AutoGPTQ/auto_gptq/modeling/_utils.py
2023-08-30 19:20:18 +08:00

362 lines
14 KiB
Python

from logging import getLogger
from typing import Union, Optional
import accelerate
import torch
import torch.nn as nn
from transformers import AutoConfig
import transformers
import cQIGen as qinfer
from ._const import SUPPORTED_MODELS, CPU, CUDA_0, EXLLAMA_DEFAULT_MAX_INPUT_LENGTH
from ..utils.import_utils import dynamically_import_QuantLinear
logger = getLogger(__name__)
def get_device(obj: Union[torch.Tensor, nn.Module]):
if isinstance(obj, torch.Tensor):
return obj.device
return next(obj.parameters()).device
def move_to_device(obj: Union[torch.Tensor, nn.Module], device: torch.device):
if get_device(obj) != device:
obj = obj.to(device)
return obj
def find_layers(module, layers=None, name=''):
if not layers:
layers = [transformers.pytorch_utils.Conv1D, nn.Conv2d, nn.Linear]
for layer in layers:
if isinstance(module,layer):
return {name: module}
res = {}
for name1, child in module.named_children():
res.update(find_layers(child, layers=layers, name=name + '.' + name1 if name != '' else name1))
return res
def get_module_by_name_prefix(model, module_name: str):
for name, module in model.named_modules():
if name.startswith(module_name):
return module
def get_module_by_name_suffix(model, module_name: str):
for name, module in model.named_modules():
if name.endswith(module_name):
return module
def make_quant(
module,
names,
bits,
group_size,
name='',
use_triton: bool = False,
disable_exllama: bool = False,
use_qigen: bool = False,
use_cuda_fp16: bool = True,
desc_act: bool = False,
trainable: bool = False
):
QuantLinear = dynamically_import_QuantLinear(use_triton=use_triton, desc_act=desc_act, group_size=group_size, bits=bits, disable_exllama=disable_exllama, use_qigen=use_qigen)
if isinstance(module, QuantLinear):
return
for attr in dir(module):
tmp = getattr(module, attr)
name1 = name + '.' + attr if name != '' else attr
if name1 in names:
ori_layer_device = get_device(getattr(module, attr))
delattr(module, attr)
if isinstance(tmp,nn.Linear):
in_features = tmp.in_features
out_features = tmp.out_features
elif isinstance(tmp,nn.Conv2d):
in_features = tmp.in_channels
out_features = tmp.out_channels
elif isinstance(tmp,transformers.pytorch_utils.Conv1D):
in_features = tmp.weight.shape[0]
out_features = tmp.weight.shape[1]
if (not(desc_act) or group_size == -1) and not use_triton and not use_qigen:
new_layer = QuantLinear(
bits, group_size, in_features, out_features, True, use_cuda_fp16=use_cuda_fp16, trainable=trainable
)
else:
new_layer = QuantLinear(bits, group_size, in_features, out_features, True, trainable=trainable)
new_layer.device = ori_layer_device
setattr(module, attr, new_layer.to(ori_layer_device))
for name1, child in module.named_children():
make_quant(
child,
names,
bits,
group_size,
name + '.' + name1 if name != '' else name1,
use_triton=use_triton,
use_cuda_fp16=use_cuda_fp16,
desc_act=desc_act,
trainable=trainable,
disable_exllama=disable_exllama,
use_qigen=use_qigen
)
def process_zeros_scales(zeros, scales, bits, out_features):
if zeros.dtype != torch.float32:
new_zeros = torch.zeros_like(scales).float().contiguous()
if bits == 4:
qinfer.unpack_zeros4(zeros, new_zeros, new_zeros.shape[0], new_zeros.shape[1])
elif bits == 2:
qinfer.unpack_zeros2(zeros, new_zeros, new_zeros.shape[0], new_zeros.shape[1])
elif bits == 3:
logger.info("Unpacking zeros for 3 bits")
new_scales = scales.contiguous()
else:
if scales.shape[1] != out_features:
new_scales = scales.transpose(0,1).contiguous()
else:
new_scales = scales.contiguous()
if zeros.shape[1] != out_features:
new_zeros = zeros.transpose(0,1).contiguous()
else:
new_zeros = zeros.contiguous()
return new_zeros, new_scales
def preprocess_checkpoint_qigen(
module,
names,
bits,
group_size,
checkpoint,
name='',
):
QuantLinear = dynamically_import_QuantLinear(use_triton=False, desc_act=False, group_size=group_size, bits=bits, disable_exllama=False, use_qigen=True)
if isinstance(module, QuantLinear):
in_features = module.infeatures
out_features = module.outfeatures
checkpoint[name + '.zeros'],checkpoint[name + '.scales'] = process_zeros_scales(checkpoint[name + '.qzeros'],checkpoint[name + '.scales'].float(), bits, out_features)
del checkpoint[name + '.qzeros']
del checkpoint[name + '.g_idx']
if name + '.bias' in checkpoint:
checkpoint[name + '.bias'] = checkpoint[name + '.bias'].float()
else:
checkpoint[name + '.bias'] = torch.zeros(out_features)
checkpoint_qweight = checkpoint[name + '.qweight'].int().contiguous()
if bits == 4:
qweight = torch.zeros(int(in_features // 8 * out_features)).int().contiguous()
qinfer.pack4(checkpoint_qweight, qweight, in_features // 8, out_features, module.mb, module.tb, module.cutoff)# * (module.tt//tb))
elif bits == 3:
qweight = torch.zeros(int(in_features // 32 * 3 * out_features)).int().contiguous()
qinfer.pack3(checkpoint_qweight, qweight, in_features // 32 * 3, out_features, module.mb // 32 * 3, module.tb, module.cutoff)
elif bits == 2:
qweight = torch.zeros(int(in_features // 16 * out_features)).int().contiguous()
qinfer.pack2(checkpoint_qweight, qweight, in_features // 16, out_features, module.mb, module.tb, module.cutoff)# * (module.tt//tb))
checkpoint[name + '.qweight'] = qweight
return
for name1, child in module.named_children():
preprocess_checkpoint_qigen(
child,
names,
bits,
group_size,
checkpoint,
name + '.' + name1 if name != '' else name1,
)
def pack_model(
model,
quantizers,
bits,
group_size,
use_triton=False,
use_cuda_fp16=True,
desc_act=False,
warmup_triton: bool = False,
force_layer_back_to_cpu: bool = False
):
QuantLinear = dynamically_import_QuantLinear(use_triton=use_triton, desc_act=desc_act, group_size=group_size, bits=bits)
if force_layer_back_to_cpu:
model.to(CPU)
logger.info('Packing model...')
layers = find_layers(model)
layers = {n: layers[n] for n in quantizers}
make_quant(model, quantizers, bits, group_size, use_triton=use_triton, use_cuda_fp16=use_cuda_fp16, desc_act=desc_act)
qlayers = find_layers(model, [QuantLinear])
for name in qlayers:
logger.info(name)
quantizers[name], scale, zero, g_idx = quantizers[name]
# so far can only pack layer on CPU
layer_device = qlayers[name].device
qlayers[name].to(CPU)
layers[name], scale, zero, g_idx = layers[name].to(CPU), scale.to(CPU), zero.to(CPU), g_idx.to(CPU)
qlayers[name].pack(layers[name], scale, zero, g_idx)
qlayers[name].to(layer_device)
logger.info('Model packed.')
if use_triton and warmup_triton:
logger.warning(
"using autotune_warmup will move model to GPU, make sure you have enough VRAM to load the whole model."
)
QuantLinear.warmup(model.to(CUDA_0), seqlen=model.seqlen)
def check_and_get_model_type(model_dir, trust_remote_code=False):
config = AutoConfig.from_pretrained(model_dir, trust_remote_code=trust_remote_code)
if config.model_type not in SUPPORTED_MODELS:
raise TypeError(f"{config.model_type} isn't supported yet.")
model_type = config.model_type
return model_type
def simple_dispatch_model(model, device_map):
from accelerate.hooks import add_hook_to_module, AlignDevicesHook
if "" in device_map:
d = device_map[""]
model = model.to(torch.device(d))
model.hf_device_map = device_map
return model
tied_params = accelerate.utils.modeling.find_tied_parameters(model)
if set(device_map.values()) == {"cpu"} or set(device_map.values()) == {"cpu", "disk"}:
main_device = "cpu"
else:
main_device = [d for d in device_map.values() if d not in ["cpu", "disk"]][0]
cpu_offload_group = [(n, d) for n, d in device_map.items() if d == "cpu"]
prev_hook = None
for idx, (n, d) in enumerate(cpu_offload_group):
m = get_module_by_name_suffix(model, n)
_, prev_hook = accelerate.cpu_offload_with_hook(m, execution_device=main_device, prev_module_hook=prev_hook)
# set first cpu offload module's prev_module_hook to the last cpu offload module's hook
if len(cpu_offload_group) > 1:
get_module_by_name_suffix(model, cpu_offload_group[0][0])._hf_hook.prev_module_hook = prev_hook
for n, d in device_map.items():
m = get_module_by_name_suffix(model, n)
if d != "cpu":
d = torch.device(d)
hook = AlignDevicesHook(d, io_same_device=True, place_submodules=True)
add_hook_to_module(m, hook)
accelerate.utils.modeling.retie_parameters(model, tied_params)
model.hf_device_map = device_map
return model
def autogptq_post_init(model, use_act_order: bool, max_input_length: Optional[int] = None):
"""
The max_input_length argument is specific to the exllama backend, that requires to initialize a buffer temp_state.
"""
device_to_buffers_size = {}
model_uses_exllama = False
for name, submodule in model.named_modules():
if hasattr(submodule, "QUANT_TYPE") and submodule.QUANT_TYPE == "exllama":
model_uses_exllama = True
device = submodule.qweight.device
if device not in device_to_buffers_size:
device_to_buffers_size[device] = {
"max_dq_buffer_size": 1,
"max_inner_outer_dim": 1
}
if not use_act_order:
submodule._use_act_order = False
else:
submodule._use_act_order = True
# Disable this heuristic for detecting act_order, but it could be used instead of the config.
"""
if submodule.g_idx is None:
submodule.act_order = False
elif submodule.g_idx is not None and ((submodule.g_idx == 0).all() or torch.equal(submodule.g_idx.cpu(), torch.tensor([i // submodule.group_size for i in range(submodule.g_idx.shape[0])], dtype=torch.int32))):
submodule.g_idx = None
submodule.act_order = False
else:
submodule.act_order = True
"""
device_to_buffers_size[device]["max_dq_buffer_size"] = max(device_to_buffers_size[device]["max_dq_buffer_size"], submodule.qweight.numel() * 8)
if use_act_order:
device_to_buffers_size[device]["max_inner_outer_dim"] = max(device_to_buffers_size[device]["max_inner_outer_dim"], submodule.infeatures, submodule.outfeatures)
if model_uses_exllama:
# To be honest this is quite ugly, not proud of this.
from exllama_kernels import prepare_buffers, set_tuning_params
device_to_buffers = {}
if use_act_order:
if max_input_length is None:
max_input_len = EXLLAMA_DEFAULT_MAX_INPUT_LENGTH
else:
max_input_len = max_input_length
else:
if max_input_length is not None:
logger.info("Using exllama backend without act-order, the parameter max_input_length was set although not needed, it will be ignored.")
max_input_len = 1
for device, buffers_size in device_to_buffers_size.items():
# The temp_state buffer is required to reorder X in the act-order case.
# The temp_dq buffer is required to dequantize weights when using cuBLAS, typically for the prefill.
device_to_buffers[device] = {
"temp_state": torch.zeros((max_input_len, buffers_size["max_inner_outer_dim"]), dtype=torch.float16, device=device),
"temp_dq": torch.zeros((1, buffers_size["max_dq_buffer_size"]), dtype=torch.float16, device=device),
"max_dq_buffer_size": buffers_size["max_dq_buffer_size"],
"max_inner_outer_dim": buffers_size["max_inner_outer_dim"],
}
# Buffers need to be persistent to avoid any bug.
model.device_to_buffers = device_to_buffers
for device, buffers in model.device_to_buffers.items():
prepare_buffers(device, buffers["temp_state"], buffers["temp_dq"])
# Using the default from exllama repo here.
matmul_recons_thd = 8
matmul_fused_remap = False
matmul_no_half2 = False
set_tuning_params(matmul_recons_thd, matmul_fused_remap, matmul_no_half2)
# The buffers need to have been initialized first before calling make_q4.
for name, submodule in model.named_modules():
if hasattr(submodule, "QUANT_TYPE") and submodule.QUANT_TYPE == "exllama":
submodule.post_init()
torch.cuda.empty_cache()
return model
def make_sure_no_tensor_in_meta_device(model, use_triton, desc_act, group_size, bits: int):
QuantLinear = dynamically_import_QuantLinear(use_triton, desc_act, group_size, bits=bits)
for n, m in model.named_modules():
if isinstance(m, QuantLinear) and m.bias.device == torch.device("meta"):
m.register_buffer('bias', torch.zeros((m.outfeatures), dtype=torch.float16, device="cpu"))
__all__ = [
"get_device",
"move_to_device",
"find_layers",
"get_module_by_name_prefix",
"get_module_by_name_suffix",
"make_quant",
"preprocess_checkpoint_qigen",
"pack_model",
"autogptq_post_init",
"check_and_get_model_type",
"simple_dispatch_model",
"make_sure_no_tensor_in_meta_device"
]