AutoGPTQ/examples/evaluation/run_text_summarization_task.py
2023-04-26 15:22:30 +08:00

73 lines
2.6 KiB
Python

import os
from argparse import ArgumentParser
import datasets
import torch
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
from auto_gptq.eval_tasks import TextSummarizationTask
from transformers import AutoTokenizer, GenerationConfig
os.system("pip install py7zr")
DATASET = "samsum"
TEMPLATE = "Instruction: Summarize the conversation into one sentence.\n\nInput:\n{diag}\n\nOutput:\n"
def ds_refactor_fn(samples):
dialogues = samples["dialogue"]
new_samples = {"prompt": [], "summary": samples["summary"]}
for diag in dialogues:
prompt = TEMPLATE.format(diag=diag)
new_samples["prompt"].append(prompt)
return new_samples
def main():
parser = ArgumentParser()
parser.add_argument("--base_model_dir", type=str)
parser.add_argument("--quantized_model_dir", type=str)
parser.add_argument("--num_samples", type=int, default=100, help="how many samples will be sampled to evaluation")
parser.add_argument("--sample_max_len", type=int, default=1024, help="max tokens for each sample")
parser.add_argument("--block_max_len", type=int, default=2048, help="max tokens for each data block")
parser.add_argument("--use_triton", action="store_true")
args = parser.parse_args()
tokenizer = AutoTokenizer.from_pretrained(args.base_model_dir)
model = AutoGPTQForCausalLM.from_pretrained(args.base_model_dir, BaseQuantizeConfig())
model.to("cuda:0")
task = TextSummarizationTask(
model=model,
tokenizer=tokenizer,
data_name_or_path=DATASET,
prompt_col_name="prompt",
label_col_name="summary",
**{
"num_samples": args.num_samples, # how many samples will be sampled to evaluation
"sample_max_len": args.sample_max_len, # max tokens for each sample
"block_max_len": args.block_max_len, # max tokens for each data block
"load_fn": datasets.load_dataset, # function to load dataset
"preprocess_fn": ds_refactor_fn, # function to preprocess dataset
"truncate_prompt": False # truncate label when sample's length exceed sample_max_len
}
)
print(f"eval result for base model: {task.run(generation_config=GenerationConfig(max_new_tokens=32))}")
task.model = None
model.cpu()
del model
torch.cuda.empty_cache()
model = AutoGPTQForCausalLM.from_quantized(args.quantized_model_dir, device="cuda:0", use_triton=args.use_triton)
task.model = model
task.device = model.device
print(f"eval result for quantized model: {task.run(generation_config=GenerationConfig(max_new_tokens=32))}")
if __name__ == "__main__":
main()