AutoGPTQ/auto_gptq/modeling/_utils.py

171 lines
5.9 KiB
Python

from logging import getLogger
from typing import Union
import accelerate
import torch
import torch.nn as nn
from transformers import AutoConfig
import transformers
from ._const import SUPPORTED_MODELS, CPU, CUDA_0
from ..utils.import_utils import dynamically_import_QuantLinear
logger = getLogger(__name__)
def get_device(obj: Union[torch.Tensor, nn.Module]):
if isinstance(obj, torch.Tensor):
return obj.device
return next(obj.parameters()).device
def move_to_device(obj: Union[torch.Tensor, nn.Module], device: torch.device):
if get_device(obj) != device:
obj = obj.to(device)
return obj
def find_layers(module, layers=None, name=''):
if not layers:
layers = [transformers.pytorch_utils.Conv1D, nn.Conv2d, nn.Linear]
if type(module) in layers:
return {name: module}
res = {}
for name1, child in module.named_children():
res.update(find_layers(child, layers=layers, name=name + '.' + name1 if name != '' else name1))
return res
def get_module_by_name_prefix(model, module_name: str):
for name, module in model.named_modules():
if name.startswith(module_name):
return module
def get_module_by_name_suffix(model, module_name: str):
for name, module in model.named_modules():
if name.endswith(module_name):
return module
def make_quant(module, names, bits, group_size, name='', use_triton=False, use_cuda_fp16=True, desc_act=False):
if use_triton:
from ..nn_modules.qlinear_triton import QuantLinear
else:
if not desc_act or group_size == -1:
from ..nn_modules.qlinear_old import QuantLinear
else:
from ..nn_modules.qlinear import QuantLinear
if isinstance(module, QuantLinear):
return
for attr in dir(module):
tmp = getattr(module, attr)
name1 = name + '.' + attr if name != '' else attr
if name1 in names:
ori_layer_device = get_device(getattr(module, attr))
delattr(module, attr)
if type(tmp) == nn.Linear:
in_features = tmp.in_features
out_features = tmp.out_features
elif type(tmp) == nn.Conv2d:
in_features = tmp.in_channels
out_features = tmp.out_channels
elif type(tmp) == transformers.pytorch_utils.Conv1D:
in_features = tmp.weight.shape[0]
out_features = tmp.weight.shape[1]
if (not(desc_act) or group_size == -1) and not use_triton:
new_layer = QuantLinear(bits, group_size, in_features, out_features, tmp.bias is not None, use_cuda_fp16=use_cuda_fp16)
else:
new_layer = QuantLinear(bits, group_size, in_features, out_features, tmp.bias is not None)
new_layer.device = ori_layer_device
setattr(module, attr, new_layer.to(ori_layer_device))
for name1, child in module.named_children():
make_quant(child, names, bits, group_size, name + '.' + name1 if name != '' else name1, use_triton=use_triton, use_cuda_fp16=use_cuda_fp16,desc_act=desc_act)
def pack_model(
model,
quantizers,
bits,
group_size,
use_triton=False,
use_cuda_fp16=True,
desc_act=False,
warmup_triton: bool = False,
force_layer_back_to_cpu: bool = False
):
QuantLinear = dynamically_import_QuantLinear(use_triton=use_triton, desc_act=desc_act, group_size=group_size)
if force_layer_back_to_cpu:
model.to(CPU)
logger.info('Packing model...')
layers = find_layers(model)
layers = {n: layers[n] for n in quantizers}
make_quant(model, quantizers, bits, group_size, use_triton=use_triton, use_cuda_fp16=use_cuda_fp16, desc_act=desc_act)
qlayers = find_layers(model, [QuantLinear])
for name in qlayers:
logger.info(name)
quantizers[name], scale, zero, g_idx = quantizers[name]
# so far can only pack layer on CPU
layer_device = qlayers[name].device
qlayers[name].to(CPU)
layers[name], scale, zero, g_idx = layers[name].to(CPU), scale.to(CPU), zero.to(CPU), g_idx.to(CPU)
qlayers[name].pack(layers[name], scale, zero, g_idx)
qlayers[name].to(layer_device)
logger.info('Model packed.')
if use_triton and warmup_triton:
logger.warning(
"using autotune_warmup will move model to GPU, make sure you have enough VRAM to load the whole model."
)
QuantLinear.warmup(model.to(CUDA_0), seqlen=model.seqlen)
def check_and_get_model_type(model_dir, trust_remote_code=False):
config = AutoConfig.from_pretrained(model_dir, trust_remote_code=trust_remote_code)
if config.model_type not in SUPPORTED_MODELS:
raise TypeError(f"{config.model_type} isn't supported yet.")
model_type = config.model_type
return model_type
def simple_dispatch_model(model, device_map):
tied_params = accelerate.utils.modeling.find_tied_parameters(model)
prev_hook = None
if set(device_map.values()) == {"cpu"} or set(device_map.values()) == {"cpu", "disk"}:
main_device = "cpu"
else:
main_device = [d for d in device_map.values() if d not in ["cpu", "disk"]][0]
for n, d in device_map.items():
m = get_module_by_name_suffix(model, n)
if d == "cpu":
_, prev_hook = accelerate.cpu_offload_with_hook(
m,
execution_device=main_device,
prev_module_hook=prev_hook
)
else:
d = torch.device(d)
accelerate.hooks.attach_align_device_hook(m, execution_device=d)
prev_hook = None
accelerate.utils.modeling.retie_parameters(model, tied_params)
model.hf_device_map = device_map
return model
__all__ = [
"get_device",
"move_to_device",
"find_layers",
"get_module_by_name_prefix",
"get_module_by_name_suffix",
"make_quant",
"pack_model",
"check_and_get_model_type",
"simple_dispatch_model"
]