AutoGPTQ/auto_gptq/nn_modules/fused_llama_mlp.py

330 lines
12 KiB
Python

import math
from logging import getLogger
import torch
from transformers.models.llama.modeling_llama import LlamaMLP
from ._fused_base import FusedBaseMLPModule
from ..utils.import_utils import TRITON_AVAILABLE
logger = getLogger(__name__)
if TRITON_AVAILABLE:
import triton
import triton.language as tl
from .triton_utils import custom_autotune
from .triton_utils.kernels import silu
@custom_autotune.autotune(
configs=[
triton.Config(
{
'BLOCK_SIZE_M': 256,
'BLOCK_SIZE_N': 64,
'BLOCK_SIZE_K': 32,
'GROUP_SIZE_M': 8
},
num_stages=4,
num_warps=4
),
triton.Config(
{
'BLOCK_SIZE_M': 64,
'BLOCK_SIZE_N': 256,
'BLOCK_SIZE_K': 32,
'GROUP_SIZE_M': 8
},
num_stages=4,
num_warps=4
),
triton.Config(
{
'BLOCK_SIZE_M': 128,
'BLOCK_SIZE_N': 128,
'BLOCK_SIZE_K': 32,
'GROUP_SIZE_M': 8
},
num_stages=4,
num_warps=4
),
triton.Config(
{
'BLOCK_SIZE_M': 128,
'BLOCK_SIZE_N': 64,
'BLOCK_SIZE_K': 32,
'GROUP_SIZE_M': 8
},
num_stages=4,
num_warps=4
),
triton.Config(
{
'BLOCK_SIZE_M': 64,
'BLOCK_SIZE_N': 128,
'BLOCK_SIZE_K': 32,
'GROUP_SIZE_M': 8
},
num_stages=4,
num_warps=4
),
triton.Config(
{
'BLOCK_SIZE_M': 128,
'BLOCK_SIZE_N': 32,
'BLOCK_SIZE_K': 32,
'GROUP_SIZE_M': 8
},
num_stages=4,
num_warps=4
), # 3090
triton.Config(
{
'BLOCK_SIZE_M': 128,
'BLOCK_SIZE_N': 16,
'BLOCK_SIZE_K': 32,
'GROUP_SIZE_M': 8
},
num_stages=4,
num_warps=4
), # 3090
triton.Config(
{
'BLOCK_SIZE_M': 32,
'BLOCK_SIZE_N': 32,
'BLOCK_SIZE_K': 128,
'GROUP_SIZE_M': 8
},
num_stages=2,
num_warps=4
), # 3090
triton.Config(
{
'BLOCK_SIZE_M': 64,
'BLOCK_SIZE_N': 16,
'BLOCK_SIZE_K': 64,
'GROUP_SIZE_M': 8
},
num_stages=4,
num_warps=4
), # 3090
triton.Config(
{
'BLOCK_SIZE_M': 64,
'BLOCK_SIZE_N': 32,
'BLOCK_SIZE_K': 64,
'GROUP_SIZE_M': 8
},
num_stages=4,
num_warps=4
), # 3090
],
key=['M', 'N', 'K'],
nearest_power_of_two=True,
prune_configs_by={
'early_config_prune': custom_autotune.matmul248_kernel_config_pruner,
'perf_model': None,
'top_k': None,
},
)
@triton.jit
def quant_fused_matmul_248_kernel(
a_ptr, c_ptr, b1_ptr,
scales1_ptr, zeros1_ptr,
g1_ptr, b2_ptr,
scales2_ptr, zeros2_ptr,
g2_ptr,
M, N, K,
bits, maxq,
stride_am, stride_ak,
stride_bk, stride_bn,
stride_cm, stride_cn,
stride_scales, stride_zeros,
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr,
GROUP_SIZE_M: tl.constexpr
):
"""
Computes: C = silu(A * B1) * (A * B2)
A is of shape (M, K) float16
B is of shape (K//8, N) int32
C is of shape (M, N) float16
scales is of shape (1, N) float16
zeros is of shape (1, N//8) int32
"""
infearure_per_bits = 32 // bits
pid = tl.program_id(axis=0)
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
num_pid_k = tl.cdiv(K, BLOCK_SIZE_K)
num_pid_in_group = GROUP_SIZE_M * num_pid_n
group_id = pid // num_pid_in_group
first_pid_m = group_id * GROUP_SIZE_M
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
pid_m = first_pid_m + (pid % group_size_m)
pid_n = (pid % num_pid_in_group) // group_size_m
offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_bn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
offs_k = tl.arange(0, BLOCK_SIZE_K)
a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak) # (BLOCK_SIZE_M, BLOCK_SIZE_K)
a_mask = (offs_am[:, None] < M)
# b_ptrs is set up such that it repeats elements along the K axis 8 times
b1_ptrs = b1_ptr + ((offs_k[:, None] // infearure_per_bits) * stride_bk + offs_bn[None, :] * stride_bn)
b2_ptrs = b2_ptr + ((offs_k[:, None] // infearure_per_bits) * stride_bk + offs_bn[None, :] * stride_bn)
g1_ptrs = g1_ptr + offs_k
g2_ptrs = g2_ptr + offs_k
# shifter is used to extract the N bits of each element in the 32-bit word from B
scales1_ptrs = scales1_ptr + offs_bn[None, :]
scales2_ptrs = scales2_ptr + offs_bn[None, :]
zeros1_ptrs = zeros1_ptr + (offs_bn[None, :] // infearure_per_bits)
zeros2_ptrs = zeros2_ptr + (offs_bn[None, :] // infearure_per_bits)
shifter = (offs_k % infearure_per_bits) * bits
zeros_shifter = (offs_bn % infearure_per_bits) * bits
accumulator1 = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
accumulator2 = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
for k in range(0, num_pid_k):
g1_idx = tl.load(g1_ptrs)
g2_idx = tl.load(g2_ptrs)
# Fetch scales and zeros; these are per-outfeature and thus reused in the inner loop
scales1 = tl.load(scales1_ptrs + g1_idx[:, None] * stride_scales) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
scales2 = tl.load(scales2_ptrs + g2_idx[:, None] * stride_scales)
zeros1 = tl.load(zeros1_ptrs + g1_idx[:, None] * stride_zeros) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
zeros1 = (zeros1 >> zeros_shifter[None, :]) & maxq
zeros1 = (zeros1 + 1)
zeros2 = tl.load(zeros2_ptrs + g2_idx[:, None] * stride_zeros) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
zeros2 = (zeros2 >> zeros_shifter[None, :]) & maxq
zeros2 = (zeros2 + 1)
a = tl.load(a_ptrs, mask=a_mask, other=0.) # (BLOCK_SIZE_M, BLOCK_SIZE_K)
b1 = tl.load(b1_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N), but repeated
b2 = tl.load(b2_ptrs)
# Now we need to unpack b (which is N-bit values) into 32-bit values
b1 = (b1 >> shifter[:, None]) & maxq # Extract the N-bit values
b1 = (b1 - zeros1) * scales1 # Scale and shift
accumulator1 += tl.dot(a, b1)
b2 = (b2 >> shifter[:, None]) & maxq
b2 = (b2 - zeros2) * scales2
accumulator2 += tl.dot(a, b2)
a_ptrs += BLOCK_SIZE_K
b1_ptrs += (BLOCK_SIZE_K // infearure_per_bits) * stride_bk
b2_ptrs += (BLOCK_SIZE_K // infearure_per_bits) * stride_bk
g1_ptrs += BLOCK_SIZE_K
g2_ptrs += BLOCK_SIZE_K
accumulator1 = silu(accumulator1)
c = accumulator1 * accumulator2
c = c.to(tl.float16)
c_ptrs = c_ptr + stride_cm * offs_am[:, None] + stride_cn * offs_bn[None, :]
c_mask = (offs_am[:, None] < M) & (offs_bn[None, :] < N)
tl.store(c_ptrs, c, mask=c_mask)
else:
quant_fused_matmul_248_kernel = None
class FusedLlamaMLPForQuantizedModel(FusedBaseMLPModule):
def __init__(
self,
gate_proj,
down_proj,
up_proj,
):
super().__init__()
self.infeatures = gate_proj.infeatures
self.intermediate_size = gate_proj.outfeatures
self.outfeatures = down_proj.outfeatures
self.bits = gate_proj.bits
self.maxq = gate_proj.maxq
self.gate_proj = gate_proj
self.up_proj = up_proj
self.down_proj = down_proj
def forward(self, x):
return self.down_proj(self.triton_llama_mlp(x))
def triton_llama_mlp(self, x):
with torch.cuda.device(x.device):
out_shape = x.shape[:-1] + (self.intermediate_size, )
x = x.reshape(-1, x.shape[-1])
M, K = x.shape
N = self.intermediate_size
c = torch.empty((M, N), device=x.device, dtype=torch.float16)
grid = lambda META: (triton.cdiv(M, META['BLOCK_SIZE_M']) * triton.cdiv(N, META['BLOCK_SIZE_N']), )
quant_fused_matmul_248_kernel[grid](
x, c, self.gate_proj.qweight,
self.gate_proj.scales, self.gate_proj.qzeros, self.gate_proj.g_idx,
self.up_proj.qweight,
self.up_proj.scales, self.up_proj.qzeros, self.up_proj.g_idx,
M, N, K,
self.bits, self.maxq,
x.stride(0), x.stride(1),
self.gate_proj.qweight.stride(0), self.gate_proj.qweight.stride(1),
c.stride(0), c.stride(1),
self.gate_proj.scales.stride(0), self.gate_proj.qzeros.stride(0)
)
c = c.reshape(out_shape)
return c
@classmethod
def inject_to_model(cls, model, use_triton=False, **kwargs):
if not use_triton:
logger.warning(f"skip module injection for {cls.__name__} not support integrate without triton yet.")
return
elif not TRITON_AVAILABLE:
logger.warning(f"skip module injection for triton is not installed.")
return
for name, m in model.named_modules():
if not isinstance(m, LlamaMLP):
continue
mlp = cls(m.gate_proj, m.down_proj, m.up_proj)
if '.' in name:
parent_name = name.rsplit('.', 1)[0]
child_name = name[len(parent_name) + 1:]
parent = model.get_submodule(parent_name)
else:
parent_name = ''
parent = model
child_name = name
setattr(parent, child_name, mlp)
@classmethod
def warmup(cls, model, transpose=False, seqlen=2048):
from tqdm import tqdm
kn_values = {}
for _, m in model.named_modules():
if not isinstance(m, cls):
continue
k = m.infeatures
n = m.intermediate_size
if (k, n) not in kn_values:
kn_values[(k, n)] = m
logger.info(f'Found {len(kn_values)} unique fused mlp KN values.')
logger.info('Warming up autotune cache ...')
with torch.no_grad():
for m in tqdm(range(0, math.ceil(math.log2(seqlen)) + 1)):
m = 2 ** m
for (k, n), (modules) in kn_values.items():
a = torch.randn(m, k, dtype=torch.float16, device=model.device)
modules.triton_llama_mlp(a)
del kn_values
__all__ = ["FusedLlamaMLPForQuantizedModel"]