AutoGPTQ/auto_gptq/modeling/_utils.py
2023-04-14 01:09:40 +08:00

39 lines
1.1 KiB
Python

from logging import getLogger
import torch.nn as nn
from ..quantization import make_quant, QuantLinear
logger = getLogger(__name__)
def find_layers(module, layers=[nn.Conv2d, nn.Linear], name=''):
if type(module) in layers:
return {name: module}
res = {}
for name1, child in module.named_children():
res.update(find_layers(child, layers=layers, name=name + '.' + name1 if name != '' else name1))
return res
def get_module_by_name(model, module_name: str):
for name, module in model.named_modules():
if name.startswith(module_name):
return module
def pack_model(model, quantizers, bits, group_size):
model.cpu()
logger.info('Packing model...')
layers = find_layers(model)
layers = {n: layers[n] for n in quantizers}
make_quant(model, quantizers, bits, group_size)
qlayers = find_layers(model, [QuantLinear])
for name in qlayers:
logger.info(name)
quantizers[name], scale, zero, g_idx = quantizers[name]
qlayers[name].pack(layers[name], scale, zero, g_idx)
logger.info('Model packed.')
__all__ = ["find_layers", "get_module_by_name", "pack_model"]