60 lines
1.9 KiB
Python
60 lines
1.9 KiB
Python
from ._base import BaseQuantizeConfig
|
|
from ._utils import check_and_get_model_type
|
|
from .bloom import BloomGPTQForCausalLM
|
|
from .gpt_neox import GPTNeoXGPTQForCausalLM
|
|
from .gptj import GPTJGPTQForCausalLM
|
|
from .llama import LlamaGPTQForCausalLM
|
|
from .moss import MOSSGPTQForCausalLM
|
|
from .opt import OPTGPTQForCausalLM
|
|
|
|
|
|
GPTQ_CAUSAL_LM_MODEL_MAP = {
|
|
"bloom": BloomGPTQForCausalLM,
|
|
"gpt_neox": GPTNeoXGPTQForCausalLM,
|
|
"gptj": GPTJGPTQForCausalLM,
|
|
"llama": LlamaGPTQForCausalLM,
|
|
"opt": OPTGPTQForCausalLM,
|
|
"moss": MOSSGPTQForCausalLM
|
|
}
|
|
|
|
|
|
class AutoGPTQForCausalLM:
|
|
def __init__(self):
|
|
raise EnvironmentError(
|
|
"AutoGPTQModelForCausalLM is designed to be instantiated\n"
|
|
"using `AutoGPTQModelForCausalLM.from_pretrained` if want to quantize a pretrained model.\n"
|
|
"using `AutoGPTQModelForCausalLM.from_quantized` if want to inference with quantized model."
|
|
)
|
|
|
|
@classmethod
|
|
def from_pretrained(
|
|
cls,
|
|
pretrained_model_name_or_path: str,
|
|
quantize_config: BaseQuantizeConfig,
|
|
bf16: bool = False,
|
|
**model_init_kwargs
|
|
):
|
|
model_type = check_and_get_model_type(pretrained_model_name_or_path)
|
|
return GPTQ_CAUSAL_LM_MODEL_MAP[model_type].from_pretrained(
|
|
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
|
quantize_config=quantize_config,
|
|
bf16=bf16,
|
|
**model_init_kwargs
|
|
)
|
|
|
|
@classmethod
|
|
def from_quantized(
|
|
cls,
|
|
save_dir: str,
|
|
device: str = "cpu",
|
|
use_safetensors: bool = False
|
|
):
|
|
model_type = check_and_get_model_type(save_dir)
|
|
return GPTQ_CAUSAL_LM_MODEL_MAP[model_type].from_quantized(
|
|
save_dir=save_dir,
|
|
device=device,
|
|
use_safetensors=use_safetensors
|
|
)
|
|
|
|
|
|
__all__ = ["AutoGPTQForCausalLM"]
|