AutoGPTQ/setup.py
2023-07-27 12:14:33 +02:00

118 lines
3.7 KiB
Python

import os
import platform
import sys
from pathlib import Path
from setuptools import setup, find_packages
python_min_version = (3, 8, 0)
python_min_version_str = '.'.join(map(str, python_min_version))
if sys.version_info < python_min_version:
print(f"You are using Python {platform.python_version()}. Python >={python_min_version_str} is required.")
sys.exit(-1)
BUILD_CUDA_EXT = int(os.environ.get('BUILD_CUDA_EXT', '1')) == 1
if BUILD_CUDA_EXT:
try:
import torch
except:
print("torch is not installed, please install torch first!")
sys.exit(-1)
CUDA_VERSION = "".join(torch.version.cuda.split("."))
else:
CUDA_VERSION = "".join(os.environ.get("CUDA_VERSION", "").split("."))
ROCM_VERSION = os.environ.get('ROCM_VERSION', False)
if ROCM_VERSION and not torch.version.hip:
raise ValueError(f"Trying to compile AutoGPTQ for RoCm, but PyTorch {torch.__version__} is installed with no RoCm support.")
CUDA_VERSION = CUDA_VERSION if not ROCM_VERSION else False
common_setup_kwargs = {
"version": "0.3.2",
"name": "auto_gptq",
"author": "PanQiWei",
"description": "An easy-to-use LLMs quantization package with user-friendly apis, based on GPTQ algorithm.",
"long_description": (Path(__file__).parent / "README.md").read_text(encoding="UTF-8"),
"long_description_content_type": "text/markdown",
"url": "https://github.com/PanQiWei/AutoGPTQ",
"keywords": ["gptq", "quantization", "large-language-models", "pytorch", "transformers"],
"platforms": ["windows", "linux"],
"classifiers": [
"Environment :: GPU :: NVIDIA CUDA :: 11.7",
"Environment :: GPU :: NVIDIA CUDA :: 11.8",
"License :: OSI Approved :: MIT License",
"Natural Language :: Chinese (Simplified)",
"Natural Language :: English",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
"Programming Language :: C++",
],
"python_requires": f">={python_min_version_str}"
}
if CUDA_VERSION:
common_setup_kwargs['version'] += f"+cu{CUDA_VERSION}"
else:
assert ROCM_VERSION
common_setup_kwargs['version'] += f"+rocm{ROCM_VERSION}"
"""
if USE_ROCM:
extra_compile_args["nvcc"].append("-U__HIP_NO_HALF_CONVERSIONS__")
"""
requirements = [
"accelerate>=0.19.0",
"datasets",
"numpy",
"rouge",
"torch>=1.13.0",
"safetensors",
"transformers>=4.31.0",
"peft"
]
extras_require = {
"triton": ["triton>=2.0.0"]
}
include_dirs = ["autogptq_cuda"]
additional_setup_kwargs = dict()
if BUILD_CUDA_EXT:
from torch.utils import cpp_extension
from distutils.sysconfig import get_python_lib
conda_cuda_include_dir = os.path.join(get_python_lib(), "nvidia/cuda_runtime/include")
if os.path.isdir(conda_cuda_include_dir):
include_dirs.append(conda_cuda_include_dir)
print(f"appending conda cuda include dir {conda_cuda_include_dir}")
extensions = [
cpp_extension.CUDAExtension(
"autogptq_cuda_64",
[
"autogptq_cuda/autogptq_cuda_64.cpp",
"autogptq_cuda/autogptq_cuda_kernel_64.cu"
]
),
cpp_extension.CUDAExtension(
"autogptq_cuda_256",
[
"autogptq_cuda/autogptq_cuda_256.cpp",
"autogptq_cuda/autogptq_cuda_kernel_256.cu"
]
)
]
additional_setup_kwargs = {
"ext_modules": extensions,
"cmdclass": {'build_ext': cpp_extension.BuildExtension}
}
common_setup_kwargs.update(additional_setup_kwargs)
setup(
packages=find_packages(),
install_requires=requirements,
extras_require=extras_require,
include_dirs=include_dirs,
**common_setup_kwargs
)