No description
Find a file
2023-04-26 13:08:47 +08:00
auto_gptq optimize import and format code 2023-04-26 13:08:47 +08:00
examples update example code 2023-04-25 20:41:27 +08:00
quant_cuda update setup.py 2023-04-25 18:50:21 +08:00
LICENSE Initial commit 2023-04-13 10:18:11 +08:00
README.md update README.md 2023-04-26 13:01:07 +08:00
setup.py update setup.py 2023-04-26 12:58:07 +08:00

AutoGPTQ

An easy-to-use model quantization package with user-friendly apis, based on GPTQ algorithm.

News or Update

  • 2023-04-25 - (Update) - Inference using triton is now supported.
  • 2023-04-25 - (News&Update) - MOSS is an open-source tool-augmented conversational language model from Fudan University, quantization is now supported in AutoGPTQ.
  • 2023-04-23 - (Update) - Support evaluation on multiple (down-stream) tasks such as: language-modeling, text-classification, text-summarization.
  • 2023-04-22 - (News) - qwopqwop200's AutoGPTQ-triton provides faster speed to integrate with quantized model, for everyone who can access to triton, try and enjoy yourself!
  • 2023-04-20 - (News) - AutoGPTQ is automatically compatible with Stability-AI's newly released gpt_neox type model family StableLM.
  • 2023-04-16 - (Update) - Support quantization and inference for bloom, gpt_neox, gptj, llama and opt.

Installation

Install from source

Clone the source code:

git clone https://github.com/PanQiWei/AutoGPTQ.git && cd AutoGPTQ

Then, install from source:

pip install .

By default, cuda extensions will be installed when torch is already in your virtual environment, if you don't want to use cuda extensions, using:

BUILD_CUDA_EXT=0 pip install .

For some people want to try LLaMa and whose transformers version not meet the newest one that supports it, using:

pip install .[llama]

To integrate with triton, using:

pip install .[triton]

Supported Models

Currently, auto_gptq supports: bloom, gpt_neox, gptj, llama, moss and opt; more CausalLMs will come soon!

Supported Evaluation Tasks

Currently, auto_gptq supports: LanguageModelingTask, SequenceClassificationTask and TextSummarizationTask; more Tasks will come soon!

Usage

Basic

warning: this is just a show case of the usage of basic apis in AutoGPTQ, which uses only one sample to quantize a much small model, thus may not performs as well as expected in LLMs.

Below is an example for the simplest use of auto_gptq:

from transformers import AutoTokenizer, TextGenerationPipeline
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig


pretrained_model_dir = "facebook/opt-125m"
quantized_model_dir = "opt-125m-4bit"


tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True)
example = tokenizer(
    "auto_gptq is a useful tool that can automatically compress model into 4-bit or even higher rate by using GPTQ algorithm.",
    return_tensors="pt"
)

quantize_config = BaseQuantizeConfig(
    bits=4,  # quantize model to 4-bit
    group_size=128,  # it is recommended to set the value to 128
)

# load un-quantized model, the model will always be force loaded into cpu
model = AutoGPTQForCausalLM.from_pretrained(pretrained_model_dir, quantize_config)

# quantize model, the examples should be list of dict whose keys can only be "input_ids" and "attention_mask" 
# with value under torch.LongTensor type.
model.quantize([example], use_triton=False)

# save quantized model
model.save_quantized(quantized_model_dir)

# save quantized model using safetensors
model.save_quantized(quantized_model_dir, use_safetensors=True)

# load quantized model, currently only support cpu or single gpu
model = AutoGPTQForCausalLM.from_quantized(quantized_model_dir, device="cuda:0", use_triton=False)

# inference with model.generate
print(tokenizer.decode(model.generate(**tokenizer("auto_gptq is", return_tensors="pt").to("cuda:0"))[0]))

# or you can also use pipeline
pipeline = TextGenerationPipeline(model=model, tokenizer=tokenizer)
print(pipeline("auto_gptq is")[0]["generated_text"])

Customize Model

Below is an example to extend auto_gptq to support OPT model, as you will see, it's very easy:

from auto_gptq.modeling import BaseGPTQForCausalLM


class OPTGPTQForCausalLM(BaseGPTQForCausalLM):
    # chained attribute name of transformer layer block
    layers_block_name = "model.decoder.layers"
    # chained attribute names of other nn modules that in the same level as the transformer layer block
    outside_layer_modules = [
        "model.decoder.embed_tokens", "model.decoder.embed_positions", "model.decoder.project_out",
        "model.decoder.project_in", "model.decoder.final_layer_norm"
    ]
    # chained attribute names of linear layers in transformer layer module
    # normally, there are four sub lists, for each one the modules in it can be seen as one operation, 
    # and the order should be the order when they are truly executed, in this case (and usually in most cases), 
    # they are: attention q_k_v projection, attention output projection, MLP project input, MLP project output
    inside_layer_modules = [
        ["self_attn.k_proj", "self_attn.v_proj", "self_attn.q_proj"],
        ["self_attn.out_proj"],
        ["fc1"],
        ["fc2"]
    ]

    @staticmethod
    # the overriding of this method may not necessary for most other models
    def _resize_attention_mask(attention_mask):
        attention_mask = [each.unsqueeze(1) for each in attention_mask]
        return attention_mask

After this, you can use OPTGPTQForCausalLM.from_pretrained and other functions

Evaluation on Downstream Tasks

One can use tasks defined in auto_gptq.eval_tasks to evaluate model's performance on specific down-stream task before and after quantization.

The predefined tasks support all causal-language-models implemented in Hugging Face transformers and in this project.

Below is an example to evaluate EleutherAI/gpt-j-6b on sequence-classification task using cardiffnlp/tweet_sentiment_multilingual dataset:

from argparse import ArgumentParser
from functools import partial

import datasets
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig

from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
from auto_gptq.eval_tasks import SequenceClassificationTask


MODEL = "EleutherAI/gpt-j-6b"
DATASET = "cardiffnlp/tweet_sentiment_multilingual"
TEMPLATE = "Question:What's the sentiment of the given text? Choices are {labels}.\nText: {text}\nAnswer:"
ID2LABEL = {
    0: "negative",
    1: "neutral",
    2: "positive"
}
LABELS = list(ID2LABEL.values())


def ds_refactor_fn(samples):
    text_data = samples["text"]
    label_data = samples["label"]

    new_samples = {"prompt": [], "label": []}
    for text, label in zip(text_data, label_data):
        prompt = TEMPLATE.format(labels=LABELS, text=text)
        new_samples["prompt"].append(prompt)
        new_samples["label"].append(ID2LABEL[label])

    return new_samples


#  model = AutoModelForCausalLM.from_pretrained(MODEL).eval().half().to("cuda:0")
model = AutoGPTQForCausalLM.from_pretrained(MODEL, BaseQuantizeConfig())
tokenizer = AutoTokenizer.from_pretrained(MODEL)

task = SequenceClassificationTask(
        model=model,
        tokenizer=tokenizer,
        classes=LABELS,
        data_name_or_path=DATASET,
        prompt_col_name="prompt",
        label_col_name="label",
        **{
            "num_samples": 1000,  # how many samples will be sampled to evaluation
            "sample_max_len": 1024,  # max tokens for each sample
            "block_max_len": 2048,  # max tokens for each data block
            "load_fn": partial(datasets.load_dataset, name="english"),  # function to load dataset, one must only accept data_name_or_path as input and return datasets.Dataset
            "preprocess_fn": ds_refactor_fn,  # function to preprocess dataset, which is used for datasets.Dataset.map, must return Dict[str, list] with only two keys: [prompt_col_name, label_col_name]
            "truncate_prompt": False  # truncate label when sample's length exceed sample_max_len
        }
    )

# note that max_new_tokens will be automatically specified internally based on given classes
print(task.run())

# self-consistency
print(
    task.run(
        generation_config=GenerationConfig(
            num_beams=3,
            num_return_sequences=3,
            do_sample=True
        )
    )
)

More Examples

For more examples, please turn to examples

Side Notes

VRAM

Currently, I put everything (data, model, etc.) into CPU util one is required to be used or executed on GPU (and will back to CPU once the execution finished). Though I didn't run any benchmark to this date, but the maximum VRAM usage for GPTJ is about 6GB, which may be considered as a reference.

Acknowledgement

  • Specially thanks Elias Frantar, Saleh Ashkboos, Torsten Hoefler and Dan Alistarh for proposing GPTQ algorithm and open source the code.
  • Specially thanks qwopqwop200, for code in this project that relevant to quantization are mainly referenced from GPTQ-for-LLaMa.