273 lines
11 KiB
Python
273 lines
11 KiB
Python
import math
|
|
from logging import getLogger
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn as nn
|
|
import transformers
|
|
|
|
logger = getLogger(__name__)
|
|
|
|
try:
|
|
import autogptq_cuda_256
|
|
import autogptq_cuda_64
|
|
_autogptq_cuda_available = True
|
|
except ImportError:
|
|
logger.warning('CUDA extension not installed.')
|
|
autogptq_cuda_256 = None
|
|
autogptq_cuda_64 = None
|
|
_autogptq_cuda_available = False
|
|
|
|
|
|
class QuantLinear(nn.Module):
|
|
QUANT_TYPE = "cuda"
|
|
|
|
def __init__(
|
|
self,
|
|
bits,
|
|
group_size,
|
|
infeatures,
|
|
outfeatures,
|
|
bias,
|
|
kernel_switch_threshold=128,
|
|
trainable=False
|
|
):
|
|
super().__init__()
|
|
global _autogptq_cuda_available
|
|
if bits not in [2, 3, 4, 8]:
|
|
raise NotImplementedError("Only 2,3,4,8 bits are supported.")
|
|
if trainable:
|
|
_autogptq_cuda_available = False
|
|
|
|
self.infeatures = infeatures
|
|
self.outfeatures = outfeatures
|
|
self.bits = bits
|
|
self.group_size = group_size if group_size != -1 else infeatures
|
|
self.maxq = 2 ** self.bits - 1
|
|
|
|
self.register_buffer(
|
|
'qweight',
|
|
torch.zeros((infeatures // 32 * self.bits, outfeatures), dtype=torch.int32)
|
|
)
|
|
self.register_buffer(
|
|
'qzeros',
|
|
torch.zeros((math.ceil(infeatures / self.group_size), outfeatures // 32 * self.bits), dtype=torch.int32)
|
|
)
|
|
self.register_buffer(
|
|
'scales',
|
|
torch.zeros((math.ceil(infeatures / self.group_size), outfeatures), dtype=torch.float16)
|
|
)
|
|
self.register_buffer(
|
|
'g_idx',
|
|
torch.tensor([i // self.group_size for i in range(infeatures)], dtype=torch.int32)
|
|
)
|
|
if bias:
|
|
self.register_buffer('bias', torch.zeros((outfeatures), dtype=torch.float16))
|
|
else:
|
|
self.bias = None
|
|
|
|
# is performed by unpacking the weights and using torch.matmul
|
|
if self.bits in [2, 4, 8]:
|
|
self.wf = torch.tensor(list(range(0, 32, self.bits)), dtype=torch.int32).unsqueeze(0)
|
|
elif self.bits == 3:
|
|
self.wf = torch.tensor(
|
|
[
|
|
[0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 0],
|
|
[0, 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31],
|
|
[0, 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 0],
|
|
],
|
|
dtype=torch.int32
|
|
).reshape(1, 3, 12)
|
|
|
|
self.kernel_switch_threshold = kernel_switch_threshold
|
|
self.autogptq_cuda_available = _autogptq_cuda_available
|
|
|
|
self.autogptq_cuda = autogptq_cuda_256
|
|
if infeatures % 256 != 0 or outfeatures % 256 != 0:
|
|
self.autogptq_cuda = autogptq_cuda_64
|
|
if infeatures % 64 != 0 or outfeatures % 64 != 0:
|
|
self.autogptq_cuda_available = False
|
|
|
|
self.trainable = trainable
|
|
|
|
def post_init(self):
|
|
pass
|
|
|
|
def pack(self, linear, scales, zeros, g_idx=None):
|
|
W = linear.weight.data.clone()
|
|
if isinstance(linear, nn.Conv2d):
|
|
W = W.flatten(1)
|
|
if isinstance(linear, transformers.pytorch_utils.Conv1D):
|
|
W = W.t()
|
|
|
|
self.g_idx = g_idx.clone() if g_idx is not None else self.g_idx
|
|
|
|
scales = scales.t().contiguous()
|
|
zeros = zeros.t().contiguous()
|
|
scale_zeros = zeros * scales
|
|
self.scales = scales.clone().half()
|
|
if linear.bias is not None:
|
|
self.bias = linear.bias.clone().half()
|
|
|
|
intweight = []
|
|
for idx in range(self.infeatures):
|
|
intweight.append(
|
|
torch.round(
|
|
(
|
|
W[:, idx] + scale_zeros[self.g_idx[idx]]) / self.scales[self.g_idx[idx]]
|
|
).to(torch.int)[:, None]
|
|
)
|
|
intweight = torch.cat(intweight, dim=1)
|
|
intweight = intweight.t().contiguous()
|
|
intweight = intweight.numpy().astype(np.uint32)
|
|
|
|
i = 0
|
|
row = 0
|
|
qweight = np.zeros(
|
|
(intweight.shape[0] // 32 * self.bits, intweight.shape[1]), dtype=np.uint32
|
|
)
|
|
while row < qweight.shape[0]:
|
|
if self.bits in [2, 4, 8]:
|
|
for j in range(i, i + (32 // self.bits)):
|
|
qweight[row] |= intweight[j] << (self.bits * (j - i))
|
|
i += 32 // self.bits
|
|
row += 1
|
|
elif self.bits == 3:
|
|
for j in range(i, i + 10):
|
|
qweight[row] |= intweight[j] << (3 * (j - i))
|
|
i += 10
|
|
qweight[row] |= intweight[i] << 30
|
|
row += 1
|
|
qweight[row] |= (intweight[i] >> 2) & 1
|
|
i += 1
|
|
for j in range(i, i + 10):
|
|
qweight[row] |= intweight[j] << (3 * (j - i) + 1)
|
|
i += 10
|
|
qweight[row] |= intweight[i] << 31
|
|
row += 1
|
|
qweight[row] |= (intweight[i] >> 1) & 0x3
|
|
i += 1
|
|
for j in range(i, i + 10):
|
|
qweight[row] |= intweight[j] << (3 * (j - i) + 2)
|
|
i += 10
|
|
row += 1
|
|
else:
|
|
raise NotImplementedError("Only 2,3,4,8 bits are supported.")
|
|
|
|
qweight = qweight.astype(np.int32)
|
|
self.qweight = torch.from_numpy(qweight)
|
|
|
|
zeros = zeros.numpy().astype(np.uint32)
|
|
qzeros = np.zeros((zeros.shape[0], zeros.shape[1] // 32 * self.bits), dtype=np.uint32)
|
|
i = 0
|
|
col = 0
|
|
while col < qzeros.shape[1]:
|
|
if self.bits in [2, 4, 8]:
|
|
for j in range(i, i + (32 // self.bits)):
|
|
qzeros[:, col] |= zeros[:, j] << (self.bits * (j - i))
|
|
i += 32 // self.bits
|
|
col += 1
|
|
elif self.bits == 3:
|
|
for j in range(i, i + 10):
|
|
qzeros[:, col] |= zeros[:, j] << (3 * (j - i))
|
|
i += 10
|
|
qzeros[:, col] |= zeros[:, i] << 30
|
|
col += 1
|
|
qzeros[:, col] |= (zeros[:, i] >> 2) & 1
|
|
i += 1
|
|
for j in range(i, i + 10):
|
|
qzeros[:, col] |= zeros[:, j] << (3 * (j - i) + 1)
|
|
i += 10
|
|
qzeros[:, col] |= zeros[:, i] << 31
|
|
col += 1
|
|
qzeros[:, col] |= (zeros[:, i] >> 1) & 0x3
|
|
i += 1
|
|
for j in range(i, i + 10):
|
|
qzeros[:, col] |= zeros[:, j] << (3 * (j - i) + 2)
|
|
i += 10
|
|
col += 1
|
|
else:
|
|
raise NotImplementedError("Only 2,3,4,8 bits are supported.")
|
|
|
|
qzeros = qzeros.astype(np.int32)
|
|
self.qzeros = torch.from_numpy(qzeros)
|
|
|
|
def forward(self, x: torch.Tensor):
|
|
out_shape = x.shape[:-1] + (self.outfeatures,)
|
|
x = x.reshape(-1, x.shape[-1])
|
|
if self.autogptq_cuda_available and (
|
|
self.kernel_switch_threshold == 0 or x.shape[0] < self.kernel_switch_threshold
|
|
):
|
|
out = torch.zeros((x.shape[0], self.outfeatures), device=x.device, dtype=torch.float32)
|
|
if self.bits == 2:
|
|
self.autogptq_cuda.vecquant2matmul(x.float(), self.qweight, out, self.scales.float(), self.qzeros, self.g_idx)
|
|
elif self.bits == 3:
|
|
self.autogptq_cuda.vecquant3matmul(x.float(), self.qweight, out, self.scales.float(), self.qzeros, self.g_idx)
|
|
elif self.bits == 4:
|
|
self.autogptq_cuda.vecquant4matmul(x.float(), self.qweight, out, self.scales.float(), self.qzeros, self.g_idx)
|
|
elif self.bits == 8:
|
|
self.autogptq_cuda.vecquant8matmul(x.float(), self.qweight, out, self.scales.float(), self.qzeros, self.g_idx)
|
|
else:
|
|
raise NotImplementedError("Only 2,3,4,8 bits are supported.")
|
|
else:
|
|
if self.wf.device != self.qzeros.device:
|
|
self.wf = self.wf.to(self.qzeros.device)
|
|
|
|
if self.bits in [2, 4, 8]:
|
|
zeros = torch.bitwise_right_shift(
|
|
torch.unsqueeze(self.qzeros, 2).expand(-1, -1, 32 // self.bits),
|
|
self.wf.unsqueeze(0)
|
|
).to(torch.int16 if self.bits == 8 else torch.int8)
|
|
torch.bitwise_and(zeros, (2 ** self.bits) - 1, out=zeros)
|
|
|
|
zeros = zeros.reshape(self.scales.shape)
|
|
|
|
weight = torch.bitwise_right_shift(
|
|
torch.unsqueeze(self.qweight, 1).expand(-1, 32 // self.bits, -1),
|
|
self.wf.unsqueeze(-1)
|
|
).to(torch.int16 if self.bits == 8 else torch.int8)
|
|
torch.bitwise_and(weight, (2 ** self.bits) - 1, out=weight)
|
|
elif self.bits == 3:
|
|
zeros = self.qzeros.reshape(
|
|
self.qzeros.shape[0], self.qzeros.shape[1] // 3, 3, 1
|
|
).expand(-1, -1, -1, 12)
|
|
zeros = (zeros >> self.wf.unsqueeze(0))
|
|
zeros[:, :, 0, 10] = (zeros[:, :, 0, 10] & 0x3) | ((zeros[:, :, 1, 0] << 2) & 0x4)
|
|
zeros[:, :, 1, 11] = (zeros[:, :, 1, 11] & 0x1) | ((zeros[:, :, 2, 0] << 1) & 0x6)
|
|
zeros = zeros & 0x7
|
|
zeros = torch.cat([zeros[:, :, 0, :11], zeros[:, :, 1, 1:12], zeros[:, :, 2, 1:11]], dim=2)
|
|
|
|
zeros = zeros.reshape(self.scales.shape)
|
|
|
|
weight = self.qweight.reshape(
|
|
self.qweight.shape[0] // 3, 3, 1, self.qweight.shape[1]
|
|
).expand(-1, -1, 12, -1)
|
|
weight = (weight >> self.wf.unsqueeze(-1)) & 0x7
|
|
weight[:, 0, 10] = (weight[:, 0, 10] & 0x3) | ((weight[:, 1, 0] << 2) & 0x4)
|
|
weight[:, 1, 11] = (weight[:, 1, 11] & 0x1) | ((weight[:, 2, 0] << 1) & 0x6)
|
|
weight = weight & 0x7
|
|
weight = torch.cat([weight[:, 0, :11], weight[:, 1, 1:12], weight[:, 2, 1:11]], dim=1)
|
|
else:
|
|
raise NotImplementedError("Only 2,3,4,8 bits are supported.")
|
|
|
|
weight = weight.reshape(weight.shape[0] * weight.shape[1], weight.shape[2])
|
|
num_itr = self.g_idx.shape[0]//x.shape[-1]
|
|
if num_itr == 1:
|
|
weights = (self.scales[self.g_idx.long()] * (weight - zeros[self.g_idx.long()]))
|
|
else:
|
|
num_dim = self.g_idx.shape[0]//num_itr
|
|
weights = []
|
|
for i in range(num_itr):
|
|
scale_i = self.scales[:,i*num_dim:(i+1)*num_dim]
|
|
weight_i = weight[:,i*num_dim:(i+1)*num_dim]
|
|
zeros_i = zeros[:,i*num_dim:(i+1)*num_dim]
|
|
g_idx_i = self.g_idx[i*num_dim:(i+1)*num_dim]
|
|
weights.append(scale_i[g_idx_i.long()] * (weight_i - zeros_i[g_idx_i.long()]))
|
|
weights = torch.cat(weights,dim=1)
|
|
out = torch.matmul(x.half(), weights)
|
|
out = out.half().reshape(out_shape)
|
|
out = out + self.bias if self.bias is not None else out
|
|
return out
|
|
|
|
|
|
__all__ = ["QuantLinear"]
|