AutoGPTQ/auto_gptq/modeling/_utils.py
2023-04-25 18:58:20 +08:00

72 lines
2.4 KiB
Python

from logging import getLogger
import torch.nn as nn
from transformers import AutoConfig
from ._const import SUPPORTED_MODELS
logger = getLogger(__name__)
def find_layers(module, layers=[nn.Conv2d, nn.Linear], name=''):
if type(module) in layers:
return {name: module}
res = {}
for name1, child in module.named_children():
res.update(find_layers(child, layers=layers, name=name + '.' + name1 if name != '' else name1))
return res
def get_module_by_name(model, module_name: str):
for name, module in model.named_modules():
if name.startswith(module_name):
return module
def make_quant(module, names, bits, groupsize, name='', use_triton=False):
if use_triton:
raise NotImplementedError("triton not supported yet")
else:
from ..nn_modules.qlinear import QuantLinear
if isinstance(module, QuantLinear):
return
for attr in dir(module):
tmp = getattr(module, attr)
name1 = name + '.' + attr if name != '' else attr
if name1 in names:
delattr(module, attr)
setattr(module, attr, QuantLinear(bits, groupsize, tmp.in_features, tmp.out_features, tmp.bias is not None))
for name1, child in module.named_children():
make_quant(child, names, bits, groupsize, name + '.' + name1 if name != '' else name1)
def pack_model(model, quantizers, bits, group_size, use_triton=False):
if use_triton:
raise NotImplementedError("triton not supported yet.")
else:
from ..nn_modules.qlinear import QuantLinear
model.cpu()
logger.info('Packing model...')
layers = find_layers(model)
layers = {n: layers[n] for n in quantizers}
make_quant(model, quantizers, bits, group_size, use_triton=use_triton)
qlayers = find_layers(model, [QuantLinear])
for name in qlayers:
logger.info(name)
quantizers[name], scale, zero, g_idx = quantizers[name]
qlayers[name].pack(layers[name], scale, zero, g_idx)
logger.info('Model packed.')
def check_and_get_model_type(model_dir):
config = AutoConfig.from_pretrained(model_dir, trust_remote_code=True)
if config.model_type not in SUPPORTED_MODELS:
raise TypeError(f"{config.model_type} isn't supported yet.")
model_type = config.model_type
return model_type
__all__ = ["find_layers", "get_module_by_name", "make_quant", "pack_model", "check_and_get_model_type"]