from logging import getLogger import torch.nn as nn from transformers import AutoConfig from ._const import SUPPORTED_MODELS from ..quantization import make_quant, QuantLinear logger = getLogger(__name__) def find_layers(module, layers=[nn.Conv2d, nn.Linear], name=''): if type(module) in layers: return {name: module} res = {} for name1, child in module.named_children(): res.update(find_layers(child, layers=layers, name=name + '.' + name1 if name != '' else name1)) return res def get_module_by_name(model, module_name: str): for name, module in model.named_modules(): if name.startswith(module_name): return module def pack_model(model, quantizers, bits, group_size): model.cpu() logger.info('Packing model...') layers = find_layers(model) layers = {n: layers[n] for n in quantizers} make_quant(model, quantizers, bits, group_size) qlayers = find_layers(model, [QuantLinear]) for name in qlayers: logger.info(name) quantizers[name], scale, zero, g_idx = quantizers[name] qlayers[name].pack(layers[name], scale, zero, g_idx) logger.info('Model packed.') def check_and_get_model_type(model_dir): config = AutoConfig.from_pretrained(model_dir) if config.model_type not in SUPPORTED_MODELS: raise TypeError(f"{config.model_type} isn't supported yet.") model_type = config.model_type return model_type __all__ = ["find_layers", "get_module_by_name", "pack_model", "check_and_get_model_type"]