166 lines
5.5 KiB
Python
166 lines
5.5 KiB
Python
# Adapted from turboderp exllama: https://github.com/turboderp/exllama
|
|
|
|
from exllama_kernels import make_q4, q4_matmul
|
|
import torch
|
|
import torch.nn as nn
|
|
import math
|
|
import numpy as np
|
|
import transformers
|
|
|
|
# Dummy tensor to pass instead of g_idx since there is no way to pass "None" to a C++ extension
|
|
none_tensor = torch.empty((1, 1), device = "meta")
|
|
|
|
def ext_make_q4(qweight, qzeros, scales, g_idx, device):
|
|
"""Construct Q4Matrix, return handle"""
|
|
return make_q4(qweight,
|
|
qzeros,
|
|
scales,
|
|
g_idx if g_idx is not None else none_tensor,
|
|
device)
|
|
|
|
def ext_q4_matmul(x, q4, q4_width):
|
|
"""Matrix multiplication, returns x @ q4"""
|
|
outshape = x.shape[:-1] + (q4_width,)
|
|
x = x.view(-1, x.shape[-1])
|
|
output = torch.empty((x.shape[0], q4_width), dtype = torch.float16, device = x.device)
|
|
|
|
q4_matmul(x, q4, output)
|
|
|
|
return output.view(outshape)
|
|
|
|
|
|
class QuantLinear(nn.Module):
|
|
QUANT_TYPE = "exllama"
|
|
|
|
"""Linear layer implementation with per-group 4-bit quantization of the weights"""
|
|
def __init__(self,
|
|
bits,
|
|
group_size,
|
|
infeatures,
|
|
outfeatures,
|
|
bias,
|
|
trainable=False,
|
|
**kwargs,
|
|
):
|
|
super().__init__()
|
|
if bits != 4:
|
|
raise ValueError(f"Exllama kernel supports only bits=4, requested bits={bits}. Something is wrong in the model initialization.")
|
|
if trainable:
|
|
raise NotImplementedError("Exllama kernel does not support training.")
|
|
|
|
self.infeatures = infeatures
|
|
self.outfeatures = outfeatures
|
|
self.bits = bits
|
|
self.group_size = group_size if group_size != -1 else infeatures
|
|
self.trainable = trainable
|
|
self.maxq = 2 ** self.bits - 1
|
|
|
|
assert infeatures % 32 == 0
|
|
assert infeatures % self.group_size == 0
|
|
assert outfeatures % 32 == 0
|
|
|
|
self.register_buffer(
|
|
'qweight',
|
|
torch.zeros((infeatures // 32 * self.bits, outfeatures), dtype=torch.int32)
|
|
)
|
|
self.register_buffer(
|
|
'qzeros',
|
|
torch.zeros((math.ceil(infeatures / self.group_size), outfeatures // 32 * self.bits), dtype=torch.int32)
|
|
)
|
|
self.register_buffer(
|
|
'scales',
|
|
torch.zeros((math.ceil(infeatures / self.group_size), outfeatures), dtype=torch.float16)
|
|
)
|
|
self.register_buffer(
|
|
'g_idx',
|
|
torch.tensor([i // self.group_size for i in range(infeatures)], dtype=torch.int32)
|
|
)
|
|
|
|
if bias:
|
|
self.register_buffer('bias', torch.zeros((outfeatures), dtype=torch.float16))
|
|
else:
|
|
self.bias = None
|
|
|
|
def post_init(self):
|
|
assert self.qweight.device.type == "cuda"
|
|
assert self.qweight.device.index is not None
|
|
|
|
self.width = self.qweight.shape[1]
|
|
|
|
# make_q4 segfaults if g_idx is not on cpu
|
|
self.q4 = ext_make_q4(
|
|
self.qweight,
|
|
self.qzeros,
|
|
self.scales,
|
|
self.g_idx.to("cpu") if self.g_idx is not None else self.g_idx,
|
|
self.qweight.device.index
|
|
)
|
|
|
|
def pack(self, linear, scales, zeros, g_idx=None):
|
|
W = linear.weight.data.clone()
|
|
if isinstance(linear, nn.Conv2d):
|
|
W = W.flatten(1)
|
|
if isinstance(linear, transformers.pytorch_utils.Conv1D):
|
|
W = W.t()
|
|
|
|
self.g_idx = g_idx.clone() if g_idx is not None else self.g_idx
|
|
|
|
scales = scales.t().contiguous()
|
|
zeros = zeros.t().contiguous()
|
|
scale_zeros = zeros * scales
|
|
self.scales = scales.clone().half()
|
|
if linear.bias is not None:
|
|
self.bias = linear.bias.clone().half()
|
|
|
|
intweight = []
|
|
for idx in range(self.infeatures):
|
|
intweight.append(
|
|
torch.round(
|
|
(
|
|
W[:, idx] + scale_zeros[self.g_idx[idx]]) / self.scales[self.g_idx[idx]]
|
|
).to(torch.int)[:, None]
|
|
)
|
|
intweight = torch.cat(intweight, dim=1)
|
|
intweight = intweight.t().contiguous()
|
|
intweight = intweight.numpy().astype(np.uint32)
|
|
|
|
i = 0
|
|
row = 0
|
|
qweight = np.zeros(
|
|
(intweight.shape[0] // 32 * self.bits, intweight.shape[1]), dtype=np.uint32
|
|
)
|
|
while row < qweight.shape[0]:
|
|
if self.bits in [4]:
|
|
for j in range(i, i + (32 // self.bits)):
|
|
qweight[row] |= intweight[j] << (self.bits * (j - i))
|
|
i += 32 // self.bits
|
|
row += 1
|
|
else:
|
|
raise NotImplementedError("Only 4 bits are supported.")
|
|
|
|
qweight = qweight.astype(np.int32)
|
|
self.qweight = torch.from_numpy(qweight)
|
|
|
|
zeros -= 1
|
|
zeros = zeros.numpy().astype(np.uint32)
|
|
qzeros = np.zeros((zeros.shape[0], zeros.shape[1] // 32 * self.bits), dtype=np.uint32)
|
|
i = 0
|
|
col = 0
|
|
while col < qzeros.shape[1]:
|
|
if self.bits in [4]:
|
|
for j in range(i, i + (32 // self.bits)):
|
|
qzeros[:, col] |= zeros[:, j] << (self.bits * (j - i))
|
|
i += 32 // self.bits
|
|
col += 1
|
|
else:
|
|
raise NotImplementedError("Only 4 bits are supported.")
|
|
|
|
qzeros = qzeros.astype(np.int32)
|
|
self.qzeros = torch.from_numpy(qzeros)
|
|
|
|
def forward(self, x):
|
|
out = ext_q4_matmul(x.half(), self.q4, self.width)
|
|
|
|
if self.bias is not None:
|
|
out.add_(self.bias)
|
|
return out
|