import os import platform import sys from pathlib import Path from setuptools import setup, find_packages python_min_version = (3, 8, 0) python_min_version_str = '.'.join(map(str, python_min_version)) if sys.version_info < python_min_version: print(f"You are using Python {platform.python_version()}. Python >={python_min_version_str} is required.") sys.exit(-1) BUILD_CUDA_EXT = int(os.environ.get('BUILD_CUDA_EXT', '1')) == 1 if BUILD_CUDA_EXT: try: import torch except: print("torch is not installed, please install torch first!") sys.exit(-1) CUDA_VERSION = False ROCM_VERSION = os.environ.get('ROCM_VERSION', False) if ROCM_VERSION and not torch.version.hip: raise ValueError(f"Trying to compile AutoGPTQ for RoCm, but PyTorch {torch.__version__} is installed with no RoCm support.") if not ROCM_VERSION: default_cuda_version = "".join(torch.version.cuda.split(".")) CUDA_VERSION = os.environ.get("CUDA_VERSION", default_cuda_version) common_setup_kwargs = { "version": "0.3.2", "name": "auto_gptq", "author": "PanQiWei", "description": "An easy-to-use LLMs quantization package with user-friendly apis, based on GPTQ algorithm.", "long_description": (Path(__file__).parent / "README.md").read_text(encoding="UTF-8"), "long_description_content_type": "text/markdown", "url": "https://github.com/PanQiWei/AutoGPTQ", "keywords": ["gptq", "quantization", "large-language-models", "pytorch", "transformers"], "platforms": ["windows", "linux"], "classifiers": [ "Environment :: GPU :: NVIDIA CUDA :: 11.7", "Environment :: GPU :: NVIDIA CUDA :: 11.8", "License :: OSI Approved :: MIT License", "Natural Language :: Chinese (Simplified)", "Natural Language :: English", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10", "Programming Language :: C++", ], "python_requires": f">={python_min_version_str}" } if BUILD_CUDA_EXT: if ROCM_VERSION: common_setup_kwargs['version'] += f"+rocm{ROCM_VERSION}" else: assert CUDA_VERSION common_setup_kwargs['version'] += f"+cu{CUDA_VERSION}" requirements = [ "accelerate>=0.19.0", "datasets", "numpy", "rouge", "torch>=1.13.0", "safetensors", "transformers>=4.31.0", "peft" ] extras_require = { "triton": ["triton>=2.0.0"] } include_dirs = ["autogptq_cuda"] additional_setup_kwargs = dict() if BUILD_CUDA_EXT: from torch.utils import cpp_extension if not ROCM_VERSION: from distutils.sysconfig import get_python_lib conda_cuda_include_dir = os.path.join(get_python_lib(), "nvidia/cuda_runtime/include") print("conda_cuda_include_dir", conda_cuda_include_dir) if os.path.isdir(conda_cuda_include_dir): include_dirs.append(conda_cuda_include_dir) print(f"appending conda cuda include dir {conda_cuda_include_dir}") extensions = [ cpp_extension.CUDAExtension( "autogptq_cuda_64", [ "autogptq_cuda/autogptq_cuda_64.cpp", "autogptq_cuda/autogptq_cuda_kernel_64.cu" ] ), cpp_extension.CUDAExtension( "autogptq_cuda_256", [ "autogptq_cuda/autogptq_cuda_256.cpp", "autogptq_cuda/autogptq_cuda_kernel_256.cu" ] ), cpp_extension.CUDAExtension( "exllama_kernels", [ "autogptq_cuda/exllama/exllama_ext.cpp", "autogptq_cuda/exllama/cuda_buffers.cu", "autogptq_cuda/exllama/cuda_func/column_remap.cu", "autogptq_cuda/exllama/cuda_func/q4_matmul.cu", "autogptq_cuda/exllama/cuda_func/q4_matrix.cu" ] ) ] additional_setup_kwargs = { "ext_modules": extensions, "cmdclass": {'build_ext': cpp_extension.BuildExtension} } common_setup_kwargs.update(additional_setup_kwargs) setup( packages=find_packages(), install_requires=requirements, extras_require=extras_require, include_dirs=include_dirs, **common_setup_kwargs )