ABORT ){
|
||||
sqlite3_free_table(&res.azResult[1]);
|
||||
if( res.zErrMsg ){
|
||||
|
@ -154,21 +155,22 @@ int sqlite3_get_table(
|
|||
sqlite3_free(*pzErrMsg);
|
||||
*pzErrMsg = sqlite3_mprintf("%s",res.zErrMsg);
|
||||
}
|
||||
sqliteFree(res.zErrMsg);
|
||||
sqlite3_free(res.zErrMsg);
|
||||
}
|
||||
db->errCode = res.rc;
|
||||
return res.rc & db->errMask;
|
||||
db->errCode = res.rc; /* Assume 32-bit assignment is atomic */
|
||||
return res.rc;
|
||||
}
|
||||
sqliteFree(res.zErrMsg);
|
||||
sqlite3_free(res.zErrMsg);
|
||||
if( rc!=SQLITE_OK ){
|
||||
sqlite3_free_table(&res.azResult[1]);
|
||||
return rc & db->errMask;
|
||||
return rc;
|
||||
}
|
||||
if( res.nAlloc>res.nData ){
|
||||
char **azNew;
|
||||
azNew = sqlite3_realloc( res.azResult, sizeof(char*)*(res.nData+1) );
|
||||
if( azNew==0 ){
|
||||
sqlite3_free_table(&res.azResult[1]);
|
||||
db->errCode = SQLITE_NOMEM;
|
||||
return SQLITE_NOMEM;
|
||||
}
|
||||
res.nAlloc = res.nData+1;
|
||||
|
@ -177,7 +179,7 @@ int sqlite3_get_table(
|
|||
*pazResult = &res.azResult[1];
|
||||
if( pnColumn ) *pnColumn = res.nColumn;
|
||||
if( pnRow ) *pnRow = res.nRow;
|
||||
return rc & db->errMask;
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -189,8 +191,8 @@ void sqlite3_free_table(
|
|||
if( azResult ){
|
||||
int i, n;
|
||||
azResult--;
|
||||
if( azResult==0 ) return;
|
||||
n = (int)azResult[0];
|
||||
assert( azResult!=0 );
|
||||
n = SQLITE_PTR_TO_INT(azResult[0]);
|
||||
for(i=1; i<n; i++){ if( azResult[i] ) sqlite3_free(azResult[i]); }
|
||||
sqlite3_free(azResult);
|
||||
}
|
||||
|
|
100
tokenize.c
100
tokenize.c
|
@ -15,10 +15,9 @@
|
|||
** individual tokens and sends those tokens one-by-one over to the
|
||||
** parser for analysis.
|
||||
**
|
||||
** $Id: tokenize.c,v 1.131 2007/07/23 19:31:17 drh Exp $
|
||||
** $Id: tokenize.c,v 1.152 2008/09/01 15:52:11 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
#include "os.h"
|
||||
#include <ctype.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
|
@ -86,7 +85,7 @@ const unsigned char ebcdicToAscii[] = {
|
|||
** But the feature is undocumented.
|
||||
*/
|
||||
#ifdef SQLITE_ASCII
|
||||
const char sqlite3IsIdChar[] = {
|
||||
const char sqlite3IsAsciiIdChar[] = {
|
||||
/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
|
||||
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */
|
||||
|
@ -95,10 +94,10 @@ const char sqlite3IsIdChar[] = {
|
|||
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */
|
||||
};
|
||||
#define IdChar(C) (((c=C)&0x80)!=0 || (c>0x1f && sqlite3IsIdChar[c-0x20]))
|
||||
#define IdChar(C) (((c=C)&0x80)!=0 || (c>0x1f && sqlite3IsAsciiIdChar[c-0x20]))
|
||||
#endif
|
||||
#ifdef SQLITE_EBCDIC
|
||||
const char sqlite3IsIdChar[] = {
|
||||
const char sqlite3IsEbcdicIdChar[] = {
|
||||
/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
|
||||
0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 4x */
|
||||
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, /* 5x */
|
||||
|
@ -113,7 +112,7 @@ const char sqlite3IsIdChar[] = {
|
|||
0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, /* Ex */
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, /* Fx */
|
||||
};
|
||||
#define IdChar(C) (((c=C)>=0x42 && sqlite3IsIdChar[c-0x40]))
|
||||
#define IdChar(C) (((c=C)>=0x42 && sqlite3IsEbcdicIdChar[c-0x40]))
|
||||
#endif
|
||||
|
||||
|
||||
|
@ -121,7 +120,7 @@ const char sqlite3IsIdChar[] = {
|
|||
** Return the length of the token that begins at z[0].
|
||||
** Store the token type in *tokenType before returning.
|
||||
*/
|
||||
static int getToken(const unsigned char *z, int *tokenType){
|
||||
int sqlite3GetToken(const unsigned char *z, int *tokenType){
|
||||
int i, c;
|
||||
switch( *z ){
|
||||
case ' ': case '\t': case '\n': case '\f': case '\r': {
|
||||
|
@ -132,7 +131,7 @@ static int getToken(const unsigned char *z, int *tokenType){
|
|||
case '-': {
|
||||
if( z[1]=='-' ){
|
||||
for(i=2; (c=z[i])!=0 && c!='\n'; i++){}
|
||||
*tokenType = TK_COMMENT;
|
||||
*tokenType = TK_SPACE;
|
||||
return i;
|
||||
}
|
||||
*tokenType = TK_MINUS;
|
||||
|
@ -165,7 +164,7 @@ static int getToken(const unsigned char *z, int *tokenType){
|
|||
}
|
||||
for(i=3, c=z[2]; (c!='*' || z[i]!='/') && (c=z[i])!=0; i++){}
|
||||
if( c ) i++;
|
||||
*tokenType = TK_COMMENT;
|
||||
*tokenType = TK_SPACE;
|
||||
return i;
|
||||
}
|
||||
case '%': {
|
||||
|
@ -246,9 +245,12 @@ static int getToken(const unsigned char *z, int *tokenType){
|
|||
}
|
||||
}
|
||||
}
|
||||
if( c ){
|
||||
if( c=='\'' ){
|
||||
*tokenType = TK_STRING;
|
||||
return i+1;
|
||||
}else if( c!=0 ){
|
||||
*tokenType = TK_ID;
|
||||
return i+1;
|
||||
}else{
|
||||
*tokenType = TK_ILLEGAL;
|
||||
return i;
|
||||
|
@ -293,7 +295,7 @@ static int getToken(const unsigned char *z, int *tokenType){
|
|||
}
|
||||
case '[': {
|
||||
for(i=1, c=z[0]; c!=']' && (c=z[i])!=0; i++){}
|
||||
*tokenType = TK_ID;
|
||||
*tokenType = c==']' ? TK_ID : TK_ILLEGAL;
|
||||
return i;
|
||||
}
|
||||
case '?': {
|
||||
|
@ -345,19 +347,14 @@ static int getToken(const unsigned char *z, int *tokenType){
|
|||
}
|
||||
#ifndef SQLITE_OMIT_BLOB_LITERAL
|
||||
case 'x': case 'X': {
|
||||
if( (c=z[1])=='\'' || c=='"' ){
|
||||
int delim = c;
|
||||
if( z[1]=='\'' ){
|
||||
*tokenType = TK_BLOB;
|
||||
for(i=2; (c=z[i])!=0; i++){
|
||||
if( c==delim ){
|
||||
if( i%2 ) *tokenType = TK_ILLEGAL;
|
||||
break;
|
||||
}
|
||||
for(i=2; (c=z[i])!=0 && c!='\''; i++){
|
||||
if( !isxdigit(c) ){
|
||||
*tokenType = TK_ILLEGAL;
|
||||
return i;
|
||||
}
|
||||
}
|
||||
if( i%2 || !c ) *tokenType = TK_ILLEGAL;
|
||||
if( c ) i++;
|
||||
return i;
|
||||
}
|
||||
|
@ -376,16 +373,13 @@ static int getToken(const unsigned char *z, int *tokenType){
|
|||
*tokenType = TK_ILLEGAL;
|
||||
return 1;
|
||||
}
|
||||
int sqlite3GetToken(const unsigned char *z, int *tokenType){
|
||||
return getToken(z, tokenType);
|
||||
}
|
||||
|
||||
/*
|
||||
** Run the parser on the given SQL string. The parser structure is
|
||||
** passed in. An SQLITE_ status code is returned. If an error occurs
|
||||
** and pzErrMsg!=NULL then an error message might be written into
|
||||
** memory obtained from malloc() and *pzErrMsg made to point to that
|
||||
** error message. Or maybe not.
|
||||
** then an and attempt is made to write an error message into
|
||||
** memory obtained from sqlite3_malloc() and to make *pzErrMsg point to that
|
||||
** error message.
|
||||
*/
|
||||
int sqlite3RunParser(Parse *pParse, const char *zSql, char **pzErrMsg){
|
||||
int nErr = 0;
|
||||
|
@ -394,14 +388,18 @@ int sqlite3RunParser(Parse *pParse, const char *zSql, char **pzErrMsg){
|
|||
int tokenType;
|
||||
int lastTokenParsed = -1;
|
||||
sqlite3 *db = pParse->db;
|
||||
int mxSqlLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH];
|
||||
|
||||
if( db->activeVdbeCnt==0 ){
|
||||
db->u1.isInterrupted = 0;
|
||||
}
|
||||
pParse->rc = SQLITE_OK;
|
||||
pParse->zTail = pParse->zSql = zSql;
|
||||
i = 0;
|
||||
pEngine = sqlite3ParserAlloc((void*(*)(size_t))sqlite3MallocX);
|
||||
assert( pzErrMsg!=0 );
|
||||
pEngine = sqlite3ParserAlloc((void*(*)(size_t))sqlite3Malloc);
|
||||
if( pEngine==0 ){
|
||||
db->mallocFailed = 1;
|
||||
return SQLITE_NOMEM;
|
||||
}
|
||||
assert( pParse->sLastToken.dyn==0 );
|
||||
|
@ -411,33 +409,29 @@ int sqlite3RunParser(Parse *pParse, const char *zSql, char **pzErrMsg){
|
|||
assert( pParse->nVarExpr==0 );
|
||||
assert( pParse->nVarExprAlloc==0 );
|
||||
assert( pParse->apVarExpr==0 );
|
||||
pParse->zTail = pParse->zSql = zSql;
|
||||
while( !sqlite3MallocFailed() && zSql[i]!=0 ){
|
||||
while( !db->mallocFailed && zSql[i]!=0 ){
|
||||
assert( i>=0 );
|
||||
pParse->sLastToken.z = (u8*)&zSql[i];
|
||||
assert( pParse->sLastToken.dyn==0 );
|
||||
pParse->sLastToken.n = getToken((unsigned char*)&zSql[i],&tokenType);
|
||||
pParse->sLastToken.n = sqlite3GetToken((unsigned char*)&zSql[i],&tokenType);
|
||||
i += pParse->sLastToken.n;
|
||||
if( i>SQLITE_MAX_SQL_LENGTH ){
|
||||
if( i>mxSqlLen ){
|
||||
pParse->rc = SQLITE_TOOBIG;
|
||||
break;
|
||||
}
|
||||
switch( tokenType ){
|
||||
case TK_SPACE:
|
||||
case TK_COMMENT: {
|
||||
case TK_SPACE: {
|
||||
if( db->u1.isInterrupted ){
|
||||
pParse->rc = SQLITE_INTERRUPT;
|
||||
sqlite3SetString(pzErrMsg, "interrupt", (char*)0);
|
||||
sqlite3SetString(pzErrMsg, db, "interrupt");
|
||||
goto abort_parse;
|
||||
}
|
||||
break;
|
||||
}
|
||||
case TK_ILLEGAL: {
|
||||
if( pzErrMsg ){
|
||||
sqliteFree(*pzErrMsg);
|
||||
*pzErrMsg = sqlite3MPrintf("unrecognized token: \"%T\"",
|
||||
sqlite3DbFree(db, *pzErrMsg);
|
||||
*pzErrMsg = sqlite3MPrintf(db, "unrecognized token: \"%T\"",
|
||||
&pParse->sLastToken);
|
||||
}
|
||||
nErr++;
|
||||
goto abort_parse;
|
||||
}
|
||||
|
@ -463,21 +457,26 @@ abort_parse:
|
|||
}
|
||||
sqlite3Parser(pEngine, 0, pParse->sLastToken, pParse);
|
||||
}
|
||||
sqlite3ParserFree(pEngine, sqlite3FreeX);
|
||||
if( sqlite3MallocFailed() ){
|
||||
#ifdef YYTRACKMAXSTACKDEPTH
|
||||
sqlite3StatusSet(SQLITE_STATUS_PARSER_STACK,
|
||||
sqlite3ParserStackPeak(pEngine)
|
||||
);
|
||||
#endif /* YYDEBUG */
|
||||
sqlite3ParserFree(pEngine, sqlite3_free);
|
||||
if( db->mallocFailed ){
|
||||
pParse->rc = SQLITE_NOMEM;
|
||||
}
|
||||
if( pParse->rc!=SQLITE_OK && pParse->rc!=SQLITE_DONE && pParse->zErrMsg==0 ){
|
||||
sqlite3SetString(&pParse->zErrMsg, sqlite3ErrStr(pParse->rc), (char*)0);
|
||||
sqlite3SetString(&pParse->zErrMsg, db, "%s", sqlite3ErrStr(pParse->rc));
|
||||
}
|
||||
if( pParse->zErrMsg ){
|
||||
if( pzErrMsg && *pzErrMsg==0 ){
|
||||
if( *pzErrMsg==0 ){
|
||||
*pzErrMsg = pParse->zErrMsg;
|
||||
}else{
|
||||
sqliteFree(pParse->zErrMsg);
|
||||
sqlite3DbFree(db, pParse->zErrMsg);
|
||||
}
|
||||
pParse->zErrMsg = 0;
|
||||
if( !nErr ) nErr++;
|
||||
nErr++;
|
||||
}
|
||||
if( pParse->pVdbe && pParse->nErr>0 && pParse->nested==0 ){
|
||||
sqlite3VdbeDelete(pParse->pVdbe);
|
||||
|
@ -485,11 +484,14 @@ abort_parse:
|
|||
}
|
||||
#ifndef SQLITE_OMIT_SHARED_CACHE
|
||||
if( pParse->nested==0 ){
|
||||
sqliteFree(pParse->aTableLock);
|
||||
sqlite3DbFree(db, pParse->aTableLock);
|
||||
pParse->aTableLock = 0;
|
||||
pParse->nTableLock = 0;
|
||||
}
|
||||
#endif
|
||||
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
||||
sqlite3DbFree(db, pParse->apVtabLock);
|
||||
#endif
|
||||
|
||||
if( !IN_DECLARE_VTAB ){
|
||||
/* If the pParse->declareVtab flag is set, do not delete any table
|
||||
|
@ -499,8 +501,14 @@ abort_parse:
|
|||
sqlite3DeleteTable(pParse->pNewTable);
|
||||
}
|
||||
|
||||
sqlite3DeleteTrigger(pParse->pNewTrigger);
|
||||
sqliteFree(pParse->apVarExpr);
|
||||
sqlite3DeleteTrigger(db, pParse->pNewTrigger);
|
||||
sqlite3DbFree(db, pParse->apVarExpr);
|
||||
sqlite3DbFree(db, pParse->aAlias);
|
||||
while( pParse->pZombieTab ){
|
||||
Table *p = pParse->pZombieTab;
|
||||
pParse->pZombieTab = p->pNextZombie;
|
||||
sqlite3DeleteTable(p);
|
||||
}
|
||||
if( nErr>0 && (pParse->rc==SQLITE_OK || pParse->rc==SQLITE_DONE) ){
|
||||
pParse->rc = SQLITE_ERROR;
|
||||
}
|
||||
|
|
295
trigger.c
295
trigger.c
|
@ -8,7 +8,9 @@
|
|||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
*
|
||||
**
|
||||
**
|
||||
** $Id: trigger.c,v 1.133 2008/12/26 07:56:39 danielk1977 Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
|
@ -16,18 +18,18 @@
|
|||
/*
|
||||
** Delete a linked list of TriggerStep structures.
|
||||
*/
|
||||
void sqlite3DeleteTriggerStep(TriggerStep *pTriggerStep){
|
||||
void sqlite3DeleteTriggerStep(sqlite3 *db, TriggerStep *pTriggerStep){
|
||||
while( pTriggerStep ){
|
||||
TriggerStep * pTmp = pTriggerStep;
|
||||
pTriggerStep = pTriggerStep->pNext;
|
||||
|
||||
if( pTmp->target.dyn ) sqliteFree((char*)pTmp->target.z);
|
||||
sqlite3ExprDelete(pTmp->pWhere);
|
||||
sqlite3ExprListDelete(pTmp->pExprList);
|
||||
sqlite3SelectDelete(pTmp->pSelect);
|
||||
sqlite3IdListDelete(pTmp->pIdList);
|
||||
if( pTmp->target.dyn ) sqlite3DbFree(db, (char*)pTmp->target.z);
|
||||
sqlite3ExprDelete(db, pTmp->pWhere);
|
||||
sqlite3ExprListDelete(db, pTmp->pExprList);
|
||||
sqlite3SelectDelete(db, pTmp->pSelect);
|
||||
sqlite3IdListDelete(db, pTmp->pIdList);
|
||||
|
||||
sqliteFree(pTmp);
|
||||
sqlite3DbFree(db, pTmp);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -62,6 +64,8 @@ void sqlite3BeginTrigger(
|
|||
|
||||
assert( pName1!=0 ); /* pName1->z might be NULL, but not pName1 itself */
|
||||
assert( pName2!=0 );
|
||||
assert( op==TK_INSERT || op==TK_UPDATE || op==TK_DELETE );
|
||||
assert( op>0 && op<0xff );
|
||||
if( isTemp ){
|
||||
/* If TEMP was specified, then the trigger name may not be qualified. */
|
||||
if( pName2->n>0 ){
|
||||
|
@ -83,7 +87,7 @@ void sqlite3BeginTrigger(
|
|||
** If sqlite3SrcListLookup() returns 0, indicating the table does not
|
||||
** exist, the error is caught by the block below.
|
||||
*/
|
||||
if( !pTableName || sqlite3MallocFailed() ){
|
||||
if( !pTableName || db->mallocFailed ){
|
||||
goto trigger_cleanup;
|
||||
}
|
||||
pTab = sqlite3SrcListLookup(pParse, pTableName);
|
||||
|
@ -92,7 +96,7 @@ void sqlite3BeginTrigger(
|
|||
}
|
||||
|
||||
/* Ensure the table name matches database name and that the table exists */
|
||||
if( sqlite3MallocFailed() ) goto trigger_cleanup;
|
||||
if( db->mallocFailed ) goto trigger_cleanup;
|
||||
assert( pTableName->nSrc==1 );
|
||||
if( sqlite3FixInit(&sFix, pParse, iDb, "trigger", pName) &&
|
||||
sqlite3FixSrcList(&sFix, pTableName) ){
|
||||
|
@ -110,11 +114,12 @@ void sqlite3BeginTrigger(
|
|||
|
||||
/* Check that the trigger name is not reserved and that no trigger of the
|
||||
** specified name exists */
|
||||
zName = sqlite3NameFromToken(pName);
|
||||
zName = sqlite3NameFromToken(db, pName);
|
||||
if( !zName || SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
|
||||
goto trigger_cleanup;
|
||||
}
|
||||
if( sqlite3HashFind(&(db->aDb[iDb].pSchema->trigHash), zName,strlen(zName)) ){
|
||||
if( sqlite3HashFind(&(db->aDb[iDb].pSchema->trigHash),
|
||||
zName, sqlite3Strlen30(zName)) ){
|
||||
if( !noErr ){
|
||||
sqlite3ErrorMsg(pParse, "trigger %T already exists", pName);
|
||||
}
|
||||
|
@ -168,28 +173,28 @@ void sqlite3BeginTrigger(
|
|||
}
|
||||
|
||||
/* Build the Trigger object */
|
||||
pTrigger = (Trigger*)sqliteMalloc(sizeof(Trigger));
|
||||
pTrigger = (Trigger*)sqlite3DbMallocZero(db, sizeof(Trigger));
|
||||
if( pTrigger==0 ) goto trigger_cleanup;
|
||||
pTrigger->name = zName;
|
||||
zName = 0;
|
||||
pTrigger->table = sqliteStrDup(pTableName->a[0].zName);
|
||||
pTrigger->table = sqlite3DbStrDup(db, pTableName->a[0].zName);
|
||||
pTrigger->pSchema = db->aDb[iDb].pSchema;
|
||||
pTrigger->pTabSchema = pTab->pSchema;
|
||||
pTrigger->op = op;
|
||||
pTrigger->op = (u8)op;
|
||||
pTrigger->tr_tm = tr_tm==TK_BEFORE ? TRIGGER_BEFORE : TRIGGER_AFTER;
|
||||
pTrigger->pWhen = sqlite3ExprDup(pWhen);
|
||||
pTrigger->pColumns = sqlite3IdListDup(pColumns);
|
||||
sqlite3TokenCopy(&pTrigger->nameToken,pName);
|
||||
pTrigger->pWhen = sqlite3ExprDup(db, pWhen);
|
||||
pTrigger->pColumns = sqlite3IdListDup(db, pColumns);
|
||||
sqlite3TokenCopy(db, &pTrigger->nameToken,pName);
|
||||
assert( pParse->pNewTrigger==0 );
|
||||
pParse->pNewTrigger = pTrigger;
|
||||
|
||||
trigger_cleanup:
|
||||
sqliteFree(zName);
|
||||
sqlite3SrcListDelete(pTableName);
|
||||
sqlite3IdListDelete(pColumns);
|
||||
sqlite3ExprDelete(pWhen);
|
||||
sqlite3DbFree(db, zName);
|
||||
sqlite3SrcListDelete(db, pTableName);
|
||||
sqlite3IdListDelete(db, pColumns);
|
||||
sqlite3ExprDelete(db, pWhen);
|
||||
if( !pParse->pNewTrigger ){
|
||||
sqlite3DeleteTrigger(pTrigger);
|
||||
sqlite3DeleteTrigger(db, pTrigger);
|
||||
}else{
|
||||
assert( pParse->pNewTrigger==pTrigger );
|
||||
}
|
||||
|
@ -227,34 +232,23 @@ void sqlite3FinishTrigger(
|
|||
** build the sqlite_master entry
|
||||
*/
|
||||
if( !db->init.busy ){
|
||||
static const VdbeOpList insertTrig[] = {
|
||||
{ OP_NewRowid, 0, 0, 0 },
|
||||
{ OP_String8, 0, 0, "trigger" },
|
||||
{ OP_String8, 0, 0, 0 }, /* 2: trigger name */
|
||||
{ OP_String8, 0, 0, 0 }, /* 3: table name */
|
||||
{ OP_Integer, 0, 0, 0 },
|
||||
{ OP_String8, 0, 0, "CREATE TRIGGER "},
|
||||
{ OP_String8, 0, 0, 0 }, /* 6: SQL */
|
||||
{ OP_Concat, 0, 0, 0 },
|
||||
{ OP_MakeRecord, 5, 0, "aaada" },
|
||||
{ OP_Insert, 0, 0, 0 },
|
||||
};
|
||||
int addr;
|
||||
Vdbe *v;
|
||||
char *z;
|
||||
|
||||
/* Make an entry in the sqlite_master table */
|
||||
v = sqlite3GetVdbe(pParse);
|
||||
if( v==0 ) goto triggerfinish_cleanup;
|
||||
sqlite3BeginWriteOperation(pParse, 0, iDb);
|
||||
sqlite3OpenMasterTable(pParse, iDb);
|
||||
addr = sqlite3VdbeAddOpList(v, ArraySize(insertTrig), insertTrig);
|
||||
sqlite3VdbeChangeP3(v, addr+2, pTrig->name, 0);
|
||||
sqlite3VdbeChangeP3(v, addr+3, pTrig->table, 0);
|
||||
sqlite3VdbeChangeP3(v, addr+6, (char*)pAll->z, pAll->n);
|
||||
sqlite3ChangeCookie(db, v, iDb);
|
||||
sqlite3VdbeAddOp(v, OP_Close, 0, 0);
|
||||
sqlite3VdbeOp3(v, OP_ParseSchema, iDb, 0,
|
||||
sqlite3MPrintf("type='trigger' AND name='%q'", pTrig->name), P3_DYNAMIC);
|
||||
z = sqlite3DbStrNDup(db, (char*)pAll->z, pAll->n);
|
||||
sqlite3NestedParse(pParse,
|
||||
"INSERT INTO %Q.%s VALUES('trigger',%Q,%Q,0,'CREATE TRIGGER %q')",
|
||||
db->aDb[iDb].zName, SCHEMA_TABLE(iDb), pTrig->name,
|
||||
pTrig->table, z);
|
||||
sqlite3DbFree(db, z);
|
||||
sqlite3ChangeCookie(pParse, iDb);
|
||||
sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0, sqlite3MPrintf(
|
||||
db, "type='trigger' AND name='%q'", pTrig->name), P4_DYNAMIC
|
||||
);
|
||||
}
|
||||
|
||||
if( db->init.busy ){
|
||||
|
@ -262,12 +256,13 @@ void sqlite3FinishTrigger(
|
|||
Table *pTab;
|
||||
Trigger *pDel;
|
||||
pDel = sqlite3HashInsert(&db->aDb[iDb].pSchema->trigHash,
|
||||
pTrig->name, strlen(pTrig->name), pTrig);
|
||||
pTrig->name, sqlite3Strlen30(pTrig->name), pTrig);
|
||||
if( pDel ){
|
||||
assert( sqlite3MallocFailed() && pDel==pTrig );
|
||||
assert( pDel==pTrig );
|
||||
db->mallocFailed = 1;
|
||||
goto triggerfinish_cleanup;
|
||||
}
|
||||
n = strlen(pTrig->table) + 1;
|
||||
n = sqlite3Strlen30(pTrig->table) + 1;
|
||||
pTab = sqlite3HashFind(&pTrig->pTabSchema->tblHash, pTrig->table, n);
|
||||
assert( pTab!=0 );
|
||||
pTrig->pNext = pTab->pTrigger;
|
||||
|
@ -276,44 +271,44 @@ void sqlite3FinishTrigger(
|
|||
}
|
||||
|
||||
triggerfinish_cleanup:
|
||||
sqlite3DeleteTrigger(pTrig);
|
||||
sqlite3DeleteTrigger(db, pTrig);
|
||||
assert( !pParse->pNewTrigger );
|
||||
sqlite3DeleteTriggerStep(pStepList);
|
||||
sqlite3DeleteTriggerStep(db, pStepList);
|
||||
}
|
||||
|
||||
/*
|
||||
** Make a copy of all components of the given trigger step. This has
|
||||
** the effect of copying all Expr.token.z values into memory obtained
|
||||
** from sqliteMalloc(). As initially created, the Expr.token.z values
|
||||
** from sqlite3_malloc(). As initially created, the Expr.token.z values
|
||||
** all point to the input string that was fed to the parser. But that
|
||||
** string is ephemeral - it will go away as soon as the sqlite3_exec()
|
||||
** call that started the parser exits. This routine makes a persistent
|
||||
** copy of all the Expr.token.z strings so that the TriggerStep structure
|
||||
** will be valid even after the sqlite3_exec() call returns.
|
||||
*/
|
||||
static void sqlitePersistTriggerStep(TriggerStep *p){
|
||||
static void sqlitePersistTriggerStep(sqlite3 *db, TriggerStep *p){
|
||||
if( p->target.z ){
|
||||
p->target.z = (u8*)sqliteStrNDup((char*)p->target.z, p->target.n);
|
||||
p->target.z = (u8*)sqlite3DbStrNDup(db, (char*)p->target.z, p->target.n);
|
||||
p->target.dyn = 1;
|
||||
}
|
||||
if( p->pSelect ){
|
||||
Select *pNew = sqlite3SelectDup(p->pSelect);
|
||||
sqlite3SelectDelete(p->pSelect);
|
||||
Select *pNew = sqlite3SelectDup(db, p->pSelect);
|
||||
sqlite3SelectDelete(db, p->pSelect);
|
||||
p->pSelect = pNew;
|
||||
}
|
||||
if( p->pWhere ){
|
||||
Expr *pNew = sqlite3ExprDup(p->pWhere);
|
||||
sqlite3ExprDelete(p->pWhere);
|
||||
Expr *pNew = sqlite3ExprDup(db, p->pWhere);
|
||||
sqlite3ExprDelete(db, p->pWhere);
|
||||
p->pWhere = pNew;
|
||||
}
|
||||
if( p->pExprList ){
|
||||
ExprList *pNew = sqlite3ExprListDup(p->pExprList);
|
||||
sqlite3ExprListDelete(p->pExprList);
|
||||
ExprList *pNew = sqlite3ExprListDup(db, p->pExprList);
|
||||
sqlite3ExprListDelete(db, p->pExprList);
|
||||
p->pExprList = pNew;
|
||||
}
|
||||
if( p->pIdList ){
|
||||
IdList *pNew = sqlite3IdListDup(p->pIdList);
|
||||
sqlite3IdListDelete(p->pIdList);
|
||||
IdList *pNew = sqlite3IdListDup(db, p->pIdList);
|
||||
sqlite3IdListDelete(db, p->pIdList);
|
||||
p->pIdList = pNew;
|
||||
}
|
||||
}
|
||||
|
@ -325,17 +320,17 @@ static void sqlitePersistTriggerStep(TriggerStep *p){
|
|||
** The parser calls this routine when it finds a SELECT statement in
|
||||
** body of a TRIGGER.
|
||||
*/
|
||||
TriggerStep *sqlite3TriggerSelectStep(Select *pSelect){
|
||||
TriggerStep *pTriggerStep = sqliteMalloc(sizeof(TriggerStep));
|
||||
TriggerStep *sqlite3TriggerSelectStep(sqlite3 *db, Select *pSelect){
|
||||
TriggerStep *pTriggerStep = sqlite3DbMallocZero(db, sizeof(TriggerStep));
|
||||
if( pTriggerStep==0 ) {
|
||||
sqlite3SelectDelete(pSelect);
|
||||
sqlite3SelectDelete(db, pSelect);
|
||||
return 0;
|
||||
}
|
||||
|
||||
pTriggerStep->op = TK_SELECT;
|
||||
pTriggerStep->pSelect = pSelect;
|
||||
pTriggerStep->orconf = OE_Default;
|
||||
sqlitePersistTriggerStep(pTriggerStep);
|
||||
sqlitePersistTriggerStep(db, pTriggerStep);
|
||||
|
||||
return pTriggerStep;
|
||||
}
|
||||
|
@ -348,17 +343,19 @@ TriggerStep *sqlite3TriggerSelectStep(Select *pSelect){
|
|||
** body of a trigger.
|
||||
*/
|
||||
TriggerStep *sqlite3TriggerInsertStep(
|
||||
sqlite3 *db, /* The database connection */
|
||||
Token *pTableName, /* Name of the table into which we insert */
|
||||
IdList *pColumn, /* List of columns in pTableName to insert into */
|
||||
ExprList *pEList, /* The VALUE clause: a list of values to be inserted */
|
||||
Select *pSelect, /* A SELECT statement that supplies values */
|
||||
int orconf /* The conflict algorithm (OE_Abort, OE_Replace, etc.) */
|
||||
){
|
||||
TriggerStep *pTriggerStep = sqliteMalloc(sizeof(TriggerStep));
|
||||
TriggerStep *pTriggerStep;
|
||||
|
||||
assert(pEList == 0 || pSelect == 0);
|
||||
assert(pEList != 0 || pSelect != 0);
|
||||
assert(pEList != 0 || pSelect != 0 || db->mallocFailed);
|
||||
|
||||
pTriggerStep = sqlite3DbMallocZero(db, sizeof(TriggerStep));
|
||||
if( pTriggerStep ){
|
||||
pTriggerStep->op = TK_INSERT;
|
||||
pTriggerStep->pSelect = pSelect;
|
||||
|
@ -366,11 +363,11 @@ TriggerStep *sqlite3TriggerInsertStep(
|
|||
pTriggerStep->pIdList = pColumn;
|
||||
pTriggerStep->pExprList = pEList;
|
||||
pTriggerStep->orconf = orconf;
|
||||
sqlitePersistTriggerStep(pTriggerStep);
|
||||
sqlitePersistTriggerStep(db, pTriggerStep);
|
||||
}else{
|
||||
sqlite3IdListDelete(pColumn);
|
||||
sqlite3ExprListDelete(pEList);
|
||||
sqlite3SelectDup(pSelect);
|
||||
sqlite3IdListDelete(db, pColumn);
|
||||
sqlite3ExprListDelete(db, pEList);
|
||||
sqlite3SelectDelete(db, pSelect);
|
||||
}
|
||||
|
||||
return pTriggerStep;
|
||||
|
@ -382,15 +379,16 @@ TriggerStep *sqlite3TriggerInsertStep(
|
|||
** sees an UPDATE statement inside the body of a CREATE TRIGGER.
|
||||
*/
|
||||
TriggerStep *sqlite3TriggerUpdateStep(
|
||||
sqlite3 *db, /* The database connection */
|
||||
Token *pTableName, /* Name of the table to be updated */
|
||||
ExprList *pEList, /* The SET clause: list of column and new values */
|
||||
Expr *pWhere, /* The WHERE clause */
|
||||
int orconf /* The conflict algorithm. (OE_Abort, OE_Ignore, etc) */
|
||||
){
|
||||
TriggerStep *pTriggerStep = sqliteMalloc(sizeof(TriggerStep));
|
||||
TriggerStep *pTriggerStep = sqlite3DbMallocZero(db, sizeof(TriggerStep));
|
||||
if( pTriggerStep==0 ){
|
||||
sqlite3ExprListDelete(pEList);
|
||||
sqlite3ExprDelete(pWhere);
|
||||
sqlite3ExprListDelete(db, pEList);
|
||||
sqlite3ExprDelete(db, pWhere);
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@ -399,7 +397,7 @@ TriggerStep *sqlite3TriggerUpdateStep(
|
|||
pTriggerStep->pExprList = pEList;
|
||||
pTriggerStep->pWhere = pWhere;
|
||||
pTriggerStep->orconf = orconf;
|
||||
sqlitePersistTriggerStep(pTriggerStep);
|
||||
sqlitePersistTriggerStep(db, pTriggerStep);
|
||||
|
||||
return pTriggerStep;
|
||||
}
|
||||
|
@ -409,10 +407,14 @@ TriggerStep *sqlite3TriggerUpdateStep(
|
|||
** a pointer to that trigger step. The parser calls this routine when it
|
||||
** sees a DELETE statement inside the body of a CREATE TRIGGER.
|
||||
*/
|
||||
TriggerStep *sqlite3TriggerDeleteStep(Token *pTableName, Expr *pWhere){
|
||||
TriggerStep *pTriggerStep = sqliteMalloc(sizeof(TriggerStep));
|
||||
TriggerStep *sqlite3TriggerDeleteStep(
|
||||
sqlite3 *db, /* Database connection */
|
||||
Token *pTableName, /* The table from which rows are deleted */
|
||||
Expr *pWhere /* The WHERE clause */
|
||||
){
|
||||
TriggerStep *pTriggerStep = sqlite3DbMallocZero(db, sizeof(TriggerStep));
|
||||
if( pTriggerStep==0 ){
|
||||
sqlite3ExprDelete(pWhere);
|
||||
sqlite3ExprDelete(db, pWhere);
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@ -420,7 +422,7 @@ TriggerStep *sqlite3TriggerDeleteStep(Token *pTableName, Expr *pWhere){
|
|||
pTriggerStep->target = *pTableName;
|
||||
pTriggerStep->pWhere = pWhere;
|
||||
pTriggerStep->orconf = OE_Default;
|
||||
sqlitePersistTriggerStep(pTriggerStep);
|
||||
sqlitePersistTriggerStep(db, pTriggerStep);
|
||||
|
||||
return pTriggerStep;
|
||||
}
|
||||
|
@ -428,15 +430,15 @@ TriggerStep *sqlite3TriggerDeleteStep(Token *pTableName, Expr *pWhere){
|
|||
/*
|
||||
** Recursively delete a Trigger structure
|
||||
*/
|
||||
void sqlite3DeleteTrigger(Trigger *pTrigger){
|
||||
void sqlite3DeleteTrigger(sqlite3 *db, Trigger *pTrigger){
|
||||
if( pTrigger==0 ) return;
|
||||
sqlite3DeleteTriggerStep(pTrigger->step_list);
|
||||
sqliteFree(pTrigger->name);
|
||||
sqliteFree(pTrigger->table);
|
||||
sqlite3ExprDelete(pTrigger->pWhen);
|
||||
sqlite3IdListDelete(pTrigger->pColumns);
|
||||
if( pTrigger->nameToken.dyn ) sqliteFree((char*)pTrigger->nameToken.z);
|
||||
sqliteFree(pTrigger);
|
||||
sqlite3DeleteTriggerStep(db, pTrigger->step_list);
|
||||
sqlite3DbFree(db, pTrigger->name);
|
||||
sqlite3DbFree(db, pTrigger->table);
|
||||
sqlite3ExprDelete(db, pTrigger->pWhen);
|
||||
sqlite3IdListDelete(db, pTrigger->pColumns);
|
||||
if( pTrigger->nameToken.dyn ) sqlite3DbFree(db, (char*)pTrigger->nameToken.z);
|
||||
sqlite3DbFree(db, pTrigger);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -455,7 +457,7 @@ void sqlite3DropTrigger(Parse *pParse, SrcList *pName, int noErr){
|
|||
int nName;
|
||||
sqlite3 *db = pParse->db;
|
||||
|
||||
if( sqlite3MallocFailed() ) goto drop_trigger_cleanup;
|
||||
if( db->mallocFailed ) goto drop_trigger_cleanup;
|
||||
if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
|
||||
goto drop_trigger_cleanup;
|
||||
}
|
||||
|
@ -463,7 +465,7 @@ void sqlite3DropTrigger(Parse *pParse, SrcList *pName, int noErr){
|
|||
assert( pName->nSrc==1 );
|
||||
zDb = pName->a[0].zDatabase;
|
||||
zName = pName->a[0].zName;
|
||||
nName = strlen(zName);
|
||||
nName = sqlite3Strlen30(zName);
|
||||
for(i=OMIT_TEMPDB; i<db->nDb; i++){
|
||||
int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
|
||||
if( zDb && sqlite3StrICmp(db->aDb[j].zName, zDb) ) continue;
|
||||
|
@ -479,7 +481,7 @@ void sqlite3DropTrigger(Parse *pParse, SrcList *pName, int noErr){
|
|||
sqlite3DropTriggerPtr(pParse, pTrigger);
|
||||
|
||||
drop_trigger_cleanup:
|
||||
sqlite3SrcListDelete(pName);
|
||||
sqlite3SrcListDelete(db, pName);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -487,7 +489,7 @@ drop_trigger_cleanup:
|
|||
** is set on.
|
||||
*/
|
||||
static Table *tableOfTrigger(Trigger *pTrigger){
|
||||
int n = strlen(pTrigger->table) + 1;
|
||||
int n = sqlite3Strlen30(pTrigger->table) + 1;
|
||||
return sqlite3HashFind(&pTrigger->pTabSchema->tblHash, pTrigger->table, n);
|
||||
}
|
||||
|
||||
|
@ -526,12 +528,12 @@ void sqlite3DropTriggerPtr(Parse *pParse, Trigger *pTrigger){
|
|||
int base;
|
||||
static const VdbeOpList dropTrigger[] = {
|
||||
{ OP_Rewind, 0, ADDR(9), 0},
|
||||
{ OP_String8, 0, 0, 0}, /* 1 */
|
||||
{ OP_Column, 0, 1, 0},
|
||||
{ OP_Ne, 0, ADDR(8), 0},
|
||||
{ OP_String8, 0, 0, "trigger"},
|
||||
{ OP_Column, 0, 0, 0},
|
||||
{ OP_Ne, 0, ADDR(8), 0},
|
||||
{ OP_String8, 0, 1, 0}, /* 1 */
|
||||
{ OP_Column, 0, 1, 2},
|
||||
{ OP_Ne, 2, ADDR(8), 1},
|
||||
{ OP_String8, 0, 1, 0}, /* 4: "trigger" */
|
||||
{ OP_Column, 0, 0, 2},
|
||||
{ OP_Ne, 2, ADDR(8), 1},
|
||||
{ OP_Delete, 0, 0, 0},
|
||||
{ OP_Next, 0, ADDR(1), 0}, /* 8 */
|
||||
};
|
||||
|
@ -539,10 +541,11 @@ void sqlite3DropTriggerPtr(Parse *pParse, Trigger *pTrigger){
|
|||
sqlite3BeginWriteOperation(pParse, 0, iDb);
|
||||
sqlite3OpenMasterTable(pParse, iDb);
|
||||
base = sqlite3VdbeAddOpList(v, ArraySize(dropTrigger), dropTrigger);
|
||||
sqlite3VdbeChangeP3(v, base+1, pTrigger->name, 0);
|
||||
sqlite3ChangeCookie(db, v, iDb);
|
||||
sqlite3VdbeAddOp(v, OP_Close, 0, 0);
|
||||
sqlite3VdbeOp3(v, OP_DropTrigger, iDb, 0, pTrigger->name, 0);
|
||||
sqlite3VdbeChangeP4(v, base+1, pTrigger->name, 0);
|
||||
sqlite3VdbeChangeP4(v, base+4, "trigger", P4_STATIC);
|
||||
sqlite3ChangeCookie(pParse, iDb);
|
||||
sqlite3VdbeAddOp2(v, OP_Close, 0, 0);
|
||||
sqlite3VdbeAddOp4(v, OP_DropTrigger, iDb, 0, 0, pTrigger->name, 0);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -551,7 +554,7 @@ void sqlite3DropTriggerPtr(Parse *pParse, Trigger *pTrigger){
|
|||
*/
|
||||
void sqlite3UnlinkAndDeleteTrigger(sqlite3 *db, int iDb, const char *zName){
|
||||
Trigger *pTrigger;
|
||||
int nName = strlen(zName);
|
||||
int nName = sqlite3Strlen30(zName);
|
||||
pTrigger = sqlite3HashInsert(&(db->aDb[iDb].pSchema->trigHash),
|
||||
zName, nName, 0);
|
||||
if( pTrigger ){
|
||||
|
@ -570,7 +573,7 @@ void sqlite3UnlinkAndDeleteTrigger(sqlite3 *db, int iDb, const char *zName){
|
|||
}
|
||||
assert(cc);
|
||||
}
|
||||
sqlite3DeleteTrigger(pTrigger);
|
||||
sqlite3DeleteTrigger(db, pTrigger);
|
||||
db->flags |= SQLITE_InternChanges;
|
||||
}
|
||||
}
|
||||
|
@ -603,7 +606,6 @@ static int checkColumnOverLap(IdList *pIdList, ExprList *pEList){
|
|||
** TRIGGER_AFTER.
|
||||
*/
|
||||
int sqlite3TriggersExist(
|
||||
Parse *pParse, /* Used to check for recursive triggers */
|
||||
Table *pTab, /* The table the contains the triggers */
|
||||
int op, /* one of TK_DELETE, TK_INSERT, TK_UPDATE */
|
||||
ExprList *pChanges /* Columns that change in an UPDATE statement */
|
||||
|
@ -643,10 +645,10 @@ static SrcList *targetSrcList(
|
|||
if( iDb==0 || iDb>=2 ){
|
||||
assert( iDb<pParse->db->nDb );
|
||||
sDb.z = (u8*)pParse->db->aDb[iDb].zName;
|
||||
sDb.n = strlen((char*)sDb.z);
|
||||
pSrc = sqlite3SrcListAppend(0, &sDb, &pStep->target);
|
||||
sDb.n = sqlite3Strlen30((char*)sDb.z);
|
||||
pSrc = sqlite3SrcListAppend(pParse->db, 0, &sDb, &pStep->target);
|
||||
} else {
|
||||
pSrc = sqlite3SrcListAppend(0, &pStep->target, 0);
|
||||
pSrc = sqlite3SrcListAppend(pParse->db, 0, &pStep->target, 0);
|
||||
}
|
||||
return pSrc;
|
||||
}
|
||||
|
@ -663,51 +665,56 @@ static int codeTriggerProgram(
|
|||
TriggerStep * pTriggerStep = pStepList;
|
||||
int orconf;
|
||||
Vdbe *v = pParse->pVdbe;
|
||||
sqlite3 *db = pParse->db;
|
||||
|
||||
assert( pTriggerStep!=0 );
|
||||
assert( v!=0 );
|
||||
sqlite3VdbeAddOp(v, OP_ContextPush, 0, 0);
|
||||
VdbeComment((v, "# begin trigger %s", pStepList->pTrig->name));
|
||||
sqlite3VdbeAddOp2(v, OP_ContextPush, 0, 0);
|
||||
VdbeComment((v, "begin trigger %s", pStepList->pTrig->name));
|
||||
while( pTriggerStep ){
|
||||
sqlite3ExprClearColumnCache(pParse, -1);
|
||||
orconf = (orconfin == OE_Default)?pTriggerStep->orconf:orconfin;
|
||||
pParse->trigStack->orconf = orconf;
|
||||
switch( pTriggerStep->op ){
|
||||
case TK_SELECT: {
|
||||
Select *ss = sqlite3SelectDup(pTriggerStep->pSelect);
|
||||
Select *ss = sqlite3SelectDup(db, pTriggerStep->pSelect);
|
||||
if( ss ){
|
||||
sqlite3SelectResolve(pParse, ss, 0);
|
||||
sqlite3Select(pParse, ss, SRT_Discard, 0, 0, 0, 0, 0);
|
||||
sqlite3SelectDelete(ss);
|
||||
SelectDest dest;
|
||||
|
||||
sqlite3SelectDestInit(&dest, SRT_Discard, 0);
|
||||
sqlite3Select(pParse, ss, &dest);
|
||||
sqlite3SelectDelete(db, ss);
|
||||
}
|
||||
break;
|
||||
}
|
||||
case TK_UPDATE: {
|
||||
SrcList *pSrc;
|
||||
pSrc = targetSrcList(pParse, pTriggerStep);
|
||||
sqlite3VdbeAddOp(v, OP_ResetCount, 0, 0);
|
||||
sqlite3VdbeAddOp2(v, OP_ResetCount, 0, 0);
|
||||
sqlite3Update(pParse, pSrc,
|
||||
sqlite3ExprListDup(pTriggerStep->pExprList),
|
||||
sqlite3ExprDup(pTriggerStep->pWhere), orconf);
|
||||
sqlite3VdbeAddOp(v, OP_ResetCount, 1, 0);
|
||||
sqlite3ExprListDup(db, pTriggerStep->pExprList),
|
||||
sqlite3ExprDup(db, pTriggerStep->pWhere), orconf);
|
||||
sqlite3VdbeAddOp2(v, OP_ResetCount, 1, 0);
|
||||
break;
|
||||
}
|
||||
case TK_INSERT: {
|
||||
SrcList *pSrc;
|
||||
pSrc = targetSrcList(pParse, pTriggerStep);
|
||||
sqlite3VdbeAddOp(v, OP_ResetCount, 0, 0);
|
||||
sqlite3VdbeAddOp2(v, OP_ResetCount, 0, 0);
|
||||
sqlite3Insert(pParse, pSrc,
|
||||
sqlite3ExprListDup(pTriggerStep->pExprList),
|
||||
sqlite3SelectDup(pTriggerStep->pSelect),
|
||||
sqlite3IdListDup(pTriggerStep->pIdList), orconf);
|
||||
sqlite3VdbeAddOp(v, OP_ResetCount, 1, 0);
|
||||
sqlite3ExprListDup(db, pTriggerStep->pExprList),
|
||||
sqlite3SelectDup(db, pTriggerStep->pSelect),
|
||||
sqlite3IdListDup(db, pTriggerStep->pIdList), orconf);
|
||||
sqlite3VdbeAddOp2(v, OP_ResetCount, 1, 0);
|
||||
break;
|
||||
}
|
||||
case TK_DELETE: {
|
||||
SrcList *pSrc;
|
||||
sqlite3VdbeAddOp(v, OP_ResetCount, 0, 0);
|
||||
sqlite3VdbeAddOp2(v, OP_ResetCount, 0, 0);
|
||||
pSrc = targetSrcList(pParse, pTriggerStep);
|
||||
sqlite3DeleteFrom(pParse, pSrc, sqlite3ExprDup(pTriggerStep->pWhere));
|
||||
sqlite3VdbeAddOp(v, OP_ResetCount, 1, 0);
|
||||
sqlite3DeleteFrom(pParse, pSrc,
|
||||
sqlite3ExprDup(db, pTriggerStep->pWhere));
|
||||
sqlite3VdbeAddOp2(v, OP_ResetCount, 1, 0);
|
||||
break;
|
||||
}
|
||||
default:
|
||||
|
@ -715,8 +722,8 @@ static int codeTriggerProgram(
|
|||
}
|
||||
pTriggerStep = pTriggerStep->pNext;
|
||||
}
|
||||
sqlite3VdbeAddOp(v, OP_ContextPop, 0, 0);
|
||||
VdbeComment((v, "# end trigger %s", pStepList->pTrig->name));
|
||||
sqlite3VdbeAddOp2(v, OP_ContextPop, 0, 0);
|
||||
VdbeComment((v, "end trigger %s", pStepList->pTrig->name));
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
@ -740,6 +747,13 @@ static int codeTriggerProgram(
|
|||
** a row containing values to be substituted for old.* expressions in the
|
||||
** trigger program(s).
|
||||
**
|
||||
** If they are not NULL, the piOldColMask and piNewColMask output variables
|
||||
** are set to values that describe the columns used by the trigger program
|
||||
** in the OLD.* and NEW.* tables respectively. If column N of the
|
||||
** pseudo-table is read at least once, the corresponding bit of the output
|
||||
** mask is set. If a column with an index greater than 32 is read, the
|
||||
** output mask is set to the special value 0xffffffff.
|
||||
**
|
||||
*/
|
||||
int sqlite3CodeRowTrigger(
|
||||
Parse *pParse, /* Parse context */
|
||||
|
@ -750,11 +764,17 @@ int sqlite3CodeRowTrigger(
|
|||
int newIdx, /* The indice of the "new" row to access */
|
||||
int oldIdx, /* The indice of the "old" row to access */
|
||||
int orconf, /* ON CONFLICT policy */
|
||||
int ignoreJump /* Instruction to jump to for RAISE(IGNORE) */
|
||||
int ignoreJump, /* Instruction to jump to for RAISE(IGNORE) */
|
||||
u32 *piOldColMask, /* OUT: Mask of columns used from the OLD.* table */
|
||||
u32 *piNewColMask /* OUT: Mask of columns used from the NEW.* table */
|
||||
){
|
||||
Trigger *p;
|
||||
sqlite3 *db = pParse->db;
|
||||
TriggerStack trigStackEntry;
|
||||
|
||||
trigStackEntry.oldColMask = 0;
|
||||
trigStackEntry.newColMask = 0;
|
||||
|
||||
assert(op == TK_UPDATE || op == TK_INSERT || op == TK_DELETE);
|
||||
assert(tr_tm == TRIGGER_BEFORE || tr_tm == TRIGGER_AFTER );
|
||||
|
||||
|
@ -767,7 +787,7 @@ int sqlite3CodeRowTrigger(
|
|||
if(
|
||||
p->op==op &&
|
||||
p->tr_tm==tr_tm &&
|
||||
(p->pSchema==p->pTabSchema || p->pSchema==pParse->db->aDb[1].pSchema) &&
|
||||
(p->pSchema==p->pTabSchema || p->pSchema==db->aDb[1].pSchema) &&
|
||||
(op!=TK_UPDATE||!p->pColumns||checkColumnOverLap(p->pColumns,pChanges))
|
||||
){
|
||||
TriggerStack *pS; /* Pointer to trigger-stack entry */
|
||||
|
@ -790,6 +810,11 @@ int sqlite3CodeRowTrigger(
|
|||
AuthContext sContext;
|
||||
NameContext sNC;
|
||||
|
||||
#ifndef SQLITE_OMIT_TRACE
|
||||
sqlite3VdbeAddOp4(pParse->pVdbe, OP_Trace, 0, 0, 0,
|
||||
sqlite3MPrintf(db, "-- TRIGGER %s", p->name),
|
||||
P4_DYNAMIC);
|
||||
#endif
|
||||
memset(&sNC, 0, sizeof(sNC));
|
||||
sNC.pParse = pParse;
|
||||
|
||||
|
@ -805,14 +830,14 @@ int sqlite3CodeRowTrigger(
|
|||
|
||||
/* code the WHEN clause */
|
||||
endTrigger = sqlite3VdbeMakeLabel(pParse->pVdbe);
|
||||
whenExpr = sqlite3ExprDup(p->pWhen);
|
||||
if( sqlite3ExprResolveNames(&sNC, whenExpr) ){
|
||||
whenExpr = sqlite3ExprDup(db, p->pWhen);
|
||||
if( db->mallocFailed || sqlite3ResolveExprNames(&sNC, whenExpr) ){
|
||||
pParse->trigStack = trigStackEntry.pNext;
|
||||
sqlite3ExprDelete(whenExpr);
|
||||
sqlite3ExprDelete(db, whenExpr);
|
||||
return 1;
|
||||
}
|
||||
sqlite3ExprIfFalse(pParse, whenExpr, endTrigger, 1);
|
||||
sqlite3ExprDelete(whenExpr);
|
||||
sqlite3ExprIfFalse(pParse, whenExpr, endTrigger, SQLITE_JUMPIFNULL);
|
||||
sqlite3ExprDelete(db, whenExpr);
|
||||
|
||||
codeTriggerProgram(pParse, p->step_list, orconf);
|
||||
|
||||
|
@ -823,6 +848,8 @@ int sqlite3CodeRowTrigger(
|
|||
sqlite3VdbeResolveLabel(pParse->pVdbe, endTrigger);
|
||||
}
|
||||
}
|
||||
if( piOldColMask ) *piOldColMask |= trigStackEntry.oldColMask;
|
||||
if( piNewColMask ) *piNewColMask |= trigStackEntry.newColMask;
|
||||
return 0;
|
||||
}
|
||||
#endif /* !defined(SQLITE_OMIT_TRIGGER) */
|
||||
|
|
458
update.c
458
update.c
|
@ -12,7 +12,7 @@
|
|||
** This file contains C code routines that are called by the parser
|
||||
** to handle UPDATE statements.
|
||||
**
|
||||
** $Id: update.c,v 1.138 2007/06/25 16:29:34 danielk1977 Exp $
|
||||
** $Id: update.c,v 1.191 2008/12/23 23:56:22 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
|
@ -31,7 +31,7 @@ static void updateVirtualTable(
|
|||
|
||||
/*
|
||||
** The most recently coded instruction was an OP_Column to retrieve the
|
||||
** i-th column of table pTab. This routine sets the P3 parameter of the
|
||||
** i-th column of table pTab. This routine sets the P4 parameter of the
|
||||
** OP_Column to the default value, if any.
|
||||
**
|
||||
** The default value of a column is specified by a DEFAULT clause in the
|
||||
|
@ -39,9 +39,9 @@ static void updateVirtualTable(
|
|||
** was created, or added later to the table definition by an ALTER TABLE
|
||||
** command. If the latter, then the row-records in the table btree on disk
|
||||
** may not contain a value for the column and the default value, taken
|
||||
** from the P3 parameter of the OP_Column instruction, is returned instead.
|
||||
** from the P4 parameter of the OP_Column instruction, is returned instead.
|
||||
** If the former, then all row-records are guaranteed to include a value
|
||||
** for the column and the P3 value is not required.
|
||||
** for the column and the P4 value is not required.
|
||||
**
|
||||
** Column definitions created by an ALTER TABLE command may only have
|
||||
** literal default values specified: a number, null or a string. (If a more
|
||||
|
@ -49,7 +49,7 @@ static void updateVirtualTable(
|
|||
** when the ALTER TABLE is executed and one of the literal values written
|
||||
** into the sqlite_master table.)
|
||||
**
|
||||
** Therefore, the P3 parameter is only required if the default value for
|
||||
** Therefore, the P4 parameter is only required if the default value for
|
||||
** the column is a literal number, string or null. The sqlite3ValueFromExpr()
|
||||
** function is capable of transforming these types of expressions into
|
||||
** sqlite3_value objects.
|
||||
|
@ -59,12 +59,12 @@ void sqlite3ColumnDefault(Vdbe *v, Table *pTab, int i){
|
|||
sqlite3_value *pValue;
|
||||
u8 enc = ENC(sqlite3VdbeDb(v));
|
||||
Column *pCol = &pTab->aCol[i];
|
||||
VdbeComment((v, "%s.%s", pTab->zName, pCol->zName));
|
||||
assert( i<pTab->nCol );
|
||||
sqlite3ValueFromExpr(pCol->pDflt, enc, pCol->affinity, &pValue);
|
||||
sqlite3ValueFromExpr(sqlite3VdbeDb(v), pCol->pDflt, enc,
|
||||
pCol->affinity, &pValue);
|
||||
if( pValue ){
|
||||
sqlite3VdbeChangeP3(v, -1, (const char *)pValue, P3_MEM);
|
||||
}else{
|
||||
VdbeComment((v, "# %s.%s", pTab->zName, pCol->zName));
|
||||
sqlite3VdbeChangeP4(v, -1, (const char *)pValue, P4_MEM);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -90,11 +90,9 @@ void sqlite3Update(
|
|||
Vdbe *v; /* The virtual database engine */
|
||||
Index *pIdx; /* For looping over indices */
|
||||
int nIdx; /* Number of indices that need updating */
|
||||
int nIdxTotal; /* Total number of indices */
|
||||
int iCur; /* VDBE Cursor number of pTab */
|
||||
sqlite3 *db; /* The database structure */
|
||||
Index **apIdx = 0; /* An array of indices that need updating too */
|
||||
char *aIdxUsed = 0; /* aIdxUsed[i]==1 if the i-th index is used */
|
||||
int *aRegIdx = 0; /* One register assigned to each index to be updated */
|
||||
int *aXRef = 0; /* aXRef[i] is the index in pChanges->a[] of the
|
||||
** an expression for the i-th column of the table.
|
||||
** aXRef[i]==-1 if the i-th column is not changed. */
|
||||
|
@ -104,21 +102,35 @@ void sqlite3Update(
|
|||
AuthContext sContext; /* The authorization context */
|
||||
NameContext sNC; /* The name-context to resolve expressions in */
|
||||
int iDb; /* Database containing the table being updated */
|
||||
int memCnt = 0; /* Memory cell used for counting rows changed */
|
||||
int j1; /* Addresses of jump instructions */
|
||||
int okOnePass; /* True for one-pass algorithm without the FIFO */
|
||||
|
||||
#ifndef SQLITE_OMIT_TRIGGER
|
||||
int isView; /* Trying to update a view */
|
||||
int triggers_exist = 0; /* True if any row triggers exist */
|
||||
#endif
|
||||
int iBeginAfterTrigger = 0; /* Address of after trigger program */
|
||||
int iEndAfterTrigger = 0; /* Exit of after trigger program */
|
||||
int iBeginBeforeTrigger = 0; /* Address of before trigger program */
|
||||
int iEndBeforeTrigger = 0; /* Exit of before trigger program */
|
||||
u32 old_col_mask = 0; /* Mask of OLD.* columns in use */
|
||||
u32 new_col_mask = 0; /* Mask of NEW.* columns in use */
|
||||
|
||||
int newIdx = -1; /* index of trigger "new" temp table */
|
||||
int oldIdx = -1; /* index of trigger "old" temp table */
|
||||
|
||||
/* Register Allocations */
|
||||
int regRowCount = 0; /* A count of rows changed */
|
||||
int regOldRowid; /* The old rowid */
|
||||
int regNewRowid; /* The new rowid */
|
||||
int regData; /* New data for the row */
|
||||
int regRowSet = 0; /* Rowset of rows to be updated */
|
||||
|
||||
sContext.pParse = 0;
|
||||
if( pParse->nErr || sqlite3MallocFailed() ){
|
||||
db = pParse->db;
|
||||
if( pParse->nErr || db->mallocFailed ){
|
||||
goto update_cleanup;
|
||||
}
|
||||
db = pParse->db;
|
||||
assert( pTabList->nSrc==1 );
|
||||
|
||||
/* Locate the table which we want to update.
|
||||
|
@ -131,7 +143,7 @@ void sqlite3Update(
|
|||
** updated is a view
|
||||
*/
|
||||
#ifndef SQLITE_OMIT_TRIGGER
|
||||
triggers_exist = sqlite3TriggersExist(pParse, pTab, TK_UPDATE, pChanges);
|
||||
triggers_exist = sqlite3TriggersExist(pTab, TK_UPDATE, pChanges);
|
||||
isView = pTab->pSelect!=0;
|
||||
#else
|
||||
# define triggers_exist 0
|
||||
|
@ -148,7 +160,7 @@ void sqlite3Update(
|
|||
if( sqlite3ViewGetColumnNames(pParse, pTab) ){
|
||||
goto update_cleanup;
|
||||
}
|
||||
aXRef = sqliteMallocRaw( sizeof(int) * pTab->nCol );
|
||||
aXRef = sqlite3DbMallocRaw(db, sizeof(int) * pTab->nCol );
|
||||
if( aXRef==0 ) goto update_cleanup;
|
||||
for(i=0; i<pTab->nCol; i++) aXRef[i] = -1;
|
||||
|
||||
|
@ -183,7 +195,7 @@ void sqlite3Update(
|
|||
*/
|
||||
chngRowid = 0;
|
||||
for(i=0; i<pChanges->nExpr; i++){
|
||||
if( sqlite3ExprResolveNames(&sNC, pChanges->a[i].pExpr) ){
|
||||
if( sqlite3ResolveExprNames(&sNC, pChanges->a[i].pExpr) ){
|
||||
goto update_cleanup;
|
||||
}
|
||||
for(j=0; j<pTab->nCol; j++){
|
||||
|
@ -219,41 +231,47 @@ void sqlite3Update(
|
|||
#endif
|
||||
}
|
||||
|
||||
/* Allocate memory for the array apIdx[] and fill it with pointers to every
|
||||
** index that needs to be updated. Indices only need updating if their
|
||||
** key includes one of the columns named in pChanges or if the record
|
||||
** number of the original table entry is changing.
|
||||
/* Allocate memory for the array aRegIdx[]. There is one entry in the
|
||||
** array for each index associated with table being updated. Fill in
|
||||
** the value with a register number for indices that are to be used
|
||||
** and with zero for unused indices.
|
||||
*/
|
||||
for(nIdx=nIdxTotal=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdxTotal++){
|
||||
for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){}
|
||||
if( nIdx>0 ){
|
||||
aRegIdx = sqlite3DbMallocRaw(db, sizeof(Index*) * nIdx );
|
||||
if( aRegIdx==0 ) goto update_cleanup;
|
||||
}
|
||||
for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
|
||||
int reg;
|
||||
if( chngRowid ){
|
||||
i = 0;
|
||||
}else {
|
||||
reg = ++pParse->nMem;
|
||||
}else{
|
||||
reg = 0;
|
||||
for(i=0; i<pIdx->nColumn; i++){
|
||||
if( aXRef[pIdx->aiColumn[i]]>=0 ) break;
|
||||
if( aXRef[pIdx->aiColumn[i]]>=0 ){
|
||||
reg = ++pParse->nMem;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if( i<pIdx->nColumn ) nIdx++;
|
||||
}
|
||||
if( nIdxTotal>0 ){
|
||||
apIdx = sqliteMallocRaw( sizeof(Index*) * nIdx + nIdxTotal );
|
||||
if( apIdx==0 ) goto update_cleanup;
|
||||
aIdxUsed = (char*)&apIdx[nIdx];
|
||||
aRegIdx[j] = reg;
|
||||
}
|
||||
for(nIdx=j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
|
||||
|
||||
/* Allocate a block of register used to store the change record
|
||||
** sent to sqlite3GenerateConstraintChecks(). There are either
|
||||
** one or two registers for holding the rowid. One rowid register
|
||||
** is used if chngRowid is false and two are used if chngRowid is
|
||||
** true. Following these are pTab->nCol register holding column
|
||||
** data.
|
||||
*/
|
||||
regOldRowid = regNewRowid = pParse->nMem + 1;
|
||||
pParse->nMem += pTab->nCol + 1;
|
||||
if( chngRowid ){
|
||||
i = 0;
|
||||
}else{
|
||||
for(i=0; i<pIdx->nColumn; i++){
|
||||
if( aXRef[pIdx->aiColumn[i]]>=0 ) break;
|
||||
}
|
||||
}
|
||||
if( i<pIdx->nColumn ){
|
||||
apIdx[nIdx++] = pIdx;
|
||||
aIdxUsed[j] = 1;
|
||||
}else{
|
||||
aIdxUsed[j] = 0;
|
||||
}
|
||||
regNewRowid++;
|
||||
pParse->nMem++;
|
||||
}
|
||||
regData = regNewRowid+1;
|
||||
|
||||
|
||||
/* Begin generating code.
|
||||
*/
|
||||
|
@ -273,38 +291,72 @@ void sqlite3Update(
|
|||
}
|
||||
#endif
|
||||
|
||||
/* Resolve the column names in all the expressions in the
|
||||
** WHERE clause.
|
||||
*/
|
||||
if( sqlite3ExprResolveNames(&sNC, pWhere) ){
|
||||
goto update_cleanup;
|
||||
}
|
||||
|
||||
/* Start the view context
|
||||
*/
|
||||
if( isView ){
|
||||
sqlite3AuthContextPush(pParse, &sContext, pTab->zName);
|
||||
}
|
||||
|
||||
/* Generate the code for triggers.
|
||||
*/
|
||||
if( triggers_exist ){
|
||||
int iGoto;
|
||||
|
||||
/* Create pseudo-tables for NEW and OLD
|
||||
*/
|
||||
sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pTab->nCol);
|
||||
sqlite3VdbeAddOp2(v, OP_OpenPseudo, oldIdx, 0);
|
||||
sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pTab->nCol);
|
||||
sqlite3VdbeAddOp2(v, OP_OpenPseudo, newIdx, 0);
|
||||
|
||||
iGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
|
||||
addr = sqlite3VdbeMakeLabel(v);
|
||||
iBeginBeforeTrigger = sqlite3VdbeCurrentAddr(v);
|
||||
if( sqlite3CodeRowTrigger(pParse, TK_UPDATE, pChanges, TRIGGER_BEFORE, pTab,
|
||||
newIdx, oldIdx, onError, addr, &old_col_mask, &new_col_mask) ){
|
||||
goto update_cleanup;
|
||||
}
|
||||
iEndBeforeTrigger = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
|
||||
iBeginAfterTrigger = sqlite3VdbeCurrentAddr(v);
|
||||
if( sqlite3CodeRowTrigger(pParse, TK_UPDATE, pChanges, TRIGGER_AFTER, pTab,
|
||||
newIdx, oldIdx, onError, addr, &old_col_mask, &new_col_mask) ){
|
||||
goto update_cleanup;
|
||||
}
|
||||
iEndAfterTrigger = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
|
||||
sqlite3VdbeJumpHere(v, iGoto);
|
||||
}
|
||||
|
||||
/* If we are trying to update a view, realize that view into
|
||||
** a ephemeral table.
|
||||
*/
|
||||
#if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
|
||||
if( isView ){
|
||||
Select *pView;
|
||||
pView = sqlite3SelectDup(pTab->pSelect);
|
||||
sqlite3Select(pParse, pView, SRT_EphemTab, iCur, 0, 0, 0, 0);
|
||||
sqlite3SelectDelete(pView);
|
||||
sqlite3MaterializeView(pParse, pTab, pWhere, iCur);
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Resolve the column names in all the expressions in the
|
||||
** WHERE clause.
|
||||
*/
|
||||
if( sqlite3ResolveExprNames(&sNC, pWhere) ){
|
||||
goto update_cleanup;
|
||||
}
|
||||
|
||||
/* Begin the database scan
|
||||
*/
|
||||
pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0);
|
||||
sqlite3VdbeAddOp2(v, OP_Null, 0, regOldRowid);
|
||||
pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0,
|
||||
WHERE_ONEPASS_DESIRED, 0);
|
||||
if( pWInfo==0 ) goto update_cleanup;
|
||||
okOnePass = pWInfo->okOnePass;
|
||||
|
||||
/* Remember the rowid of every item to be updated.
|
||||
*/
|
||||
sqlite3VdbeAddOp(v, IsVirtual(pTab) ? OP_VRowid : OP_Rowid, iCur, 0);
|
||||
sqlite3VdbeAddOp(v, OP_FifoWrite, 0, 0);
|
||||
sqlite3VdbeAddOp2(v, IsVirtual(pTab)?OP_VRowid:OP_Rowid, iCur, regOldRowid);
|
||||
if( !okOnePass ){
|
||||
regRowSet = ++pParse->nMem;
|
||||
sqlite3VdbeAddOp2(v, OP_RowSetAdd, regRowSet, regOldRowid);
|
||||
}
|
||||
|
||||
/* End the database scan loop.
|
||||
*/
|
||||
|
@ -313,74 +365,8 @@ void sqlite3Update(
|
|||
/* Initialize the count of updated rows
|
||||
*/
|
||||
if( db->flags & SQLITE_CountRows && !pParse->trigStack ){
|
||||
memCnt = pParse->nMem++;
|
||||
sqlite3VdbeAddOp(v, OP_MemInt, 0, memCnt);
|
||||
}
|
||||
|
||||
if( triggers_exist ){
|
||||
/* Create pseudo-tables for NEW and OLD
|
||||
*/
|
||||
sqlite3VdbeAddOp(v, OP_OpenPseudo, oldIdx, 0);
|
||||
sqlite3VdbeAddOp(v, OP_SetNumColumns, oldIdx, pTab->nCol);
|
||||
sqlite3VdbeAddOp(v, OP_OpenPseudo, newIdx, 0);
|
||||
sqlite3VdbeAddOp(v, OP_SetNumColumns, newIdx, pTab->nCol);
|
||||
|
||||
/* The top of the update loop for when there are triggers.
|
||||
*/
|
||||
addr = sqlite3VdbeAddOp(v, OP_FifoRead, 0, 0);
|
||||
|
||||
if( !isView ){
|
||||
sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
|
||||
sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
|
||||
/* Open a cursor and make it point to the record that is
|
||||
** being updated.
|
||||
*/
|
||||
sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead);
|
||||
}
|
||||
sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0);
|
||||
|
||||
/* Generate the OLD table
|
||||
*/
|
||||
sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0);
|
||||
sqlite3VdbeAddOp(v, OP_RowData, iCur, 0);
|
||||
sqlite3VdbeAddOp(v, OP_Insert, oldIdx, 0);
|
||||
|
||||
/* Generate the NEW table
|
||||
*/
|
||||
if( chngRowid ){
|
||||
sqlite3ExprCodeAndCache(pParse, pRowidExpr);
|
||||
}else{
|
||||
sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0);
|
||||
}
|
||||
for(i=0; i<pTab->nCol; i++){
|
||||
if( i==pTab->iPKey ){
|
||||
sqlite3VdbeAddOp(v, OP_Null, 0, 0);
|
||||
continue;
|
||||
}
|
||||
j = aXRef[i];
|
||||
if( j<0 ){
|
||||
sqlite3VdbeAddOp(v, OP_Column, iCur, i);
|
||||
sqlite3ColumnDefault(v, pTab, i);
|
||||
}else{
|
||||
sqlite3ExprCodeAndCache(pParse, pChanges->a[j].pExpr);
|
||||
}
|
||||
}
|
||||
sqlite3VdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0);
|
||||
if( !isView ){
|
||||
sqlite3TableAffinityStr(v, pTab);
|
||||
}
|
||||
if( pParse->nErr ) goto update_cleanup;
|
||||
sqlite3VdbeAddOp(v, OP_Insert, newIdx, 0);
|
||||
if( !isView ){
|
||||
sqlite3VdbeAddOp(v, OP_Close, iCur, 0);
|
||||
}
|
||||
|
||||
/* Fire the BEFORE and INSTEAD OF triggers
|
||||
*/
|
||||
if( sqlite3CodeRowTrigger(pParse, TK_UPDATE, pChanges, TRIGGER_BEFORE, pTab,
|
||||
newIdx, oldIdx, onError, addr) ){
|
||||
goto update_cleanup;
|
||||
}
|
||||
regRowCount = ++pParse->nMem;
|
||||
sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
|
||||
}
|
||||
|
||||
if( !isView && !IsVirtual(pTab) ){
|
||||
|
@ -390,7 +376,7 @@ void sqlite3Update(
|
|||
** action, then we need to open all indices because we might need
|
||||
** to be deleting some records.
|
||||
*/
|
||||
sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenWrite);
|
||||
if( !okOnePass ) sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenWrite);
|
||||
if( onError==OE_Replace ){
|
||||
openAll = 1;
|
||||
}else{
|
||||
|
@ -403,112 +389,179 @@ void sqlite3Update(
|
|||
}
|
||||
}
|
||||
for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
|
||||
if( openAll || aIdxUsed[i] ){
|
||||
if( openAll || aRegIdx[i]>0 ){
|
||||
KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
|
||||
sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
|
||||
sqlite3VdbeOp3(v, OP_OpenWrite, iCur+i+1, pIdx->tnum,
|
||||
(char*)pKey, P3_KEYINFO_HANDOFF);
|
||||
sqlite3VdbeAddOp4(v, OP_OpenWrite, iCur+i+1, pIdx->tnum, iDb,
|
||||
(char*)pKey, P4_KEYINFO_HANDOFF);
|
||||
assert( pParse->nTab>iCur+i+1 );
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Jump back to this point if a trigger encounters an IGNORE constraint. */
|
||||
if( triggers_exist ){
|
||||
sqlite3VdbeResolveLabel(v, addr);
|
||||
}
|
||||
|
||||
/* Top of the update loop */
|
||||
if( okOnePass ){
|
||||
int a1 = sqlite3VdbeAddOp1(v, OP_NotNull, regOldRowid);
|
||||
addr = sqlite3VdbeAddOp0(v, OP_Goto);
|
||||
sqlite3VdbeJumpHere(v, a1);
|
||||
}else{
|
||||
addr = sqlite3VdbeAddOp3(v, OP_RowSetRead, regRowSet, 0, regOldRowid);
|
||||
}
|
||||
|
||||
if( triggers_exist ){
|
||||
int regRowid;
|
||||
int regRow;
|
||||
int regCols;
|
||||
|
||||
/* Make cursor iCur point to the record that is being updated.
|
||||
*/
|
||||
sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addr, regOldRowid);
|
||||
|
||||
/* Generate the OLD table
|
||||
*/
|
||||
regRowid = sqlite3GetTempReg(pParse);
|
||||
regRow = sqlite3GetTempReg(pParse);
|
||||
sqlite3VdbeAddOp2(v, OP_Rowid, iCur, regRowid);
|
||||
if( !old_col_mask ){
|
||||
sqlite3VdbeAddOp2(v, OP_Null, 0, regRow);
|
||||
}else{
|
||||
sqlite3VdbeAddOp2(v, OP_RowData, iCur, regRow);
|
||||
}
|
||||
sqlite3VdbeAddOp3(v, OP_Insert, oldIdx, regRow, regRowid);
|
||||
|
||||
/* Generate the NEW table
|
||||
*/
|
||||
if( chngRowid ){
|
||||
sqlite3ExprCodeAndCache(pParse, pRowidExpr, regRowid);
|
||||
sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid);
|
||||
}else{
|
||||
sqlite3VdbeAddOp2(v, OP_Rowid, iCur, regRowid);
|
||||
}
|
||||
regCols = sqlite3GetTempRange(pParse, pTab->nCol);
|
||||
for(i=0; i<pTab->nCol; i++){
|
||||
if( i==pTab->iPKey ){
|
||||
sqlite3VdbeAddOp2(v, OP_Null, 0, regCols+i);
|
||||
continue;
|
||||
}
|
||||
j = aXRef[i];
|
||||
if( new_col_mask&((u32)1<<i) || new_col_mask==0xffffffff ){
|
||||
if( j<0 ){
|
||||
sqlite3VdbeAddOp3(v, OP_Column, iCur, i, regCols+i);
|
||||
sqlite3ColumnDefault(v, pTab, i);
|
||||
}else{
|
||||
sqlite3ExprCodeAndCache(pParse, pChanges->a[j].pExpr, regCols+i);
|
||||
}
|
||||
}else{
|
||||
sqlite3VdbeAddOp2(v, OP_Null, 0, regCols+i);
|
||||
}
|
||||
}
|
||||
sqlite3VdbeAddOp3(v, OP_MakeRecord, regCols, pTab->nCol, regRow);
|
||||
if( !isView ){
|
||||
sqlite3TableAffinityStr(v, pTab);
|
||||
sqlite3ExprCacheAffinityChange(pParse, regCols, pTab->nCol);
|
||||
}
|
||||
sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol);
|
||||
/* if( pParse->nErr ) goto update_cleanup; */
|
||||
sqlite3VdbeAddOp3(v, OP_Insert, newIdx, regRow, regRowid);
|
||||
sqlite3ReleaseTempReg(pParse, regRowid);
|
||||
sqlite3ReleaseTempReg(pParse, regRow);
|
||||
|
||||
sqlite3VdbeAddOp2(v, OP_Goto, 0, iBeginBeforeTrigger);
|
||||
sqlite3VdbeJumpHere(v, iEndBeforeTrigger);
|
||||
}
|
||||
|
||||
if( !isView && !IsVirtual(pTab) ){
|
||||
/* Loop over every record that needs updating. We have to load
|
||||
** the old data for each record to be updated because some columns
|
||||
** might not change and we will need to copy the old value.
|
||||
** Also, the old data is needed to delete the old index entries.
|
||||
** So make the cursor point at the old record.
|
||||
*/
|
||||
if( !triggers_exist ){
|
||||
addr = sqlite3VdbeAddOp(v, OP_FifoRead, 0, 0);
|
||||
sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
|
||||
}
|
||||
sqlite3VdbeAddOp(v, OP_NotExists, iCur, addr);
|
||||
sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addr, regOldRowid);
|
||||
|
||||
/* If the record number will change, push the record number as it
|
||||
** will be after the update. (The old record number is currently
|
||||
** on top of the stack.)
|
||||
*/
|
||||
if( chngRowid ){
|
||||
sqlite3ExprCode(pParse, pRowidExpr);
|
||||
sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0);
|
||||
sqlite3ExprCode(pParse, pRowidExpr, regNewRowid);
|
||||
sqlite3VdbeAddOp1(v, OP_MustBeInt, regNewRowid);
|
||||
}
|
||||
|
||||
/* Compute new data for this record.
|
||||
*/
|
||||
for(i=0; i<pTab->nCol; i++){
|
||||
if( i==pTab->iPKey ){
|
||||
sqlite3VdbeAddOp(v, OP_Null, 0, 0);
|
||||
sqlite3VdbeAddOp2(v, OP_Null, 0, regData+i);
|
||||
continue;
|
||||
}
|
||||
j = aXRef[i];
|
||||
if( j<0 ){
|
||||
sqlite3VdbeAddOp(v, OP_Column, iCur, i);
|
||||
sqlite3VdbeAddOp3(v, OP_Column, iCur, i, regData+i);
|
||||
sqlite3ColumnDefault(v, pTab, i);
|
||||
}else{
|
||||
sqlite3ExprCode(pParse, pChanges->a[j].pExpr);
|
||||
sqlite3ExprCode(pParse, pChanges->a[j].pExpr, regData+i);
|
||||
}
|
||||
}
|
||||
|
||||
/* Do constraint checks
|
||||
*/
|
||||
sqlite3GenerateConstraintChecks(pParse, pTab, iCur, aIdxUsed, chngRowid, 1,
|
||||
sqlite3GenerateConstraintChecks(pParse, pTab, iCur, regNewRowid,
|
||||
aRegIdx, chngRowid, 1,
|
||||
onError, addr);
|
||||
|
||||
/* Delete the old indices for the current record.
|
||||
*/
|
||||
sqlite3GenerateRowIndexDelete(v, pTab, iCur, aIdxUsed);
|
||||
j1 = sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regOldRowid);
|
||||
sqlite3GenerateRowIndexDelete(pParse, pTab, iCur, aRegIdx);
|
||||
|
||||
/* If changing the record number, delete the old record.
|
||||
*/
|
||||
if( chngRowid ){
|
||||
sqlite3VdbeAddOp(v, OP_Delete, iCur, 0);
|
||||
sqlite3VdbeAddOp2(v, OP_Delete, iCur, 0);
|
||||
}
|
||||
sqlite3VdbeJumpHere(v, j1);
|
||||
|
||||
/* Create the new index entries and the new record.
|
||||
*/
|
||||
sqlite3CompleteInsertion(pParse, pTab, iCur, aIdxUsed, chngRowid, 1, -1, 0);
|
||||
sqlite3CompleteInsertion(pParse, pTab, iCur, regNewRowid,
|
||||
aRegIdx, 1, -1, 0);
|
||||
}
|
||||
|
||||
/* Increment the row counter
|
||||
*/
|
||||
if( db->flags & SQLITE_CountRows && !pParse->trigStack){
|
||||
sqlite3VdbeAddOp(v, OP_MemIncr, 1, memCnt);
|
||||
sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
|
||||
}
|
||||
|
||||
/* If there are triggers, close all the cursors after each iteration
|
||||
** through the loop. The fire the after triggers.
|
||||
*/
|
||||
if( triggers_exist ){
|
||||
if( !isView ){
|
||||
for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
|
||||
if( openAll || aIdxUsed[i] )
|
||||
sqlite3VdbeAddOp(v, OP_Close, iCur+i+1, 0);
|
||||
}
|
||||
sqlite3VdbeAddOp(v, OP_Close, iCur, 0);
|
||||
}
|
||||
if( sqlite3CodeRowTrigger(pParse, TK_UPDATE, pChanges, TRIGGER_AFTER, pTab,
|
||||
newIdx, oldIdx, onError, addr) ){
|
||||
goto update_cleanup;
|
||||
}
|
||||
sqlite3VdbeAddOp2(v, OP_Goto, 0, iBeginAfterTrigger);
|
||||
sqlite3VdbeJumpHere(v, iEndAfterTrigger);
|
||||
}
|
||||
|
||||
/* Repeat the above with the next record to be updated, until
|
||||
** all record selected by the WHERE clause have been updated.
|
||||
*/
|
||||
sqlite3VdbeAddOp(v, OP_Goto, 0, addr);
|
||||
sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
|
||||
sqlite3VdbeJumpHere(v, addr);
|
||||
|
||||
/* Close all tables if there were no FOR EACH ROW triggers */
|
||||
if( !triggers_exist ){
|
||||
/* Close all tables */
|
||||
for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
|
||||
if( openAll || aIdxUsed[i] ){
|
||||
sqlite3VdbeAddOp(v, OP_Close, iCur+i+1, 0);
|
||||
if( openAll || aRegIdx[i]>0 ){
|
||||
sqlite3VdbeAddOp2(v, OP_Close, iCur+i+1, 0);
|
||||
}
|
||||
}
|
||||
sqlite3VdbeAddOp(v, OP_Close, iCur, 0);
|
||||
}else{
|
||||
sqlite3VdbeAddOp(v, OP_Close, newIdx, 0);
|
||||
sqlite3VdbeAddOp(v, OP_Close, oldIdx, 0);
|
||||
sqlite3VdbeAddOp2(v, OP_Close, iCur, 0);
|
||||
if( triggers_exist ){
|
||||
sqlite3VdbeAddOp2(v, OP_Close, newIdx, 0);
|
||||
sqlite3VdbeAddOp2(v, OP_Close, oldIdx, 0);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -517,19 +570,18 @@ void sqlite3Update(
|
|||
** invoke the callback function.
|
||||
*/
|
||||
if( db->flags & SQLITE_CountRows && !pParse->trigStack && pParse->nested==0 ){
|
||||
sqlite3VdbeAddOp(v, OP_MemLoad, memCnt, 0);
|
||||
sqlite3VdbeAddOp(v, OP_Callback, 1, 0);
|
||||
sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1);
|
||||
sqlite3VdbeSetNumCols(v, 1);
|
||||
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows updated", P3_STATIC);
|
||||
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows updated", SQLITE_STATIC);
|
||||
}
|
||||
|
||||
update_cleanup:
|
||||
sqlite3AuthContextPop(&sContext);
|
||||
sqliteFree(apIdx);
|
||||
sqliteFree(aXRef);
|
||||
sqlite3SrcListDelete(pTabList);
|
||||
sqlite3ExprListDelete(pChanges);
|
||||
sqlite3ExprDelete(pWhere);
|
||||
sqlite3DbFree(db, aRegIdx);
|
||||
sqlite3DbFree(db, aXRef);
|
||||
sqlite3SrcListDelete(db, pTabList);
|
||||
sqlite3ExprListDelete(db, pChanges);
|
||||
sqlite3ExprDelete(db, pWhere);
|
||||
return;
|
||||
}
|
||||
|
||||
|
@ -569,59 +621,65 @@ static void updateVirtualTable(
|
|||
int ephemTab; /* Table holding the result of the SELECT */
|
||||
int i; /* Loop counter */
|
||||
int addr; /* Address of top of loop */
|
||||
int iReg; /* First register in set passed to OP_VUpdate */
|
||||
sqlite3 *db = pParse->db; /* Database connection */
|
||||
const char *pVtab = (const char*)pTab->pVtab;
|
||||
SelectDest dest;
|
||||
|
||||
/* Construct the SELECT statement that will find the new values for
|
||||
** all updated rows.
|
||||
*/
|
||||
pEList = sqlite3ExprListAppend(0, sqlite3CreateIdExpr("_rowid_"), 0);
|
||||
pEList = sqlite3ExprListAppend(pParse, 0,
|
||||
sqlite3CreateIdExpr(pParse, "_rowid_"), 0);
|
||||
if( pRowid ){
|
||||
pEList = sqlite3ExprListAppend(pEList, sqlite3ExprDup(pRowid), 0);
|
||||
pEList = sqlite3ExprListAppend(pParse, pEList,
|
||||
sqlite3ExprDup(db, pRowid), 0);
|
||||
}
|
||||
assert( pTab->iPKey<0 );
|
||||
for(i=0; i<pTab->nCol; i++){
|
||||
if( aXRef[i]>=0 ){
|
||||
pExpr = sqlite3ExprDup(pChanges->a[aXRef[i]].pExpr);
|
||||
pExpr = sqlite3ExprDup(db, pChanges->a[aXRef[i]].pExpr);
|
||||
}else{
|
||||
pExpr = sqlite3CreateIdExpr(pTab->aCol[i].zName);
|
||||
pExpr = sqlite3CreateIdExpr(pParse, pTab->aCol[i].zName);
|
||||
}
|
||||
pEList = sqlite3ExprListAppend(pEList, pExpr, 0);
|
||||
pEList = sqlite3ExprListAppend(pParse, pEList, pExpr, 0);
|
||||
}
|
||||
pSelect = sqlite3SelectNew(pEList, pSrc, pWhere, 0, 0, 0, 0, 0, 0);
|
||||
pSelect = sqlite3SelectNew(pParse, pEList, pSrc, pWhere, 0, 0, 0, 0, 0, 0);
|
||||
|
||||
/* Create the ephemeral table into which the update results will
|
||||
** be stored.
|
||||
*/
|
||||
assert( v );
|
||||
ephemTab = pParse->nTab++;
|
||||
sqlite3VdbeAddOp(v, OP_OpenEphemeral, ephemTab, pTab->nCol+1+(pRowid!=0));
|
||||
sqlite3VdbeAddOp2(v, OP_OpenEphemeral, ephemTab, pTab->nCol+1+(pRowid!=0));
|
||||
|
||||
/* fill the ephemeral table
|
||||
*/
|
||||
sqlite3Select(pParse, pSelect, SRT_Table, ephemTab, 0, 0, 0, 0);
|
||||
sqlite3SelectDestInit(&dest, SRT_Table, ephemTab);
|
||||
sqlite3Select(pParse, pSelect, &dest);
|
||||
|
||||
/*
|
||||
** Generate code to scan the ephemeral table and call VDelete and
|
||||
** VInsert
|
||||
*/
|
||||
sqlite3VdbeAddOp(v, OP_Rewind, ephemTab, 0);
|
||||
/* Generate code to scan the ephemeral table and call VUpdate. */
|
||||
iReg = ++pParse->nMem;
|
||||
pParse->nMem += pTab->nCol+1;
|
||||
sqlite3VdbeAddOp2(v, OP_Rewind, ephemTab, 0);
|
||||
addr = sqlite3VdbeCurrentAddr(v);
|
||||
sqlite3VdbeAddOp(v, OP_Column, ephemTab, 0);
|
||||
if( pRowid ){
|
||||
sqlite3VdbeAddOp(v, OP_Column, ephemTab, 1);
|
||||
}else{
|
||||
sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
|
||||
}
|
||||
sqlite3VdbeAddOp3(v, OP_Column, ephemTab, 0, iReg);
|
||||
sqlite3VdbeAddOp3(v, OP_Column, ephemTab, (pRowid?1:0), iReg+1);
|
||||
for(i=0; i<pTab->nCol; i++){
|
||||
sqlite3VdbeAddOp(v, OP_Column, ephemTab, i+1+(pRowid!=0));
|
||||
sqlite3VdbeAddOp3(v, OP_Column, ephemTab, i+1+(pRowid!=0), iReg+2+i);
|
||||
}
|
||||
pParse->pVirtualLock = pTab;
|
||||
sqlite3VdbeOp3(v, OP_VUpdate, 0, pTab->nCol+2,
|
||||
(const char*)pTab->pVtab, P3_VTAB);
|
||||
sqlite3VdbeAddOp(v, OP_Next, ephemTab, addr);
|
||||
sqlite3VtabMakeWritable(pParse, pTab);
|
||||
sqlite3VdbeAddOp4(v, OP_VUpdate, 0, pTab->nCol+2, iReg, pVtab, P4_VTAB);
|
||||
sqlite3VdbeAddOp2(v, OP_Next, ephemTab, addr);
|
||||
sqlite3VdbeJumpHere(v, addr-1);
|
||||
sqlite3VdbeAddOp(v, OP_Close, ephemTab, 0);
|
||||
sqlite3VdbeAddOp2(v, OP_Close, ephemTab, 0);
|
||||
|
||||
/* Cleanup */
|
||||
sqlite3SelectDelete(pSelect);
|
||||
sqlite3SelectDelete(db, pSelect);
|
||||
}
|
||||
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
||||
|
||||
/* Make sure "isView" gets undefined in case this file becomes part of
|
||||
** the amalgamation - so that subsequent files do not see isView as a
|
||||
** macro. */
|
||||
#undef isView
|
||||
|
|
225
utf.c
225
utf.c
|
@ -12,7 +12,7 @@
|
|||
** This file contains routines used to translate between UTF-8,
|
||||
** UTF-16, UTF-16BE, and UTF-16LE.
|
||||
**
|
||||
** $Id: utf.c,v 1.53 2007/08/07 17:04:59 drh Exp $
|
||||
** $Id: utf.c,v 1.70 2008/12/10 22:30:25 shane Exp $
|
||||
**
|
||||
** Notes on UTF-8:
|
||||
**
|
||||
|
@ -39,17 +39,19 @@
|
|||
#include <assert.h>
|
||||
#include "vdbeInt.h"
|
||||
|
||||
#ifndef SQLITE_AMALGAMATION
|
||||
/*
|
||||
** The following constant value is used by the SQLITE_BIGENDIAN and
|
||||
** SQLITE_LITTLEENDIAN macros.
|
||||
*/
|
||||
const int sqlite3one = 1;
|
||||
#endif /* SQLITE_AMALGAMATION */
|
||||
|
||||
/*
|
||||
** This lookup table is used to help decode the first byte of
|
||||
** a multi-byte UTF8 character.
|
||||
*/
|
||||
static const unsigned char sqlite3UtfTrans1[] = {
|
||||
static const unsigned char sqlite3Utf8Trans1[] = {
|
||||
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
|
||||
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
|
||||
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
|
||||
|
@ -63,45 +65,45 @@ static const unsigned char sqlite3UtfTrans1[] = {
|
|||
|
||||
#define WRITE_UTF8(zOut, c) { \
|
||||
if( c<0x00080 ){ \
|
||||
*zOut++ = (c&0xFF); \
|
||||
*zOut++ = (u8)(c&0xFF); \
|
||||
} \
|
||||
else if( c<0x00800 ){ \
|
||||
*zOut++ = 0xC0 + ((c>>6)&0x1F); \
|
||||
*zOut++ = 0x80 + (c & 0x3F); \
|
||||
*zOut++ = 0xC0 + (u8)((c>>6)&0x1F); \
|
||||
*zOut++ = 0x80 + (u8)(c & 0x3F); \
|
||||
} \
|
||||
else if( c<0x10000 ){ \
|
||||
*zOut++ = 0xE0 + ((c>>12)&0x0F); \
|
||||
*zOut++ = 0x80 + ((c>>6) & 0x3F); \
|
||||
*zOut++ = 0x80 + (c & 0x3F); \
|
||||
*zOut++ = 0xE0 + (u8)((c>>12)&0x0F); \
|
||||
*zOut++ = 0x80 + (u8)((c>>6) & 0x3F); \
|
||||
*zOut++ = 0x80 + (u8)(c & 0x3F); \
|
||||
}else{ \
|
||||
*zOut++ = 0xF0 + ((c>>18) & 0x07); \
|
||||
*zOut++ = 0x80 + ((c>>12) & 0x3F); \
|
||||
*zOut++ = 0x80 + ((c>>6) & 0x3F); \
|
||||
*zOut++ = 0x80 + (c & 0x3F); \
|
||||
*zOut++ = 0xF0 + (u8)((c>>18) & 0x07); \
|
||||
*zOut++ = 0x80 + (u8)((c>>12) & 0x3F); \
|
||||
*zOut++ = 0x80 + (u8)((c>>6) & 0x3F); \
|
||||
*zOut++ = 0x80 + (u8)(c & 0x3F); \
|
||||
} \
|
||||
}
|
||||
|
||||
#define WRITE_UTF16LE(zOut, c) { \
|
||||
if( c<=0xFFFF ){ \
|
||||
*zOut++ = (c&0x00FF); \
|
||||
*zOut++ = ((c>>8)&0x00FF); \
|
||||
*zOut++ = (u8)(c&0x00FF); \
|
||||
*zOut++ = (u8)((c>>8)&0x00FF); \
|
||||
}else{ \
|
||||
*zOut++ = (((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \
|
||||
*zOut++ = (0x00D8 + (((c-0x10000)>>18)&0x03)); \
|
||||
*zOut++ = (c&0x00FF); \
|
||||
*zOut++ = (0x00DC + ((c>>8)&0x03)); \
|
||||
*zOut++ = (u8)(((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \
|
||||
*zOut++ = (u8)(0x00D8 + (((c-0x10000)>>18)&0x03)); \
|
||||
*zOut++ = (u8)(c&0x00FF); \
|
||||
*zOut++ = (u8)(0x00DC + ((c>>8)&0x03)); \
|
||||
} \
|
||||
}
|
||||
|
||||
#define WRITE_UTF16BE(zOut, c) { \
|
||||
if( c<=0xFFFF ){ \
|
||||
*zOut++ = ((c>>8)&0x00FF); \
|
||||
*zOut++ = (c&0x00FF); \
|
||||
*zOut++ = (u8)((c>>8)&0x00FF); \
|
||||
*zOut++ = (u8)(c&0x00FF); \
|
||||
}else{ \
|
||||
*zOut++ = (0x00D8 + (((c-0x10000)>>18)&0x03)); \
|
||||
*zOut++ = (((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \
|
||||
*zOut++ = (0x00DC + ((c>>8)&0x03)); \
|
||||
*zOut++ = (c&0x00FF); \
|
||||
*zOut++ = (u8)(0x00D8 + (((c-0x10000)>>18)&0x03)); \
|
||||
*zOut++ = (u8)(((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \
|
||||
*zOut++ = (u8)(0x00DC + ((c>>8)&0x03)); \
|
||||
*zOut++ = (u8)(c&0x00FF); \
|
||||
} \
|
||||
}
|
||||
|
||||
|
@ -154,27 +156,31 @@ static const unsigned char sqlite3UtfTrans1[] = {
|
|||
** for unicode values 0x80 and greater. It do not change over-length
|
||||
** encodings to 0xfffd as some systems recommend.
|
||||
*/
|
||||
#define READ_UTF8(zIn, zTerm, c) \
|
||||
c = *(zIn++); \
|
||||
if( c>=0xc0 ){ \
|
||||
c = sqlite3Utf8Trans1[c-0xc0]; \
|
||||
while( zIn!=zTerm && (*zIn & 0xc0)==0x80 ){ \
|
||||
c = (c<<6) + (0x3f & *(zIn++)); \
|
||||
} \
|
||||
if( c<0x80 \
|
||||
|| (c&0xFFFFF800)==0xD800 \
|
||||
|| (c&0xFFFFFFFE)==0xFFFE ){ c = 0xFFFD; } \
|
||||
}
|
||||
int sqlite3Utf8Read(
|
||||
const unsigned char *z, /* First byte of UTF-8 character */
|
||||
const unsigned char *zTerm, /* Pretend this byte is 0x00 */
|
||||
const unsigned char **pzNext /* Write first byte past UTF-8 char here */
|
||||
){
|
||||
int c = *(z++);
|
||||
if( c>=0xc0 ){
|
||||
c = sqlite3UtfTrans1[c-0xc0];
|
||||
while( z!=zTerm && (*z & 0xc0)==0x80 ){
|
||||
c = (c<<6) + (0x3f & *(z++));
|
||||
}
|
||||
if( c<0x80
|
||||
|| (c&0xFFFFF800)==0xD800
|
||||
|| (c&0xFFFFFFFE)==0xFFFE ){ c = 0xFFFD; }
|
||||
}
|
||||
int c;
|
||||
READ_UTF8(z, zTerm, c);
|
||||
*pzNext = z;
|
||||
return c;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/*
|
||||
** If the TRANSLATE_TRACE macro is defined, the value of each Mem is
|
||||
** printed on stderr on the way into and out of sqlite3VdbeMemTranslate().
|
||||
|
@ -188,7 +194,6 @@ int sqlite3Utf8Read(
|
|||
** encoding, or if *pMem does not contain a string value.
|
||||
*/
|
||||
int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){
|
||||
unsigned char zShort[NBFS]; /* Temporary short output buffer */
|
||||
int len; /* Maximum length of output string in bytes */
|
||||
unsigned char *zOut; /* Output buffer */
|
||||
unsigned char *zIn; /* Input iterator */
|
||||
|
@ -196,6 +201,7 @@ int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){
|
|||
unsigned char *z; /* Output iterator */
|
||||
unsigned int c;
|
||||
|
||||
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
|
||||
assert( pMem->flags&MEM_Str );
|
||||
assert( pMem->enc!=desiredEnc );
|
||||
assert( pMem->enc!=0 );
|
||||
|
@ -222,7 +228,7 @@ int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){
|
|||
return SQLITE_NOMEM;
|
||||
}
|
||||
zIn = (u8*)pMem->z;
|
||||
zTerm = &zIn[pMem->n];
|
||||
zTerm = &zIn[pMem->n&~1];
|
||||
while( zIn<zTerm ){
|
||||
temp = *zIn;
|
||||
*zIn = *(zIn+1);
|
||||
|
@ -240,6 +246,7 @@ int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){
|
|||
** A single byte is required for the output string
|
||||
** nul-terminator.
|
||||
*/
|
||||
pMem->n &= ~1;
|
||||
len = pMem->n * 2 + 1;
|
||||
}else{
|
||||
/* When converting from UTF-8 to UTF-16 the maximum growth is caused
|
||||
|
@ -253,17 +260,14 @@ int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){
|
|||
/* Set zIn to point at the start of the input buffer and zTerm to point 1
|
||||
** byte past the end.
|
||||
**
|
||||
** Variable zOut is set to point at the output buffer. This may be space
|
||||
** obtained from malloc(), or Mem.zShort, if it large enough and not in
|
||||
** use, or the zShort array on the stack (see above).
|
||||
** Variable zOut is set to point at the output buffer, space obtained
|
||||
** from sqlite3_malloc().
|
||||
*/
|
||||
zIn = (u8*)pMem->z;
|
||||
zTerm = &zIn[pMem->n];
|
||||
if( len>NBFS ){
|
||||
zOut = sqliteMallocRaw(len);
|
||||
if( !zOut ) return SQLITE_NOMEM;
|
||||
}else{
|
||||
zOut = zShort;
|
||||
zOut = sqlite3DbMallocRaw(pMem->db, len);
|
||||
if( !zOut ){
|
||||
return SQLITE_NOMEM;
|
||||
}
|
||||
z = zOut;
|
||||
|
||||
|
@ -271,18 +275,20 @@ int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){
|
|||
if( desiredEnc==SQLITE_UTF16LE ){
|
||||
/* UTF-8 -> UTF-16 Little-endian */
|
||||
while( zIn<zTerm ){
|
||||
c = sqlite3Utf8Read(zIn, zTerm, (const u8**)&zIn);
|
||||
/* c = sqlite3Utf8Read(zIn, zTerm, (const u8**)&zIn); */
|
||||
READ_UTF8(zIn, zTerm, c);
|
||||
WRITE_UTF16LE(z, c);
|
||||
}
|
||||
}else{
|
||||
assert( desiredEnc==SQLITE_UTF16BE );
|
||||
/* UTF-8 -> UTF-16 Big-endian */
|
||||
while( zIn<zTerm ){
|
||||
c = sqlite3Utf8Read(zIn, zTerm, (const u8**)&zIn);
|
||||
/* c = sqlite3Utf8Read(zIn, zTerm, (const u8**)&zIn); */
|
||||
READ_UTF8(zIn, zTerm, c);
|
||||
WRITE_UTF16BE(z, c);
|
||||
}
|
||||
}
|
||||
pMem->n = z - zOut;
|
||||
pMem->n = (int)(z - zOut);
|
||||
*z++ = 0;
|
||||
}else{
|
||||
assert( desiredEnc==SQLITE_UTF8 );
|
||||
|
@ -293,28 +299,23 @@ int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){
|
|||
WRITE_UTF8(z, c);
|
||||
}
|
||||
}else{
|
||||
/* UTF-16 Little-endian -> UTF-8 */
|
||||
/* UTF-16 Big-endian -> UTF-8 */
|
||||
while( zIn<zTerm ){
|
||||
READ_UTF16BE(zIn, c);
|
||||
WRITE_UTF8(z, c);
|
||||
}
|
||||
}
|
||||
pMem->n = z - zOut;
|
||||
pMem->n = (int)(z - zOut);
|
||||
}
|
||||
*z = 0;
|
||||
assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len );
|
||||
|
||||
sqlite3VdbeMemRelease(pMem);
|
||||
pMem->flags &= ~(MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short);
|
||||
pMem->flags &= ~(MEM_Static|MEM_Dyn|MEM_Ephem);
|
||||
pMem->enc = desiredEnc;
|
||||
if( zOut==zShort ){
|
||||
memcpy(pMem->zShort, zOut, len);
|
||||
zOut = (u8*)pMem->zShort;
|
||||
pMem->flags |= (MEM_Term|MEM_Short);
|
||||
}else{
|
||||
pMem->flags |= (MEM_Term|MEM_Dyn);
|
||||
}
|
||||
pMem->z = (char*)zOut;
|
||||
pMem->zMalloc = pMem->z;
|
||||
|
||||
translate_out:
|
||||
#if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
|
||||
|
@ -352,23 +353,14 @@ int sqlite3VdbeMemHandleBom(Mem *pMem){
|
|||
}
|
||||
|
||||
if( bom ){
|
||||
/* This function is called as soon as a string is stored in a Mem*,
|
||||
** from within sqlite3VdbeMemSetStr(). At that point it is not possible
|
||||
** for the string to be stored in Mem.zShort, or for it to be stored
|
||||
** in dynamic memory with no destructor.
|
||||
*/
|
||||
assert( !(pMem->flags&MEM_Short) );
|
||||
assert( !(pMem->flags&MEM_Dyn) || pMem->xDel );
|
||||
if( pMem->flags & MEM_Dyn ){
|
||||
void (*xDel)(void*) = pMem->xDel;
|
||||
char *z = pMem->z;
|
||||
pMem->z = 0;
|
||||
pMem->xDel = 0;
|
||||
rc = sqlite3VdbeMemSetStr(pMem, &z[2], pMem->n-2, bom, SQLITE_TRANSIENT);
|
||||
xDel(z);
|
||||
}else{
|
||||
rc = sqlite3VdbeMemSetStr(pMem, &pMem->z[2], pMem->n-2, bom,
|
||||
SQLITE_TRANSIENT);
|
||||
rc = sqlite3VdbeMemMakeWriteable(pMem);
|
||||
if( rc==SQLITE_OK ){
|
||||
pMem->n -= 2;
|
||||
memmove(pMem->z, &pMem->z[2], pMem->n);
|
||||
pMem->z[pMem->n] = '\0';
|
||||
pMem->z[pMem->n+1] = '\0';
|
||||
pMem->flags |= MEM_Term;
|
||||
pMem->enc = bom;
|
||||
}
|
||||
}
|
||||
return rc;
|
||||
|
@ -399,22 +391,57 @@ int sqlite3Utf8CharLen(const char *zIn, int nByte){
|
|||
return r;
|
||||
}
|
||||
|
||||
/* This test function is not currently used by the automated test-suite.
|
||||
** Hence it is only available in debug builds.
|
||||
*/
|
||||
#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
|
||||
/*
|
||||
** Translate UTF-8 to UTF-8.
|
||||
**
|
||||
** This has the effect of making sure that the string is well-formed
|
||||
** UTF-8. Miscoded characters are removed.
|
||||
**
|
||||
** The translation is done in-place (since it is impossible for the
|
||||
** correct UTF-8 encoding to be longer than a malformed encoding).
|
||||
*/
|
||||
int sqlite3Utf8To8(unsigned char *zIn){
|
||||
unsigned char *zOut = zIn;
|
||||
unsigned char *zStart = zIn;
|
||||
unsigned char *zTerm = &zIn[sqlite3Strlen30((char *)zIn)];
|
||||
u32 c;
|
||||
|
||||
while( zIn[0] ){
|
||||
c = sqlite3Utf8Read(zIn, zTerm, (const u8**)&zIn);
|
||||
if( c!=0xfffd ){
|
||||
WRITE_UTF8(zOut, c);
|
||||
}
|
||||
}
|
||||
*zOut = 0;
|
||||
return zOut - zStart;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifndef SQLITE_OMIT_UTF16
|
||||
/*
|
||||
** Convert a UTF-16 string in the native encoding into a UTF-8 string.
|
||||
** Memory to hold the UTF-8 string is obtained from malloc and must be
|
||||
** freed by the calling function.
|
||||
** Memory to hold the UTF-8 string is obtained from sqlite3_malloc and must
|
||||
** be freed by the calling function.
|
||||
**
|
||||
** NULL is returned if there is an allocation error.
|
||||
*/
|
||||
char *sqlite3Utf16to8(const void *z, int nByte){
|
||||
char *sqlite3Utf16to8(sqlite3 *db, const void *z, int nByte){
|
||||
Mem m;
|
||||
memset(&m, 0, sizeof(m));
|
||||
m.db = db;
|
||||
sqlite3VdbeMemSetStr(&m, z, nByte, SQLITE_UTF16NATIVE, SQLITE_STATIC);
|
||||
sqlite3VdbeChangeEncoding(&m, SQLITE_UTF8);
|
||||
assert( (m.flags & MEM_Term)!=0 || sqlite3MallocFailed() );
|
||||
assert( (m.flags & MEM_Str)!=0 || sqlite3MallocFailed() );
|
||||
return (m.flags & MEM_Dyn)!=0 ? m.z : sqliteStrDup(m.z);
|
||||
if( db->mallocFailed ){
|
||||
sqlite3VdbeMemRelease(&m);
|
||||
m.z = 0;
|
||||
}
|
||||
assert( (m.flags & MEM_Term)!=0 || db->mallocFailed );
|
||||
assert( (m.flags & MEM_Str)!=0 || db->mallocFailed );
|
||||
return (m.flags & MEM_Dyn)!=0 ? m.z : sqlite3DbStrDup(db, m.z);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -448,43 +475,16 @@ int sqlite3Utf16ByteLen(const void *zIn, int nChar){
|
|||
n++;
|
||||
}
|
||||
}
|
||||
return (z-(char const *)zIn)-((c==0)?2:0);
|
||||
return (int)(z-(char const *)zIn)-((c==0)?2:0);
|
||||
}
|
||||
|
||||
#if defined(SQLITE_TEST)
|
||||
/*
|
||||
** Translate UTF-8 to UTF-8.
|
||||
**
|
||||
** This has the effect of making sure that the string is well-formed
|
||||
** UTF-8. Miscoded characters are removed.
|
||||
**
|
||||
** The translation is done in-place (since it is impossible for the
|
||||
** correct UTF-8 encoding to be longer than a malformed encoding).
|
||||
*/
|
||||
int sqlite3Utf8To8(unsigned char *zIn){
|
||||
unsigned char *zOut = zIn;
|
||||
unsigned char *zStart = zIn;
|
||||
unsigned char *zTerm;
|
||||
u32 c;
|
||||
|
||||
while( zIn[0] ){
|
||||
c = sqlite3Utf8Read(zIn, zTerm, (const u8**)&zIn);
|
||||
if( c!=0xfffd ){
|
||||
WRITE_UTF8(zOut, c);
|
||||
}
|
||||
}
|
||||
*zOut = 0;
|
||||
return zOut - zStart;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(SQLITE_TEST)
|
||||
/*
|
||||
** This routine is called from the TCL test function "translate_selftest".
|
||||
** It checks that the primitives for serializing and deserializing
|
||||
** characters in each encoding are inverses of each other.
|
||||
*/
|
||||
void sqlite3UtfSelfTest(){
|
||||
void sqlite3UtfSelfTest(void){
|
||||
unsigned int i, t;
|
||||
unsigned char zBuf[20];
|
||||
unsigned char *z;
|
||||
|
@ -495,7 +495,8 @@ void sqlite3UtfSelfTest(){
|
|||
for(i=0; i<0x00110000; i++){
|
||||
z = zBuf;
|
||||
WRITE_UTF8(z, i);
|
||||
n = z-zBuf;
|
||||
n = (int)(z-zBuf);
|
||||
assert( n>0 && n<=4 );
|
||||
z[0] = 0;
|
||||
zTerm = z;
|
||||
z = zBuf;
|
||||
|
@ -510,7 +511,8 @@ void sqlite3UtfSelfTest(){
|
|||
if( i>=0xD800 && i<0xE000 ) continue;
|
||||
z = zBuf;
|
||||
WRITE_UTF16LE(z, i);
|
||||
n = z-zBuf;
|
||||
n = (int)(z-zBuf);
|
||||
assert( n>0 && n<=4 );
|
||||
z[0] = 0;
|
||||
z = zBuf;
|
||||
READ_UTF16LE(z, c);
|
||||
|
@ -521,7 +523,8 @@ void sqlite3UtfSelfTest(){
|
|||
if( i>=0xD800 && i<0xE000 ) continue;
|
||||
z = zBuf;
|
||||
WRITE_UTF16BE(z, i);
|
||||
n = z-zBuf;
|
||||
n = (int)(z-zBuf);
|
||||
assert( n>0 && n<=4 );
|
||||
z[0] = 0;
|
||||
z = zBuf;
|
||||
READ_UTF16BE(z, c);
|
||||
|
|
593
util.c
593
util.c
|
@ -14,14 +14,101 @@
|
|||
** This file contains functions for allocating memory, comparing
|
||||
** strings, and stuff like that.
|
||||
**
|
||||
** $Id: util.c,v 1.207 2007/06/26 00:37:28 drh Exp $
|
||||
** $Id: util.c,v 1.246 2009/01/10 16:15:22 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
#include "os.h"
|
||||
#include <stdarg.h>
|
||||
#include <ctype.h>
|
||||
|
||||
|
||||
/*
|
||||
** Routine needed to support the testcase() macro.
|
||||
*/
|
||||
#ifdef SQLITE_COVERAGE_TEST
|
||||
void sqlite3Coverage(int x){
|
||||
static int dummy = 0;
|
||||
dummy += x;
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
** Routine needed to support the ALWAYS() and NEVER() macros.
|
||||
**
|
||||
** The argument to ALWAYS() should always be true and the argument
|
||||
** to NEVER() should always be false. If either is not the case
|
||||
** then this routine is called in order to throw an error.
|
||||
**
|
||||
** This routine only exists if assert() is operational. It always
|
||||
** throws an assert on its first invocation. The variable has a long
|
||||
** name to help the assert() message be more readable. The variable
|
||||
** is used to prevent a too-clever optimizer from optimizing out the
|
||||
** entire call.
|
||||
*/
|
||||
#ifndef NDEBUG
|
||||
int sqlite3Assert(void){
|
||||
static volatile int ALWAYS_was_false_or_NEVER_was_true = 0;
|
||||
assert( ALWAYS_was_false_or_NEVER_was_true ); /* Always fails */
|
||||
return ALWAYS_was_false_or_NEVER_was_true++; /* Not Reached */
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
** Return true if the floating point value is Not a Number (NaN).
|
||||
*/
|
||||
int sqlite3IsNaN(double x){
|
||||
/* This NaN test sometimes fails if compiled on GCC with -ffast-math.
|
||||
** On the other hand, the use of -ffast-math comes with the following
|
||||
** warning:
|
||||
**
|
||||
** This option [-ffast-math] should never be turned on by any
|
||||
** -O option since it can result in incorrect output for programs
|
||||
** which depend on an exact implementation of IEEE or ISO
|
||||
** rules/specifications for math functions.
|
||||
**
|
||||
** Under MSVC, this NaN test may fail if compiled with a floating-
|
||||
** point precision mode other than /fp:precise. From the MSDN
|
||||
** documentation:
|
||||
**
|
||||
** The compiler [with /fp:precise] will properly handle comparisons
|
||||
** involving NaN. For example, x != x evaluates to true if x is NaN
|
||||
** ...
|
||||
*/
|
||||
#ifdef __FAST_MATH__
|
||||
# error SQLite will not work correctly with the -ffast-math option of GCC.
|
||||
#endif
|
||||
volatile double y = x;
|
||||
volatile double z = y;
|
||||
return y!=z;
|
||||
}
|
||||
|
||||
/*
|
||||
** Compute a string length that is limited to what can be stored in
|
||||
** lower 30 bits of a 32-bit signed integer.
|
||||
*/
|
||||
int sqlite3Strlen30(const char *z){
|
||||
const char *z2 = z;
|
||||
while( *z2 ){ z2++; }
|
||||
return 0x3fffffff & (int)(z2 - z);
|
||||
}
|
||||
|
||||
/*
|
||||
** Return the length of a string, except do not allow the string length
|
||||
** to exceed the SQLITE_LIMIT_LENGTH setting.
|
||||
*/
|
||||
int sqlite3Strlen(sqlite3 *db, const char *z){
|
||||
const char *z2 = z;
|
||||
int len;
|
||||
int x;
|
||||
while( *z2 ){ z2++; }
|
||||
x = (int)(z2 - z);
|
||||
len = 0x7fffffff & x;
|
||||
if( len!=x || len > db->aLimit[SQLITE_LIMIT_LENGTH] ){
|
||||
return db->aLimit[SQLITE_LIMIT_LENGTH];
|
||||
}else{
|
||||
return len;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Set the most recent error code and error string for the sqlite
|
||||
** handle "db". The error code is set to "err_code".
|
||||
|
@ -44,15 +131,15 @@
|
|||
** to NULL.
|
||||
*/
|
||||
void sqlite3Error(sqlite3 *db, int err_code, const char *zFormat, ...){
|
||||
if( db && (db->pErr || (db->pErr = sqlite3ValueNew())!=0) ){
|
||||
if( db && (db->pErr || (db->pErr = sqlite3ValueNew(db))!=0) ){
|
||||
db->errCode = err_code;
|
||||
if( zFormat ){
|
||||
char *z;
|
||||
va_list ap;
|
||||
va_start(ap, zFormat);
|
||||
z = sqlite3VMPrintf(zFormat, ap);
|
||||
z = sqlite3VMPrintf(db, zFormat, ap);
|
||||
va_end(ap);
|
||||
sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, sqlite3FreeX);
|
||||
sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
|
||||
}else{
|
||||
sqlite3ValueSetStr(db->pErr, 0, 0, SQLITE_UTF8, SQLITE_STATIC);
|
||||
}
|
||||
|
@ -78,10 +165,11 @@ void sqlite3Error(sqlite3 *db, int err_code, const char *zFormat, ...){
|
|||
*/
|
||||
void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
|
||||
va_list ap;
|
||||
sqlite3 *db = pParse->db;
|
||||
pParse->nErr++;
|
||||
sqliteFree(pParse->zErrMsg);
|
||||
sqlite3DbFree(db, pParse->zErrMsg);
|
||||
va_start(ap, zFormat);
|
||||
pParse->zErrMsg = sqlite3VMPrintf(zFormat, ap);
|
||||
pParse->zErrMsg = sqlite3VMPrintf(db, zFormat, ap);
|
||||
va_end(ap);
|
||||
if( pParse->rc==SQLITE_OK ){
|
||||
pParse->rc = SQLITE_ERROR;
|
||||
|
@ -92,7 +180,7 @@ void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
|
|||
** Clear the error message in pParse, if any
|
||||
*/
|
||||
void sqlite3ErrorClear(Parse *pParse){
|
||||
sqliteFree(pParse->zErrMsg);
|
||||
sqlite3DbFree(pParse->db, pParse->zErrMsg);
|
||||
pParse->zErrMsg = 0;
|
||||
pParse->nErr = 0;
|
||||
}
|
||||
|
@ -108,7 +196,7 @@ void sqlite3ErrorClear(Parse *pParse){
|
|||
** "a-b-c".
|
||||
*/
|
||||
void sqlite3Dequote(char *z){
|
||||
int quote;
|
||||
char quote;
|
||||
int i, j;
|
||||
if( z==0 ) return;
|
||||
quote = z[0];
|
||||
|
@ -134,46 +222,7 @@ void sqlite3Dequote(char *z){
|
|||
}
|
||||
}
|
||||
|
||||
/* An array to map all upper-case characters into their corresponding
|
||||
** lower-case character.
|
||||
*/
|
||||
const unsigned char sqlite3UpperToLower[] = {
|
||||
#ifdef SQLITE_ASCII
|
||||
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
|
||||
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
|
||||
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
|
||||
54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 97, 98, 99,100,101,102,103,
|
||||
104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,
|
||||
122, 91, 92, 93, 94, 95, 96, 97, 98, 99,100,101,102,103,104,105,106,107,
|
||||
108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,
|
||||
126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,
|
||||
144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,
|
||||
162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,
|
||||
180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,
|
||||
198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,
|
||||
216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,
|
||||
234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,
|
||||
252,253,254,255
|
||||
#endif
|
||||
#ifdef SQLITE_EBCDIC
|
||||
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, /* 0x */
|
||||
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, /* 1x */
|
||||
32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, /* 2x */
|
||||
48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, /* 3x */
|
||||
64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, /* 4x */
|
||||
80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, /* 5x */
|
||||
96, 97, 66, 67, 68, 69, 70, 71, 72, 73,106,107,108,109,110,111, /* 6x */
|
||||
112, 81, 82, 83, 84, 85, 86, 87, 88, 89,122,123,124,125,126,127, /* 7x */
|
||||
128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, /* 8x */
|
||||
144,145,146,147,148,149,150,151,152,153,154,155,156,157,156,159, /* 9x */
|
||||
160,161,162,163,164,165,166,167,168,169,170,171,140,141,142,175, /* Ax */
|
||||
176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191, /* Bx */
|
||||
192,129,130,131,132,133,134,135,136,137,202,203,204,205,206,207, /* Cx */
|
||||
208,145,146,147,148,149,150,151,152,153,218,219,220,221,222,223, /* Dx */
|
||||
224,225,162,163,164,165,166,167,168,169,232,203,204,205,206,207, /* Ex */
|
||||
239,240,241,242,243,244,245,246,247,248,249,219,220,221,222,255, /* Fx */
|
||||
#endif
|
||||
};
|
||||
/* Convenient short-hand */
|
||||
#define UpperToLower sqlite3UpperToLower
|
||||
|
||||
/*
|
||||
|
@ -246,6 +295,7 @@ int sqlite3AtoF(const char *z, double *pResult){
|
|||
int sign = 1;
|
||||
const char *zBegin = z;
|
||||
LONGDOUBLE_TYPE v1 = 0.0;
|
||||
int nSignificant = 0;
|
||||
while( isspace(*(u8*)z) ) z++;
|
||||
if( *z=='-' ){
|
||||
sign = -1;
|
||||
|
@ -253,16 +303,29 @@ int sqlite3AtoF(const char *z, double *pResult){
|
|||
}else if( *z=='+' ){
|
||||
z++;
|
||||
}
|
||||
while( z[0]=='0' ){
|
||||
z++;
|
||||
}
|
||||
while( isdigit(*(u8*)z) ){
|
||||
v1 = v1*10.0 + (*z - '0');
|
||||
z++;
|
||||
nSignificant++;
|
||||
}
|
||||
if( *z=='.' ){
|
||||
LONGDOUBLE_TYPE divisor = 1.0;
|
||||
z++;
|
||||
if( nSignificant==0 ){
|
||||
while( z[0]=='0' ){
|
||||
divisor *= 10.0;
|
||||
z++;
|
||||
}
|
||||
}
|
||||
while( isdigit(*(u8*)z) ){
|
||||
if( nSignificant<18 ){
|
||||
v1 = v1*10.0 + (*z - '0');
|
||||
divisor *= 10.0;
|
||||
nSignificant++;
|
||||
}
|
||||
z++;
|
||||
}
|
||||
v1 /= divisor;
|
||||
|
@ -292,8 +355,8 @@ int sqlite3AtoF(const char *z, double *pResult){
|
|||
v1 *= scale;
|
||||
}
|
||||
}
|
||||
*pResult = sign<0 ? -v1 : v1;
|
||||
return z - zBegin;
|
||||
*pResult = (double)(sign<0 ? -v1 : v1);
|
||||
return (int)(z - zBegin);
|
||||
#else
|
||||
return sqlite3Atoi64(z, pResult);
|
||||
#endif /* SQLITE_OMIT_FLOATING_POINT */
|
||||
|
@ -336,6 +399,7 @@ int sqlite3Atoi64(const char *zNum, i64 *pNum){
|
|||
i64 v = 0;
|
||||
int neg;
|
||||
int i, c;
|
||||
const char *zStart;
|
||||
while( isspace(*(u8*)zNum) ) zNum++;
|
||||
if( *zNum=='-' ){
|
||||
neg = 1;
|
||||
|
@ -346,12 +410,13 @@ int sqlite3Atoi64(const char *zNum, i64 *pNum){
|
|||
}else{
|
||||
neg = 0;
|
||||
}
|
||||
zStart = zNum;
|
||||
while( zNum[0]=='0' ){ zNum++; } /* Skip over leading zeros. Ticket #2454 */
|
||||
for(i=0; (c=zNum[i])>='0' && c<='9'; i++){
|
||||
v = v*10 + c - '0';
|
||||
}
|
||||
*pNum = neg ? -v : v;
|
||||
if( c!=0 || i==0 || i>19 ){
|
||||
if( c!=0 || (i==0 && zStart==zNum) || i>19 ){
|
||||
/* zNum is empty or contains non-numeric text or is longer
|
||||
** than 19 digits (thus guaranting that it is too large) */
|
||||
return 0;
|
||||
|
@ -377,7 +442,7 @@ int sqlite3Atoi64(const char *zNum, i64 *pNum){
|
|||
** 9223373036854775808 will not fit in 64 bits. So it seems safer to return
|
||||
** false.
|
||||
*/
|
||||
int sqlite3FitsIn64Bits(const char *zNum){
|
||||
int sqlite3FitsIn64Bits(const char *zNum, int negFlag){
|
||||
int i, c;
|
||||
int neg = 0;
|
||||
if( *zNum=='-' ){
|
||||
|
@ -386,6 +451,7 @@ int sqlite3FitsIn64Bits(const char *zNum){
|
|||
}else if( *zNum=='+' ){
|
||||
zNum++;
|
||||
}
|
||||
if( negFlag ) neg = 1-neg;
|
||||
while( *zNum=='0' ){
|
||||
zNum++; /* Skip leading zeros. Ticket #2454 */
|
||||
}
|
||||
|
@ -421,10 +487,16 @@ int sqlite3GetInt32(const char *zNum, int *pValue){
|
|||
zNum++;
|
||||
}
|
||||
while( zNum[0]=='0' ) zNum++;
|
||||
for(i=0; i<10 && (c = zNum[i] - '0')>=0 && c<=9; i++){
|
||||
for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
|
||||
v = v*10 + c;
|
||||
}
|
||||
if( i>9 ){
|
||||
|
||||
/* The longest decimal representation of a 32 bit integer is 10 digits:
|
||||
**
|
||||
** 1234567890
|
||||
** 2^31 -> 2147483648
|
||||
*/
|
||||
if( i>10 ){
|
||||
return 0;
|
||||
}
|
||||
if( v-neg>2147483647 ){
|
||||
|
@ -437,25 +509,6 @@ int sqlite3GetInt32(const char *zNum, int *pValue){
|
|||
return 1;
|
||||
}
|
||||
|
||||
/*
|
||||
** Check to make sure we have a valid db pointer. This test is not
|
||||
** foolproof but it does provide some measure of protection against
|
||||
** misuse of the interface such as passing in db pointers that are
|
||||
** NULL or which have been previously closed. If this routine returns
|
||||
** TRUE it means that the db pointer is invalid and should not be
|
||||
** dereferenced for any reason. The calling function should invoke
|
||||
** SQLITE_MISUSE immediately.
|
||||
*/
|
||||
int sqlite3SafetyCheck(sqlite3 *db){
|
||||
int magic;
|
||||
if( db==0 ) return 1;
|
||||
magic = db->magic;
|
||||
if( magic!=SQLITE_MAGIC_CLOSED &&
|
||||
magic!=SQLITE_MAGIC_OPEN &&
|
||||
magic!=SQLITE_MAGIC_BUSY ) return 1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
** The variable-length integer encoding is as follows:
|
||||
**
|
||||
|
@ -489,17 +542,17 @@ int sqlite3PutVarint(unsigned char *p, u64 v){
|
|||
int i, j, n;
|
||||
u8 buf[10];
|
||||
if( v & (((u64)0xff000000)<<32) ){
|
||||
p[8] = v;
|
||||
p[8] = (u8)v;
|
||||
v >>= 8;
|
||||
for(i=7; i>=0; i--){
|
||||
p[i] = (v & 0x7f) | 0x80;
|
||||
p[i] = (u8)((v & 0x7f) | 0x80);
|
||||
v >>= 7;
|
||||
}
|
||||
return 9;
|
||||
}
|
||||
n = 0;
|
||||
do{
|
||||
buf[n++] = (v & 0x7f) | 0x80;
|
||||
buf[n++] = (u8)((v & 0x7f) | 0x80);
|
||||
v >>= 7;
|
||||
}while( v!=0 );
|
||||
buf[0] &= 0x7f;
|
||||
|
@ -510,72 +563,272 @@ int sqlite3PutVarint(unsigned char *p, u64 v){
|
|||
return n;
|
||||
}
|
||||
|
||||
/*
|
||||
** This routine is a faster version of sqlite3PutVarint() that only
|
||||
** works for 32-bit positive integers and which is optimized for
|
||||
** the common case of small integers. A MACRO version, putVarint32,
|
||||
** is provided which inlines the single-byte case. All code should use
|
||||
** the MACRO version as this function assumes the single-byte case has
|
||||
** already been handled.
|
||||
*/
|
||||
int sqlite3PutVarint32(unsigned char *p, u32 v){
|
||||
#ifndef putVarint32
|
||||
if( (v & ~0x7f)==0 ){
|
||||
p[0] = v;
|
||||
return 1;
|
||||
}
|
||||
#endif
|
||||
if( (v & ~0x3fff)==0 ){
|
||||
p[0] = (u8)((v>>7) | 0x80);
|
||||
p[1] = (u8)(v & 0x7f);
|
||||
return 2;
|
||||
}
|
||||
return sqlite3PutVarint(p, v);
|
||||
}
|
||||
|
||||
/*
|
||||
** Read a 64-bit variable-length integer from memory starting at p[0].
|
||||
** Return the number of bytes read. The value is stored in *v.
|
||||
*/
|
||||
int sqlite3GetVarint(const unsigned char *p, u64 *v){
|
||||
u32 x;
|
||||
u64 x64;
|
||||
int n;
|
||||
unsigned char c;
|
||||
if( ((c = p[0]) & 0x80)==0 ){
|
||||
*v = c;
|
||||
u8 sqlite3GetVarint(const unsigned char *p, u64 *v){
|
||||
u32 a,b,s;
|
||||
|
||||
a = *p;
|
||||
/* a: p0 (unmasked) */
|
||||
if (!(a&0x80))
|
||||
{
|
||||
*v = a;
|
||||
return 1;
|
||||
}
|
||||
x = c & 0x7f;
|
||||
if( ((c = p[1]) & 0x80)==0 ){
|
||||
*v = (x<<7) | c;
|
||||
|
||||
p++;
|
||||
b = *p;
|
||||
/* b: p1 (unmasked) */
|
||||
if (!(b&0x80))
|
||||
{
|
||||
a &= 0x7f;
|
||||
a = a<<7;
|
||||
a |= b;
|
||||
*v = a;
|
||||
return 2;
|
||||
}
|
||||
x = (x<<7) | (c&0x7f);
|
||||
if( ((c = p[2]) & 0x80)==0 ){
|
||||
*v = (x<<7) | c;
|
||||
|
||||
p++;
|
||||
a = a<<14;
|
||||
a |= *p;
|
||||
/* a: p0<<14 | p2 (unmasked) */
|
||||
if (!(a&0x80))
|
||||
{
|
||||
a &= (0x7f<<14)|(0x7f);
|
||||
b &= 0x7f;
|
||||
b = b<<7;
|
||||
a |= b;
|
||||
*v = a;
|
||||
return 3;
|
||||
}
|
||||
x = (x<<7) | (c&0x7f);
|
||||
if( ((c = p[3]) & 0x80)==0 ){
|
||||
*v = (x<<7) | c;
|
||||
|
||||
/* CSE1 from below */
|
||||
a &= (0x7f<<14)|(0x7f);
|
||||
p++;
|
||||
b = b<<14;
|
||||
b |= *p;
|
||||
/* b: p1<<14 | p3 (unmasked) */
|
||||
if (!(b&0x80))
|
||||
{
|
||||
b &= (0x7f<<14)|(0x7f);
|
||||
/* moved CSE1 up */
|
||||
/* a &= (0x7f<<14)|(0x7f); */
|
||||
a = a<<7;
|
||||
a |= b;
|
||||
*v = a;
|
||||
return 4;
|
||||
}
|
||||
x64 = (x<<7) | (c&0x7f);
|
||||
n = 4;
|
||||
do{
|
||||
c = p[n++];
|
||||
if( n==9 ){
|
||||
x64 = (x64<<8) | c;
|
||||
break;
|
||||
|
||||
/* a: p0<<14 | p2 (masked) */
|
||||
/* b: p1<<14 | p3 (unmasked) */
|
||||
/* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
|
||||
/* moved CSE1 up */
|
||||
/* a &= (0x7f<<14)|(0x7f); */
|
||||
b &= (0x7f<<14)|(0x7f);
|
||||
s = a;
|
||||
/* s: p0<<14 | p2 (masked) */
|
||||
|
||||
p++;
|
||||
a = a<<14;
|
||||
a |= *p;
|
||||
/* a: p0<<28 | p2<<14 | p4 (unmasked) */
|
||||
if (!(a&0x80))
|
||||
{
|
||||
/* we can skip these cause they were (effectively) done above in calc'ing s */
|
||||
/* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
|
||||
/* b &= (0x7f<<14)|(0x7f); */
|
||||
b = b<<7;
|
||||
a |= b;
|
||||
s = s>>18;
|
||||
*v = ((u64)s)<<32 | a;
|
||||
return 5;
|
||||
}
|
||||
x64 = (x64<<7) | (c&0x7f);
|
||||
}while( (c & 0x80)!=0 );
|
||||
*v = x64;
|
||||
return n;
|
||||
|
||||
/* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
|
||||
s = s<<7;
|
||||
s |= b;
|
||||
/* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
|
||||
|
||||
p++;
|
||||
b = b<<14;
|
||||
b |= *p;
|
||||
/* b: p1<<28 | p3<<14 | p5 (unmasked) */
|
||||
if (!(b&0x80))
|
||||
{
|
||||
/* we can skip this cause it was (effectively) done above in calc'ing s */
|
||||
/* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
|
||||
a &= (0x7f<<14)|(0x7f);
|
||||
a = a<<7;
|
||||
a |= b;
|
||||
s = s>>18;
|
||||
*v = ((u64)s)<<32 | a;
|
||||
return 6;
|
||||
}
|
||||
|
||||
p++;
|
||||
a = a<<14;
|
||||
a |= *p;
|
||||
/* a: p2<<28 | p4<<14 | p6 (unmasked) */
|
||||
if (!(a&0x80))
|
||||
{
|
||||
a &= (0x7f<<28)|(0x7f<<14)|(0x7f);
|
||||
b &= (0x7f<<14)|(0x7f);
|
||||
b = b<<7;
|
||||
a |= b;
|
||||
s = s>>11;
|
||||
*v = ((u64)s)<<32 | a;
|
||||
return 7;
|
||||
}
|
||||
|
||||
/* CSE2 from below */
|
||||
a &= (0x7f<<14)|(0x7f);
|
||||
p++;
|
||||
b = b<<14;
|
||||
b |= *p;
|
||||
/* b: p3<<28 | p5<<14 | p7 (unmasked) */
|
||||
if (!(b&0x80))
|
||||
{
|
||||
b &= (0x7f<<28)|(0x7f<<14)|(0x7f);
|
||||
/* moved CSE2 up */
|
||||
/* a &= (0x7f<<14)|(0x7f); */
|
||||
a = a<<7;
|
||||
a |= b;
|
||||
s = s>>4;
|
||||
*v = ((u64)s)<<32 | a;
|
||||
return 8;
|
||||
}
|
||||
|
||||
p++;
|
||||
a = a<<15;
|
||||
a |= *p;
|
||||
/* a: p4<<29 | p6<<15 | p8 (unmasked) */
|
||||
|
||||
/* moved CSE2 up */
|
||||
/* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
|
||||
b &= (0x7f<<14)|(0x7f);
|
||||
b = b<<8;
|
||||
a |= b;
|
||||
|
||||
s = s<<4;
|
||||
b = p[-4];
|
||||
b &= 0x7f;
|
||||
b = b>>3;
|
||||
s |= b;
|
||||
|
||||
*v = ((u64)s)<<32 | a;
|
||||
|
||||
return 9;
|
||||
}
|
||||
|
||||
/*
|
||||
** Read a 32-bit variable-length integer from memory starting at p[0].
|
||||
** Return the number of bytes read. The value is stored in *v.
|
||||
** A MACRO version, getVarint32, is provided which inlines the
|
||||
** single-byte case. All code should use the MACRO version as
|
||||
** this function assumes the single-byte case has already been handled.
|
||||
*/
|
||||
int sqlite3GetVarint32(const unsigned char *p, u32 *v){
|
||||
u32 x;
|
||||
int n;
|
||||
unsigned char c;
|
||||
if( ((signed char*)p)[0]>=0 ){
|
||||
*v = p[0];
|
||||
u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){
|
||||
u32 a,b;
|
||||
|
||||
a = *p;
|
||||
/* a: p0 (unmasked) */
|
||||
#ifndef getVarint32
|
||||
if (!(a&0x80))
|
||||
{
|
||||
*v = a;
|
||||
return 1;
|
||||
}
|
||||
x = p[0] & 0x7f;
|
||||
if( ((signed char*)p)[1]>=0 ){
|
||||
*v = (x<<7) | p[1];
|
||||
#endif
|
||||
|
||||
p++;
|
||||
b = *p;
|
||||
/* b: p1 (unmasked) */
|
||||
if (!(b&0x80))
|
||||
{
|
||||
a &= 0x7f;
|
||||
a = a<<7;
|
||||
*v = a | b;
|
||||
return 2;
|
||||
}
|
||||
x = (x<<7) | (p[1] & 0x7f);
|
||||
n = 2;
|
||||
do{
|
||||
x = (x<<7) | ((c = p[n++])&0x7f);
|
||||
}while( (c & 0x80)!=0 && n<9 );
|
||||
*v = x;
|
||||
|
||||
p++;
|
||||
a = a<<14;
|
||||
a |= *p;
|
||||
/* a: p0<<14 | p2 (unmasked) */
|
||||
if (!(a&0x80))
|
||||
{
|
||||
a &= (0x7f<<14)|(0x7f);
|
||||
b &= 0x7f;
|
||||
b = b<<7;
|
||||
*v = a | b;
|
||||
return 3;
|
||||
}
|
||||
|
||||
p++;
|
||||
b = b<<14;
|
||||
b |= *p;
|
||||
/* b: p1<<14 | p3 (unmasked) */
|
||||
if (!(b&0x80))
|
||||
{
|
||||
b &= (0x7f<<14)|(0x7f);
|
||||
a &= (0x7f<<14)|(0x7f);
|
||||
a = a<<7;
|
||||
*v = a | b;
|
||||
return 4;
|
||||
}
|
||||
|
||||
p++;
|
||||
a = a<<14;
|
||||
a |= *p;
|
||||
/* a: p0<<28 | p2<<14 | p4 (unmasked) */
|
||||
if (!(a&0x80))
|
||||
{
|
||||
a &= (0x7f<<28)|(0x7f<<14)|(0x7f);
|
||||
b &= (0x7f<<28)|(0x7f<<14)|(0x7f);
|
||||
b = b<<7;
|
||||
*v = a | b;
|
||||
return 5;
|
||||
}
|
||||
|
||||
/* We can only reach this point when reading a corrupt database
|
||||
** file. In that case we are not in any hurry. Use the (relatively
|
||||
** slow) general-purpose sqlite3GetVarint() routine to extract the
|
||||
** value. */
|
||||
{
|
||||
u64 v64;
|
||||
u8 n;
|
||||
|
||||
p -= 4;
|
||||
n = sqlite3GetVarint(p, &v64);
|
||||
assert( n>5 && n<=9 );
|
||||
*v = (u32)v64;
|
||||
return n;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -599,30 +852,31 @@ u32 sqlite3Get4byte(const u8 *p){
|
|||
return (p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
|
||||
}
|
||||
void sqlite3Put4byte(unsigned char *p, u32 v){
|
||||
p[0] = v>>24;
|
||||
p[1] = v>>16;
|
||||
p[2] = v>>8;
|
||||
p[3] = v;
|
||||
p[0] = (u8)(v>>24);
|
||||
p[1] = (u8)(v>>16);
|
||||
p[2] = (u8)(v>>8);
|
||||
p[3] = (u8)v;
|
||||
}
|
||||
|
||||
|
||||
|
||||
#if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) \
|
||||
|| defined(SQLITE_TEST)
|
||||
#if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
|
||||
/*
|
||||
** Translate a single byte of Hex into an integer.
|
||||
** This routinen only works if h really is a valid hexadecimal
|
||||
** character: 0..9a..fA..F
|
||||
*/
|
||||
static int hexToInt(int h){
|
||||
if( h>='0' && h<='9' ){
|
||||
return h - '0';
|
||||
}else if( h>='a' && h<='f' ){
|
||||
return h - 'a' + 10;
|
||||
}else{
|
||||
assert( h>='A' && h<='F' );
|
||||
return h - 'A' + 10;
|
||||
}
|
||||
static u8 hexToInt(int h){
|
||||
assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') );
|
||||
#ifdef SQLITE_ASCII
|
||||
h += 9*(1&(h>>6));
|
||||
#endif
|
||||
#ifdef SQLITE_EBCDIC
|
||||
h += 9*(1&~(h>>4));
|
||||
#endif
|
||||
return (u8)(h & 0xf);
|
||||
}
|
||||
#endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC || SQLITE_TEST */
|
||||
#endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
|
||||
|
||||
#if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
|
||||
/*
|
||||
|
@ -631,17 +885,17 @@ static int hexToInt(int h){
|
|||
** binary value has been obtained from malloc and must be freed by
|
||||
** the calling routine.
|
||||
*/
|
||||
void *sqlite3HexToBlob(const char *z){
|
||||
void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
|
||||
char *zBlob;
|
||||
int i;
|
||||
int n = strlen(z);
|
||||
if( n%2 ) return 0;
|
||||
|
||||
zBlob = (char *)sqliteMalloc(n/2);
|
||||
zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1);
|
||||
n--;
|
||||
if( zBlob ){
|
||||
for(i=0; i<n; i+=2){
|
||||
zBlob[i/2] = (hexToInt(z[i])<<4) | hexToInt(z[i+1]);
|
||||
}
|
||||
zBlob[i/2] = 0;
|
||||
}
|
||||
return zBlob;
|
||||
}
|
||||
|
@ -673,9 +927,11 @@ void *sqlite3HexToBlob(const char *z){
|
|||
** call to sqlite3_close(db) and db has been deallocated. And we do
|
||||
** not want to write into deallocated memory.
|
||||
*/
|
||||
#ifdef SQLITE_DEBUG
|
||||
int sqlite3SafetyOn(sqlite3 *db){
|
||||
if( db->magic==SQLITE_MAGIC_OPEN ){
|
||||
db->magic = SQLITE_MAGIC_BUSY;
|
||||
assert( sqlite3_mutex_held(db->mutex) );
|
||||
return 0;
|
||||
}else if( db->magic==SQLITE_MAGIC_BUSY ){
|
||||
db->magic = SQLITE_MAGIC_ERROR;
|
||||
|
@ -683,50 +939,55 @@ int sqlite3SafetyOn(sqlite3 *db){
|
|||
}
|
||||
return 1;
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
** Change the magic from SQLITE_MAGIC_BUSY to SQLITE_MAGIC_OPEN.
|
||||
** Return an error (non-zero) if the magic was not SQLITE_MAGIC_BUSY
|
||||
** when this routine is called.
|
||||
*/
|
||||
#ifdef SQLITE_DEBUG
|
||||
int sqlite3SafetyOff(sqlite3 *db){
|
||||
if( db->magic==SQLITE_MAGIC_BUSY ){
|
||||
db->magic = SQLITE_MAGIC_OPEN;
|
||||
assert( sqlite3_mutex_held(db->mutex) );
|
||||
return 0;
|
||||
}else {
|
||||
}else{
|
||||
db->magic = SQLITE_MAGIC_ERROR;
|
||||
db->u1.isInterrupted = 1;
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
** Return a pointer to the ThreadData associated with the calling thread.
|
||||
** Check to make sure we have a valid db pointer. This test is not
|
||||
** foolproof but it does provide some measure of protection against
|
||||
** misuse of the interface such as passing in db pointers that are
|
||||
** NULL or which have been previously closed. If this routine returns
|
||||
** 1 it means that the db pointer is valid and 0 if it should not be
|
||||
** dereferenced for any reason. The calling function should invoke
|
||||
** SQLITE_MISUSE immediately.
|
||||
**
|
||||
** sqlite3SafetyCheckOk() requires that the db pointer be valid for
|
||||
** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
|
||||
** open properly and is not fit for general use but which can be
|
||||
** used as an argument to sqlite3_errmsg() or sqlite3_close().
|
||||
*/
|
||||
ThreadData *sqlite3ThreadData(){
|
||||
ThreadData *p = (ThreadData*)sqlite3OsThreadSpecificData(1);
|
||||
if( !p ){
|
||||
sqlite3FailedMalloc();
|
||||
}
|
||||
return p;
|
||||
int sqlite3SafetyCheckOk(sqlite3 *db){
|
||||
u32 magic;
|
||||
if( db==0 ) return 0;
|
||||
magic = db->magic;
|
||||
if( magic!=SQLITE_MAGIC_OPEN &&
|
||||
magic!=SQLITE_MAGIC_BUSY ) return 0;
|
||||
return 1;
|
||||
}
|
||||
|
||||
/*
|
||||
** Return a pointer to the ThreadData associated with the calling thread.
|
||||
** If no ThreadData has been allocated to this thread yet, return a pointer
|
||||
** to a substitute ThreadData structure that is all zeros.
|
||||
*/
|
||||
const ThreadData *sqlite3ThreadDataReadOnly(){
|
||||
static const ThreadData zeroData = {0}; /* Initializer to silence warnings
|
||||
** from broken compilers */
|
||||
const ThreadData *pTd = sqlite3OsThreadSpecificData(0);
|
||||
return pTd ? pTd : &zeroData;
|
||||
}
|
||||
|
||||
/*
|
||||
** Check to see if the ThreadData for this thread is all zero. If it
|
||||
** is, then deallocate it.
|
||||
*/
|
||||
void sqlite3ReleaseThreadData(){
|
||||
sqlite3OsThreadSpecificData(-1);
|
||||
int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
|
||||
u32 magic;
|
||||
if( db==0 ) return 0;
|
||||
magic = db->magic;
|
||||
if( magic!=SQLITE_MAGIC_SICK &&
|
||||
magic!=SQLITE_MAGIC_OPEN &&
|
||||
magic!=SQLITE_MAGIC_BUSY ) return 0;
|
||||
return 1;
|
||||
}
|
||||
|
|
70
vacuum.c
70
vacuum.c
|
@ -14,11 +14,10 @@
|
|||
** Most of the code in this file may be omitted by defining the
|
||||
** SQLITE_OMIT_VACUUM macro.
|
||||
**
|
||||
** $Id: vacuum.c,v 1.69 2007/03/27 16:19:52 danielk1977 Exp $
|
||||
** $Id: vacuum.c,v 1.84 2008/11/17 19:18:55 danielk1977 Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
#include "vdbeInt.h"
|
||||
#include "os.h"
|
||||
|
||||
#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
|
||||
/*
|
||||
|
@ -26,6 +25,9 @@
|
|||
*/
|
||||
static int execSql(sqlite3 *db, const char *zSql){
|
||||
sqlite3_stmt *pStmt;
|
||||
if( !zSql ){
|
||||
return SQLITE_NOMEM;
|
||||
}
|
||||
if( SQLITE_OK!=sqlite3_prepare(db, zSql, -1, &pStmt, 0) ){
|
||||
return sqlite3_errcode(db);
|
||||
}
|
||||
|
@ -68,7 +70,7 @@ static int execExecSql(sqlite3 *db, const char *zSql){
|
|||
void sqlite3Vacuum(Parse *pParse){
|
||||
Vdbe *v = sqlite3GetVdbe(pParse);
|
||||
if( v ){
|
||||
sqlite3VdbeAddOp(v, OP_Vacuum, 0, 0);
|
||||
sqlite3VdbeAddOp2(v, OP_Vacuum, 0, 0);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
@ -79,22 +81,30 @@ void sqlite3Vacuum(Parse *pParse){
|
|||
int sqlite3RunVacuum(char **pzErrMsg, sqlite3 *db){
|
||||
int rc = SQLITE_OK; /* Return code from service routines */
|
||||
Btree *pMain; /* The database being vacuumed */
|
||||
Pager *pMainPager; /* Pager for database being vacuumed */
|
||||
Btree *pTemp; /* The temporary database we vacuum into */
|
||||
char *zSql = 0; /* SQL statements */
|
||||
int saved_flags; /* Saved value of the db->flags */
|
||||
int saved_nChange; /* Saved value of db->nChange */
|
||||
int saved_nTotalChange; /* Saved value of db->nTotalChange */
|
||||
Db *pDb = 0; /* Database to detach at end of vacuum */
|
||||
int isMemDb; /* True is vacuuming a :memory: database */
|
||||
int nRes;
|
||||
|
||||
/* Save the current value of the write-schema flag before setting it. */
|
||||
saved_flags = db->flags;
|
||||
saved_nChange = db->nChange;
|
||||
saved_nTotalChange = db->nTotalChange;
|
||||
db->flags |= SQLITE_WriteSchema | SQLITE_IgnoreChecks;
|
||||
|
||||
if( !db->autoCommit ){
|
||||
sqlite3SetString(pzErrMsg, "cannot VACUUM from within a transaction",
|
||||
(char*)0);
|
||||
sqlite3SetString(pzErrMsg, db, "cannot VACUUM from within a transaction");
|
||||
rc = SQLITE_ERROR;
|
||||
goto end_of_vacuum;
|
||||
}
|
||||
pMain = db->aDb[0].pBt;
|
||||
pMainPager = sqlite3BtreePager(pMain);
|
||||
isMemDb = sqlite3PagerFile(pMainPager)->pMethods==0;
|
||||
|
||||
/* Attach the temporary database as 'vacuum_db'. The synchronous pragma
|
||||
** can be set to 'off' for this file, as it is not recovered if a crash
|
||||
|
@ -103,6 +113,12 @@ int sqlite3RunVacuum(char **pzErrMsg, sqlite3 *db){
|
|||
** sqlite3BtreeCopyFile() is called.
|
||||
**
|
||||
** An optimisation would be to use a non-journaled pager.
|
||||
** (Later:) I tried setting "PRAGMA vacuum_db.journal_mode=OFF" but
|
||||
** that actually made the VACUUM run slower. Very little journalling
|
||||
** actually occurs when doing a vacuum since the vacuum_db is initially
|
||||
** empty. Only the journal header is written. Apparently it takes more
|
||||
** time to parse and run the PRAGMA to turn journalling off than it does
|
||||
** to write the journal header file.
|
||||
*/
|
||||
zSql = "ATTACH '' AS vacuum_db;";
|
||||
rc = execSql(db, zSql);
|
||||
|
@ -110,20 +126,35 @@ int sqlite3RunVacuum(char **pzErrMsg, sqlite3 *db){
|
|||
pDb = &db->aDb[db->nDb-1];
|
||||
assert( strcmp(db->aDb[db->nDb-1].zName,"vacuum_db")==0 );
|
||||
pTemp = db->aDb[db->nDb-1].pBt;
|
||||
sqlite3BtreeSetPageSize(pTemp, sqlite3BtreeGetPageSize(pMain),
|
||||
sqlite3BtreeGetReserve(pMain));
|
||||
if( sqlite3MallocFailed() ){
|
||||
|
||||
nRes = sqlite3BtreeGetReserve(pMain);
|
||||
|
||||
/* A VACUUM cannot change the pagesize of an encrypted database. */
|
||||
#ifdef SQLITE_HAS_CODEC
|
||||
if( db->nextPagesize ){
|
||||
extern void sqlite3CodecGetKey(sqlite3*, int, void**, int*);
|
||||
int nKey;
|
||||
char *zKey;
|
||||
sqlite3CodecGetKey(db, 0, (void**)&zKey, &nKey);
|
||||
if( nKey ) db->nextPagesize = 0;
|
||||
}
|
||||
#endif
|
||||
|
||||
if( sqlite3BtreeSetPageSize(pTemp, sqlite3BtreeGetPageSize(pMain), nRes)
|
||||
|| (!isMemDb && sqlite3BtreeSetPageSize(pTemp, db->nextPagesize, nRes))
|
||||
|| db->mallocFailed
|
||||
){
|
||||
rc = SQLITE_NOMEM;
|
||||
goto end_of_vacuum;
|
||||
}
|
||||
assert( sqlite3BtreeGetPageSize(pTemp)==sqlite3BtreeGetPageSize(pMain) );
|
||||
rc = execSql(db, "PRAGMA vacuum_db.synchronous=OFF");
|
||||
if( rc!=SQLITE_OK ){
|
||||
goto end_of_vacuum;
|
||||
}
|
||||
|
||||
#ifndef SQLITE_OMIT_AUTOVACUUM
|
||||
sqlite3BtreeSetAutoVacuum(pTemp, sqlite3BtreeGetAutoVacuum(pMain));
|
||||
sqlite3BtreeSetAutoVacuum(pTemp, db->nextAutovac>=0 ? db->nextAutovac :
|
||||
sqlite3BtreeGetAutoVacuum(pMain));
|
||||
#endif
|
||||
|
||||
/* Begin a transaction */
|
||||
|
@ -134,17 +165,17 @@ int sqlite3RunVacuum(char **pzErrMsg, sqlite3 *db){
|
|||
** in the temporary database.
|
||||
*/
|
||||
rc = execExecSql(db,
|
||||
"SELECT 'CREATE TABLE vacuum_db.' || substr(sql,14,100000000) "
|
||||
"SELECT 'CREATE TABLE vacuum_db.' || substr(sql,14) "
|
||||
" FROM sqlite_master WHERE type='table' AND name!='sqlite_sequence'"
|
||||
" AND rootpage>0"
|
||||
);
|
||||
if( rc!=SQLITE_OK ) goto end_of_vacuum;
|
||||
rc = execExecSql(db,
|
||||
"SELECT 'CREATE INDEX vacuum_db.' || substr(sql,14,100000000)"
|
||||
"SELECT 'CREATE INDEX vacuum_db.' || substr(sql,14)"
|
||||
" FROM sqlite_master WHERE sql LIKE 'CREATE INDEX %' ");
|
||||
if( rc!=SQLITE_OK ) goto end_of_vacuum;
|
||||
rc = execExecSql(db,
|
||||
"SELECT 'CREATE UNIQUE INDEX vacuum_db.' || substr(sql,21,100000000) "
|
||||
"SELECT 'CREATE UNIQUE INDEX vacuum_db.' || substr(sql,21) "
|
||||
" FROM sqlite_master WHERE sql LIKE 'CREATE UNIQUE INDEX %'");
|
||||
if( rc!=SQLITE_OK ) goto end_of_vacuum;
|
||||
|
||||
|
@ -220,7 +251,7 @@ int sqlite3RunVacuum(char **pzErrMsg, sqlite3 *db){
|
|||
assert( 1==sqlite3BtreeIsInTrans(pMain) );
|
||||
|
||||
/* Copy Btree meta values */
|
||||
for(i=0; i<sizeof(aCopy)/sizeof(aCopy[0]); i+=2){
|
||||
for(i=0; i<ArraySize(aCopy); i+=2){
|
||||
rc = sqlite3BtreeGetMeta(pMain, aCopy[i], &meta);
|
||||
if( rc!=SQLITE_OK ) goto end_of_vacuum;
|
||||
rc = sqlite3BtreeUpdateMeta(pTemp, aCopy[i], meta+aCopy[i+1]);
|
||||
|
@ -231,12 +262,21 @@ int sqlite3RunVacuum(char **pzErrMsg, sqlite3 *db){
|
|||
if( rc!=SQLITE_OK ) goto end_of_vacuum;
|
||||
rc = sqlite3BtreeCommit(pTemp);
|
||||
if( rc!=SQLITE_OK ) goto end_of_vacuum;
|
||||
#ifndef SQLITE_OMIT_AUTOVACUUM
|
||||
sqlite3BtreeSetAutoVacuum(pMain, sqlite3BtreeGetAutoVacuum(pTemp));
|
||||
#endif
|
||||
rc = sqlite3BtreeCommit(pMain);
|
||||
}
|
||||
|
||||
if( rc==SQLITE_OK ){
|
||||
rc = sqlite3BtreeSetPageSize(pMain, sqlite3BtreeGetPageSize(pTemp), nRes);
|
||||
}
|
||||
|
||||
end_of_vacuum:
|
||||
/* Restore the original value of db->flags */
|
||||
db->flags = saved_flags;
|
||||
db->nChange = saved_nChange;
|
||||
db->nTotalChange = saved_nTotalChange;
|
||||
|
||||
/* Currently there is an SQL level transaction open on the vacuum
|
||||
** database. No locks are held on any other files (since the main file
|
||||
|
@ -248,9 +288,7 @@ end_of_vacuum:
|
|||
db->autoCommit = 1;
|
||||
|
||||
if( pDb ){
|
||||
sqlite3MallocDisallow();
|
||||
sqlite3BtreeClose(pDb->pBt);
|
||||
sqlite3MallocAllow();
|
||||
pDb->pBt = 0;
|
||||
pDb->pSchema = 0;
|
||||
}
|
||||
|
|
108
vdbe.h
108
vdbe.h
|
@ -15,7 +15,7 @@
|
|||
** or VDBE. The VDBE implements an abstract machine that runs a
|
||||
** simple program to access and modify the underlying database.
|
||||
**
|
||||
** $Id: vdbe.h,v 1.110 2007/05/08 21:45:28 drh Exp $
|
||||
** $Id: vdbe.h,v 1.139 2008/10/31 10:53:23 danielk1977 Exp $
|
||||
*/
|
||||
#ifndef _SQLITE_VDBE_H_
|
||||
#define _SQLITE_VDBE_H_
|
||||
|
@ -28,6 +28,13 @@
|
|||
*/
|
||||
typedef struct Vdbe Vdbe;
|
||||
|
||||
/*
|
||||
** The names of the following types declared in vdbeInt.h are required
|
||||
** for the VdbeOp definition.
|
||||
*/
|
||||
typedef struct VdbeFunc VdbeFunc;
|
||||
typedef struct Mem Mem;
|
||||
|
||||
/*
|
||||
** A single instruction of the virtual machine has an opcode
|
||||
** and as many as three operands. The instruction is recorded
|
||||
|
@ -35,13 +42,32 @@ typedef struct Vdbe Vdbe;
|
|||
*/
|
||||
struct VdbeOp {
|
||||
u8 opcode; /* What operation to perform */
|
||||
signed char p4type; /* One of the P4_xxx constants for p4 */
|
||||
u8 opflags; /* Not currently used */
|
||||
u8 p5; /* Fifth parameter is an unsigned character */
|
||||
int p1; /* First operand */
|
||||
int p2; /* Second parameter (often the jump destination) */
|
||||
char *p3; /* Third parameter */
|
||||
int p3type; /* One of the P3_xxx constants defined below */
|
||||
int p3; /* The third parameter */
|
||||
union { /* forth parameter */
|
||||
int i; /* Integer value if p4type==P4_INT32 */
|
||||
void *p; /* Generic pointer */
|
||||
char *z; /* Pointer to data for string (char array) types */
|
||||
i64 *pI64; /* Used when p4type is P4_INT64 */
|
||||
double *pReal; /* Used when p4type is P4_REAL */
|
||||
FuncDef *pFunc; /* Used when p4type is P4_FUNCDEF */
|
||||
VdbeFunc *pVdbeFunc; /* Used when p4type is P4_VDBEFUNC */
|
||||
CollSeq *pColl; /* Used when p4type is P4_COLLSEQ */
|
||||
Mem *pMem; /* Used when p4type is P4_MEM */
|
||||
sqlite3_vtab *pVtab; /* Used when p4type is P4_VTAB */
|
||||
KeyInfo *pKeyInfo; /* Used when p4type is P4_KEYINFO */
|
||||
int *ai; /* Used when p4type is P4_INTARRAY */
|
||||
} p4;
|
||||
#ifdef SQLITE_DEBUG
|
||||
char *zComment; /* Comment to improve readability */
|
||||
#endif
|
||||
#ifdef VDBE_PROFILE
|
||||
int cnt; /* Number of times this instruction was executed */
|
||||
long long cycles; /* Total time spend executing this instruction */
|
||||
u64 cycles; /* Total time spent executing this instruction */
|
||||
#endif
|
||||
};
|
||||
typedef struct VdbeOp VdbeOp;
|
||||
|
@ -53,34 +79,39 @@ typedef struct VdbeOp VdbeOp;
|
|||
struct VdbeOpList {
|
||||
u8 opcode; /* What operation to perform */
|
||||
signed char p1; /* First operand */
|
||||
short int p2; /* Second parameter (often the jump destination) */
|
||||
char *p3; /* Third parameter */
|
||||
signed char p2; /* Second parameter (often the jump destination) */
|
||||
signed char p3; /* Third parameter */
|
||||
};
|
||||
typedef struct VdbeOpList VdbeOpList;
|
||||
|
||||
/*
|
||||
** Allowed values of VdbeOp.p3type
|
||||
*/
|
||||
#define P3_NOTUSED 0 /* The P3 parameter is not used */
|
||||
#define P3_DYNAMIC (-1) /* Pointer to a string obtained from sqliteMalloc() */
|
||||
#define P3_STATIC (-2) /* Pointer to a static string */
|
||||
#define P3_COLLSEQ (-4) /* P3 is a pointer to a CollSeq structure */
|
||||
#define P3_FUNCDEF (-5) /* P3 is a pointer to a FuncDef structure */
|
||||
#define P3_KEYINFO (-6) /* P3 is a pointer to a KeyInfo structure */
|
||||
#define P3_VDBEFUNC (-7) /* P3 is a pointer to a VdbeFunc structure */
|
||||
#define P3_MEM (-8) /* P3 is a pointer to a Mem* structure */
|
||||
#define P3_TRANSIENT (-9) /* P3 is a pointer to a transient string */
|
||||
#define P3_VTAB (-10) /* P3 is a pointer to an sqlite3_vtab structure */
|
||||
#define P3_MPRINTF (-11) /* P3 is a string obtained from sqlite3_mprintf() */
|
||||
#define P4_NOTUSED 0 /* The P4 parameter is not used */
|
||||
#define P4_DYNAMIC (-1) /* Pointer to a string obtained from sqliteMalloc() */
|
||||
#define P4_STATIC (-2) /* Pointer to a static string */
|
||||
#define P4_COLLSEQ (-4) /* P4 is a pointer to a CollSeq structure */
|
||||
#define P4_FUNCDEF (-5) /* P4 is a pointer to a FuncDef structure */
|
||||
#define P4_KEYINFO (-6) /* P4 is a pointer to a KeyInfo structure */
|
||||
#define P4_VDBEFUNC (-7) /* P4 is a pointer to a VdbeFunc structure */
|
||||
#define P4_MEM (-8) /* P4 is a pointer to a Mem* structure */
|
||||
#define P4_TRANSIENT (-9) /* P4 is a pointer to a transient string */
|
||||
#define P4_VTAB (-10) /* P4 is a pointer to an sqlite3_vtab structure */
|
||||
#define P4_MPRINTF (-11) /* P4 is a string obtained from sqlite3_mprintf() */
|
||||
#define P4_REAL (-12) /* P4 is a 64-bit floating point value */
|
||||
#define P4_INT64 (-13) /* P4 is a 64-bit signed integer */
|
||||
#define P4_INT32 (-14) /* P4 is a 32-bit signed integer */
|
||||
#define P4_INTARRAY (-15) /* P4 is a vector of 32-bit integers */
|
||||
|
||||
/* When adding a P3 argument using P3_KEYINFO, a copy of the KeyInfo structure
|
||||
/* When adding a P4 argument using P4_KEYINFO, a copy of the KeyInfo structure
|
||||
** is made. That copy is freed when the Vdbe is finalized. But if the
|
||||
** argument is P3_KEYINFO_HANDOFF, the passed in pointer is used. It still
|
||||
** argument is P4_KEYINFO_HANDOFF, the passed in pointer is used. It still
|
||||
** gets freed when the Vdbe is finalized so it still should be obtained
|
||||
** from a single sqliteMalloc(). But no copy is made and the calling
|
||||
** function should *not* try to free the KeyInfo.
|
||||
*/
|
||||
#define P3_KEYINFO_HANDOFF (-9)
|
||||
#define P4_KEYINFO_HANDOFF (-16)
|
||||
#define P4_KEYINFO_STATIC (-17)
|
||||
|
||||
/*
|
||||
** The Vdbe.aColName array contains 5n Mem structures, where n is the
|
||||
|
@ -91,7 +122,15 @@ typedef struct VdbeOpList VdbeOpList;
|
|||
#define COLNAME_DATABASE 2
|
||||
#define COLNAME_TABLE 3
|
||||
#define COLNAME_COLUMN 4
|
||||
#define COLNAME_N 5 /* Number of COLNAME_xxx symbols */
|
||||
#ifdef SQLITE_ENABLE_COLUMN_METADATA
|
||||
# define COLNAME_N 5 /* Number of COLNAME_xxx symbols */
|
||||
#else
|
||||
# ifdef SQLITE_OMIT_DECLTYPE
|
||||
# define COLNAME_N 1 /* Store only the name */
|
||||
# else
|
||||
# define COLNAME_N 2 /* Store the name and decltype */
|
||||
# endif
|
||||
#endif
|
||||
|
||||
/*
|
||||
** The following macro converts a relative address in the p2 field
|
||||
|
@ -112,14 +151,20 @@ typedef struct VdbeOpList VdbeOpList;
|
|||
** for a description of what each of these routines does.
|
||||
*/
|
||||
Vdbe *sqlite3VdbeCreate(sqlite3*);
|
||||
int sqlite3VdbeAddOp(Vdbe*,int,int,int);
|
||||
int sqlite3VdbeOp3(Vdbe*,int,int,int,const char *zP3,int);
|
||||
int sqlite3VdbeAddOp0(Vdbe*,int);
|
||||
int sqlite3VdbeAddOp1(Vdbe*,int,int);
|
||||
int sqlite3VdbeAddOp2(Vdbe*,int,int,int);
|
||||
int sqlite3VdbeAddOp3(Vdbe*,int,int,int,int);
|
||||
int sqlite3VdbeAddOp4(Vdbe*,int,int,int,int,const char *zP4,int);
|
||||
int sqlite3VdbeAddOpList(Vdbe*, int nOp, VdbeOpList const *aOp);
|
||||
void sqlite3VdbeChangeP1(Vdbe*, int addr, int P1);
|
||||
void sqlite3VdbeChangeP2(Vdbe*, int addr, int P2);
|
||||
void sqlite3VdbeChangeP3(Vdbe*, int addr, int P3);
|
||||
void sqlite3VdbeChangeP5(Vdbe*, u8 P5);
|
||||
void sqlite3VdbeJumpHere(Vdbe*, int addr);
|
||||
void sqlite3VdbeChangeToNoop(Vdbe*, int addr, int N);
|
||||
void sqlite3VdbeChangeP3(Vdbe*, int addr, const char *zP1, int N);
|
||||
void sqlite3VdbeChangeP4(Vdbe*, int addr, const char *zP4, int N);
|
||||
void sqlite3VdbeUsesBtree(Vdbe*, int);
|
||||
VdbeOp *sqlite3VdbeGetOp(Vdbe*, int);
|
||||
int sqlite3VdbeMakeLabel(Vdbe*);
|
||||
void sqlite3VdbeDelete(Vdbe*);
|
||||
|
@ -133,18 +178,29 @@ int sqlite3VdbeCurrentAddr(Vdbe*);
|
|||
void sqlite3VdbeResetStepResult(Vdbe*);
|
||||
int sqlite3VdbeReset(Vdbe*);
|
||||
void sqlite3VdbeSetNumCols(Vdbe*,int);
|
||||
int sqlite3VdbeSetColName(Vdbe*, int, int, const char *, int);
|
||||
int sqlite3VdbeSetColName(Vdbe*, int, int, const char *, void(*)(void*));
|
||||
void sqlite3VdbeCountChanges(Vdbe*);
|
||||
sqlite3 *sqlite3VdbeDb(Vdbe*);
|
||||
void sqlite3VdbeSetSql(Vdbe*, const char *z, int n);
|
||||
const char *sqlite3VdbeGetSql(Vdbe*);
|
||||
void sqlite3VdbeSwap(Vdbe*,Vdbe*);
|
||||
|
||||
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
|
||||
int sqlite3VdbeReleaseMemory(int);
|
||||
#endif
|
||||
UnpackedRecord *sqlite3VdbeRecordUnpack(KeyInfo*,int,const void*,
|
||||
UnpackedRecord*,int);
|
||||
void sqlite3VdbeDeleteUnpackedRecord(UnpackedRecord*);
|
||||
int sqlite3VdbeRecordCompare(int,const void*,UnpackedRecord*);
|
||||
|
||||
|
||||
#ifndef NDEBUG
|
||||
void sqlite3VdbeComment(Vdbe*, const char*, ...);
|
||||
# define VdbeComment(X) sqlite3VdbeComment X
|
||||
void sqlite3VdbeNoopComment(Vdbe*, const char*, ...);
|
||||
# define VdbeNoopComment(X) sqlite3VdbeNoopComment X
|
||||
#else
|
||||
# define VdbeComment(X)
|
||||
# define VdbeNoopComment(X)
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
|
142
vdbeInt.h
142
vdbeInt.h
|
@ -14,6 +14,8 @@
|
|||
** source code file "vdbe.c". When that file became too big (over
|
||||
** 6000 lines long) it was split up into several smaller files and
|
||||
** this header information was factored out.
|
||||
**
|
||||
** $Id: vdbeInt.h,v 1.161 2009/01/05 18:02:27 drh Exp $
|
||||
*/
|
||||
#ifndef _VDBEINT_H_
|
||||
#define _VDBEINT_H_
|
||||
|
@ -25,13 +27,6 @@
|
|||
#define keyToInt(X) (X)
|
||||
#define intToKey(X) (X)
|
||||
|
||||
/*
|
||||
** The makefile scans the vdbe.c source file and creates the following
|
||||
** array of string constants which are the names of all VDBE opcodes. This
|
||||
** array is defined in a separate source code file named opcode.c which is
|
||||
** automatically generated by the makefile.
|
||||
*/
|
||||
extern const char *const sqlite3OpcodeNames[];
|
||||
|
||||
/*
|
||||
** SQL is translated into a sequence of instructions to be
|
||||
|
@ -55,12 +50,12 @@ typedef unsigned char Bool;
|
|||
** Every cursor that the virtual machine has open is represented by an
|
||||
** instance of the following structure.
|
||||
**
|
||||
** If the Cursor.isTriggerRow flag is set it means that this cursor is
|
||||
** If the VdbeCursor.isTriggerRow flag is set it means that this cursor is
|
||||
** really a single row that represents the NEW or OLD pseudo-table of
|
||||
** a row trigger. The data for the row is stored in Cursor.pData and
|
||||
** the rowid is in Cursor.iKey.
|
||||
** a row trigger. The data for the row is stored in VdbeCursor.pData and
|
||||
** the rowid is in VdbeCursor.iKey.
|
||||
*/
|
||||
struct Cursor {
|
||||
struct VdbeCursor {
|
||||
BtCursor *pCursor; /* The cursor structure of the backend */
|
||||
int iDb; /* Index of cursor database in db->aDb[] (or -1) */
|
||||
i64 lastRowid; /* Last rowid from a Next or NextIdx operation */
|
||||
|
@ -72,16 +67,15 @@ struct Cursor {
|
|||
Bool nullRow; /* True if pointing to a row with no data */
|
||||
Bool nextRowidValid; /* True if the nextRowid field is valid */
|
||||
Bool pseudoTable; /* This is a NEW or OLD pseudo-tables of a trigger */
|
||||
Bool ephemPseudoTable;
|
||||
Bool deferredMoveto; /* A call to sqlite3BtreeMoveto() is needed */
|
||||
Bool isTable; /* True if a table requiring integer keys */
|
||||
Bool isIndex; /* True if an index containing keys only - no data */
|
||||
u8 bogusIncrKey; /* Something for pIncrKey to point to if pKeyInfo==0 */
|
||||
i64 movetoTarget; /* Argument to the deferred sqlite3BtreeMoveto() */
|
||||
Btree *pBt; /* Separate file holding temporary table */
|
||||
int nData; /* Number of bytes in pData */
|
||||
char *pData; /* Data for a NEW or OLD pseudo-table */
|
||||
i64 iKey; /* Key for the NEW or OLD pseudo-table row */
|
||||
u8 *pIncrKey; /* Pointer to pKeyInfo->incrKey */
|
||||
KeyInfo *pKeyInfo; /* Info about index keys needed by index cursors */
|
||||
int nField; /* Number of fields in the header */
|
||||
i64 seqCount; /* Sequence counter */
|
||||
|
@ -99,17 +93,10 @@ struct Cursor {
|
|||
u32 *aOffset; /* Cached offsets to the start of each columns data */
|
||||
u8 *aRow; /* Data for the current row, if all on one page */
|
||||
};
|
||||
typedef struct Cursor Cursor;
|
||||
typedef struct VdbeCursor VdbeCursor;
|
||||
|
||||
/*
|
||||
** Number of bytes of string storage space available to each stack
|
||||
** layer without having to malloc. NBFS is short for Number of Bytes
|
||||
** For Strings.
|
||||
*/
|
||||
#define NBFS 32
|
||||
|
||||
/*
|
||||
** A value for Cursor.cacheValid that means the cache is always invalid.
|
||||
** A value for VdbeCursor.cacheValid that means the cache is always invalid.
|
||||
*/
|
||||
#define CACHE_STALE 0
|
||||
|
||||
|
@ -126,19 +113,21 @@ typedef struct Cursor Cursor;
|
|||
*/
|
||||
struct Mem {
|
||||
union {
|
||||
i64 i; /* Integer value. Or FuncDef* when flags==MEM_Agg */
|
||||
i64 i; /* Integer value. */
|
||||
int nZero; /* Used when bit MEM_Zero is set in flags */
|
||||
FuncDef *pDef; /* Used only when flags==MEM_Agg */
|
||||
RowSet *pRowSet; /* Used only when flags==MEM_RowSet */
|
||||
} u;
|
||||
double r; /* Real value */
|
||||
sqlite3 *db; /* The associated database connection */
|
||||
char *z; /* String or BLOB value */
|
||||
int n; /* Number of characters in string value, including '\0' */
|
||||
int n; /* Number of characters in string value, excluding '\0' */
|
||||
u16 flags; /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */
|
||||
u8 type; /* One of SQLITE_NULL, SQLITE_TEXT, SQLITE_INTEGER, etc */
|
||||
u8 enc; /* SQLITE_UTF8, SQLITE_UTF16BE, SQLITE_UTF16LE */
|
||||
void (*xDel)(void *); /* If not null, call this function to delete Mem.z */
|
||||
char zShort[NBFS]; /* Space for short strings */
|
||||
char *zMalloc; /* Dynamic buffer allocated by sqlite3_malloc() */
|
||||
};
|
||||
typedef struct Mem Mem;
|
||||
|
||||
/* One or more of the following flags are set to indicate the validOK
|
||||
** representations of the value stored in the Mem struct.
|
||||
|
@ -160,19 +149,20 @@ typedef struct Mem Mem;
|
|||
#define MEM_Int 0x0004 /* Value is an integer */
|
||||
#define MEM_Real 0x0008 /* Value is a real number */
|
||||
#define MEM_Blob 0x0010 /* Value is a BLOB */
|
||||
#define MEM_RowSet 0x0020 /* Value is a RowSet object */
|
||||
#define MEM_TypeMask 0x00ff /* Mask of type bits */
|
||||
|
||||
/* Whenever Mem contains a valid string or blob representation, one of
|
||||
** the following flags must be set to determine the memory management
|
||||
** policy for Mem.z. The MEM_Term flag tells us whether or not the
|
||||
** string is \000 or \u0000 terminated
|
||||
*/
|
||||
#define MEM_Term 0x0020 /* String rep is nul terminated */
|
||||
#define MEM_Dyn 0x0040 /* Need to call sqliteFree() on Mem.z */
|
||||
#define MEM_Static 0x0080 /* Mem.z points to a static string */
|
||||
#define MEM_Ephem 0x0100 /* Mem.z points to an ephemeral string */
|
||||
#define MEM_Short 0x0200 /* Mem.z points to Mem.zShort */
|
||||
#define MEM_Agg 0x0400 /* Mem.z points to an agg function context */
|
||||
#define MEM_Zero 0x0800 /* Mem.i contains count of 0s appended to blob */
|
||||
#define MEM_Term 0x0200 /* String rep is nul terminated */
|
||||
#define MEM_Dyn 0x0400 /* Need to call sqliteFree() on Mem.z */
|
||||
#define MEM_Static 0x0800 /* Mem.z points to a static string */
|
||||
#define MEM_Ephem 0x1000 /* Mem.z points to an ephemeral string */
|
||||
#define MEM_Agg 0x2000 /* Mem.z points to an agg function context */
|
||||
#define MEM_Zero 0x4000 /* Mem.i contains count of 0s appended to blob */
|
||||
|
||||
#ifdef SQLITE_OMIT_INCRBLOB
|
||||
#undef MEM_Zero
|
||||
|
@ -180,6 +170,13 @@ typedef struct Mem Mem;
|
|||
#endif
|
||||
|
||||
|
||||
/*
|
||||
** Clear any existing type flags from a Mem and replace them with f
|
||||
*/
|
||||
#define MemSetTypeFlag(p, f) \
|
||||
((p)->flags = ((p)->flags&~(MEM_TypeMask|MEM_Zero))|f)
|
||||
|
||||
|
||||
/* A VdbeFunc is just a FuncDef (defined in sqliteInt.h) that contains
|
||||
** additional information about auxiliary information bound to arguments
|
||||
** of the function. This is used to implement the sqlite3_get_auxdata()
|
||||
|
@ -197,7 +194,6 @@ struct VdbeFunc {
|
|||
void (*xDelete)(void *); /* Destructor for the aux data */
|
||||
} apAux[1]; /* One slot for each function argument */
|
||||
};
|
||||
typedef struct VdbeFunc VdbeFunc;
|
||||
|
||||
/*
|
||||
** The "context" argument for a installable function. A pointer to an
|
||||
|
@ -217,7 +213,7 @@ struct sqlite3_context {
|
|||
VdbeFunc *pVdbeFunc; /* Auxilary data, if created. */
|
||||
Mem s; /* The return value is stored here */
|
||||
Mem *pMem; /* Memory cell used to store aggregate context */
|
||||
u8 isError; /* Set to true for an error */
|
||||
int isError; /* Error code returned by the function. */
|
||||
CollSeq *pColl; /* Collating sequence */
|
||||
};
|
||||
|
||||
|
@ -233,32 +229,6 @@ struct Set {
|
|||
HashElem *prev; /* Previously accessed hash elemen */
|
||||
};
|
||||
|
||||
/*
|
||||
** A FifoPage structure holds a single page of valves. Pages are arranged
|
||||
** in a list.
|
||||
*/
|
||||
typedef struct FifoPage FifoPage;
|
||||
struct FifoPage {
|
||||
int nSlot; /* Number of entries aSlot[] */
|
||||
int iWrite; /* Push the next value into this entry in aSlot[] */
|
||||
int iRead; /* Read the next value from this entry in aSlot[] */
|
||||
FifoPage *pNext; /* Next page in the fifo */
|
||||
i64 aSlot[1]; /* One or more slots for rowid values */
|
||||
};
|
||||
|
||||
/*
|
||||
** The Fifo structure is typedef-ed in vdbeInt.h. But the implementation
|
||||
** of that structure is private to this file.
|
||||
**
|
||||
** The Fifo structure describes the entire fifo.
|
||||
*/
|
||||
typedef struct Fifo Fifo;
|
||||
struct Fifo {
|
||||
int nEntry; /* Total number of entries */
|
||||
FifoPage *pFirst; /* First page on the list */
|
||||
FifoPage *pLast; /* Last page on the list */
|
||||
};
|
||||
|
||||
/*
|
||||
** A Context stores the last insert rowid, the last statement change count,
|
||||
** and the current statement change count (i.e. changes since last statement).
|
||||
|
@ -272,7 +242,6 @@ typedef struct Context Context;
|
|||
struct Context {
|
||||
i64 lastRowid; /* Last insert rowid (sqlite3.lastRowid) */
|
||||
int nChange; /* Statement changes (Vdbe.nChanges) */
|
||||
Fifo sFifo; /* Records that will participate in a DELETE or UPDATE */
|
||||
};
|
||||
|
||||
/*
|
||||
|
@ -299,22 +268,19 @@ struct Vdbe {
|
|||
int nLabel; /* Number of labels used */
|
||||
int nLabelAlloc; /* Number of slots allocated in aLabel[] */
|
||||
int *aLabel; /* Space to hold the labels */
|
||||
Mem *aStack; /* The operand stack, except string values */
|
||||
Mem *pTos; /* Top entry in the operand stack */
|
||||
Mem **apArg; /* Arguments to currently executing user function */
|
||||
Mem *aColName; /* Column names to return */
|
||||
int nCursor; /* Number of slots in apCsr[] */
|
||||
Cursor **apCsr; /* One element of this array for each open cursor */
|
||||
VdbeCursor **apCsr; /* One element of this array for each open cursor */
|
||||
int nVar; /* Number of entries in aVar[] */
|
||||
Mem *aVar; /* Values for the OP_Variable opcode. */
|
||||
char **azVar; /* Name of variables */
|
||||
int okVar; /* True if azVar[] has been initialized */
|
||||
int magic; /* Magic number for sanity checking */
|
||||
u32 magic; /* Magic number for sanity checking */
|
||||
int nMem; /* Number of memory locations currently allocated */
|
||||
Mem *aMem; /* The memory locations */
|
||||
int nCallback; /* Number of callbacks invoked so far */
|
||||
int cacheCtr; /* Cursor row cache generation counter */
|
||||
Fifo sFifo; /* A list of ROWIDs */
|
||||
int cacheCtr; /* VdbeCursor row cache generation counter */
|
||||
int contextStackTop; /* Index of top element in the context stack */
|
||||
int contextStackDepth; /* The size of the "context" stack */
|
||||
Context *contextStack; /* Stack used by opcodes ContextPush & ContextPop*/
|
||||
|
@ -323,21 +289,22 @@ struct Vdbe {
|
|||
unsigned uniqueCnt; /* Used by OP_MakeRecord when P2!=0 */
|
||||
int errorAction; /* Recovery action to do in case of an error */
|
||||
int inTempTrans; /* True if temp database is transactioned */
|
||||
int returnStack[100]; /* Return address stack for OP_Gosub & OP_Return */
|
||||
int returnDepth; /* Next unused element in returnStack[] */
|
||||
int nResColumn; /* Number of columns in one row of the result set */
|
||||
char **azResColumn; /* Values for one row of result */
|
||||
int popStack; /* Pop the stack this much on entry to VdbeExec() */
|
||||
char *zErrMsg; /* Error message written here */
|
||||
u8 resOnStack; /* True if there are result values on the stack */
|
||||
Mem *pResultSet; /* Pointer to an array of results */
|
||||
u8 explain; /* True if EXPLAIN present on SQL command */
|
||||
u8 changeCntOn; /* True to update the change-counter */
|
||||
u8 aborted; /* True if ROLLBACK in another VM causes an abort */
|
||||
u8 expired; /* True if the VM needs to be recompiled */
|
||||
u8 minWriteFileFormat; /* Minimum file format for writable database files */
|
||||
u8 inVtabMethod; /* See comments above */
|
||||
u8 usesStmtJournal; /* True if uses a statement journal */
|
||||
u8 readOnly; /* True for read-only statements */
|
||||
int nChange; /* Number of db changes made since last reset */
|
||||
i64 startTime; /* Time when query started - used for profiling */
|
||||
int btreeMask; /* Bitmask of db->aDb[] entries referenced */
|
||||
BtreeMutexArray aMutex; /* An array of Btree used here and needing locks */
|
||||
int aCounter[2]; /* Counters used by sqlite3_stmt_status() */
|
||||
int nSql; /* Number of bytes in zSql */
|
||||
char *zSql; /* Text of the SQL statement that generated this */
|
||||
#ifdef SQLITE_DEBUG
|
||||
|
@ -348,6 +315,10 @@ struct Vdbe {
|
|||
int fetchId; /* Statement number used by sqlite3_fetch_statement */
|
||||
int lru; /* Counter used for LRU cache replacement */
|
||||
#endif
|
||||
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
|
||||
Vdbe *pLruPrev;
|
||||
Vdbe *pLruNext;
|
||||
#endif
|
||||
};
|
||||
|
||||
/*
|
||||
|
@ -361,9 +332,9 @@ struct Vdbe {
|
|||
/*
|
||||
** Function prototypes
|
||||
*/
|
||||
void sqlite3VdbeFreeCursor(Vdbe *, Cursor*);
|
||||
void sqlite3VdbeFreeCursor(Vdbe *, VdbeCursor*);
|
||||
void sqliteVdbePopStack(Vdbe*,int);
|
||||
int sqlite3VdbeCursorMoveto(Cursor*);
|
||||
int sqlite3VdbeCursorMoveto(VdbeCursor*);
|
||||
#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
|
||||
void sqlite3VdbePrintOp(FILE*, int, Op*);
|
||||
#endif
|
||||
|
@ -374,11 +345,9 @@ int sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*);
|
|||
void sqlite3VdbeDeleteAuxData(VdbeFunc*, int);
|
||||
|
||||
int sqlite2BtreeKeyCompare(BtCursor *, const void *, int, int, int *);
|
||||
int sqlite3VdbeIdxKeyCompare(Cursor*, int , const unsigned char*, int*);
|
||||
int sqlite3VdbeIdxKeyCompare(VdbeCursor*,UnpackedRecord*,int*);
|
||||
int sqlite3VdbeIdxRowid(BtCursor *, i64 *);
|
||||
int sqlite3MemCompare(const Mem*, const Mem*, const CollSeq*);
|
||||
int sqlite3VdbeRecordCompare(void*,int,const void*,int, const void*);
|
||||
int sqlite3VdbeIdxRowidLen(const u8*);
|
||||
int sqlite3VdbeExec(Vdbe*);
|
||||
int sqlite3VdbeList(Vdbe*);
|
||||
int sqlite3VdbeHalt(Vdbe*);
|
||||
|
@ -386,15 +355,15 @@ int sqlite3VdbeChangeEncoding(Mem *, int);
|
|||
int sqlite3VdbeMemTooBig(Mem*);
|
||||
int sqlite3VdbeMemCopy(Mem*, const Mem*);
|
||||
void sqlite3VdbeMemShallowCopy(Mem*, const Mem*, int);
|
||||
int sqlite3VdbeMemMove(Mem*, Mem*);
|
||||
void sqlite3VdbeMemMove(Mem*, Mem*);
|
||||
int sqlite3VdbeMemNulTerminate(Mem*);
|
||||
int sqlite3VdbeMemSetStr(Mem*, const char*, int, u8, void(*)(void*));
|
||||
void sqlite3VdbeMemSetInt64(Mem*, i64);
|
||||
void sqlite3VdbeMemSetDouble(Mem*, double);
|
||||
void sqlite3VdbeMemSetNull(Mem*);
|
||||
void sqlite3VdbeMemSetZeroBlob(Mem*,int);
|
||||
void sqlite3VdbeMemSetRowSet(Mem*);
|
||||
int sqlite3VdbeMemMakeWriteable(Mem*);
|
||||
int sqlite3VdbeMemDynamicify(Mem*);
|
||||
int sqlite3VdbeMemStringify(Mem*, int);
|
||||
i64 sqlite3VdbeIntValue(Mem*);
|
||||
int sqlite3VdbeMemIntegerify(Mem*);
|
||||
|
@ -404,10 +373,17 @@ int sqlite3VdbeMemRealify(Mem*);
|
|||
int sqlite3VdbeMemNumerify(Mem*);
|
||||
int sqlite3VdbeMemFromBtree(BtCursor*,int,int,int,Mem*);
|
||||
void sqlite3VdbeMemRelease(Mem *p);
|
||||
void sqlite3VdbeMemReleaseExternal(Mem *p);
|
||||
int sqlite3VdbeMemFinalize(Mem*, FuncDef*);
|
||||
const char *sqlite3OpcodeName(int);
|
||||
int sqlite3VdbeOpcodeHasProperty(int, int);
|
||||
int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve);
|
||||
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
|
||||
int sqlite3VdbeReleaseBuffers(Vdbe *p);
|
||||
#endif
|
||||
|
||||
#ifndef NDEBUG
|
||||
void sqlite3VdbeMemSanity(Mem*);
|
||||
int sqlite3VdbeOpcodeNoPush(u8);
|
||||
#endif
|
||||
int sqlite3VdbeMemTranslate(Mem*, u8);
|
||||
#ifdef SQLITE_DEBUG
|
||||
|
@ -415,10 +391,6 @@ int sqlite3VdbeMemTranslate(Mem*, u8);
|
|||
void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf);
|
||||
#endif
|
||||
int sqlite3VdbeMemHandleBom(Mem *pMem);
|
||||
void sqlite3VdbeFifoInit(Fifo*);
|
||||
int sqlite3VdbeFifoPush(Fifo*, i64);
|
||||
int sqlite3VdbeFifoPop(Fifo*, i64*);
|
||||
void sqlite3VdbeFifoClear(Fifo*);
|
||||
|
||||
#ifndef SQLITE_OMIT_INCRBLOB
|
||||
int sqlite3VdbeMemExpandBlob(Mem *);
|
||||
|
|
608
vdbeapi.c
608
vdbeapi.c
|
@ -12,11 +12,169 @@
|
|||
**
|
||||
** This file contains code use to implement APIs that are part of the
|
||||
** VDBE.
|
||||
**
|
||||
** $Id: vdbeapi.c,v 1.150 2008/12/10 18:03:47 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
#include "vdbeInt.h"
|
||||
#include "os.h"
|
||||
|
||||
#if 0 && defined(SQLITE_ENABLE_MEMORY_MANAGEMENT)
|
||||
/*
|
||||
** The following structure contains pointers to the end points of a
|
||||
** doubly-linked list of all compiled SQL statements that may be holding
|
||||
** buffers eligible for release when the sqlite3_release_memory() interface is
|
||||
** invoked. Access to this list is protected by the SQLITE_MUTEX_STATIC_LRU2
|
||||
** mutex.
|
||||
**
|
||||
** Statements are added to the end of this list when sqlite3_reset() is
|
||||
** called. They are removed either when sqlite3_step() or sqlite3_finalize()
|
||||
** is called. When statements are added to this list, the associated
|
||||
** register array (p->aMem[1..p->nMem]) may contain dynamic buffers that
|
||||
** can be freed using sqlite3VdbeReleaseMemory().
|
||||
**
|
||||
** When statements are added or removed from this list, the mutex
|
||||
** associated with the Vdbe being added or removed (Vdbe.db->mutex) is
|
||||
** already held. The LRU2 mutex is then obtained, blocking if necessary,
|
||||
** the linked-list pointers manipulated and the LRU2 mutex relinquished.
|
||||
*/
|
||||
struct StatementLruList {
|
||||
Vdbe *pFirst;
|
||||
Vdbe *pLast;
|
||||
};
|
||||
static struct StatementLruList sqlite3LruStatements;
|
||||
|
||||
/*
|
||||
** Check that the list looks to be internally consistent. This is used
|
||||
** as part of an assert() statement as follows:
|
||||
**
|
||||
** assert( stmtLruCheck() );
|
||||
*/
|
||||
#ifndef NDEBUG
|
||||
static int stmtLruCheck(){
|
||||
Vdbe *p;
|
||||
for(p=sqlite3LruStatements.pFirst; p; p=p->pLruNext){
|
||||
assert(p->pLruNext || p==sqlite3LruStatements.pLast);
|
||||
assert(!p->pLruNext || p->pLruNext->pLruPrev==p);
|
||||
assert(p->pLruPrev || p==sqlite3LruStatements.pFirst);
|
||||
assert(!p->pLruPrev || p->pLruPrev->pLruNext==p);
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
** Add vdbe p to the end of the statement lru list. It is assumed that
|
||||
** p is not already part of the list when this is called. The lru list
|
||||
** is protected by the SQLITE_MUTEX_STATIC_LRU mutex.
|
||||
*/
|
||||
static void stmtLruAdd(Vdbe *p){
|
||||
sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
|
||||
|
||||
if( p->pLruPrev || p->pLruNext || sqlite3LruStatements.pFirst==p ){
|
||||
sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
|
||||
return;
|
||||
}
|
||||
|
||||
assert( stmtLruCheck() );
|
||||
|
||||
if( !sqlite3LruStatements.pFirst ){
|
||||
assert( !sqlite3LruStatements.pLast );
|
||||
sqlite3LruStatements.pFirst = p;
|
||||
sqlite3LruStatements.pLast = p;
|
||||
}else{
|
||||
assert( !sqlite3LruStatements.pLast->pLruNext );
|
||||
p->pLruPrev = sqlite3LruStatements.pLast;
|
||||
sqlite3LruStatements.pLast->pLruNext = p;
|
||||
sqlite3LruStatements.pLast = p;
|
||||
}
|
||||
|
||||
assert( stmtLruCheck() );
|
||||
|
||||
sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
|
||||
}
|
||||
|
||||
/*
|
||||
** Assuming the SQLITE_MUTEX_STATIC_LRU2 mutext is already held, remove
|
||||
** statement p from the least-recently-used statement list. If the
|
||||
** statement is not currently part of the list, this call is a no-op.
|
||||
*/
|
||||
static void stmtLruRemoveNomutex(Vdbe *p){
|
||||
if( p->pLruPrev || p->pLruNext || p==sqlite3LruStatements.pFirst ){
|
||||
assert( stmtLruCheck() );
|
||||
if( p->pLruNext ){
|
||||
p->pLruNext->pLruPrev = p->pLruPrev;
|
||||
}else{
|
||||
sqlite3LruStatements.pLast = p->pLruPrev;
|
||||
}
|
||||
if( p->pLruPrev ){
|
||||
p->pLruPrev->pLruNext = p->pLruNext;
|
||||
}else{
|
||||
sqlite3LruStatements.pFirst = p->pLruNext;
|
||||
}
|
||||
p->pLruNext = 0;
|
||||
p->pLruPrev = 0;
|
||||
assert( stmtLruCheck() );
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Assuming the SQLITE_MUTEX_STATIC_LRU2 mutext is not held, remove
|
||||
** statement p from the least-recently-used statement list. If the
|
||||
** statement is not currently part of the list, this call is a no-op.
|
||||
*/
|
||||
static void stmtLruRemove(Vdbe *p){
|
||||
sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
|
||||
stmtLruRemoveNomutex(p);
|
||||
sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
|
||||
}
|
||||
|
||||
/*
|
||||
** Try to release n bytes of memory by freeing buffers associated
|
||||
** with the memory registers of currently unused vdbes.
|
||||
*/
|
||||
int sqlite3VdbeReleaseMemory(int n){
|
||||
Vdbe *p;
|
||||
Vdbe *pNext;
|
||||
int nFree = 0;
|
||||
|
||||
sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
|
||||
for(p=sqlite3LruStatements.pFirst; p && nFree<n; p=pNext){
|
||||
pNext = p->pLruNext;
|
||||
|
||||
/* For each statement handle in the lru list, attempt to obtain the
|
||||
** associated database mutex. If it cannot be obtained, continue
|
||||
** to the next statement handle. It is not possible to block on
|
||||
** the database mutex - that could cause deadlock.
|
||||
*/
|
||||
if( SQLITE_OK==sqlite3_mutex_try(p->db->mutex) ){
|
||||
nFree += sqlite3VdbeReleaseBuffers(p);
|
||||
stmtLruRemoveNomutex(p);
|
||||
sqlite3_mutex_leave(p->db->mutex);
|
||||
}
|
||||
}
|
||||
sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
|
||||
|
||||
return nFree;
|
||||
}
|
||||
|
||||
/*
|
||||
** Call sqlite3Reprepare() on the statement. Remove it from the
|
||||
** lru list before doing so, as Reprepare() will free all the
|
||||
** memory register buffers anyway.
|
||||
*/
|
||||
int vdbeReprepare(Vdbe *p){
|
||||
stmtLruRemove(p);
|
||||
return sqlite3Reprepare(p);
|
||||
}
|
||||
|
||||
#else /* !SQLITE_ENABLE_MEMORY_MANAGEMENT */
|
||||
#define stmtLruRemove(x)
|
||||
#define stmtLruAdd(x)
|
||||
#define vdbeReprepare(x) sqlite3Reprepare(x)
|
||||
#endif
|
||||
|
||||
|
||||
#ifndef SQLITE_OMIT_DEPRECATED
|
||||
/*
|
||||
** Return TRUE (non-zero) of the statement supplied as an argument needs
|
||||
** to be recompiled. A statement needs to be recompiled whenever the
|
||||
|
@ -29,6 +187,77 @@ int sqlite3_expired(sqlite3_stmt *pStmt){
|
|||
Vdbe *p = (Vdbe*)pStmt;
|
||||
return p==0 || p->expired;
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
** The following routine destroys a virtual machine that is created by
|
||||
** the sqlite3_compile() routine. The integer returned is an SQLITE_
|
||||
** success/failure code that describes the result of executing the virtual
|
||||
** machine.
|
||||
**
|
||||
** This routine sets the error code and string returned by
|
||||
** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
|
||||
*/
|
||||
int sqlite3_finalize(sqlite3_stmt *pStmt){
|
||||
int rc;
|
||||
if( pStmt==0 ){
|
||||
rc = SQLITE_OK;
|
||||
}else{
|
||||
Vdbe *v = (Vdbe*)pStmt;
|
||||
#if SQLITE_THREADSAFE
|
||||
sqlite3_mutex *mutex = v->db->mutex;
|
||||
#endif
|
||||
sqlite3_mutex_enter(mutex);
|
||||
stmtLruRemove(v);
|
||||
rc = sqlite3VdbeFinalize(v);
|
||||
sqlite3_mutex_leave(mutex);
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** Terminate the current execution of an SQL statement and reset it
|
||||
** back to its starting state so that it can be reused. A success code from
|
||||
** the prior execution is returned.
|
||||
**
|
||||
** This routine sets the error code and string returned by
|
||||
** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
|
||||
*/
|
||||
int sqlite3_reset(sqlite3_stmt *pStmt){
|
||||
int rc;
|
||||
if( pStmt==0 ){
|
||||
rc = SQLITE_OK;
|
||||
}else{
|
||||
Vdbe *v = (Vdbe*)pStmt;
|
||||
sqlite3_mutex_enter(v->db->mutex);
|
||||
rc = sqlite3VdbeReset(v);
|
||||
stmtLruAdd(v);
|
||||
sqlite3VdbeMakeReady(v, -1, 0, 0, 0);
|
||||
assert( (rc & (v->db->errMask))==rc );
|
||||
sqlite3_mutex_leave(v->db->mutex);
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** Set all the parameters in the compiled SQL statement to NULL.
|
||||
*/
|
||||
int sqlite3_clear_bindings(sqlite3_stmt *pStmt){
|
||||
int i;
|
||||
int rc = SQLITE_OK;
|
||||
Vdbe *p = (Vdbe*)pStmt;
|
||||
#if SQLITE_THREADSAFE
|
||||
sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex;
|
||||
#endif
|
||||
sqlite3_mutex_enter(mutex);
|
||||
for(i=0; i<p->nVar; i++){
|
||||
sqlite3VdbeMemRelease(&p->aVar[i]);
|
||||
p->aVar[i].flags = MEM_Null;
|
||||
}
|
||||
sqlite3_mutex_leave(mutex);
|
||||
return rc;
|
||||
}
|
||||
|
||||
|
||||
/**************************** sqlite3_value_ *******************************
|
||||
** The following routines extract information from a Mem or sqlite3_value
|
||||
|
@ -55,7 +284,7 @@ double sqlite3_value_double(sqlite3_value *pVal){
|
|||
return sqlite3VdbeRealValue((Mem*)pVal);
|
||||
}
|
||||
int sqlite3_value_int(sqlite3_value *pVal){
|
||||
return sqlite3VdbeIntValue((Mem*)pVal);
|
||||
return (int)sqlite3VdbeIntValue((Mem*)pVal);
|
||||
}
|
||||
sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
|
||||
return sqlite3VdbeIntValue((Mem*)pVal);
|
||||
|
@ -77,7 +306,6 @@ const void *sqlite3_value_text16le(sqlite3_value *pVal){
|
|||
int sqlite3_value_type(sqlite3_value* pVal){
|
||||
return pVal->type;
|
||||
}
|
||||
/* sqlite3_value_numeric_type() defined in vdbe.c */
|
||||
|
||||
/**************************** sqlite3_result_ *******************************
|
||||
** The following routines are used by user-defined functions to specify
|
||||
|
@ -90,28 +318,35 @@ void sqlite3_result_blob(
|
|||
void (*xDel)(void *)
|
||||
){
|
||||
assert( n>=0 );
|
||||
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
||||
sqlite3VdbeMemSetStr(&pCtx->s, z, n, 0, xDel);
|
||||
}
|
||||
void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
|
||||
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
||||
sqlite3VdbeMemSetDouble(&pCtx->s, rVal);
|
||||
}
|
||||
void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
|
||||
pCtx->isError = 1;
|
||||
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
||||
pCtx->isError = SQLITE_ERROR;
|
||||
sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
|
||||
}
|
||||
#ifndef SQLITE_OMIT_UTF16
|
||||
void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
|
||||
pCtx->isError = 1;
|
||||
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
||||
pCtx->isError = SQLITE_ERROR;
|
||||
sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
|
||||
}
|
||||
#endif
|
||||
void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
|
||||
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
||||
sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal);
|
||||
}
|
||||
void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
|
||||
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
||||
sqlite3VdbeMemSetInt64(&pCtx->s, iVal);
|
||||
}
|
||||
void sqlite3_result_null(sqlite3_context *pCtx){
|
||||
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
||||
sqlite3VdbeMemSetNull(&pCtx->s);
|
||||
}
|
||||
void sqlite3_result_text(
|
||||
|
@ -120,6 +355,7 @@ void sqlite3_result_text(
|
|||
int n,
|
||||
void (*xDel)(void *)
|
||||
){
|
||||
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
||||
sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, xDel);
|
||||
}
|
||||
#ifndef SQLITE_OMIT_UTF16
|
||||
|
@ -129,6 +365,7 @@ void sqlite3_result_text16(
|
|||
int n,
|
||||
void (*xDel)(void *)
|
||||
){
|
||||
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
||||
sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, xDel);
|
||||
}
|
||||
void sqlite3_result_text16be(
|
||||
|
@ -137,6 +374,7 @@ void sqlite3_result_text16be(
|
|||
int n,
|
||||
void (*xDel)(void *)
|
||||
){
|
||||
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
||||
sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16BE, xDel);
|
||||
}
|
||||
void sqlite3_result_text16le(
|
||||
|
@ -145,21 +383,37 @@ void sqlite3_result_text16le(
|
|||
int n,
|
||||
void (*xDel)(void *)
|
||||
){
|
||||
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
||||
sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16LE, xDel);
|
||||
}
|
||||
#endif /* SQLITE_OMIT_UTF16 */
|
||||
void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
|
||||
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
||||
sqlite3VdbeMemCopy(&pCtx->s, pValue);
|
||||
}
|
||||
void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
|
||||
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
||||
sqlite3VdbeMemSetZeroBlob(&pCtx->s, n);
|
||||
}
|
||||
void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){
|
||||
pCtx->isError = errCode;
|
||||
}
|
||||
|
||||
/* Force an SQLITE_TOOBIG error. */
|
||||
void sqlite3_result_error_toobig(sqlite3_context *pCtx){
|
||||
sqlite3VdbeMemSetZeroBlob(&pCtx->s, SQLITE_MAX_LENGTH+1);
|
||||
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
||||
pCtx->isError = SQLITE_TOOBIG;
|
||||
sqlite3VdbeMemSetStr(&pCtx->s, "string or blob too big", -1,
|
||||
SQLITE_UTF8, SQLITE_STATIC);
|
||||
}
|
||||
|
||||
/* An SQLITE_NOMEM error. */
|
||||
void sqlite3_result_error_nomem(sqlite3_context *pCtx){
|
||||
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
||||
sqlite3VdbeMemSetNull(&pCtx->s);
|
||||
pCtx->isError = SQLITE_NOMEM;
|
||||
pCtx->s.db->mallocFailed = 1;
|
||||
}
|
||||
|
||||
/*
|
||||
** Execute the statement pStmt, either until a row of data is ready, the
|
||||
|
@ -174,15 +428,17 @@ static int sqlite3Step(Vdbe *p){
|
|||
sqlite3 *db;
|
||||
int rc;
|
||||
|
||||
/* Assert that malloc() has not failed */
|
||||
assert( !sqlite3MallocFailed() );
|
||||
|
||||
if( p==0 || p->magic!=VDBE_MAGIC_RUN ){
|
||||
assert(p);
|
||||
if( p->magic!=VDBE_MAGIC_RUN ){
|
||||
return SQLITE_MISUSE;
|
||||
}
|
||||
if( p->aborted ){
|
||||
return SQLITE_ABORT;
|
||||
|
||||
/* Assert that malloc() has not failed */
|
||||
db = p->db;
|
||||
if( db->mallocFailed ){
|
||||
return SQLITE_NOMEM;
|
||||
}
|
||||
|
||||
if( p->pc<=0 && p->expired ){
|
||||
if( p->rc==SQLITE_OK ){
|
||||
p->rc = SQLITE_SCHEMA;
|
||||
|
@ -190,7 +446,6 @@ static int sqlite3Step(Vdbe *p){
|
|||
rc = SQLITE_ERROR;
|
||||
goto end_of_step;
|
||||
}
|
||||
db = p->db;
|
||||
if( sqlite3SafetyOn(db) ){
|
||||
p->rc = SQLITE_MISUSE;
|
||||
return SQLITE_MISUSE;
|
||||
|
@ -205,38 +460,17 @@ static int sqlite3Step(Vdbe *p){
|
|||
}
|
||||
|
||||
#ifndef SQLITE_OMIT_TRACE
|
||||
/* Invoke the trace callback if there is one
|
||||
*/
|
||||
if( db->xTrace && !db->init.busy ){
|
||||
assert( p->nOp>0 );
|
||||
assert( p->aOp[p->nOp-1].opcode==OP_Noop );
|
||||
assert( p->aOp[p->nOp-1].p3!=0 );
|
||||
assert( p->aOp[p->nOp-1].p3type==P3_DYNAMIC );
|
||||
sqlite3SafetyOff(db);
|
||||
db->xTrace(db->pTraceArg, p->aOp[p->nOp-1].p3);
|
||||
if( sqlite3SafetyOn(db) ){
|
||||
p->rc = SQLITE_MISUSE;
|
||||
return SQLITE_MISUSE;
|
||||
}
|
||||
}
|
||||
if( db->xProfile && !db->init.busy ){
|
||||
double rNow;
|
||||
sqlite3OsCurrentTime(&rNow);
|
||||
p->startTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0;
|
||||
sqlite3OsCurrentTime(db->pVfs, &rNow);
|
||||
p->startTime = (u64)((rNow - (int)rNow)*3600.0*24.0*1000000000.0);
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Print a copy of SQL as it is executed if the SQL_TRACE pragma is turned
|
||||
** on in debugging mode.
|
||||
*/
|
||||
#ifdef SQLITE_DEBUG
|
||||
if( (db->flags & SQLITE_SqlTrace)!=0 ){
|
||||
sqlite3DebugPrintf("SQL-trace: %s\n", p->aOp[p->nOp-1].p3);
|
||||
}
|
||||
#endif /* SQLITE_DEBUG */
|
||||
|
||||
db->activeVdbeCnt++;
|
||||
if( p->readOnly==0 ) db->writeVdbeCnt++;
|
||||
p->pc = 0;
|
||||
stmtLruRemove(p);
|
||||
}
|
||||
#ifndef SQLITE_OMIT_EXPLAIN
|
||||
if( p->explain ){
|
||||
|
@ -254,28 +488,28 @@ static int sqlite3Step(Vdbe *p){
|
|||
#ifndef SQLITE_OMIT_TRACE
|
||||
/* Invoke the profile callback if there is one
|
||||
*/
|
||||
if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy ){
|
||||
if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy && p->nOp>0
|
||||
&& p->aOp[0].opcode==OP_Trace && p->aOp[0].p4.z!=0 ){
|
||||
double rNow;
|
||||
u64 elapseTime;
|
||||
|
||||
sqlite3OsCurrentTime(&rNow);
|
||||
elapseTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0 - p->startTime;
|
||||
assert( p->nOp>0 );
|
||||
assert( p->aOp[p->nOp-1].opcode==OP_Noop );
|
||||
assert( p->aOp[p->nOp-1].p3!=0 );
|
||||
assert( p->aOp[p->nOp-1].p3type==P3_DYNAMIC );
|
||||
db->xProfile(db->pProfileArg, p->aOp[p->nOp-1].p3, elapseTime);
|
||||
sqlite3OsCurrentTime(db->pVfs, &rNow);
|
||||
elapseTime = (u64)((rNow - (int)rNow)*3600.0*24.0*1000000000.0);
|
||||
elapseTime -= p->startTime;
|
||||
db->xProfile(db->pProfileArg, p->aOp[0].p4.z, elapseTime);
|
||||
}
|
||||
#endif
|
||||
|
||||
sqlite3Error(p->db, rc, 0);
|
||||
db->errCode = rc;
|
||||
/*sqlite3Error(p->db, rc, 0);*/
|
||||
p->rc = sqlite3ApiExit(p->db, p->rc);
|
||||
end_of_step:
|
||||
assert( (rc&0xff)==rc );
|
||||
if( p->zSql && (rc&0xff)<SQLITE_ROW ){
|
||||
/* This behavior occurs if sqlite3_prepare_v2() was used to build
|
||||
** the prepared statement. Return error codes directly */
|
||||
sqlite3Error(p->db, p->rc, 0);
|
||||
p->db->errCode = p->rc;
|
||||
/* sqlite3Error(p->db, p->rc, 0); */
|
||||
return p->rc;
|
||||
}else{
|
||||
/* This is for legacy sqlite3_prepare() builds and when the code
|
||||
|
@ -291,19 +525,51 @@ end_of_step:
|
|||
*/
|
||||
#ifdef SQLITE_OMIT_PARSER
|
||||
int sqlite3_step(sqlite3_stmt *pStmt){
|
||||
return sqlite3Step((Vdbe*)pStmt);
|
||||
int rc = SQLITE_MISUSE;
|
||||
if( pStmt ){
|
||||
Vdbe *v;
|
||||
v = (Vdbe*)pStmt;
|
||||
sqlite3_mutex_enter(v->db->mutex);
|
||||
rc = sqlite3Step(v);
|
||||
sqlite3_mutex_leave(v->db->mutex);
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
#else
|
||||
int sqlite3_step(sqlite3_stmt *pStmt){
|
||||
int rc = SQLITE_MISUSE;
|
||||
if( pStmt ){
|
||||
int cnt = 0;
|
||||
int rc;
|
||||
Vdbe *v = (Vdbe*)pStmt;
|
||||
sqlite3 *db = v->db;
|
||||
sqlite3_mutex_enter(db->mutex);
|
||||
while( (rc = sqlite3Step(v))==SQLITE_SCHEMA
|
||||
&& cnt++ < 5
|
||||
&& sqlite3Reprepare(v) ){
|
||||
&& vdbeReprepare(v) ){
|
||||
sqlite3_reset(pStmt);
|
||||
v->expired = 0;
|
||||
}
|
||||
if( rc==SQLITE_SCHEMA && v->zSql && db->pErr ){
|
||||
/* This case occurs after failing to recompile an sql statement.
|
||||
** The error message from the SQL compiler has already been loaded
|
||||
** into the database handle. This block copies the error message
|
||||
** from the database handle into the statement and sets the statement
|
||||
** program counter to 0 to ensure that when the statement is
|
||||
** finalized or reset the parser error message is available via
|
||||
** sqlite3_errmsg() and sqlite3_errcode().
|
||||
*/
|
||||
const char *zErr = (const char *)sqlite3_value_text(db->pErr);
|
||||
sqlite3DbFree(db, v->zErrMsg);
|
||||
if( !db->mallocFailed ){
|
||||
v->zErrMsg = sqlite3DbStrDup(db, zErr);
|
||||
} else {
|
||||
v->zErrMsg = 0;
|
||||
v->rc = SQLITE_NOMEM;
|
||||
}
|
||||
}
|
||||
rc = sqlite3ApiExit(db, rc);
|
||||
sqlite3_mutex_leave(db->mutex);
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
#endif
|
||||
|
@ -317,6 +583,15 @@ void *sqlite3_user_data(sqlite3_context *p){
|
|||
return p->pFunc->pUserData;
|
||||
}
|
||||
|
||||
/*
|
||||
** Extract the user data from a sqlite3_context structure and return a
|
||||
** pointer to it.
|
||||
*/
|
||||
sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){
|
||||
assert( p && p->pFunc );
|
||||
return p->s.db;
|
||||
}
|
||||
|
||||
/*
|
||||
** The following is the implementation of an SQL function that always
|
||||
** fails with an error message stating that the function is used in the
|
||||
|
@ -327,15 +602,16 @@ void *sqlite3_user_data(sqlite3_context *p){
|
|||
*/
|
||||
void sqlite3InvalidFunction(
|
||||
sqlite3_context *context, /* The function calling context */
|
||||
int argc, /* Number of arguments to the function */
|
||||
sqlite3_value **argv /* Value of each argument */
|
||||
int NotUsed, /* Number of arguments to the function */
|
||||
sqlite3_value **NotUsed2 /* Value of each argument */
|
||||
){
|
||||
const char *zName = context->pFunc->zName;
|
||||
char *zErr;
|
||||
zErr = sqlite3MPrintf(
|
||||
UNUSED_PARAMETER2(NotUsed, NotUsed2);
|
||||
zErr = sqlite3MPrintf(0,
|
||||
"unable to use function %s in the requested context", zName);
|
||||
sqlite3_result_error(context, zErr, -1);
|
||||
sqliteFree(zErr);
|
||||
sqlite3_free(zErr);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -344,21 +620,21 @@ void sqlite3InvalidFunction(
|
|||
** same context that was returned on prior calls.
|
||||
*/
|
||||
void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
|
||||
Mem *pMem = p->pMem;
|
||||
Mem *pMem;
|
||||
assert( p && p->pFunc && p->pFunc->xStep );
|
||||
assert( sqlite3_mutex_held(p->s.db->mutex) );
|
||||
pMem = p->pMem;
|
||||
if( (pMem->flags & MEM_Agg)==0 ){
|
||||
if( nByte==0 ){
|
||||
assert( pMem->flags==MEM_Null );
|
||||
sqlite3VdbeMemReleaseExternal(pMem);
|
||||
pMem->flags = MEM_Null;
|
||||
pMem->z = 0;
|
||||
}else{
|
||||
sqlite3VdbeMemGrow(pMem, nByte, 0);
|
||||
pMem->flags = MEM_Agg;
|
||||
pMem->xDel = sqlite3FreeX;
|
||||
pMem->u.pDef = p->pFunc;
|
||||
if( nByte<=NBFS ){
|
||||
pMem->z = pMem->zShort;
|
||||
if( pMem->z ){
|
||||
memset(pMem->z, 0, nByte);
|
||||
}else{
|
||||
pMem->z = sqliteMalloc( nByte );
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -370,7 +646,10 @@ void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
|
|||
** the user-function defined by pCtx.
|
||||
*/
|
||||
void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
|
||||
VdbeFunc *pVdbeFunc = pCtx->pVdbeFunc;
|
||||
VdbeFunc *pVdbeFunc;
|
||||
|
||||
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
||||
pVdbeFunc = pCtx->pVdbeFunc;
|
||||
if( !pVdbeFunc || iArg>=pVdbeFunc->nAux || iArg<0 ){
|
||||
return 0;
|
||||
}
|
||||
|
@ -392,14 +671,17 @@ void sqlite3_set_auxdata(
|
|||
VdbeFunc *pVdbeFunc;
|
||||
if( iArg<0 ) goto failed;
|
||||
|
||||
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
||||
pVdbeFunc = pCtx->pVdbeFunc;
|
||||
if( !pVdbeFunc || pVdbeFunc->nAux<=iArg ){
|
||||
int nAux = (pVdbeFunc ? pVdbeFunc->nAux : 0);
|
||||
int nMalloc = sizeof(VdbeFunc) + sizeof(struct AuxData)*iArg;
|
||||
pVdbeFunc = sqliteRealloc(pVdbeFunc, nMalloc);
|
||||
if( !pVdbeFunc ) goto failed;
|
||||
pVdbeFunc = sqlite3DbRealloc(pCtx->s.db, pVdbeFunc, nMalloc);
|
||||
if( !pVdbeFunc ){
|
||||
goto failed;
|
||||
}
|
||||
pCtx->pVdbeFunc = pVdbeFunc;
|
||||
memset(&pVdbeFunc->apAux[pVdbeFunc->nAux], 0,
|
||||
sizeof(struct AuxData)*(iArg+1-pVdbeFunc->nAux));
|
||||
memset(&pVdbeFunc->apAux[nAux], 0, sizeof(struct AuxData)*(iArg+1-nAux));
|
||||
pVdbeFunc->nAux = iArg+1;
|
||||
pVdbeFunc->pFunc = pCtx->pFunc;
|
||||
}
|
||||
|
@ -418,6 +700,7 @@ failed:
|
|||
}
|
||||
}
|
||||
|
||||
#ifndef SQLITE_OMIT_DEPRECATED
|
||||
/*
|
||||
** Return the number of times the Step function of a aggregate has been
|
||||
** called.
|
||||
|
@ -431,6 +714,7 @@ int sqlite3_aggregate_count(sqlite3_context *p){
|
|||
assert( p && p->pFunc && p->pFunc->xStep );
|
||||
return p->pMem->n;
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
** Return the number of columns in the result set for the statement pStmt.
|
||||
|
@ -446,7 +730,7 @@ int sqlite3_column_count(sqlite3_stmt *pStmt){
|
|||
*/
|
||||
int sqlite3_data_count(sqlite3_stmt *pStmt){
|
||||
Vdbe *pVm = (Vdbe *)pStmt;
|
||||
if( pVm==0 || !pVm->resOnStack ) return 0;
|
||||
if( pVm==0 || pVm->pResultSet==0 ) return 0;
|
||||
return pVm->nResColumn;
|
||||
}
|
||||
|
||||
|
@ -458,14 +742,24 @@ int sqlite3_data_count(sqlite3_stmt *pStmt){
|
|||
** of NULL.
|
||||
*/
|
||||
static Mem *columnMem(sqlite3_stmt *pStmt, int i){
|
||||
Vdbe *pVm = (Vdbe *)pStmt;
|
||||
int vals = sqlite3_data_count(pStmt);
|
||||
if( pVm==0 || pVm->resOnStack==0 || i>=pVm->nResColumn || i<0 ){
|
||||
static const Mem nullMem = {{0}, 0.0, "", 0, MEM_Null, SQLITE_NULL };
|
||||
Vdbe *pVm;
|
||||
int vals;
|
||||
Mem *pOut;
|
||||
|
||||
pVm = (Vdbe *)pStmt;
|
||||
if( pVm && pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){
|
||||
sqlite3_mutex_enter(pVm->db->mutex);
|
||||
vals = sqlite3_data_count(pStmt);
|
||||
pOut = &pVm->pResultSet[i];
|
||||
}else{
|
||||
static const Mem nullMem = {{0}, 0.0, 0, "", 0, MEM_Null, SQLITE_NULL, 0, 0, 0 };
|
||||
if( pVm->db ){
|
||||
sqlite3_mutex_enter(pVm->db->mutex);
|
||||
sqlite3Error(pVm->db, SQLITE_RANGE, 0);
|
||||
return (Mem*)&nullMem;
|
||||
}
|
||||
return &pVm->pTos[(1-vals)+i];
|
||||
pOut = (Mem*)&nullMem;
|
||||
}
|
||||
return pOut;
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -475,7 +769,7 @@ static Mem *columnMem(sqlite3_stmt *pStmt, int i){
|
|||
** malloc() has failed, the threads mallocFailed flag is cleared and the result
|
||||
** code of statement pStmt set to SQLITE_NOMEM.
|
||||
**
|
||||
** Specificly, this is called from within:
|
||||
** Specifically, this is called from within:
|
||||
**
|
||||
** sqlite3_column_int()
|
||||
** sqlite3_column_int64()
|
||||
|
@ -495,7 +789,10 @@ static void columnMallocFailure(sqlite3_stmt *pStmt)
|
|||
** and _finalize() will return NOMEM.
|
||||
*/
|
||||
Vdbe *p = (Vdbe *)pStmt;
|
||||
p->rc = sqlite3ApiExit(0, p->rc);
|
||||
if( p ){
|
||||
p->rc = sqlite3ApiExit(p->db, p->rc);
|
||||
sqlite3_mutex_leave(p->db->mutex);
|
||||
}
|
||||
}
|
||||
|
||||
/**************************** sqlite3_column_ *******************************
|
||||
|
@ -543,7 +840,13 @@ const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){
|
|||
return val;
|
||||
}
|
||||
sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){
|
||||
return columnMem(pStmt, i);
|
||||
Mem *pOut = columnMem(pStmt, i);
|
||||
if( pOut->flags&MEM_Static ){
|
||||
pOut->flags &= ~MEM_Static;
|
||||
pOut->flags |= MEM_Ephem;
|
||||
}
|
||||
columnMallocFailure(pStmt);
|
||||
return (sqlite3_value *)pOut;
|
||||
}
|
||||
#ifndef SQLITE_OMIT_UTF16
|
||||
const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){
|
||||
|
@ -553,7 +856,9 @@ const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){
|
|||
}
|
||||
#endif /* SQLITE_OMIT_UTF16 */
|
||||
int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
|
||||
return sqlite3_value_type( columnMem(pStmt,i) );
|
||||
int iType = sqlite3_value_type( columnMem(pStmt,i) );
|
||||
columnMallocFailure(pStmt);
|
||||
return iType;
|
||||
}
|
||||
|
||||
/* The following function is experimental and subject to change or
|
||||
|
@ -585,20 +890,28 @@ static const void *columnName(
|
|||
const void *(*xFunc)(Mem*),
|
||||
int useType
|
||||
){
|
||||
const void *ret;
|
||||
const void *ret = 0;
|
||||
Vdbe *p = (Vdbe *)pStmt;
|
||||
int n = sqlite3_column_count(pStmt);
|
||||
int n;
|
||||
|
||||
if( p==0 || N>=n || N<0 ){
|
||||
return 0;
|
||||
}
|
||||
|
||||
if( p!=0 ){
|
||||
n = sqlite3_column_count(pStmt);
|
||||
if( N<n && N>=0 ){
|
||||
N += useType*n;
|
||||
sqlite3_mutex_enter(p->db->mutex);
|
||||
ret = xFunc(&p->aColName[N]);
|
||||
|
||||
/* A malloc may have failed inside of the xFunc() call. If this is the case,
|
||||
** clear the mallocFailed flag and return NULL.
|
||||
/* A malloc may have failed inside of the xFunc() call. If this
|
||||
** is the case, clear the mallocFailed flag and return NULL.
|
||||
*/
|
||||
sqlite3ApiExit(0, 0);
|
||||
if( p->db && p->db->mallocFailed ){
|
||||
p->db->mallocFailed = 0;
|
||||
ret = 0;
|
||||
}
|
||||
sqlite3_mutex_leave(p->db->mutex);
|
||||
}
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
@ -617,6 +930,16 @@ const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
|
|||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
** Constraint: If you have ENABLE_COLUMN_METADATA then you must
|
||||
** not define OMIT_DECLTYPE.
|
||||
*/
|
||||
#if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA)
|
||||
# error "Must not define both SQLITE_OMIT_DECLTYPE \
|
||||
and SQLITE_ENABLE_COLUMN_METADATA"
|
||||
#endif
|
||||
|
||||
#ifndef SQLITE_OMIT_DECLTYPE
|
||||
/*
|
||||
** Return the column declaration type (if applicable) of the 'i'th column
|
||||
** of the result set of SQL statement pStmt.
|
||||
|
@ -631,6 +954,7 @@ const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
|
|||
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE);
|
||||
}
|
||||
#endif /* SQLITE_OMIT_UTF16 */
|
||||
#endif /* SQLITE_OMIT_DECLTYPE */
|
||||
|
||||
#ifdef SQLITE_ENABLE_COLUMN_METADATA
|
||||
/*
|
||||
|
@ -692,17 +1016,24 @@ const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
|
|||
** the same as binding a NULL value to the column. If the "i" parameter is
|
||||
** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK.
|
||||
**
|
||||
** A successful evaluation of this routine acquires the mutex on p.
|
||||
** the mutex is released if any kind of error occurs.
|
||||
**
|
||||
** The error code stored in database p->db is overwritten with the return
|
||||
** value in any case.
|
||||
*/
|
||||
static int vdbeUnbind(Vdbe *p, int i){
|
||||
Mem *pVar;
|
||||
if( p==0 || p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){
|
||||
if( p ) sqlite3Error(p->db, SQLITE_MISUSE, 0);
|
||||
if( p==0 ) return SQLITE_MISUSE;
|
||||
sqlite3_mutex_enter(p->db->mutex);
|
||||
if( p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){
|
||||
sqlite3Error(p->db, SQLITE_MISUSE, 0);
|
||||
sqlite3_mutex_leave(p->db->mutex);
|
||||
return SQLITE_MISUSE;
|
||||
}
|
||||
if( i<1 || i>p->nVar ){
|
||||
sqlite3Error(p->db, SQLITE_RANGE, 0);
|
||||
sqlite3_mutex_leave(p->db->mutex);
|
||||
return SQLITE_RANGE;
|
||||
}
|
||||
i--;
|
||||
|
@ -717,29 +1048,31 @@ static int vdbeUnbind(Vdbe *p, int i){
|
|||
** Bind a text or BLOB value.
|
||||
*/
|
||||
static int bindText(
|
||||
sqlite3_stmt *pStmt,
|
||||
int i,
|
||||
const void *zData,
|
||||
int nData,
|
||||
void (*xDel)(void*),
|
||||
int encoding
|
||||
sqlite3_stmt *pStmt, /* The statement to bind against */
|
||||
int i, /* Index of the parameter to bind */
|
||||
const void *zData, /* Pointer to the data to be bound */
|
||||
int nData, /* Number of bytes of data to be bound */
|
||||
void (*xDel)(void*), /* Destructor for the data */
|
||||
u8 encoding /* Encoding for the data */
|
||||
){
|
||||
Vdbe *p = (Vdbe *)pStmt;
|
||||
Mem *pVar;
|
||||
int rc;
|
||||
|
||||
rc = vdbeUnbind(p, i);
|
||||
if( rc || zData==0 ){
|
||||
return rc;
|
||||
}
|
||||
if( rc==SQLITE_OK ){
|
||||
if( zData!=0 ){
|
||||
pVar = &p->aVar[i-1];
|
||||
rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel);
|
||||
if( rc==SQLITE_OK && encoding!=0 ){
|
||||
rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db));
|
||||
}
|
||||
|
||||
sqlite3Error(((Vdbe *)pStmt)->db, rc, 0);
|
||||
return sqlite3ApiExit(((Vdbe *)pStmt)->db, rc);
|
||||
sqlite3Error(p->db, rc, 0);
|
||||
rc = sqlite3ApiExit(p->db, rc);
|
||||
}
|
||||
sqlite3_mutex_leave(p->db->mutex);
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
|
||||
|
||||
|
@ -761,6 +1094,7 @@ int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
|
|||
rc = vdbeUnbind(p, i);
|
||||
if( rc==SQLITE_OK ){
|
||||
sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue);
|
||||
sqlite3_mutex_leave(p->db->mutex);
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
|
@ -773,11 +1107,18 @@ int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){
|
|||
rc = vdbeUnbind(p, i);
|
||||
if( rc==SQLITE_OK ){
|
||||
sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue);
|
||||
sqlite3_mutex_leave(p->db->mutex);
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
int sqlite3_bind_null(sqlite3_stmt* p, int i){
|
||||
return vdbeUnbind((Vdbe *)p, i);
|
||||
int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){
|
||||
int rc;
|
||||
Vdbe *p = (Vdbe*)pStmt;
|
||||
rc = vdbeUnbind(p, i);
|
||||
if( rc==SQLITE_OK ){
|
||||
sqlite3_mutex_leave(p->db->mutex);
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
int sqlite3_bind_text(
|
||||
sqlite3_stmt *pStmt,
|
||||
|
@ -804,8 +1145,13 @@ int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
|
|||
Vdbe *p = (Vdbe *)pStmt;
|
||||
rc = vdbeUnbind(p, i);
|
||||
if( rc==SQLITE_OK ){
|
||||
sqlite3VdbeMemCopy(&p->aVar[i-1], pValue);
|
||||
rc = sqlite3VdbeMemCopy(&p->aVar[i-1], pValue);
|
||||
if( rc==SQLITE_OK ){
|
||||
rc = sqlite3VdbeChangeEncoding(&p->aVar[i-1], ENC(p->db));
|
||||
}
|
||||
sqlite3_mutex_leave(p->db->mutex);
|
||||
}
|
||||
rc = sqlite3ApiExit(p->db, rc);
|
||||
return rc;
|
||||
}
|
||||
int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){
|
||||
|
@ -814,6 +1160,7 @@ int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){
|
|||
rc = vdbeUnbind(p, i);
|
||||
if( rc==SQLITE_OK ){
|
||||
sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
|
||||
sqlite3_mutex_leave(p->db->mutex);
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
|
@ -833,17 +1180,21 @@ int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
|
|||
** exist.
|
||||
*/
|
||||
static void createVarMap(Vdbe *p){
|
||||
if( !p->okVar ){
|
||||
sqlite3_mutex_enter(p->db->mutex);
|
||||
if( !p->okVar ){
|
||||
int j;
|
||||
Op *pOp;
|
||||
for(j=0, pOp=p->aOp; j<p->nOp; j++, pOp++){
|
||||
if( pOp->opcode==OP_Variable ){
|
||||
assert( pOp->p1>0 && pOp->p1<=p->nVar );
|
||||
p->azVar[pOp->p1-1] = pOp->p3;
|
||||
p->azVar[pOp->p1-1] = pOp->p4.z;
|
||||
}
|
||||
}
|
||||
p->okVar = 1;
|
||||
}
|
||||
sqlite3_mutex_leave(p->db->mutex);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -889,26 +1240,37 @@ int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
|
|||
** If the two statements contain a different number of bindings, then
|
||||
** an SQLITE_ERROR is returned.
|
||||
*/
|
||||
int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
|
||||
int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
|
||||
Vdbe *pFrom = (Vdbe*)pFromStmt;
|
||||
Vdbe *pTo = (Vdbe*)pToStmt;
|
||||
int i, rc = SQLITE_OK;
|
||||
if( (pFrom->magic!=VDBE_MAGIC_RUN && pFrom->magic!=VDBE_MAGIC_HALT)
|
||||
|| (pTo->magic!=VDBE_MAGIC_RUN && pTo->magic!=VDBE_MAGIC_HALT) ){
|
||||
|| (pTo->magic!=VDBE_MAGIC_RUN && pTo->magic!=VDBE_MAGIC_HALT)
|
||||
|| pTo->db!=pFrom->db ){
|
||||
return SQLITE_MISUSE;
|
||||
}
|
||||
if( pFrom->nVar!=pTo->nVar ){
|
||||
return SQLITE_ERROR;
|
||||
}
|
||||
sqlite3_mutex_enter(pTo->db->mutex);
|
||||
for(i=0; rc==SQLITE_OK && i<pFrom->nVar; i++){
|
||||
sqlite3MallocDisallow();
|
||||
rc = sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]);
|
||||
sqlite3MallocAllow();
|
||||
sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]);
|
||||
}
|
||||
sqlite3_mutex_leave(pTo->db->mutex);
|
||||
assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
|
||||
return rc;
|
||||
}
|
||||
|
||||
#ifndef SQLITE_OMIT_DEPRECATED
|
||||
/*
|
||||
** Deprecated external interface. Internal/core SQLite code
|
||||
** should call sqlite3TransferBindings.
|
||||
*/
|
||||
int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
|
||||
return sqlite3TransferBindings(pFromStmt, pToStmt);
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
** Return the sqlite3* database handle to which the prepared statement given
|
||||
** in the argument belongs. This is the same database handle that was
|
||||
|
@ -918,3 +1280,31 @@ int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
|
|||
sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){
|
||||
return pStmt ? ((Vdbe*)pStmt)->db : 0;
|
||||
}
|
||||
|
||||
/*
|
||||
** Return a pointer to the next prepared statement after pStmt associated
|
||||
** with database connection pDb. If pStmt is NULL, return the first
|
||||
** prepared statement for the database connection. Return NULL if there
|
||||
** are no more.
|
||||
*/
|
||||
sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){
|
||||
sqlite3_stmt *pNext;
|
||||
sqlite3_mutex_enter(pDb->mutex);
|
||||
if( pStmt==0 ){
|
||||
pNext = (sqlite3_stmt*)pDb->pVdbe;
|
||||
}else{
|
||||
pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext;
|
||||
}
|
||||
sqlite3_mutex_leave(pDb->mutex);
|
||||
return pNext;
|
||||
}
|
||||
|
||||
/*
|
||||
** Return the value of a status counter for a prepared statement
|
||||
*/
|
||||
int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){
|
||||
Vdbe *pVdbe = (Vdbe*)pStmt;
|
||||
int v = pVdbe->aCounter[op-1];
|
||||
if( resetFlag ) pVdbe->aCounter[op-1] = 0;
|
||||
return v;
|
||||
}
|
||||
|
|
130
vdbeblob.c
130
vdbeblob.c
|
@ -12,7 +12,7 @@
|
|||
**
|
||||
** This file contains code used to implement incremental BLOB I/O.
|
||||
**
|
||||
** $Id: vdbeblob.c,v 1.11 2007/06/27 00:36:14 drh Exp $
|
||||
** $Id: vdbeblob.c,v 1.26 2008/10/02 14:49:02 danielk1977 Exp $
|
||||
*/
|
||||
|
||||
#include "sqliteInt.h"
|
||||
|
@ -30,6 +30,7 @@ struct Incrblob {
|
|||
int iOffset; /* Byte offset of blob in cursor data */
|
||||
BtCursor *pCsr; /* Cursor pointing at blob row */
|
||||
sqlite3_stmt *pStmt; /* Statement holding cursor open */
|
||||
sqlite3 *db; /* The associated database */
|
||||
};
|
||||
|
||||
/*
|
||||
|
@ -53,7 +54,7 @@ int sqlite3_blob_open(
|
|||
** vdbe program will take advantage of the various transaction,
|
||||
** locking and error handling infrastructure built into the vdbe.
|
||||
**
|
||||
** After seeking the cursor, the vdbe executes an OP_Callback.
|
||||
** After seeking the cursor, the vdbe executes an OP_ResultRow.
|
||||
** Code external to the Vdbe then "borrows" the b-tree cursor and
|
||||
** uses it to implement the blob_read(), blob_write() and
|
||||
** blob_bytes() functions.
|
||||
|
@ -65,19 +66,19 @@ int sqlite3_blob_open(
|
|||
static const VdbeOpList openBlob[] = {
|
||||
{OP_Transaction, 0, 0, 0}, /* 0: Start a transaction */
|
||||
{OP_VerifyCookie, 0, 0, 0}, /* 1: Check the schema cookie */
|
||||
{OP_Integer, 0, 0, 0}, /* 2: Database number */
|
||||
|
||||
/* One of the following two instructions is replaced by an
|
||||
** OP_Noop before exection.
|
||||
*/
|
||||
{OP_SetNumColumns, 0, 0, 0}, /* 2: Num cols for cursor */
|
||||
{OP_OpenRead, 0, 0, 0}, /* 3: Open cursor 0 for reading */
|
||||
{OP_OpenWrite, 0, 0, 0}, /* 4: Open cursor 0 for read/write */
|
||||
{OP_SetNumColumns, 0, 0, 0}, /* 5: Num cols for cursor */
|
||||
{OP_SetNumColumns, 0, 0, 0}, /* 4: Num cols for cursor */
|
||||
{OP_OpenWrite, 0, 0, 0}, /* 5: Open cursor 0 for read/write */
|
||||
|
||||
{OP_Variable, 1, 0, 0}, /* 6: Push the rowid to the stack */
|
||||
{OP_NotExists, 0, 10, 0}, /* 7: Seek the cursor */
|
||||
{OP_Column, 0, 0, 0}, /* 8 */
|
||||
{OP_Callback, 0, 0, 0}, /* 9 */
|
||||
{OP_Variable, 1, 1, 0}, /* 6: Push the rowid to the stack */
|
||||
{OP_NotExists, 0, 10, 1}, /* 7: Seek the cursor */
|
||||
{OP_Column, 0, 0, 1}, /* 8 */
|
||||
{OP_ResultRow, 1, 0, 0}, /* 9 */
|
||||
{OP_Close, 0, 0, 0}, /* 10 */
|
||||
{OP_Halt, 0, 0, 0}, /* 11 */
|
||||
};
|
||||
|
@ -87,6 +88,7 @@ int sqlite3_blob_open(
|
|||
char zErr[128];
|
||||
|
||||
zErr[0] = 0;
|
||||
sqlite3_mutex_enter(db->mutex);
|
||||
do {
|
||||
Parse sParse;
|
||||
Table *pTab;
|
||||
|
@ -94,19 +96,31 @@ int sqlite3_blob_open(
|
|||
memset(&sParse, 0, sizeof(Parse));
|
||||
sParse.db = db;
|
||||
|
||||
rc = sqlite3SafetyOn(db);
|
||||
if( rc!=SQLITE_OK ){
|
||||
return rc;
|
||||
if( sqlite3SafetyOn(db) ){
|
||||
sqlite3_mutex_leave(db->mutex);
|
||||
return SQLITE_MISUSE;
|
||||
}
|
||||
|
||||
pTab = sqlite3LocateTable(&sParse, zTable, zDb);
|
||||
sqlite3BtreeEnterAll(db);
|
||||
pTab = sqlite3LocateTable(&sParse, 0, zTable, zDb);
|
||||
if( pTab && IsVirtual(pTab) ){
|
||||
pTab = 0;
|
||||
sqlite3ErrorMsg(&sParse, "cannot open virtual table: %s", zTable);
|
||||
}
|
||||
#ifndef SQLITE_OMIT_VIEW
|
||||
if( pTab && pTab->pSelect ){
|
||||
pTab = 0;
|
||||
sqlite3ErrorMsg(&sParse, "cannot open view: %s", zTable);
|
||||
}
|
||||
#endif
|
||||
if( !pTab ){
|
||||
if( sParse.zErrMsg ){
|
||||
sqlite3_snprintf(sizeof(zErr), zErr, "%s", sParse.zErrMsg);
|
||||
}
|
||||
sqliteFree(sParse.zErrMsg);
|
||||
sqlite3DbFree(db, sParse.zErrMsg);
|
||||
rc = SQLITE_ERROR;
|
||||
sqlite3SafetyOff(db);
|
||||
(void)sqlite3SafetyOff(db);
|
||||
sqlite3BtreeLeaveAll(db);
|
||||
goto blob_open_out;
|
||||
}
|
||||
|
||||
|
@ -119,7 +133,8 @@ int sqlite3_blob_open(
|
|||
if( iCol==pTab->nCol ){
|
||||
sqlite3_snprintf(sizeof(zErr), zErr, "no such column: \"%s\"", zColumn);
|
||||
rc = SQLITE_ERROR;
|
||||
sqlite3SafetyOff(db);
|
||||
(void)sqlite3SafetyOff(db);
|
||||
sqlite3BtreeLeaveAll(db);
|
||||
goto blob_open_out;
|
||||
}
|
||||
|
||||
|
@ -136,7 +151,8 @@ int sqlite3_blob_open(
|
|||
sqlite3_snprintf(sizeof(zErr), zErr,
|
||||
"cannot open indexed column for writing");
|
||||
rc = SQLITE_ERROR;
|
||||
sqlite3SafetyOff(db);
|
||||
(void)sqlite3SafetyOff(db);
|
||||
sqlite3BtreeLeaveAll(db);
|
||||
goto blob_open_out;
|
||||
}
|
||||
}
|
||||
|
@ -156,14 +172,15 @@ int sqlite3_blob_open(
|
|||
sqlite3VdbeChangeP1(v, 1, iDb);
|
||||
sqlite3VdbeChangeP2(v, 1, pTab->pSchema->schema_cookie);
|
||||
|
||||
/* Configure the db number pushed onto the stack */
|
||||
sqlite3VdbeChangeP1(v, 2, iDb);
|
||||
/* Make sure a mutex is held on the table to be accessed */
|
||||
sqlite3VdbeUsesBtree(v, iDb);
|
||||
|
||||
/* Remove either the OP_OpenWrite or OpenRead. Set the P2
|
||||
** parameter of the other to pTab->tnum.
|
||||
*/
|
||||
sqlite3VdbeChangeToNoop(v, (flags ? 3 : 4), 1);
|
||||
sqlite3VdbeChangeP2(v, (flags ? 4 : 3), pTab->tnum);
|
||||
sqlite3VdbeChangeToNoop(v, (flags ? 3 : 5), 1);
|
||||
sqlite3VdbeChangeP2(v, (flags ? 5 : 3), pTab->tnum);
|
||||
sqlite3VdbeChangeP3(v, (flags ? 5 : 3), iDb);
|
||||
|
||||
/* Configure the OP_SetNumColumns. Configure the cursor to
|
||||
** think that the table has one more column than it really
|
||||
|
@ -172,14 +189,16 @@ int sqlite3_blob_open(
|
|||
** we can invoke OP_Column to fill in the vdbe cursors type
|
||||
** and offset cache without causing any IO.
|
||||
*/
|
||||
sqlite3VdbeChangeP2(v, 5, pTab->nCol+1);
|
||||
if( !sqlite3MallocFailed() ){
|
||||
sqlite3VdbeMakeReady(v, 1, 0, 1, 0);
|
||||
sqlite3VdbeChangeP2(v, flags ? 4 : 2, pTab->nCol+1);
|
||||
sqlite3VdbeChangeP2(v, 8, pTab->nCol);
|
||||
if( !db->mallocFailed ){
|
||||
sqlite3VdbeMakeReady(v, 1, 1, 1, 0);
|
||||
}
|
||||
}
|
||||
|
||||
sqlite3BtreeLeaveAll(db);
|
||||
rc = sqlite3SafetyOff(db);
|
||||
if( rc!=SQLITE_OK || sqlite3MallocFailed() ){
|
||||
if( rc!=SQLITE_OK || db->mallocFailed ){
|
||||
goto blob_open_out;
|
||||
}
|
||||
|
||||
|
@ -208,17 +227,20 @@ int sqlite3_blob_open(
|
|||
rc = SQLITE_ERROR;
|
||||
goto blob_open_out;
|
||||
}
|
||||
pBlob = (Incrblob *)sqliteMalloc(sizeof(Incrblob));
|
||||
if( sqlite3MallocFailed() ){
|
||||
sqliteFree(pBlob);
|
||||
pBlob = (Incrblob *)sqlite3DbMallocZero(db, sizeof(Incrblob));
|
||||
if( db->mallocFailed ){
|
||||
sqlite3DbFree(db, pBlob);
|
||||
goto blob_open_out;
|
||||
}
|
||||
pBlob->flags = flags;
|
||||
pBlob->pCsr = v->apCsr[0]->pCursor;
|
||||
sqlite3BtreeEnterCursor(pBlob->pCsr);
|
||||
sqlite3BtreeCacheOverflow(pBlob->pCsr);
|
||||
sqlite3BtreeLeaveCursor(pBlob->pCsr);
|
||||
pBlob->pStmt = (sqlite3_stmt *)v;
|
||||
pBlob->iOffset = v->apCsr[0]->aOffset[iCol];
|
||||
pBlob->nByte = sqlite3VdbeSerialTypeLen(type);
|
||||
pBlob->db = db;
|
||||
*ppBlob = (sqlite3_blob *)pBlob;
|
||||
rc = SQLITE_OK;
|
||||
}else if( rc==SQLITE_OK ){
|
||||
|
@ -228,11 +250,13 @@ int sqlite3_blob_open(
|
|||
|
||||
blob_open_out:
|
||||
zErr[sizeof(zErr)-1] = '\0';
|
||||
if( rc!=SQLITE_OK || sqlite3MallocFailed() ){
|
||||
if( rc!=SQLITE_OK || db->mallocFailed ){
|
||||
sqlite3_finalize((sqlite3_stmt *)v);
|
||||
}
|
||||
sqlite3Error(db, rc, (rc==SQLITE_OK?0:zErr));
|
||||
return sqlite3ApiExit(db, rc);
|
||||
rc = sqlite3ApiExit(db, rc);
|
||||
sqlite3_mutex_leave(db->mutex);
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -241,12 +265,16 @@ blob_open_out:
|
|||
*/
|
||||
int sqlite3_blob_close(sqlite3_blob *pBlob){
|
||||
Incrblob *p = (Incrblob *)pBlob;
|
||||
sqlite3_stmt *pStmt = p->pStmt;
|
||||
sqliteFree(p);
|
||||
return sqlite3_finalize(pStmt);
|
||||
int rc;
|
||||
|
||||
rc = sqlite3_finalize(p->pStmt);
|
||||
sqlite3DbFree(p->db, p);
|
||||
return rc;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** Perform a read or write operation on a blob
|
||||
*/
|
||||
static int blobReadWrite(
|
||||
sqlite3_blob *pBlob,
|
||||
void *z,
|
||||
|
@ -256,24 +284,29 @@ static int blobReadWrite(
|
|||
){
|
||||
int rc;
|
||||
Incrblob *p = (Incrblob *)pBlob;
|
||||
Vdbe *v = (Vdbe *)(p->pStmt);
|
||||
sqlite3 *db;
|
||||
Vdbe *v;
|
||||
sqlite3 *db = p->db;
|
||||
|
||||
sqlite3_mutex_enter(db->mutex);
|
||||
v = (Vdbe*)p->pStmt;
|
||||
|
||||
if( n<0 || iOffset<0 || (iOffset+n)>p->nByte ){
|
||||
/* Request is out of range. Return a transient error. */
|
||||
rc = SQLITE_ERROR;
|
||||
sqlite3Error(db, SQLITE_ERROR, 0);
|
||||
} else if( v==0 ){
|
||||
/* If there is no statement handle, then the blob-handle has
|
||||
** already been invalidated. Return SQLITE_ABORT in this case.
|
||||
*/
|
||||
if( !v ) return SQLITE_ABORT;
|
||||
|
||||
/* Request is out of range. Return a transient error. */
|
||||
if( (iOffset+n)>p->nByte ){
|
||||
return SQLITE_ERROR;
|
||||
}
|
||||
|
||||
rc = SQLITE_ABORT;
|
||||
}else{
|
||||
/* Call either BtreeData() or BtreePutData(). If SQLITE_ABORT is
|
||||
** returned, clean-up the statement handle.
|
||||
*/
|
||||
db = v->db;
|
||||
assert( db == v->db );
|
||||
sqlite3BtreeEnterCursor(p->pCsr);
|
||||
rc = xCall(p->pCsr, iOffset+p->iOffset, n, z);
|
||||
sqlite3BtreeLeaveCursor(p->pCsr);
|
||||
if( rc==SQLITE_ABORT ){
|
||||
sqlite3VdbeFinalize(v);
|
||||
p->pStmt = 0;
|
||||
|
@ -281,8 +314,10 @@ static int blobReadWrite(
|
|||
db->errCode = rc;
|
||||
v->rc = rc;
|
||||
}
|
||||
|
||||
return sqlite3ApiExit(db, rc);
|
||||
}
|
||||
rc = sqlite3ApiExit(db, rc);
|
||||
sqlite3_mutex_leave(db->mutex);
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -301,6 +336,9 @@ int sqlite3_blob_write(sqlite3_blob *pBlob, const void *z, int n, int iOffset){
|
|||
|
||||
/*
|
||||
** Query a blob handle for the size of the data.
|
||||
**
|
||||
** The Incrblob.nByte field is fixed for the lifetime of the Incrblob
|
||||
** so no mutex is required for access.
|
||||
*/
|
||||
int sqlite3_blob_bytes(sqlite3_blob *pBlob){
|
||||
Incrblob *p = (Incrblob *)pBlob;
|
||||
|
|
114
vdbefifo.c
114
vdbefifo.c
|
@ -1,114 +0,0 @@
|
|||
/*
|
||||
** 2005 June 16
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This file implements a FIFO queue of rowids used for processing
|
||||
** UPDATE and DELETE statements.
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
#include "vdbeInt.h"
|
||||
|
||||
/*
|
||||
** Allocate a new FifoPage and return a pointer to it. Return NULL if
|
||||
** we run out of memory. Leave space on the page for nEntry entries.
|
||||
*/
|
||||
static FifoPage *allocateFifoPage(int nEntry){
|
||||
FifoPage *pPage;
|
||||
if( nEntry>32767 ){
|
||||
nEntry = 32767;
|
||||
}
|
||||
pPage = sqliteMallocRaw( sizeof(FifoPage) + sizeof(i64)*(nEntry-1) );
|
||||
if( pPage ){
|
||||
pPage->nSlot = nEntry;
|
||||
pPage->iWrite = 0;
|
||||
pPage->iRead = 0;
|
||||
pPage->pNext = 0;
|
||||
}
|
||||
return pPage;
|
||||
}
|
||||
|
||||
/*
|
||||
** Initialize a Fifo structure.
|
||||
*/
|
||||
void sqlite3VdbeFifoInit(Fifo *pFifo){
|
||||
memset(pFifo, 0, sizeof(*pFifo));
|
||||
}
|
||||
|
||||
/*
|
||||
** Push a single 64-bit integer value into the Fifo. Return SQLITE_OK
|
||||
** normally. SQLITE_NOMEM is returned if we are unable to allocate
|
||||
** memory.
|
||||
*/
|
||||
int sqlite3VdbeFifoPush(Fifo *pFifo, i64 val){
|
||||
FifoPage *pPage;
|
||||
pPage = pFifo->pLast;
|
||||
if( pPage==0 ){
|
||||
pPage = pFifo->pLast = pFifo->pFirst = allocateFifoPage(20);
|
||||
if( pPage==0 ){
|
||||
return SQLITE_NOMEM;
|
||||
}
|
||||
}else if( pPage->iWrite>=pPage->nSlot ){
|
||||
pPage->pNext = allocateFifoPage(pFifo->nEntry);
|
||||
if( pPage->pNext==0 ){
|
||||
return SQLITE_NOMEM;
|
||||
}
|
||||
pPage = pFifo->pLast = pPage->pNext;
|
||||
}
|
||||
pPage->aSlot[pPage->iWrite++] = val;
|
||||
pFifo->nEntry++;
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Extract a single 64-bit integer value from the Fifo. The integer
|
||||
** extracted is the one least recently inserted. If the Fifo is empty
|
||||
** return SQLITE_DONE.
|
||||
*/
|
||||
int sqlite3VdbeFifoPop(Fifo *pFifo, i64 *pVal){
|
||||
FifoPage *pPage;
|
||||
if( pFifo->nEntry==0 ){
|
||||
return SQLITE_DONE;
|
||||
}
|
||||
assert( pFifo->nEntry>0 );
|
||||
pPage = pFifo->pFirst;
|
||||
assert( pPage!=0 );
|
||||
assert( pPage->iWrite>pPage->iRead );
|
||||
assert( pPage->iWrite<=pPage->nSlot );
|
||||
assert( pPage->iRead<pPage->nSlot );
|
||||
assert( pPage->iRead>=0 );
|
||||
*pVal = pPage->aSlot[pPage->iRead++];
|
||||
pFifo->nEntry--;
|
||||
if( pPage->iRead>=pPage->iWrite ){
|
||||
pFifo->pFirst = pPage->pNext;
|
||||
sqliteFree(pPage);
|
||||
if( pFifo->nEntry==0 ){
|
||||
assert( pFifo->pLast==pPage );
|
||||
pFifo->pLast = 0;
|
||||
}else{
|
||||
assert( pFifo->pFirst!=0 );
|
||||
}
|
||||
}else{
|
||||
assert( pFifo->nEntry>0 );
|
||||
}
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Delete all information from a Fifo object. Free all memory held
|
||||
** by the Fifo.
|
||||
*/
|
||||
void sqlite3VdbeFifoClear(Fifo *pFifo){
|
||||
FifoPage *pPage, *pNextPage;
|
||||
for(pPage=pFifo->pFirst; pPage; pPage=pNextPage){
|
||||
pNextPage = pPage->pNext;
|
||||
sqliteFree(pPage);
|
||||
}
|
||||
sqlite3VdbeFifoInit(pFifo);
|
||||
}
|
244
vtab.c
244
vtab.c
|
@ -11,7 +11,7 @@
|
|||
*************************************************************************
|
||||
** This file contains code used to help implement virtual tables.
|
||||
**
|
||||
** $Id: vtab.c,v 1.48 2007/06/26 10:38:55 danielk1977 Exp $
|
||||
** $Id: vtab.c,v 1.81 2008/12/10 19:26:24 drh Exp $
|
||||
*/
|
||||
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
||||
#include "sqliteInt.h"
|
||||
|
@ -23,23 +23,35 @@ static int createModule(
|
|||
void *pAux, /* Context pointer for xCreate/xConnect */
|
||||
void (*xDestroy)(void *) /* Module destructor function */
|
||||
) {
|
||||
int nName = strlen(zName);
|
||||
Module *pMod = (Module *)sqliteMallocRaw(sizeof(Module) + nName + 1);
|
||||
int rc, nName;
|
||||
Module *pMod;
|
||||
|
||||
sqlite3_mutex_enter(db->mutex);
|
||||
nName = sqlite3Strlen30(zName);
|
||||
pMod = (Module *)sqlite3DbMallocRaw(db, sizeof(Module) + nName + 1);
|
||||
if( pMod ){
|
||||
Module *pDel;
|
||||
char *zCopy = (char *)(&pMod[1]);
|
||||
memcpy(zCopy, zName, nName+1);
|
||||
pMod->zName = zCopy;
|
||||
pMod->pModule = pModule;
|
||||
pMod->pAux = pAux;
|
||||
pMod->xDestroy = xDestroy;
|
||||
pMod = (Module *)sqlite3HashInsert(&db->aModule, zCopy, nName, (void*)pMod);
|
||||
if( pMod && pMod->xDestroy ){
|
||||
pMod->xDestroy(pMod->pAux);
|
||||
pDel = (Module *)sqlite3HashInsert(&db->aModule, zCopy, nName, (void*)pMod);
|
||||
if( pDel && pDel->xDestroy ){
|
||||
pDel->xDestroy(pDel->pAux);
|
||||
}
|
||||
sqlite3DbFree(db, pDel);
|
||||
if( pDel==pMod ){
|
||||
db->mallocFailed = 1;
|
||||
}
|
||||
sqliteFree(pMod);
|
||||
sqlite3ResetInternalSchema(db, 0);
|
||||
}else if( xDestroy ){
|
||||
xDestroy(pAux);
|
||||
}
|
||||
return sqlite3ApiExit(db, SQLITE_OK);
|
||||
rc = sqlite3ApiExit(db, SQLITE_OK);
|
||||
sqlite3_mutex_leave(db->mutex);
|
||||
return rc;
|
||||
}
|
||||
|
||||
|
||||
|
@ -87,12 +99,12 @@ void sqlite3VtabLock(sqlite3_vtab *pVtab){
|
|||
void sqlite3VtabUnlock(sqlite3 *db, sqlite3_vtab *pVtab){
|
||||
pVtab->nRef--;
|
||||
assert(db);
|
||||
assert(!sqlite3SafetyCheck(db));
|
||||
assert( sqlite3SafetyCheckOk(db) );
|
||||
if( pVtab->nRef==0 ){
|
||||
if( db->magic==SQLITE_MAGIC_BUSY ){
|
||||
sqlite3SafetyOff(db);
|
||||
(void)sqlite3SafetyOff(db);
|
||||
pVtab->pModule->xDisconnect(pVtab);
|
||||
sqlite3SafetyOn(db);
|
||||
(void)sqlite3SafetyOn(db);
|
||||
} else {
|
||||
pVtab->pModule->xDisconnect(pVtab);
|
||||
}
|
||||
|
@ -106,17 +118,18 @@ void sqlite3VtabUnlock(sqlite3 *db, sqlite3_vtab *pVtab){
|
|||
*/
|
||||
void sqlite3VtabClear(Table *p){
|
||||
sqlite3_vtab *pVtab = p->pVtab;
|
||||
sqlite3 *db = p->db;
|
||||
if( pVtab ){
|
||||
assert( p->pMod && p->pMod->pModule );
|
||||
sqlite3VtabUnlock(p->pSchema->db, pVtab);
|
||||
sqlite3VtabUnlock(db, pVtab);
|
||||
p->pVtab = 0;
|
||||
}
|
||||
if( p->azModuleArg ){
|
||||
int i;
|
||||
for(i=0; i<p->nModuleArg; i++){
|
||||
sqliteFree(p->azModuleArg[i]);
|
||||
sqlite3DbFree(db, p->azModuleArg[i]);
|
||||
}
|
||||
sqliteFree(p->azModuleArg);
|
||||
sqlite3DbFree(db, p->azModuleArg);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -126,18 +139,18 @@ void sqlite3VtabClear(Table *p){
|
|||
** string will be freed automatically when the table is
|
||||
** deleted.
|
||||
*/
|
||||
static void addModuleArgument(Table *pTable, char *zArg){
|
||||
static void addModuleArgument(sqlite3 *db, Table *pTable, char *zArg){
|
||||
int i = pTable->nModuleArg++;
|
||||
int nBytes = sizeof(char *)*(1+pTable->nModuleArg);
|
||||
char **azModuleArg;
|
||||
azModuleArg = sqliteRealloc(pTable->azModuleArg, nBytes);
|
||||
azModuleArg = sqlite3DbRealloc(db, pTable->azModuleArg, nBytes);
|
||||
if( azModuleArg==0 ){
|
||||
int j;
|
||||
for(j=0; j<i; j++){
|
||||
sqliteFree(pTable->azModuleArg[j]);
|
||||
sqlite3DbFree(db, pTable->azModuleArg[j]);
|
||||
}
|
||||
sqliteFree(zArg);
|
||||
sqliteFree(pTable->azModuleArg);
|
||||
sqlite3DbFree(db, zArg);
|
||||
sqlite3DbFree(db, pTable->azModuleArg);
|
||||
pTable->nModuleArg = 0;
|
||||
}else{
|
||||
azModuleArg[i] = zArg;
|
||||
|
@ -159,28 +172,28 @@ void sqlite3VtabBeginParse(
|
|||
){
|
||||
int iDb; /* The database the table is being created in */
|
||||
Table *pTable; /* The new virtual table */
|
||||
sqlite3 *db; /* Database connection */
|
||||
|
||||
#ifndef SQLITE_OMIT_SHARED_CACHE
|
||||
if( sqlite3ThreadDataReadOnly()->useSharedData ){
|
||||
if( pParse->db->flags & SQLITE_SharedCache ){
|
||||
sqlite3ErrorMsg(pParse, "Cannot use virtual tables in shared-cache mode");
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
|
||||
sqlite3StartTable(pParse, pName1, pName2, 0, 0, 1, 0);
|
||||
pTable = pParse->pNewTable;
|
||||
if( pTable==0 || pParse->nErr ) return;
|
||||
assert( 0==pTable->pIndex );
|
||||
|
||||
iDb = sqlite3SchemaToIndex(pParse->db, pTable->pSchema);
|
||||
db = pParse->db;
|
||||
iDb = sqlite3SchemaToIndex(db, pTable->pSchema);
|
||||
assert( iDb>=0 );
|
||||
|
||||
pTable->isVirtual = 1;
|
||||
pTable->tabFlags |= TF_Virtual;
|
||||
pTable->nModuleArg = 0;
|
||||
addModuleArgument(pTable, sqlite3NameFromToken(pModuleName));
|
||||
addModuleArgument(pTable, sqlite3StrDup(pParse->db->aDb[iDb].zName));
|
||||
addModuleArgument(pTable, sqlite3StrDup(pTable->zName));
|
||||
pParse->sNameToken.n = pModuleName->z + pModuleName->n - pName1->z;
|
||||
addModuleArgument(db, pTable, sqlite3NameFromToken(db, pModuleName));
|
||||
addModuleArgument(db, pTable, sqlite3DbStrDup(db, db->aDb[iDb].zName));
|
||||
addModuleArgument(db, pTable, sqlite3DbStrDup(db, pTable->zName));
|
||||
pParse->sNameToken.n = (int)(&pModuleName->z[pModuleName->n] - pName1->z);
|
||||
|
||||
#ifndef SQLITE_OMIT_AUTHORIZATION
|
||||
/* Creating a virtual table invokes the authorization callback twice.
|
||||
|
@ -204,7 +217,8 @@ static void addArgumentToVtab(Parse *pParse){
|
|||
if( pParse->sArg.z && pParse->pNewTable ){
|
||||
const char *z = (const char*)pParse->sArg.z;
|
||||
int n = pParse->sArg.n;
|
||||
addModuleArgument(pParse->pNewTable, sqliteStrNDup(z, n));
|
||||
sqlite3 *db = pParse->db;
|
||||
addModuleArgument(db, pParse->pNewTable, sqlite3DbStrNDup(db, z, n));
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -227,7 +241,8 @@ void sqlite3VtabFinishParse(Parse *pParse, Token *pEnd){
|
|||
db = pParse->db;
|
||||
if( pTab->nModuleArg<1 ) return;
|
||||
zModule = pTab->azModuleArg[0];
|
||||
pMod = (Module *)sqlite3HashFind(&db->aModule, zModule, strlen(zModule));
|
||||
pMod = (Module*)sqlite3HashFind(&db->aModule, zModule,
|
||||
sqlite3Strlen30(zModule));
|
||||
pTab->pMod = pMod;
|
||||
|
||||
/* If the CREATE VIRTUAL TABLE statement is being entered for the
|
||||
|
@ -244,37 +259,38 @@ void sqlite3VtabFinishParse(Parse *pParse, Token *pEnd){
|
|||
|
||||
/* Compute the complete text of the CREATE VIRTUAL TABLE statement */
|
||||
if( pEnd ){
|
||||
pParse->sNameToken.n = pEnd->z - pParse->sNameToken.z + pEnd->n;
|
||||
pParse->sNameToken.n = (int)(pEnd->z - pParse->sNameToken.z) + pEnd->n;
|
||||
}
|
||||
zStmt = sqlite3MPrintf("CREATE VIRTUAL TABLE %T", &pParse->sNameToken);
|
||||
zStmt = sqlite3MPrintf(db, "CREATE VIRTUAL TABLE %T", &pParse->sNameToken);
|
||||
|
||||
/* A slot for the record has already been allocated in the
|
||||
** SQLITE_MASTER table. We just need to update that slot with all
|
||||
** the information we've collected.
|
||||
**
|
||||
** The top of the stack is the rootpage allocated by sqlite3StartTable().
|
||||
** This value is always 0 and is ignored, a virtual table does not have a
|
||||
** rootpage. The next entry on the stack is the rowid of the record
|
||||
** in the sqlite_master table.
|
||||
** The VM register number pParse->regRowid holds the rowid of an
|
||||
** entry in the sqlite_master table tht was created for this vtab
|
||||
** by sqlite3StartTable().
|
||||
*/
|
||||
iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
|
||||
sqlite3NestedParse(pParse,
|
||||
"UPDATE %Q.%s "
|
||||
"SET type='table', name=%Q, tbl_name=%Q, rootpage=0, sql=%Q "
|
||||
"WHERE rowid=#1",
|
||||
"WHERE rowid=#%d",
|
||||
db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
|
||||
pTab->zName,
|
||||
pTab->zName,
|
||||
zStmt
|
||||
zStmt,
|
||||
pParse->regRowid
|
||||
);
|
||||
sqliteFree(zStmt);
|
||||
sqlite3DbFree(db, zStmt);
|
||||
v = sqlite3GetVdbe(pParse);
|
||||
sqlite3ChangeCookie(db, v, iDb);
|
||||
sqlite3ChangeCookie(pParse, iDb);
|
||||
|
||||
sqlite3VdbeAddOp(v, OP_Expire, 0, 0);
|
||||
zWhere = sqlite3MPrintf("name='%q'", pTab->zName);
|
||||
sqlite3VdbeOp3(v, OP_ParseSchema, iDb, 1, zWhere, P3_DYNAMIC);
|
||||
sqlite3VdbeOp3(v, OP_VCreate, iDb, 0, pTab->zName, strlen(pTab->zName) + 1);
|
||||
sqlite3VdbeAddOp2(v, OP_Expire, 0, 0);
|
||||
zWhere = sqlite3MPrintf(db, "name='%q'", pTab->zName);
|
||||
sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 1, 0, zWhere, P4_DYNAMIC);
|
||||
sqlite3VdbeAddOp4(v, OP_VCreate, iDb, 0, 0,
|
||||
pTab->zName, sqlite3Strlen30(pTab->zName) + 1);
|
||||
}
|
||||
|
||||
/* If we are rereading the sqlite_master table create the in-memory
|
||||
|
@ -285,9 +301,10 @@ void sqlite3VtabFinishParse(Parse *pParse, Token *pEnd){
|
|||
Table *pOld;
|
||||
Schema *pSchema = pTab->pSchema;
|
||||
const char *zName = pTab->zName;
|
||||
int nName = strlen(zName) + 1;
|
||||
int nName = sqlite3Strlen30(zName) + 1;
|
||||
pOld = sqlite3HashInsert(&pSchema->tblHash, zName, nName, pTab);
|
||||
if( pOld ){
|
||||
db->mallocFailed = 1;
|
||||
assert( pTab==pOld ); /* Malloc must have failed inside HashInsert() */
|
||||
return;
|
||||
}
|
||||
|
@ -317,7 +334,7 @@ void sqlite3VtabArgExtend(Parse *pParse, Token *p){
|
|||
pArg->n = p->n;
|
||||
}else{
|
||||
assert(pArg->z < p->z);
|
||||
pArg->n = (p->z + p->n - pArg->z);
|
||||
pArg->n = (int)(&p->z[p->n] - pArg->z);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -335,11 +352,11 @@ static int vtabCallConstructor(
|
|||
){
|
||||
int rc;
|
||||
int rc2;
|
||||
sqlite3_vtab *pVtab;
|
||||
sqlite3_vtab *pVtab = 0;
|
||||
const char *const*azArg = (const char *const*)pTab->azModuleArg;
|
||||
int nArg = pTab->nModuleArg;
|
||||
char *zErr = 0;
|
||||
char *zModuleName = sqlite3MPrintf("%s", pTab->zName);
|
||||
char *zModuleName = sqlite3MPrintf(db, "%s", pTab->zName);
|
||||
|
||||
if( !zModuleName ){
|
||||
return SQLITE_NOMEM;
|
||||
|
@ -351,31 +368,31 @@ static int vtabCallConstructor(
|
|||
db->pVTab = pTab;
|
||||
rc = sqlite3SafetyOff(db);
|
||||
assert( rc==SQLITE_OK );
|
||||
rc = xConstruct(db, pMod->pAux, nArg, azArg, &pTab->pVtab, &zErr);
|
||||
rc = xConstruct(db, pMod->pAux, nArg, azArg, &pVtab, &zErr);
|
||||
rc2 = sqlite3SafetyOn(db);
|
||||
pVtab = pTab->pVtab;
|
||||
if( rc==SQLITE_OK && pVtab ){
|
||||
pVtab->pModule = pMod->pModule;
|
||||
pVtab->nRef = 1;
|
||||
pTab->pVtab = pVtab;
|
||||
}
|
||||
|
||||
if( SQLITE_OK!=rc ){
|
||||
if( zErr==0 ){
|
||||
*pzErr = sqlite3MPrintf("vtable constructor failed: %s", zModuleName);
|
||||
*pzErr = sqlite3MPrintf(db, "vtable constructor failed: %s", zModuleName);
|
||||
}else {
|
||||
*pzErr = sqlite3MPrintf("%s", zErr);
|
||||
sqlite3_free(zErr);
|
||||
*pzErr = sqlite3MPrintf(db, "%s", zErr);
|
||||
sqlite3DbFree(db, zErr);
|
||||
}
|
||||
}else if( db->pVTab ){
|
||||
const char *zFormat = "vtable constructor did not declare schema: %s";
|
||||
*pzErr = sqlite3MPrintf(zFormat, pTab->zName);
|
||||
*pzErr = sqlite3MPrintf(db, zFormat, pTab->zName);
|
||||
rc = SQLITE_ERROR;
|
||||
}
|
||||
if( rc==SQLITE_OK ){
|
||||
rc = rc2;
|
||||
}
|
||||
db->pVTab = 0;
|
||||
sqliteFree(zModuleName);
|
||||
sqlite3DbFree(db, zModuleName);
|
||||
|
||||
/* If everything went according to plan, loop through the columns
|
||||
** of the table to see if any of them contain the token "hidden".
|
||||
|
@ -389,7 +406,7 @@ static int vtabCallConstructor(
|
|||
int nType;
|
||||
int i = 0;
|
||||
if( !zType ) continue;
|
||||
nType = strlen(zType);
|
||||
nType = sqlite3Strlen30(zType);
|
||||
if( sqlite3StrNICmp("hidden", zType, 6) || (zType[6] && zType[6]!=' ') ){
|
||||
for(i=0; i<nType; i++){
|
||||
if( (0==sqlite3StrNICmp(" hidden", &zType[i], 7))
|
||||
|
@ -428,7 +445,7 @@ int sqlite3VtabCallConnect(Parse *pParse, Table *pTab){
|
|||
Module *pMod;
|
||||
int rc = SQLITE_OK;
|
||||
|
||||
if( !pTab || !pTab->isVirtual || pTab->pVtab ){
|
||||
if( !pTab || (pTab->tabFlags & TF_Virtual)==0 || pTab->pVtab ){
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
|
@ -444,7 +461,7 @@ int sqlite3VtabCallConnect(Parse *pParse, Table *pTab){
|
|||
if( rc!=SQLITE_OK ){
|
||||
sqlite3ErrorMsg(pParse, "%s", zErr);
|
||||
}
|
||||
sqliteFree(zErr);
|
||||
sqlite3DbFree(db, zErr);
|
||||
}
|
||||
|
||||
return rc;
|
||||
|
@ -460,7 +477,7 @@ static int addToVTrans(sqlite3 *db, sqlite3_vtab *pVtab){
|
|||
if( (db->nVTrans%ARRAY_INCR)==0 ){
|
||||
sqlite3_vtab **aVTrans;
|
||||
int nBytes = sizeof(sqlite3_vtab *) * (db->nVTrans + ARRAY_INCR);
|
||||
aVTrans = sqliteRealloc((void *)db->aVTrans, nBytes);
|
||||
aVTrans = sqlite3DbRealloc(db, (void *)db->aVTrans, nBytes);
|
||||
if( !aVTrans ){
|
||||
return SQLITE_NOMEM;
|
||||
}
|
||||
|
@ -480,7 +497,7 @@ static int addToVTrans(sqlite3 *db, sqlite3_vtab *pVtab){
|
|||
**
|
||||
** If an error occurs, *pzErr is set to point an an English language
|
||||
** description of the error and an SQLITE_XXX error code is returned.
|
||||
** In this case the caller must call sqliteFree() on *pzErr.
|
||||
** In this case the caller must call sqlite3DbFree(db, ) on *pzErr.
|
||||
*/
|
||||
int sqlite3VtabCallCreate(sqlite3 *db, int iDb, const char *zTab, char **pzErr){
|
||||
int rc = SQLITE_OK;
|
||||
|
@ -489,7 +506,7 @@ int sqlite3VtabCallCreate(sqlite3 *db, int iDb, const char *zTab, char **pzErr){
|
|||
const char *zModule;
|
||||
|
||||
pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName);
|
||||
assert(pTab && pTab->isVirtual && !pTab->pVtab);
|
||||
assert(pTab && (pTab->tabFlags & TF_Virtual)!=0 && !pTab->pVtab);
|
||||
pMod = pTab->pMod;
|
||||
zModule = pTab->azModuleArg[0];
|
||||
|
||||
|
@ -498,7 +515,7 @@ int sqlite3VtabCallCreate(sqlite3 *db, int iDb, const char *zTab, char **pzErr){
|
|||
** error. Otherwise, do nothing.
|
||||
*/
|
||||
if( !pMod ){
|
||||
*pzErr = sqlite3MPrintf("no such module: %s", zModule);
|
||||
*pzErr = sqlite3MPrintf(db, "no such module: %s", zModule);
|
||||
rc = SQLITE_ERROR;
|
||||
}else{
|
||||
rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xCreate, pzErr);
|
||||
|
@ -520,14 +537,17 @@ int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){
|
|||
Parse sParse;
|
||||
|
||||
int rc = SQLITE_OK;
|
||||
Table *pTab = db->pVTab;
|
||||
Table *pTab;
|
||||
char *zErr = 0;
|
||||
|
||||
sqlite3_mutex_enter(db->mutex);
|
||||
pTab = db->pVTab;
|
||||
if( !pTab ){
|
||||
sqlite3Error(db, SQLITE_MISUSE, 0);
|
||||
sqlite3_mutex_leave(db->mutex);
|
||||
return SQLITE_MISUSE;
|
||||
}
|
||||
assert(pTab->isVirtual && pTab->nCol==0 && pTab->aCol==0);
|
||||
assert((pTab->tabFlags & TF_Virtual)!=0 && pTab->nCol==0 && pTab->aCol==0);
|
||||
|
||||
memset(&sParse, 0, sizeof(Parse));
|
||||
sParse.declareVtab = 1;
|
||||
|
@ -537,7 +557,7 @@ int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){
|
|||
SQLITE_OK == sqlite3RunParser(&sParse, zCreateTable, &zErr) &&
|
||||
sParse.pNewTable &&
|
||||
!sParse.pNewTable->pSelect &&
|
||||
!sParse.pNewTable->isVirtual
|
||||
(sParse.pNewTable->tabFlags & TF_Virtual)==0
|
||||
){
|
||||
pTab->aCol = sParse.pNewTable->aCol;
|
||||
pTab->nCol = sParse.pNewTable->nCol;
|
||||
|
@ -546,7 +566,7 @@ int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){
|
|||
db->pVTab = 0;
|
||||
} else {
|
||||
sqlite3Error(db, SQLITE_ERROR, zErr);
|
||||
sqliteFree(zErr);
|
||||
sqlite3DbFree(db, zErr);
|
||||
rc = SQLITE_ERROR;
|
||||
}
|
||||
sParse.declareVtab = 0;
|
||||
|
@ -556,7 +576,9 @@ int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){
|
|||
sParse.pNewTable = 0;
|
||||
|
||||
assert( (rc&0xff)==rc );
|
||||
return sqlite3ApiExit(db, rc);
|
||||
rc = sqlite3ApiExit(db, rc);
|
||||
sqlite3_mutex_leave(db->mutex);
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -580,8 +602,15 @@ int sqlite3VtabCallDestroy(sqlite3 *db, int iDb, const char *zTab)
|
|||
if( xDestroy ){
|
||||
rc = xDestroy(pTab->pVtab);
|
||||
}
|
||||
sqlite3SafetyOn(db);
|
||||
(void)sqlite3SafetyOn(db);
|
||||
if( rc==SQLITE_OK ){
|
||||
int i;
|
||||
for(i=0; i<db->nVTrans; i++){
|
||||
if( db->aVTrans[i]==pTab->pVtab ){
|
||||
db->aVTrans[i] = db->aVTrans[--db->nVTrans];
|
||||
break;
|
||||
}
|
||||
}
|
||||
pTab->pVtab = 0;
|
||||
}
|
||||
}
|
||||
|
@ -607,24 +636,25 @@ static void callFinaliser(sqlite3 *db, int offset){
|
|||
if( x ) x(pVtab);
|
||||
sqlite3VtabUnlock(db, pVtab);
|
||||
}
|
||||
sqliteFree(db->aVTrans);
|
||||
sqlite3DbFree(db, db->aVTrans);
|
||||
db->nVTrans = 0;
|
||||
db->aVTrans = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** If argument rc2 is not SQLITE_OK, then return it and do nothing.
|
||||
** Otherwise, invoke the xSync method of all virtual tables in the
|
||||
** sqlite3.aVTrans array. Return the error code for the first error
|
||||
** that occurs, or SQLITE_OK if all xSync operations are successful.
|
||||
** Invoke the xSync method of all virtual tables in the sqlite3.aVTrans
|
||||
** array. Return the error code for the first error that occurs, or
|
||||
** SQLITE_OK if all xSync operations are successful.
|
||||
**
|
||||
** Set *pzErrmsg to point to a buffer that should be released using
|
||||
** sqlite3DbFree() containing an error message, if one is available.
|
||||
*/
|
||||
int sqlite3VtabSync(sqlite3 *db, int rc2){
|
||||
int sqlite3VtabSync(sqlite3 *db, char **pzErrmsg){
|
||||
int i;
|
||||
int rc = SQLITE_OK;
|
||||
int rcsafety;
|
||||
sqlite3_vtab **aVTrans = db->aVTrans;
|
||||
if( rc2!=SQLITE_OK ) return rc2;
|
||||
|
||||
rc = sqlite3SafetyOff(db);
|
||||
db->aVTrans = 0;
|
||||
|
@ -634,6 +664,9 @@ int sqlite3VtabSync(sqlite3 *db, int rc2){
|
|||
x = pVtab->pModule->xSync;
|
||||
if( x ){
|
||||
rc = x(pVtab);
|
||||
sqlite3DbFree(db, *pzErrmsg);
|
||||
*pzErrmsg = pVtab->zErrMsg;
|
||||
pVtab->zErrMsg = 0;
|
||||
}
|
||||
}
|
||||
db->aVTrans = aVTrans;
|
||||
|
@ -650,7 +683,7 @@ int sqlite3VtabSync(sqlite3 *db, int rc2){
|
|||
** sqlite3.aVTrans array. Then clear the array itself.
|
||||
*/
|
||||
int sqlite3VtabRollback(sqlite3 *db){
|
||||
callFinaliser(db, (int)(&((sqlite3_module *)0)->xRollback));
|
||||
callFinaliser(db, offsetof(sqlite3_module,xRollback));
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
|
@ -659,7 +692,7 @@ int sqlite3VtabRollback(sqlite3 *db){
|
|||
** sqlite3.aVTrans array. Then clear the array itself.
|
||||
*/
|
||||
int sqlite3VtabCommit(sqlite3 *db){
|
||||
callFinaliser(db, (int)(&((sqlite3_module *)0)->xCommit));
|
||||
callFinaliser(db, offsetof(sqlite3_module,xCommit));
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
|
@ -680,7 +713,7 @@ int sqlite3VtabBegin(sqlite3 *db, sqlite3_vtab *pVtab){
|
|||
** virtual module xSync() callback. It is illegal to write to
|
||||
** virtual module tables in this case, so return SQLITE_LOCKED.
|
||||
*/
|
||||
if( 0==db->aVTrans && db->nVTrans>0 ){
|
||||
if( sqlite3VtabInSync(db) ){
|
||||
return SQLITE_LOCKED;
|
||||
}
|
||||
if( !pVtab ){
|
||||
|
@ -701,12 +734,10 @@ int sqlite3VtabBegin(sqlite3 *db, sqlite3_vtab *pVtab){
|
|||
|
||||
/* Invoke the xBegin method */
|
||||
rc = pModule->xBegin(pVtab);
|
||||
if( rc!=SQLITE_OK ){
|
||||
return rc;
|
||||
}
|
||||
|
||||
if( rc==SQLITE_OK ){
|
||||
rc = addToVTrans(db, pVtab);
|
||||
}
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
|
||||
|
@ -724,6 +755,7 @@ int sqlite3VtabBegin(sqlite3 *db, sqlite3_vtab *pVtab){
|
|||
** SQLITE_FUNC_EPHEM flag.
|
||||
*/
|
||||
FuncDef *sqlite3VtabOverloadFunction(
|
||||
sqlite3 *db, /* Database connection for reporting malloc problems */
|
||||
FuncDef *pDef, /* Function to possibly overload */
|
||||
int nArg, /* Number of arguments to the function */
|
||||
Expr *pExpr /* First argument to the function */
|
||||
|
@ -731,10 +763,10 @@ FuncDef *sqlite3VtabOverloadFunction(
|
|||
Table *pTab;
|
||||
sqlite3_vtab *pVtab;
|
||||
sqlite3_module *pMod;
|
||||
void (*xFunc)(sqlite3_context*,int,sqlite3_value**);
|
||||
void *pArg;
|
||||
void (*xFunc)(sqlite3_context*,int,sqlite3_value**) = 0;
|
||||
void *pArg = 0;
|
||||
FuncDef *pNew;
|
||||
int rc;
|
||||
int rc = 0;
|
||||
char *zLowerName;
|
||||
unsigned char *z;
|
||||
|
||||
|
@ -744,38 +776,68 @@ FuncDef *sqlite3VtabOverloadFunction(
|
|||
if( pExpr->op!=TK_COLUMN ) return pDef;
|
||||
pTab = pExpr->pTab;
|
||||
if( pTab==0 ) return pDef;
|
||||
if( !pTab->isVirtual ) return pDef;
|
||||
if( (pTab->tabFlags & TF_Virtual)==0 ) return pDef;
|
||||
pVtab = pTab->pVtab;
|
||||
assert( pVtab!=0 );
|
||||
assert( pVtab->pModule!=0 );
|
||||
pMod = (sqlite3_module *)pVtab->pModule;
|
||||
if( pMod->xFindFunction==0 ) return pDef;
|
||||
|
||||
/* Call the xFuncFunction method on the virtual table implementation
|
||||
/* Call the xFindFunction method on the virtual table implementation
|
||||
** to see if the implementation wants to overload this function
|
||||
*/
|
||||
zLowerName = sqlite3StrDup(pDef->zName);
|
||||
zLowerName = sqlite3DbStrDup(db, pDef->zName);
|
||||
if( zLowerName ){
|
||||
for(z=(unsigned char*)zLowerName; *z; z++){
|
||||
*z = sqlite3UpperToLower[*z];
|
||||
}
|
||||
rc = pMod->xFindFunction(pVtab, nArg, zLowerName, &xFunc, &pArg);
|
||||
sqliteFree(zLowerName);
|
||||
sqlite3DbFree(db, zLowerName);
|
||||
if( pVtab->zErrMsg ){
|
||||
sqlite3Error(db, rc, "%s", pVtab->zErrMsg);
|
||||
sqlite3DbFree(db, pVtab->zErrMsg);
|
||||
pVtab->zErrMsg = 0;
|
||||
}
|
||||
}
|
||||
if( rc==0 ){
|
||||
return pDef;
|
||||
}
|
||||
|
||||
/* Create a new ephemeral function definition for the overloaded
|
||||
** function */
|
||||
pNew = sqliteMalloc( sizeof(*pNew) + strlen(pDef->zName) );
|
||||
pNew = sqlite3DbMallocZero(db, sizeof(*pNew)
|
||||
+ sqlite3Strlen30(pDef->zName) );
|
||||
if( pNew==0 ){
|
||||
return pDef;
|
||||
}
|
||||
*pNew = *pDef;
|
||||
memcpy(pNew->zName, pDef->zName, strlen(pDef->zName)+1);
|
||||
pNew->zName = (char *)&pNew[1];
|
||||
memcpy(pNew->zName, pDef->zName, sqlite3Strlen30(pDef->zName)+1);
|
||||
pNew->xFunc = xFunc;
|
||||
pNew->pUserData = pArg;
|
||||
pNew->flags |= SQLITE_FUNC_EPHEM;
|
||||
return pNew;
|
||||
}
|
||||
|
||||
/*
|
||||
** Make sure virtual table pTab is contained in the pParse->apVirtualLock[]
|
||||
** array so that an OP_VBegin will get generated for it. Add pTab to the
|
||||
** array if it is missing. If pTab is already in the array, this routine
|
||||
** is a no-op.
|
||||
*/
|
||||
void sqlite3VtabMakeWritable(Parse *pParse, Table *pTab){
|
||||
int i, n;
|
||||
assert( IsVirtual(pTab) );
|
||||
for(i=0; i<pParse->nVtabLock; i++){
|
||||
if( pTab==pParse->apVtabLock[i] ) return;
|
||||
}
|
||||
n = (pParse->nVtabLock+1)*sizeof(pParse->apVtabLock[0]);
|
||||
pParse->apVtabLock = sqlite3_realloc(pParse->apVtabLock, n);
|
||||
if( pParse->apVtabLock ){
|
||||
pParse->apVtabLock[pParse->nVtabLock++] = pTab;
|
||||
}else{
|
||||
pParse->db->mallocFailed = 1;
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
||||
|
|
Some files were not shown because too many files have changed in this diff Show more
Loading…
Add table
Reference in a new issue