AutoGPTQ/auto_gptq/modeling/_base.py
2023-08-24 11:22:15 +00:00

985 lines
42 KiB
Python

import copy
import json
import warnings
import os
from dataclasses import dataclass, field, fields
from logging import getLogger
from os.path import join, isfile, isdir
from typing import Dict, List, Optional, Union
import accelerate
import torch
import torch.nn as nn
import transformers
from accelerate.hooks import remove_hook_from_module
from safetensors.torch import save_file as safe_save
from transformers import AutoConfig, AutoModelForCausalLM, PreTrainedModel
from transformers.utils.hub import PushToHubMixin, cached_file, create_repo, create_commit, CommitOperationAdd
from transformers.utils.generic import ContextManagers
from transformers.modeling_utils import no_init_weights
from ._const import *
from ._utils import *
from ..nn_modules.qlinear import GeneralQuantLinear
from ..nn_modules._fused_base import FusedBaseAttentionModule, FusedBaseMLPModule
from ..quantization import GPTQ
from ..utils.data_utils import collate_data
from ..utils.import_utils import (
dynamically_import_QuantLinear, TRITON_AVAILABLE, AUTOGPTQ_CUDA_AVAILABLE, EXLLAMA_KERNELS_AVAILABLE
)
logger = getLogger(__name__)
@dataclass
class BaseQuantizeConfig(PushToHubMixin):
bits: int = field(default=4, metadata={"choices": [2, 3, 4, 8]})
group_size: int = field(default=-1)
damp_percent: float = field(default=0.01)
desc_act: bool = field(default=True)
static_groups: bool = field(default=False)
sym: bool = field(default=True)
true_sequential: bool = field(default=True)
model_name_or_path: Optional[str] = field(default=None)
model_file_base_name: Optional[str] = field(default=None)
def __post_init__(self):
fields_info = fields(self)
if self.bits not in fields_info[0].metadata["choices"]:
raise ValueError(f"only support quantize to {fields_info[0].metadata['choices']} bits.")
if self.group_size != -1 and self.group_size <= 0:
raise ValueError("unless equal to -1, group_size must greater then 0.")
if not (0 < self.damp_percent < 1):
raise ValueError("damp_percent must between 0 and 1.")
def save_pretrained(self, save_dir: str, **kwargs):
with open(join(save_dir, "quantize_config.json"), "w", encoding="utf-8") as f:
json.dump(self.to_dict(), f, indent=2)
@classmethod
def from_pretrained(cls, save_dir: str, **kwargs):
# Parameters related to loading from Hugging Face Hub
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
resume_download = kwargs.pop("resume_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", False)
use_auth_token = kwargs.pop("use_auth_token", None)
revision = kwargs.pop("revision", None)
subfolder = kwargs.pop("subfolder", None)
commit_hash = kwargs.pop("_commit_hash", None)
quantize_config_filename = "quantize_config.json"
if os.path.isdir(save_dir): # Local
resolved_config_file = join(save_dir, quantize_config_filename)
else: # Remote
resolved_config_file = cached_file(
save_dir,
quantize_config_filename,
cache_dir=cache_dir,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
use_auth_token=use_auth_token,
revision=revision,
local_files_only=local_files_only,
subfolder=subfolder,
_raise_exceptions_for_missing_entries=False,
_raise_exceptions_for_connection_errors=False,
_commit_hash=commit_hash,
)
with open(resolved_config_file, "r", encoding="utf-8") as f:
return cls(**json.load(f))
def to_dict(self):
return {
"bits": self.bits,
"group_size": self.group_size,
"damp_percent": self.damp_percent,
"desc_act": self.desc_act,
"static_groups": self.static_groups,
"sym": self.sym,
"true_sequential": self.true_sequential,
"model_name_or_path": self.model_name_or_path,
"model_file_base_name": self.model_file_base_name,
}
class BaseGPTQForCausalLM(nn.Module, PushToHubMixin):
layer_type: str = None
layers_block_name: str = None
outside_layer_modules: List[str] = None
inside_layer_modules: List[List[str]] = None
lm_head_name: str = "lm_head"
fused_attn_module_type: Optional[FusedBaseAttentionModule] = None
fused_mlp_module_type: Optional[FusedBaseMLPModule] = None
def __init__(
self,
model: PreTrainedModel,
quantized: bool,
quantize_config: BaseQuantizeConfig,
is_triton_backend: bool = False,
injected_fused_attention: bool = False,
injected_fused_mlp: bool = False,
trainable: bool = False
):
super().__init__()
self.model = model
self.model_type = self.model.config.model_type
self._quantized = quantized
self.quantize_config = quantize_config
self.config = self.model.config
self.is_triton_backend = is_triton_backend
self.injected_fused_attention = injected_fused_attention
self.injected_fused_mlp = injected_fused_mlp
self.trainable = trainable
@property
def quantized(self):
return self._quantized
@property
def hf_device_map(self):
return getattr(self.model, "hf_device_map", None)
@staticmethod
def _resize_attention_mask(attention_mask: List[torch.LongTensor]):
return attention_mask
@staticmethod
def _resize_position_ids(position_ids: List[torch.LongTensor]):
return position_ids
def _prepare_examples_for_quantization(
self,
examples: List[Dict[str, Union[List[int], torch.LongTensor]]],
batch_size: int = 1,
):
def _convert_tensor_to_list(tensor):
if isinstance(tensor, torch.Tensor):
if len(tensor.shape) == 1:
tensor = tensor.unsqueeze(0)
tensor = tensor.long()
return tensor.cpu().numpy().tolist()
return [tensor]
new_examples = []
for example in examples:
input_ids = _convert_tensor_to_list(example["input_ids"])
attention_mask = _convert_tensor_to_list(example["attention_mask"])
if "labels" in example:
labels = _convert_tensor_to_list(example["labels"])
elif "label" in example:
labels = _convert_tensor_to_list(example["label"])
elif "label_ids" in example:
labels = _convert_tensor_to_list(example["label_ids"])
else:
labels = copy.deepcopy(input_ids)
new_examples.append(
{"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels}
)
pad_token_id = self.config.pad_token_id
if not pad_token_id:
pad_token_id = self.config.eos_token_id
new_examples = [
collate_data(new_examples[start: start + batch_size], pad_token_id)
for start in range(0, len(new_examples), batch_size)
]
for new_example in new_examples:
del new_example["labels"]
return new_examples
@torch.inference_mode()
def quantize(
self,
examples: List[Dict[str, Union[List[int], torch.LongTensor]]],
batch_size: int = 1,
use_triton: bool = False,
use_cuda_fp16: bool = True,
autotune_warmup_after_quantized: bool = False,
cache_examples_on_gpu: bool = True
):
if self.quantized:
raise EnvironmentError("can't execute quantize because the model is quantized.")
if use_triton and not TRITON_AVAILABLE:
logger.warning("triton is not installed, reset use_triton to False")
use_triton = False
device_map = self.hf_device_map
if device_map:
for name, device in device_map.items():
if device == "cpu":
logger.info(f"truly offloading {name} to cpu with hook.")
module = get_module_by_name_suffix(self.model, name)
remove_hook_from_module(module, recurse=True)
accelerate.cpu_offload_with_hook(module, CUDA_0)
layer_inputs = []
attention_masks = []
position_ids = []
layer_input_kwargs = []
layer_outputs = []
examples = self._prepare_examples_for_quantization(examples, batch_size)
class LayerHijacker(nn.Module):
"""hijack layer's forward pass to cache data"""
def __init__(self, m, device):
super().__init__()
self.module = m
self.data_device = device if cache_examples_on_gpu else CPU
def forward(self, inp=None, **kwargs):
if inp is None: # some models use all key-value arguments in forward pass call
for kwarg_name in ["hidden_states"]:
if kwarg_name in kwargs:
inp = kwargs[kwarg_name]
break
layer_inputs.append(move_to_device(inp, self.data_device))
attention_masks.append(kwargs["attention_mask"].to(self.data_device))
pos_ids = kwargs.get("position_ids", None)
if pos_ids is not None:
position_ids.append(move_to_device(pos_ids, self.data_device))
one_kwargs = dict()
for k, v in kwargs.items(): # make sure other arguments also be captured
if k not in ["hidden_states", "attention_mask", "position_ids"]:
if isinstance(v, torch.Tensor):
one_kwargs[k] = move_to_device(v, self.data_device)
else:
one_kwargs[k] = v
layer_input_kwargs.append(one_kwargs)
raise ValueError
forward_pass_use_cache = self.model.config.use_cache
self.model.config.use_cache = False
num_batches = len(examples)
layers = get_module_by_name_prefix(self.model, self.layers_block_name)
force_layer_back_to_cpu = False
if get_device(layers[0]) == CPU:
layers[0] = layers[0].to(CUDA_0)
force_layer_back_to_cpu = True
cur_layer_device = get_device(layers[0])
ori_outside_layer_module_devices = {}
for module_name in self.outside_layer_modules:
module = get_module_by_name_prefix(self.model, module_name)
if module is None:
continue
ori_outside_layer_module_devices[module_name] = get_device(module)
if module is not None:
move_to_device(module, cur_layer_device)
# get inputs for first layer
layers[0] = LayerHijacker(layers[0], cur_layer_device)
for example in examples:
for k, v in example.items():
if len(v.shape) == 1:
v = v.unsqueeze(0)
example[k] = move_to_device(v, cur_layer_device)
try:
self.model(**example)
except ValueError:
pass
layers[0] = layers[0].module
move_to_device(layers[0], CPU if force_layer_back_to_cpu else cur_layer_device)
for module_name in self.outside_layer_modules:
module = get_module_by_name_prefix(self.model, module_name)
if module is not None:
move_to_device(module, ori_outside_layer_module_devices[module_name])
torch.cuda.empty_cache()
# resize attention mask and position ids for some special models
attention_masks = self._resize_attention_mask(attention_masks)
position_ids = self._resize_position_ids(position_ids)
inside_layer_modules = self.inside_layer_modules
if not self.quantize_config.true_sequential:
inside_layer_modules = [sum(inside_layer_modules, [])]
quantizers = {}
for i in range(len(layers)):
logger.info(f"Start quantizing layer {i + 1}/{len(layers)}")
layer = layers[i]
force_layer_back_to_cpu = False
if get_device(layer) == CPU:
move_to_device(layer, CUDA_0)
force_layer_back_to_cpu = True
cur_layer_device = get_device(layer)
full = find_layers(layer)
for names in inside_layer_modules:
subset = {n: full[n] for n in names}
gptq = {}
for name in subset:
gptq[name] = GPTQ(subset[name])
gptq[name].quantizer.configure(
self.quantize_config.bits,
perchannel=True,
sym=self.quantize_config.sym,
mse=False,
)
def add_batch(name):
def tmp(_, inp, out):
gptq[name].add_batch(inp[0].data, out.data)
return tmp
handles = []
for name in subset:
handles.append(subset[name].register_forward_hook(add_batch(name)))
for j in range(num_batches):
layer_input = move_to_device(layer_inputs[j], cur_layer_device)
layer_attention_mask = move_to_device(attention_masks[j], cur_layer_device)
additional_layer_inputs = {
"attention_mask": layer_attention_mask
}
layer_position_ids = None if not position_ids else move_to_device(position_ids[j], cur_layer_device)
if layer_position_ids is not None:
additional_layer_inputs["position_ids"] = layer_position_ids
for k, v in layer_input_kwargs[j].items():
if isinstance(v, torch.Tensor):
additional_layer_inputs[k] = move_to_device(v, cur_layer_device)
else:
additional_layer_inputs[k] = v
layer(layer_input, **additional_layer_inputs)
for h in handles:
h.remove()
for name in subset:
logger.info(f'Quantizing {name} in layer {i + 1}/{len(layers)}...')
scale, zero, g_idx = gptq[name].fasterquant(
percdamp=self.quantize_config.damp_percent,
group_size=self.quantize_config.group_size,
actorder=self.quantize_config.desc_act,
static_groups=self.quantize_config.static_groups
)
quantizers[f'{self.layers_block_name}.{i}.{name}'] = (
gptq[name].quantizer.to(CPU if force_layer_back_to_cpu else cur_layer_device),
move_to_device(scale, CPU if force_layer_back_to_cpu else cur_layer_device),
move_to_device(zero, CPU if force_layer_back_to_cpu else cur_layer_device),
move_to_device(g_idx, CPU if force_layer_back_to_cpu else cur_layer_device)
)
gptq[name].free()
for j in range(num_batches):
layer_input = move_to_device(layer_inputs[j], cur_layer_device)
layer_attention_mask = move_to_device(attention_masks[j], cur_layer_device)
additional_layer_inputs = {
"attention_mask": layer_attention_mask
}
layer_position_ids = None if not position_ids else move_to_device(position_ids[j], cur_layer_device)
if layer_position_ids is not None:
additional_layer_inputs["position_ids"] = layer_position_ids
for k, v in layer_input_kwargs[j].items():
if isinstance(v, torch.Tensor):
additional_layer_inputs[k] = move_to_device(v, cur_layer_device)
else:
additional_layer_inputs[k] = v
layer_output = move_to_device(
layer(layer_input, **additional_layer_inputs)[0],
cur_layer_device if cache_examples_on_gpu else CPU
)
layer_outputs.append(layer_output)
layers[i] = move_to_device(layer, CPU if force_layer_back_to_cpu else cur_layer_device)
del layer
del gptq
del layer_inputs
layer_inputs, layer_outputs = layer_outputs, []
torch.cuda.empty_cache()
pack_model(
model=self.model,
quantizers=quantizers,
bits=self.quantize_config.bits,
group_size=self.quantize_config.group_size,
use_triton=use_triton,
use_cuda_fp16=use_cuda_fp16,
desc_act=self.quantize_config.desc_act,
warmup_triton=autotune_warmup_after_quantized,
force_layer_back_to_cpu=force_layer_back_to_cpu
)
if device_map:
self.model = remove_hook_from_module(self.model, recurse=True)
self.model = simple_dispatch_model(self.model, device_map)
self.model.config.use_cache = forward_pass_use_cache
self._quantized = True
torch.cuda.empty_cache()
@property
def device(self):
if not self.hf_device_map:
return self.model.device
else:
device = [d for d in self.hf_device_map.values() if d not in {'cpu', 'disk'}][0]
return torch.device(device)
def to(self, device: Union[str, torch.device]):
return self.model.to(device)
def forward(self, *args, **kwargs):
return self.model(*args, **kwargs)
def generate(self, **kwargs):
"""shortcut for model.generate"""
with torch.inference_mode(), torch.amp.autocast(device_type=self.device.type):
return self.model.generate(**kwargs)
def prepare_inputs_for_generation(self, *args, **kwargs):
"""shortcut for model.prepare_inputs_for_generation"""
return self.model.prepare_inputs_for_generation(*args, **kwargs)
def push_to_hub(
self,
repo_id: str,
save_dir: Optional[str] = None,
use_safetensors: Optional[bool] = True,
safetensors_metadata: Optional[Dict[str, str]] = None,
commit_message: Optional[str] = "Upload of AutoGPTQ quantized model",
use_auth_token: Optional[Union[bool, str]] = None,
private: Optional[bool] = None,
token: Optional[Union[bool, str]] = None,
create_pr: Optional[bool] = False,
) -> str:
"""
Upload the model to the Hugging Face Hub.
Parameters:
repo_id (`str`):
The name of the repository you want to push your tool to. It should contain your organization name when
pushing to a given organization.
save_dir (`str`, *optional*):
The name of the local folder to save the model to.
If the model has already been saved, this parameter can be omitted.
use_safetensors (`bool`, *optional*):
Save the model using `safetensors`.
If the model has already been saved, this parameter can be omitted.
safetensors_metadata: (`dict`, *optional*, defaults to `None`):
Pass optional metadata dictionary to be saved in the `safetensors` model file(s).
Metadata is optional and is purely for informational purposes. It does not affect inference.
If `None`, no metadata will be saved.
commit_message (`str`, *optional*, defaults to `"Upload tool"`):
Message to commit while pushing.
use_auth_token (`bool` or `str`, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
when running `huggingface-cli login` (stored in `~/.huggingface`). Will default to `True` if `repo_url`
is not specified.
private (`bool`, *optional*):
Whether or not the repository created should be private.
token (`bool` or `str`, *optional*):
The token to use as HTTP bearer authorization for remote files. If unset, will use the token generated
when running `huggingface-cli login` (stored in `~/.huggingface`).
create_pr (`bool`, *optional*, defaults to `False`):
Whether or not to create a PR with the uploaded files or directly commit.
"""
if (self.quantize_config.model_name_or_path is None or not isdir(self.quantize_config.model_name_or_path)) and save_dir is None:
raise ValueError("Quantized model should be saved first, or you can provide save_dir to make sure model is saved to local disk before uploading.")
if save_dir is not None:
logger.info(f"Saving model to {save_dir}")
self.save_quantized(save_dir, use_safetensors, safetensors_metadata)
repo_url = create_repo(
repo_id=repo_id, token=token, private=private, exist_ok=True, repo_type="model"
)
repo_id = repo_url.repo_id
if self.quantize_config.model_name_or_path is not None:
work_dir = self.quantize_config.model_name_or_path
operations = [
CommitOperationAdd(path_or_fileobj=join(work_dir, f), path_in_repo=f)
for f in os.listdir(work_dir)
]
logger.info(f"Uploading the following files to {repo_id}: {','.join(os.listdir(work_dir))}")
return create_commit(
repo_id=repo_id,
operations=operations,
commit_message=commit_message,
token=use_auth_token,
create_pr=create_pr,
repo_type="model",
)
def save_quantized(self, save_dir: str, use_safetensors: bool = False, safetensors_metadata: Optional[Dict[str, str]] = None):
"""save quantized model and configs to local disk"""
os.makedirs(save_dir, exist_ok=True)
if not self.quantized:
raise EnvironmentError("can only save quantized model, please execute .quantize first.")
self.model.to(CPU)
model_base_name = self.quantize_config.model_file_base_name or f"gptq_model-{self.quantize_config.bits}bit-{self.quantize_config.group_size}g"
if use_safetensors:
model_save_name = model_base_name + ".safetensors"
state_dict = self.model.state_dict()
state_dict = {k: v.clone().contiguous() for k, v in state_dict.items()}
if safetensors_metadata is None:
safetensors_metadata = {}
elif not isinstance(safetensors_metadata, dict):
raise TypeError("safetensors_metadata must be a dictionary.")
else:
logger.debug(f"Received safetensors_metadata: {safetensors_metadata}")
new_safetensors_metadata = {}
converted_keys = False
for key, value in safetensors_metadata.items():
if not isinstance(key, str) or not isinstance(value, str):
converted_keys = True
try:
new_key = str(key)
new_value = str(value)
except Exception as e:
raise TypeError(f"safetensors_metadata: both keys and values must be strings and an error occured when trying to convert them: {e}")
if new_key in new_safetensors_metadata:
logger.warning(f"After converting safetensors_metadata keys to strings, the key '{new_key}' is duplicated. Ensure that all your metadata keys are strings to avoid overwriting.")
new_safetensors_metadata[new_key] = new_value
safetensors_metadata = new_safetensors_metadata
if converted_keys:
logger.debug(f"One or more safetensors_metadata keys or values had to be converted to str(). Final safetensors_metadata: {safetensors_metadata}")
# Format is required to enable Accelerate to load the metadata
# otherwise it raises an OSError
safetensors_metadata['format'] = "pt"
# Store the quantization configuration as safetensors metadata
from auto_gptq import __version__
safetensors_metadata['auto_gptq_version'] = str(__version__)
safetensors_metadata['gptq_bits'] = str(self.quantize_config.bits)
safetensors_metadata['gptq_group_size'] = str(self.quantize_config.group_size)
safetensors_metadata['gptq_desc_act'] = str(self.quantize_config.desc_act)
safetensors_metadata['gptq_damp_percent'] = str(self.quantize_config.damp_percent)
safe_save(state_dict, join(save_dir, model_save_name), safetensors_metadata)
else:
model_save_name = model_base_name + ".bin"
torch.save(self.model.state_dict(), join(save_dir, model_save_name))
self.model.config.save_pretrained(save_dir)
self.quantize_config.save_pretrained(save_dir)
self.quantize_config.model_name_or_path = save_dir
self.quantize_config.model_file_base_name = model_base_name
def save_pretrained(self, save_dir: str, use_safetensors: bool = False, safetensors_metadata: Optional[Dict[str, str]] = None, **kwargs):
"""alias of save_quantized"""
logger.warning("you are using save_pretrained, which will re-direct to save_quantized.")
self.save_quantized(save_dir, use_safetensors, safetensors_metadata)
@classmethod
def from_pretrained(
cls,
pretrained_model_name_or_path: str,
quantize_config: BaseQuantizeConfig,
max_memory: Optional[dict] = None,
trust_remote_code: bool = False,
torch_dtype: torch.dtype = torch.float16,
**model_init_kwargs
):
"""load un-quantized pretrained model to cpu"""
if not torch.cuda.is_available():
raise EnvironmentError("Load pretrained model to do quantization requires CUDA available.")
def skip(*args, **kwargs):
pass
torch.nn.init.kaiming_uniform_ = skip
torch.nn.init.uniform_ = skip
torch.nn.init.normal_ = skip
# Parameters related to loading from Hugging Face Hub
cache_dir = model_init_kwargs.pop("cache_dir", None)
force_download = model_init_kwargs.pop("force_download", False)
resume_download = model_init_kwargs.pop("resume_download", False)
proxies = model_init_kwargs.pop("proxies", None)
local_files_only = model_init_kwargs.pop("local_files_only", False)
use_auth_token = model_init_kwargs.pop("use_auth_token", None)
revision = model_init_kwargs.pop("revision", None)
subfolder = model_init_kwargs.pop("subfolder", "")
commit_hash = model_init_kwargs.pop("_commit_hash", None)
cached_file_kwargs = {
"cache_dir": cache_dir,
"force_download": force_download,
"proxies": proxies,
"resume_download": resume_download,
"local_files_only": local_files_only,
"use_auth_token": use_auth_token,
"revision": revision,
"subfolder": subfolder,
}
config = AutoConfig.from_pretrained(pretrained_model_name_or_path, trust_remote_code=True, **cached_file_kwargs)
if config.model_type not in SUPPORTED_MODELS:
raise TypeError(f"{config.model_type} isn't supported yet.")
# enforce some values despite user specified
model_init_kwargs["torch_dtype"] = torch_dtype
model_init_kwargs["trust_remote_code"] = trust_remote_code
if max_memory:
if "disk" in max_memory:
raise NotImplementedError("disk offload not support yet.")
with accelerate.init_empty_weights():
model = AutoModelForCausalLM.from_config(config, trust_remote_code=True)
model.tie_weights()
max_memory = accelerate.utils.get_balanced_memory(
model,
max_memory=max_memory,
no_split_module_classes=[cls.layer_type],
dtype=model_init_kwargs["torch_dtype"],
low_zero=False
)
model_init_kwargs["device_map"] = accelerate.infer_auto_device_map(
model,
max_memory=max_memory,
no_split_module_classes=[cls.layer_type],
dtype=model_init_kwargs["torch_dtype"]
)
model_init_kwargs["low_cpu_mem_usage"] = True
del model
else:
model_init_kwargs["device_map"] = None
model_init_kwargs["low_cpu_mem_usage"] = False
torch.cuda.empty_cache()
merged_kwargs = {**model_init_kwargs, **cached_file_kwargs}
model = AutoModelForCausalLM.from_pretrained(pretrained_model_name_or_path, **merged_kwargs)
model_config = model.config.to_dict()
seq_len_keys = ["max_position_embeddings", "seq_length", "n_positions"]
if any([k in model_config for k in seq_len_keys]):
for key in seq_len_keys:
if key in model_config:
model.seqlen = model_config[key]
break
else:
logger.warning("can't get model's sequence length from model config, will set to 4096.")
model.seqlen = 4096
model.eval()
return cls(model, False, quantize_config)
@classmethod
def from_quantized(
cls,
model_name_or_path: Optional[str],
device_map: Optional[Union[str, Dict[str, Union[int, str]]]] = None,
max_memory: Optional[dict] = None,
device: Optional[Union[str, int]] = None,
low_cpu_mem_usage: bool = False,
use_triton: bool = False,
torch_dtype: torch.dtype = torch.float16,
inject_fused_attention: bool = True,
inject_fused_mlp: bool = True,
use_cuda_fp16: bool = True,
quantize_config: Optional[BaseQuantizeConfig] = None,
model_basename: Optional[str] = None,
use_safetensors: bool = False,
trust_remote_code: bool = False,
warmup_triton: bool = False,
trainable: bool = False,
disable_exllama: bool = False,
**kwargs
):
"""load quantized model from local disk"""
# Parameters related to loading from Hugging Face Hub
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
resume_download = kwargs.pop("resume_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", False)
use_auth_token = kwargs.pop("use_auth_token", None)
revision = kwargs.pop("revision", None)
subfolder = kwargs.pop("subfolder", "")
commit_hash = kwargs.pop("_commit_hash", None)
cached_file_kwargs = {
"cache_dir": cache_dir,
"force_download": force_download,
"proxies": proxies,
"resume_download": resume_download,
"local_files_only": local_files_only,
"use_auth_token": use_auth_token,
"revision": revision,
"subfolder": subfolder,
"_raise_exceptions_for_missing_entries": False,
"_commit_hash": commit_hash,
}
if use_triton and not TRITON_AVAILABLE:
logger.warning("Triton is not installed, reset use_triton to False.")
use_triton = False
if not disable_exllama and not EXLLAMA_KERNELS_AVAILABLE:
logger.warning(
"Exllama kernel is not installed, reset disable_exllama to True. "
"This may because you installed auto_gptq using a pre-build wheel "
"on Windows, in which exllama_kernels are not compiled. To use "
"exllama_kernels to further speedup inference, you can re-install "
"auto_gptq from source."
)
disable_exllama = True
if not AUTOGPTQ_CUDA_AVAILABLE:
logger.warning(
"CUDA kernels for auto_gptq are not installed, this will result in "
"very slow inference speed. This may because:\n"
"1. You disabled CUDA extensions compilation by setting BUILD_CUDA_EXT=0 when install auto_gptq from source.\n"
"2. You are using pytorch without CUDA support.\n"
"3. CUDA and nvcc are not installed in your device."
)
# == step1: prepare configs and file names == #
config = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=trust_remote_code, **cached_file_kwargs)
if config.model_type not in SUPPORTED_MODELS:
raise TypeError(f"{config.model_type} isn't supported yet.")
if quantize_config is None:
quantize_config = BaseQuantizeConfig.from_pretrained(model_name_or_path, **cached_file_kwargs, **kwargs)
if model_basename is None:
if quantize_config.model_file_base_name:
model_basename = quantize_config.model_file_base_name
else:
model_basename = f"gptq_model-{quantize_config.bits}bit-{quantize_config.group_size}g"
quantize_config.model_name_or_path = model_name_or_path
quantize_config.model_file_base_name = model_basename
extensions = []
if use_safetensors:
extensions.append(".safetensors")
else:
extensions += [".bin", ".pt"]
model_name_or_path = str(model_name_or_path)
is_local = isdir(model_name_or_path)
resolved_archive_file = None
if is_local:
model_save_name = join(model_name_or_path, model_basename)
for ext in extensions:
if isfile(model_save_name + ext):
resolved_archive_file = model_save_name + ext
break
else: # remote
for ext in extensions:
resolved_archive_file = cached_file(model_name_or_path, model_basename + ext, **cached_file_kwargs)
if resolved_archive_file is not None:
break
if resolved_archive_file is None: # Could not find a model file to use
raise FileNotFoundError(f"Could not find model in {model_name_or_path}")
model_save_name = resolved_archive_file
if not disable_exllama and trainable:
logger.warning("QuantLinear with exllama backend not support trainable mode yet, Switch to the pytorch backend.")
disable_exllama = True
elif not use_triton and trainable:
logger.warning("QuantLinear with cuda backend not support trainable mode yet, Switch to the pytorch backend.")
# == step2: convert model to gptq-model (replace Linear with QuantLinear) == #
def skip(*args, **kwargs):
pass
torch.nn.init.kaiming_uniform_ = skip
torch.nn.init.uniform_ = skip
torch.nn.init.normal_ = skip
transformers.modeling_utils._init_weights = False
init_contexts = [no_init_weights()]
if low_cpu_mem_usage:
init_contexts.append(accelerate.init_empty_weights(include_buffers=False))
with ContextManagers(init_contexts):
model = AutoModelForCausalLM.from_config(
config,
trust_remote_code=trust_remote_code,
torch_dtype=torch_dtype
)
layers = find_layers(model)
ignore_layers = [cls.lm_head_name] + cls.outside_layer_modules
for name in list(layers.keys()):
if any([name.startswith(ignore_layer) for ignore_layer in ignore_layers]):
logger.info(f"{name} not been quantized, will be ignored when make_quant.")
del layers[name]
make_quant(
model,
layers,
quantize_config.bits,
quantize_config.group_size,
use_triton=use_triton,
disable_exllama=disable_exllama,
use_cuda_fp16=use_cuda_fp16,
desc_act=quantize_config.desc_act,
trainable=trainable
)
model.tie_weights()
# == step3: load checkpoint and dispatch == #
if isinstance(device_map, str) and device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]:
raise ValueError(
"If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or "
"'sequential'."
)
if isinstance(device_map, dict):
max_memory = None
else:
if device is None and not device_map and not max_memory:
device_map = "auto"
if device is not None:
device = torch.device(device)
if not max_memory and not device_map:
device_map = {"": device.index if device.type == "cuda" else device.type}
if not isinstance(device_map, dict) and device_map != "sequential":
max_memory = accelerate.utils.get_balanced_memory(
model=model,
max_memory=max_memory,
no_split_module_classes=[cls.layer_type],
low_zero=(device_map == "balanced_low_0")
)
if not isinstance(device_map, dict):
device_map = accelerate.infer_auto_device_map(
model,
max_memory=max_memory,
no_split_module_classes=[cls.layer_type]
)
if low_cpu_mem_usage:
make_sure_no_tensor_in_meta_device(model, use_triton, quantize_config.desc_act, quantize_config.group_size, bits=quantize_config.bits)
accelerate.utils.modeling.load_checkpoint_in_model(
model,
checkpoint=model_save_name,
device_map=device_map,
offload_state_dict=True,
offload_buffers=True
)
model = simple_dispatch_model(model, device_map)
# == step4: set seqlen == #
model_config = model.config.to_dict()
seq_len_keys = ["max_position_embeddings", "seq_length", "n_positions"]
if any([k in model_config for k in seq_len_keys]):
for key in seq_len_keys:
if key in model_config:
model.seqlen = model_config[key]
break
else:
logger.warning("can't get model's sequence length from model config, will set to 4096.")
model.seqlen = 4096
# == step5: (optional) inject optimized module == #
if inject_fused_attention:
if cls.fused_attn_module_type is None:
inject_fused_attention = False
logger.warning(f"{cls.__name__} hasn't fused attention module yet, will skip inject fused attention.")
else:
cls.fused_attn_module_type.inject_to_model(
model,
use_triton=use_triton,
group_size=quantize_config.group_size,
use_cuda_fp16=use_cuda_fp16,
desc_act=quantize_config.desc_act,
trainable=trainable,
bits=quantize_config.bits,
disable_exllama=disable_exllama,
)
if inject_fused_mlp:
if cls.fused_mlp_module_type is None:
inject_fused_mlp = False
logger.warning(f"{cls.__name__} hasn't fused mlp module yet, will skip inject fused mlp.")
else:
cls.fused_mlp_module_type.inject_to_model(
model,
use_triton=use_triton
)
# Any post-initialization that require device information, for example buffers initialization on device.
model = autogptq_post_init(model, use_act_order=quantize_config.desc_act)
model.eval()
# == step6: (optional) warmup triton == #
if use_triton and warmup_triton:
from ..nn_modules.qlinear.qlinear_triton import QuantLinear
QuantLinear.warmup(model, seqlen=model.seqlen)
if inject_fused_mlp and cls.fused_mlp_module_type is not None:
cls.fused_mlp_module_type.warmup(model, seqlen=model.seqlen)
# == step7: make model compatible with peft
cls.make_sure_compatible_with_peft(
model, use_triton, quantize_config.desc_act, quantize_config.group_size, bits=quantize_config.bits
)
return cls(
model,
True,
quantize_config,
is_triton_backend=use_triton,
injected_fused_attention=inject_fused_attention,
injected_fused_mlp=inject_fused_mlp and use_triton,
trainable=trainable
)
def warmup_triton(self, enabled: bool = True):
if not enabled:
return
if not TRITON_AVAILABLE:
logger.warning(f"triton is not available, skip warmup stage directly.")
return
from ..nn_modules.qlinear.qlinear_triton import QuantLinear
QuantLinear.warmup(self.model, seqlen=self.model.seqlen)
if self.fused_mlp_module_type is not None:
self.fused_mlp_module_type.warmup(self.model, seqlen=self.model.seqlen)
def enable_trainable_mode(self, enabled: bool = True):
if not self.is_triton_backend and enabled:
raise NotImplementedError("For now, trainable mode only supports triton backend.")
for n, m in self.model.named_modules():
if hasattr(m, "trainable"):
setattr(m, "trainable", enabled)
def disable_trainable_mode(self):
self.enable_trainable_mode(enabled=False)
@staticmethod
def make_sure_compatible_with_peft(model: PreTrainedModel, use_triton: bool, desc_act: bool, group_size: int, bits: int):
GeneralQuantLinear.inject_to_model(
model,
dynamically_import_QuantLinear(use_triton, desc_act, group_size, bits=bits)
)
def __getattr__(self, item):
try:
return super().__getattr__(item)
except:
return getattr(self.model, item)
__all__ = ["BaseGPTQForCausalLM", "BaseQuantizeConfig"]