# Adapted from turboderp exllama: https://github.com/turboderp/exllamav2 from logging import getLogger import torch import torch.nn as nn import math logger = getLogger(__name__) try: from exllamav2_kernels import make_q_matrix, gemm_half_q_half except ImportError: logger.error('exllamav2_kernels not installed.') raise # Dummy tensor to pass instead of g_idx since there is no way to pass "None" to a C++ extension none_tensor = torch.empty((1, 1), device="meta") def _torch_device(idx): if idx == -1: return "cpu" return f"cuda:{idx}" def ext_gemm_half_q_half(x, q_handle, q4_width, force_cuda): """Matrix multiplication, returns x @ q4""" output_shape = x.shape[:-1] + (q4_width,) x = x.view(-1, x.shape[-1]) output = torch.empty((x.shape[0], q4_width), dtype = torch.half, device = x.device) gemm_half_q_half(x, q_handle, output, force_cuda) return output.view(output_shape) def ext_make_q_matrix(w: dict, temp_dq, key: str = None): """ Create Q matrix """ # EXL2 # won't work as the moment because the tensors are not the same. if "q_weight" in w: w["q_scale_max"] /= 256 w["q_perm"] = w["q_perm"].short() w["q_invperm"] = w["q_invperm"].short() return make_q_matrix(w["q_weight"], w["q_perm"], w["q_invperm"], w["q_scale"], w["q_scale_max"], w["q_groups"], none_tensor, none_tensor, none_tensor, temp_dq) # GPTQ elif "qweight" in w: if w["scales"].dtype == torch.float: w["scales"] = w["scales"].half() # GPTQ with g_idx (act_order) if "g_idx" in w and not (w["g_idx"] == 0).all().item(): w["q_perm"] = torch.empty((w["qweight"].shape[0] * 8,), dtype = torch.short, device = w["qweight"].device) w["q_invperm"] = torch.empty_like(w["q_perm"]) # make_q4 segfaults if g_idx is not on cpu in the act-order case. In the non act-order case, None needs to be passed for g_idx. return make_q_matrix(w["qweight"], w["q_perm"], w["q_invperm"], none_tensor, none_tensor, none_tensor, w["qzeros"], w["scales"], w["g_idx"].cpu(), temp_dq) # GPTQ without g_idx else: return make_q_matrix(w["qweight"], none_tensor, none_tensor, none_tensor, none_tensor, none_tensor, w["qzeros"], w["scales"], none_tensor, temp_dq) class QuantLinear(nn.Module): QUANT_TYPE = "exllamav2" """Linear layer implementation with per-group 4-bit quantization of the weights""" def __init__(self, bits, group_size, infeatures, outfeatures, bias, trainable=False, **kwargs): super().__init__() if bits != 4: raise ValueError( f"Exllamav2 kernel supports only bits=4, requested bits={bits}. Something is wrong in the model initialization.") if trainable: raise NotImplementedError("Exllamav2 kernel does not support training.") self.q_handle = None self.q_tensors = None self.padding = - outfeatures % 32 self.infeatures = infeatures self.outfeatures = outfeatures + self.padding self.bits = bits self.group_size = group_size if group_size != -1 else infeatures self.trainable = trainable self.maxq = 2 ** self.bits - 1 assert infeatures % 32 == 0 assert infeatures % self.group_size == 0 assert outfeatures % 32 == 0 # I need to register the tensors, otherwise, we won't be able to load them easily using transformers ... self.register_buffer( 'qweight', torch.zeros((infeatures // 32 * self.bits, outfeatures), dtype=torch.int32) ) self.register_buffer( 'qzeros', torch.zeros((math.ceil(infeatures / self.group_size), outfeatures // 32 * self.bits), dtype=torch.int32) ) self.register_buffer( 'scales', torch.zeros((math.ceil(infeatures / self.group_size), outfeatures), dtype=torch.float16) ) self.register_buffer( 'g_idx', torch.tensor([i // self.group_size for i in range(infeatures)], dtype=torch.int32) ) if bias: self.register_buffer('bias', torch.zeros((outfeatures), dtype=torch.float16)) else: self.bias = None def post_init(self, temp_dq): assert self.qweight.device.type == "cuda" assert self.qweight.device.index is not None self.q_tensors = { "qweight":self.qweight, "qzeros":self.qzeros, "scales":self.scales, "g_idx":self.g_idx } temp_dq = temp_dq.get_scratch_slice(self.temp_dq_size()) self.q_handle = ext_make_q_matrix( self.q_tensors, temp_dq ) def forward(self, x, force_cuda = False): output = ext_gemm_half_q_half(x, self.q_handle, self.outfeatures, force_cuda) if self.bias is not None: output.add_(self.bias) return output def temp_dq_size(self): return self.infeatures * self.outfeatures * 2 + 128 def temp_fwd_size(self, max_input_len, max_batch_size): return self.outfeatures * max_input_len * max_batch_size * 4 + 128 def scratch_space_fixed(self, max_input_len=2048, max_batch_size=8): return self.temp_dq_size() + self.temp_fwd_size(max_input_len, max_batch_size) class ExLlamaV2DeviceTensors: device_idx: int scratch_bytes: int scratch_idx: int scratch: torch.tensor = None def __init__(self, device_idx, scratch_bytes): self.device_idx = device_idx self.scratch_bytes = scratch_bytes def prepare(self): self.scratch = torch.empty((self.scratch_bytes // 2,), dtype = torch.half, device = _torch_device(self.device_idx)) def get_scratch_slice(self, size_bytes): if self.scratch is None: self.prepare() size_bytes = ((size_bytes + 127) // 128) * 128 size_half = size_bytes // 2 scratch_slice = self.scratch.narrow(0, 0, size_half) return scratch_slice