AutoGPTQ/auto_gptq/modeling/_utils.py
2023-05-01 13:04:47 +09:00

137 lines
4.5 KiB
Python

from logging import getLogger
from typing import Union
import torch
import torch.nn as nn
from transformers import AutoConfig
import transformers
from ._const import SUPPORTED_MODELS, CPU, CUDA_0
logger = getLogger(__name__)
def get_device(obj: Union[torch.Tensor, nn.Module]):
if isinstance(obj, torch.Tensor):
return obj.device
return next(obj.parameters()).device
def move_to_device(obj: Union[torch.Tensor, nn.Module], device: torch.device):
if get_device(obj) != device:
obj = obj.to(device)
return obj
def find_layers(module, layers=None, name=''):
if not layers:
layers = [transformers.pytorch_utils.Conv1D, nn.Conv2d, nn.Linear]
if type(module) in layers:
return {name: module}
res = {}
for name1, child in module.named_children():
res.update(find_layers(child, layers=layers, name=name + '.' + name1 if name != '' else name1))
return res
def get_module_by_name(model, module_name: str):
for name, module in model.named_modules():
if name.startswith(module_name):
return module
def make_quant(module, names, bits, groupsize, name='', use_triton=False, desc_act=False):
if use_triton:
from ..nn_modules.qlinear_triton import QuantLinear
else:
if not(desc_act) or groupsize == -1:
from ..nn_modules.qlinear_old import QuantLinear
else:
from ..nn_modules.qlinear import QuantLinear
if isinstance(module, QuantLinear):
return
for attr in dir(module):
tmp = getattr(module, attr)
name1 = name + '.' + attr if name != '' else attr
if name1 in names:
ori_layer_device = get_device(getattr(module, attr))
delattr(module, attr)
if type(tmp) == nn.Linear:
in_features = tmp.in_features
out_features = tmp.out_features
elif type(tmp) == nn.Conv2d:
in_features = tmp.in_channels
out_features = tmp.out_channels
elif type(tmp) == transformers.pytorch_utils.Conv1D:
in_features = tmp.weight.shape[0]
out_features = tmp.weight.shape[1]
new_layer = QuantLinear(bits, groupsize, in_features, out_features, tmp.bias is not None)
new_layer.device = ori_layer_device
setattr(module, attr, new_layer.to(ori_layer_device))
for name1, child in module.named_children():
make_quant(child, names, bits, groupsize, name + '.' + name1 if name != '' else name1, use_triton=use_triton)
def pack_model(
model,
quantizers,
bits,
group_size,
use_triton=False,
desc_act=False,
autotune_warmup: bool = False,
force_layer_back_to_cpu: bool = False
):
if use_triton:
from ..nn_modules.qlinear_triton import QuantLinear, autotune_warmup_linear
else:
if not(desc_act) or groupsize == -1:
from ..nn_modules.qlinear_old import QuantLinear
else:
from ..nn_modules.qlinear import QuantLinear
if force_layer_back_to_cpu:
model.to(CPU)
logger.info('Packing model...')
layers = find_layers(model)
layers = {n: layers[n] for n in quantizers}
make_quant(model, quantizers, bits, group_size, use_triton=use_triton)
qlayers = find_layers(model, [QuantLinear])
for name in qlayers:
logger.info(name)
quantizers[name], scale, zero, g_idx = quantizers[name]
# so far can only pack layer on CPU
layer_device = qlayers[name].device
qlayers[name].to(CPU)
layers[name], scale, zero, g_idx = layers[name].to(CPU), scale.to(CPU), zero.to(CPU), g_idx.to(CPU)
qlayers[name].pack(layers[name], scale, zero, g_idx)
qlayers[name].to(layer_device)
logger.info('Model packed.')
if use_triton and autotune_warmup:
logger.warning(
"using autotune_warmup will move model to GPU, make sure you have enough VRAM to load the hole model."
)
autotune_warmup_linear(model.to(CUDA_0), seqlen=model.seqlen)
def check_and_get_model_type(model_dir):
config = AutoConfig.from_pretrained(model_dir, trust_remote_code=True)
if config.model_type not in SUPPORTED_MODELS:
raise TypeError(f"{config.model_type} isn't supported yet.")
model_type = config.model_type
return model_type
__all__ = [
"get_device",
"move_to_device",
"find_layers",
"get_module_by_name",
"make_quant",
"pack_model",
"check_and_get_model_type"
]