import math from logging import getLogger import numpy as np import torch import torch.nn as nn import transformers logger = getLogger(__name__) try: import autogptq_cuda_256 import autogptq_cuda_64 _autogptq_cuda_available = True except ImportError: logger.warning('CUDA extension not installed.') autogptq_cuda_256 = None autogptq_cuda_64 = None _autogptq_cuda_available = False class QuantLinear(nn.Module): QUANT_TYPE = "cuda-old" def __init__( self, bits, group_size, infeatures, outfeatures, bias, use_cuda_fp16=True, kernel_switch_threshold=128, trainable=False ): super().__init__() global _autogptq_cuda_available if bits not in [2, 3, 4, 8]: raise NotImplementedError("Only 2,3,4,8 bits are supported.") if trainable: _autogptq_cuda_available = False self.infeatures = infeatures self.outfeatures = outfeatures self.bits = bits self.group_size = group_size if group_size != -1 else infeatures self.maxq = 2 ** self.bits - 1 self.register_buffer( 'qweight', torch.zeros((infeatures // 32 * self.bits, outfeatures), dtype=torch.int32) ) self.register_buffer( 'qzeros', torch.zeros((math.ceil(infeatures / self.group_size), outfeatures // 32 * self.bits), dtype=torch.int32) ) self.register_buffer( 'scales', torch.zeros((math.ceil(infeatures / self.group_size), outfeatures), dtype=torch.float16) ) self.register_buffer( 'g_idx', torch.tensor([i // self.group_size for i in range(infeatures)], dtype=torch.int32) ) if bias: self.register_buffer('bias', torch.zeros((outfeatures), dtype=torch.float16)) else: self.bias = None self.half_indim = self.infeatures // 2 self.use_cuda_fp16 = use_cuda_fp16 if bits != 8 else False # is performed by unpacking the weights and using torch.matmul if self.bits in [2, 4, 8]: self.wf = torch.tensor(list(range(0, 32, self.bits)), dtype=torch.int32).unsqueeze(0) elif self.bits == 3: self.wf = torch.tensor( [ [0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 0], [0, 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31], [0, 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 0], ], dtype=torch.int32 ).reshape(1, 3, 12) self.kernel_switch_threshold = kernel_switch_threshold self.autogptq_cuda_available = _autogptq_cuda_available self.autogptq_cuda = autogptq_cuda_256 if infeatures % 256 != 0 or outfeatures % 256 != 0: self.autogptq_cuda = autogptq_cuda_64 if infeatures % 64 != 0 or outfeatures % 64 != 0: self.autogptq_cuda_available = False self.trainable = trainable def post_init(self): pass def pack(self, linear, scales, zeros, g_idx): W = linear.weight.data.clone() if isinstance(linear, nn.Conv2d): W = W.flatten(1) if isinstance(linear, transformers.pytorch_utils.Conv1D): W = W.t() scales = scales.t().contiguous() zeros = zeros.t().contiguous() scale_zeros = zeros * scales self.scales = scales.clone().half() if linear.bias is not None: self.bias = linear.bias.clone().half() intweight = [] for idx in range(self.infeatures): g_idx = idx // self.group_size intweight.append( torch.round( (W[:, idx] + scale_zeros[g_idx]) / self.scales[g_idx] ).to(torch.int)[:, None] ) intweight = torch.cat(intweight, dim=1) intweight = intweight.t().contiguous() intweight = intweight.numpy().astype(np.uint32) i = 0 row = 0 qweight = np.zeros( (intweight.shape[0] // 32 * self.bits, intweight.shape[1]), dtype=np.uint32 ) while row < qweight.shape[0]: if self.bits in [2, 4, 8]: for j in range(i, i + (32 // self.bits)): qweight[row] |= intweight[j] << (self.bits * (j - i)) i += 32 // self.bits row += 1 elif self.bits == 3: for j in range(i, i + 10): qweight[row] |= intweight[j] << (3 * (j - i)) i += 10 qweight[row] |= intweight[i] << 30 row += 1 qweight[row] |= (intweight[i] >> 2) & 1 i += 1 for j in range(i, i + 10): qweight[row] |= intweight[j] << (3 * (j - i) + 1) i += 10 qweight[row] |= intweight[i] << 31 row += 1 qweight[row] |= (intweight[i] >> 1) & 0x3 i += 1 for j in range(i, i + 10): qweight[row] |= intweight[j] << (3 * (j - i) + 2) i += 10 row += 1 else: raise NotImplementedError("Only 2,3,4,8 bits are supported.") qweight = qweight.astype(np.int32) self.qweight = torch.from_numpy(qweight) zeros -= 1 zeros = zeros.numpy().astype(np.uint32) qzeros = np.zeros((zeros.shape[0], zeros.shape[1] // 32 * self.bits), dtype=np.uint32) i = 0 col = 0 while col < qzeros.shape[1]: if self.bits in [2, 4, 8]: for j in range(i, i + (32 // self.bits)): qzeros[:, col] |= zeros[:, j] << (self.bits * (j - i)) i += 32 // self.bits col += 1 elif self.bits == 3: for j in range(i, i + 10): qzeros[:, col] |= zeros[:, j] << (3 * (j - i)) i += 10 qzeros[:, col] |= zeros[:, i] << 30 col += 1 qzeros[:, col] |= (zeros[:, i] >> 2) & 1 i += 1 for j in range(i, i + 10): qzeros[:, col] |= zeros[:, j] << (3 * (j - i) + 1) i += 10 qzeros[:, col] |= zeros[:, i] << 31 col += 1 qzeros[:, col] |= (zeros[:, i] >> 1) & 0x3 i += 1 for j in range(i, i + 10): qzeros[:, col] |= zeros[:, j] << (3 * (j - i) + 2) i += 10 col += 1 else: raise NotImplementedError("Only 2,3,4,8 bits are supported.") qzeros = qzeros.astype(np.int32) self.qzeros = torch.from_numpy(qzeros) def forward(self, x): out_shape = x.shape[:-1] + (self.outfeatures,) x = x.reshape(-1, x.shape[-1]) if self.autogptq_cuda_available is True and ( self.kernel_switch_threshold is False or x.shape[0] < self.kernel_switch_threshold ): out = torch.zeros(x.shape[0], out_shape[-1], dtype=torch.float, device=x.device) if self.use_cuda_fp16: x = x.half() if self.bits == 2: self.autogptq_cuda.vecquant2matmul_faster_old(x, self.qweight, out, self.scales.float(), self.qzeros, self.group_size, self.half_indim) elif self.bits == 3: self.autogptq_cuda.vecquant3matmul_faster_old(x, self.qweight, out, self.scales.float(), self.qzeros, self.group_size, self.half_indim) elif self.bits == 4: self.autogptq_cuda.vecquant4matmul_faster_old(x, self.qweight, out, self.scales.float(), self.qzeros, self.group_size, self.half_indim) else: raise NotImplementedError("Only 2,3,4 bits are supported.") else: x = x.float() if self.bits == 2: self.autogptq_cuda.vecquant2matmul_old(x, self.qweight, out, self.scales.float(), self.qzeros, self.group_size) elif self.bits == 3: self.autogptq_cuda.vecquant3matmul_old(x, self.qweight, out, self.scales.float(), self.qzeros, self.group_size) elif self.bits == 4: self.autogptq_cuda.vecquant4matmul_old(x, self.qweight, out, self.scales.float(), self.qzeros, self.group_size) elif self.bits == 8: self.autogptq_cuda.vecquant8matmul_old(x, self.qweight, out, self.scales.float(), self.qzeros, self.group_size) else: raise NotImplementedError("Only 2,3,4,8 bits are supported.") else: if self.wf.device != self.qzeros.device: self.wf = self.wf.to(self.qzeros.device) if self.bits in [2,4,8]: zeros = torch.bitwise_right_shift(torch.unsqueeze(self.qzeros, 2).expand(-1, -1, 32 // self.bits), self.wf.unsqueeze(0)).to(torch.int16 if self.bits == 8 else torch.int8) torch.bitwise_and(zeros, (2 ** self.bits) - 1, out=zeros) zeros = zeros + 1 zeros = zeros.reshape(-1, 1, zeros.shape[1] * zeros.shape[2]) scales = self.scales scales = scales.reshape(-1, 1, scales.shape[-1]) weight = torch.bitwise_right_shift(torch.unsqueeze(self.qweight, 1).expand(-1, 32 // self.bits, -1), self.wf.unsqueeze(-1)).to(torch.int16 if self.bits == 8 else torch.int8) torch.bitwise_and(weight,(2 ** self.bits) - 1, out=weight) weight = weight.reshape(-1, self.group_size, weight.shape[2]) elif self.bits == 3: zeros = self.qzeros.reshape(self.qzeros.shape[0], self.qzeros.shape[1]//3, 3, 1).expand(-1, -1, -1, 12) zeros = (zeros >> self.wf.unsqueeze(0)) zeros[:,:,0,10] = (zeros[:,:,0,10]&0x3) | ((zeros[:,:,1,0] << 2)&0x4) zeros[:,:,1,11] = (zeros[:,:,1,11]&0x1) | ((zeros[:,:,2,0] << 1)&0x6) zeros = zeros & 0x7 zeros = torch.cat([zeros[:,:,0,:11], zeros[:,:,1,1:12], zeros[:,:,2,1:11]], dim=2) zeros = zeros + 1 zeros = zeros.reshape(-1, 1, zeros.shape[1] * zeros.shape[2]) scales = self.scales scales = scales.reshape(-1, 1, scales.shape[-1]) weight = self.qweight.reshape(self.qweight.shape[0]//3, 3, 1, self.qweight.shape[1]).expand(-1, -1, 12, -1) weight = (weight >> self.wf.unsqueeze(-1))&0x7 weight[:,0,10] = (weight[:,0,10]&0x3) | ((weight[:,1,0] << 2)&0x4) weight[:,1,11] = (weight[:,1,11]&0x1) | ((weight[:,2,0] << 1)&0x6) weight = weight & 0x7 weight = torch.cat([weight[:,0,:11], weight[:,1,1:12], weight[:,2,1:11]], dim=1) weight = weight.reshape(-1, self.group_size, weight.shape[2]) else: raise NotImplementedError("Only 2,3,4,8 bits are supported.") weight = (scales * (weight - zeros)) weight = weight.reshape(weight.shape[0] * weight.shape[1], weight.shape[2]) out = torch.matmul(x.half(), weight) out = out.half().reshape(out_shape) out = out + self.bias if self.bias is not None else out return out __all__ = ["QuantLinear"]